1
linux/drivers/input/keyboard/tegra-kbc.c
Rakesh Iyer 5599d2e60b Input: tegra-kbc - enable key autorepeat
To support key repeats, keyboard needs to be setup as an autorepeating
device.

Signed-off-by: Rakesh Iyer <riyer@nvidia.com>
Signed-off-by: Dmitry Torokhov <dtor@mail.ru>
2011-07-25 01:26:17 -07:00

800 lines
19 KiB
C

/*
* Keyboard class input driver for the NVIDIA Tegra SoC internal matrix
* keyboard controller
*
* Copyright (c) 2009-2011, NVIDIA Corporation.
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful, but WITHOUT
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
* more details.
*
* You should have received a copy of the GNU General Public License along
* with this program; if not, write to the Free Software Foundation, Inc.,
* 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.
*/
#include <linux/module.h>
#include <linux/input.h>
#include <linux/platform_device.h>
#include <linux/delay.h>
#include <linux/io.h>
#include <linux/interrupt.h>
#include <linux/clk.h>
#include <linux/slab.h>
#include <mach/clk.h>
#include <mach/kbc.h>
#define KBC_MAX_DEBOUNCE_CNT 0x3ffu
/* KBC row scan time and delay for beginning the row scan. */
#define KBC_ROW_SCAN_TIME 16
#define KBC_ROW_SCAN_DLY 5
/* KBC uses a 32KHz clock so a cycle = 1/32Khz */
#define KBC_CYCLE_USEC 32
/* KBC Registers */
/* KBC Control Register */
#define KBC_CONTROL_0 0x0
#define KBC_FIFO_TH_CNT_SHIFT(cnt) (cnt << 14)
#define KBC_DEBOUNCE_CNT_SHIFT(cnt) (cnt << 4)
#define KBC_CONTROL_FIFO_CNT_INT_EN (1 << 3)
#define KBC_CONTROL_KBC_EN (1 << 0)
/* KBC Interrupt Register */
#define KBC_INT_0 0x4
#define KBC_INT_FIFO_CNT_INT_STATUS (1 << 2)
#define KBC_ROW_CFG0_0 0x8
#define KBC_COL_CFG0_0 0x18
#define KBC_INIT_DLY_0 0x28
#define KBC_RPT_DLY_0 0x2c
#define KBC_KP_ENT0_0 0x30
#define KBC_KP_ENT1_0 0x34
#define KBC_ROW0_MASK_0 0x38
#define KBC_ROW_SHIFT 3
struct tegra_kbc {
void __iomem *mmio;
struct input_dev *idev;
unsigned int irq;
spinlock_t lock;
unsigned int repoll_dly;
unsigned long cp_dly_jiffies;
bool use_fn_map;
bool use_ghost_filter;
const struct tegra_kbc_platform_data *pdata;
unsigned short keycode[KBC_MAX_KEY * 2];
unsigned short current_keys[KBC_MAX_KPENT];
unsigned int num_pressed_keys;
struct timer_list timer;
struct clk *clk;
};
static const u32 tegra_kbc_default_keymap[] = {
KEY(0, 2, KEY_W),
KEY(0, 3, KEY_S),
KEY(0, 4, KEY_A),
KEY(0, 5, KEY_Z),
KEY(0, 7, KEY_FN),
KEY(1, 7, KEY_LEFTMETA),
KEY(2, 6, KEY_RIGHTALT),
KEY(2, 7, KEY_LEFTALT),
KEY(3, 0, KEY_5),
KEY(3, 1, KEY_4),
KEY(3, 2, KEY_R),
KEY(3, 3, KEY_E),
KEY(3, 4, KEY_F),
KEY(3, 5, KEY_D),
KEY(3, 6, KEY_X),
KEY(4, 0, KEY_7),
KEY(4, 1, KEY_6),
KEY(4, 2, KEY_T),
KEY(4, 3, KEY_H),
KEY(4, 4, KEY_G),
KEY(4, 5, KEY_V),
KEY(4, 6, KEY_C),
KEY(4, 7, KEY_SPACE),
KEY(5, 0, KEY_9),
KEY(5, 1, KEY_8),
KEY(5, 2, KEY_U),
KEY(5, 3, KEY_Y),
KEY(5, 4, KEY_J),
KEY(5, 5, KEY_N),
KEY(5, 6, KEY_B),
KEY(5, 7, KEY_BACKSLASH),
KEY(6, 0, KEY_MINUS),
KEY(6, 1, KEY_0),
KEY(6, 2, KEY_O),
KEY(6, 3, KEY_I),
KEY(6, 4, KEY_L),
KEY(6, 5, KEY_K),
KEY(6, 6, KEY_COMMA),
KEY(6, 7, KEY_M),
KEY(7, 1, KEY_EQUAL),
KEY(7, 2, KEY_RIGHTBRACE),
KEY(7, 3, KEY_ENTER),
KEY(7, 7, KEY_MENU),
KEY(8, 4, KEY_RIGHTSHIFT),
KEY(8, 5, KEY_LEFTSHIFT),
KEY(9, 5, KEY_RIGHTCTRL),
KEY(9, 7, KEY_LEFTCTRL),
KEY(11, 0, KEY_LEFTBRACE),
KEY(11, 1, KEY_P),
KEY(11, 2, KEY_APOSTROPHE),
KEY(11, 3, KEY_SEMICOLON),
KEY(11, 4, KEY_SLASH),
KEY(11, 5, KEY_DOT),
KEY(12, 0, KEY_F10),
KEY(12, 1, KEY_F9),
KEY(12, 2, KEY_BACKSPACE),
KEY(12, 3, KEY_3),
KEY(12, 4, KEY_2),
KEY(12, 5, KEY_UP),
KEY(12, 6, KEY_PRINT),
KEY(12, 7, KEY_PAUSE),
KEY(13, 0, KEY_INSERT),
KEY(13, 1, KEY_DELETE),
KEY(13, 3, KEY_PAGEUP),
KEY(13, 4, KEY_PAGEDOWN),
KEY(13, 5, KEY_RIGHT),
KEY(13, 6, KEY_DOWN),
KEY(13, 7, KEY_LEFT),
KEY(14, 0, KEY_F11),
KEY(14, 1, KEY_F12),
KEY(14, 2, KEY_F8),
KEY(14, 3, KEY_Q),
KEY(14, 4, KEY_F4),
KEY(14, 5, KEY_F3),
KEY(14, 6, KEY_1),
KEY(14, 7, KEY_F7),
KEY(15, 0, KEY_ESC),
KEY(15, 1, KEY_GRAVE),
KEY(15, 2, KEY_F5),
KEY(15, 3, KEY_TAB),
KEY(15, 4, KEY_F1),
KEY(15, 5, KEY_F2),
KEY(15, 6, KEY_CAPSLOCK),
KEY(15, 7, KEY_F6),
/* Software Handled Function Keys */
KEY(20, 0, KEY_KP7),
KEY(21, 0, KEY_KP9),
KEY(21, 1, KEY_KP8),
KEY(21, 2, KEY_KP4),
KEY(21, 4, KEY_KP1),
KEY(22, 1, KEY_KPSLASH),
KEY(22, 2, KEY_KP6),
KEY(22, 3, KEY_KP5),
KEY(22, 4, KEY_KP3),
KEY(22, 5, KEY_KP2),
KEY(22, 7, KEY_KP0),
KEY(27, 1, KEY_KPASTERISK),
KEY(27, 3, KEY_KPMINUS),
KEY(27, 4, KEY_KPPLUS),
KEY(27, 5, KEY_KPDOT),
KEY(28, 5, KEY_VOLUMEUP),
KEY(29, 3, KEY_HOME),
KEY(29, 4, KEY_END),
KEY(29, 5, KEY_BRIGHTNESSDOWN),
KEY(29, 6, KEY_VOLUMEDOWN),
KEY(29, 7, KEY_BRIGHTNESSUP),
KEY(30, 0, KEY_NUMLOCK),
KEY(30, 1, KEY_SCROLLLOCK),
KEY(30, 2, KEY_MUTE),
KEY(31, 4, KEY_HELP),
};
static const struct matrix_keymap_data tegra_kbc_default_keymap_data = {
.keymap = tegra_kbc_default_keymap,
.keymap_size = ARRAY_SIZE(tegra_kbc_default_keymap),
};
static void tegra_kbc_report_released_keys(struct input_dev *input,
unsigned short old_keycodes[],
unsigned int old_num_keys,
unsigned short new_keycodes[],
unsigned int new_num_keys)
{
unsigned int i, j;
for (i = 0; i < old_num_keys; i++) {
for (j = 0; j < new_num_keys; j++)
if (old_keycodes[i] == new_keycodes[j])
break;
if (j == new_num_keys)
input_report_key(input, old_keycodes[i], 0);
}
}
static void tegra_kbc_report_pressed_keys(struct input_dev *input,
unsigned char scancodes[],
unsigned short keycodes[],
unsigned int num_pressed_keys)
{
unsigned int i;
for (i = 0; i < num_pressed_keys; i++) {
input_event(input, EV_MSC, MSC_SCAN, scancodes[i]);
input_report_key(input, keycodes[i], 1);
}
}
static void tegra_kbc_report_keys(struct tegra_kbc *kbc)
{
unsigned char scancodes[KBC_MAX_KPENT];
unsigned short keycodes[KBC_MAX_KPENT];
u32 val = 0;
unsigned int i;
unsigned int num_down = 0;
unsigned long flags;
bool fn_keypress = false;
bool key_in_same_row = false;
bool key_in_same_col = false;
spin_lock_irqsave(&kbc->lock, flags);
for (i = 0; i < KBC_MAX_KPENT; i++) {
if ((i % 4) == 0)
val = readl(kbc->mmio + KBC_KP_ENT0_0 + i);
if (val & 0x80) {
unsigned int col = val & 0x07;
unsigned int row = (val >> 3) & 0x0f;
unsigned char scancode =
MATRIX_SCAN_CODE(row, col, KBC_ROW_SHIFT);
scancodes[num_down] = scancode;
keycodes[num_down] = kbc->keycode[scancode];
/* If driver uses Fn map, do not report the Fn key. */
if ((keycodes[num_down] == KEY_FN) && kbc->use_fn_map)
fn_keypress = true;
else
num_down++;
}
val >>= 8;
}
/*
* Matrix keyboard designs are prone to keyboard ghosting.
* Ghosting occurs if there are 3 keys such that -
* any 2 of the 3 keys share a row, and any 2 of them share a column.
* If so ignore the key presses for this iteration.
*/
if ((kbc->use_ghost_filter) && (num_down >= 3)) {
for (i = 0; i < num_down; i++) {
unsigned int j;
u8 curr_col = scancodes[i] & 0x07;
u8 curr_row = scancodes[i] >> KBC_ROW_SHIFT;
/*
* Find 2 keys such that one key is in the same row
* and the other is in the same column as the i-th key.
*/
for (j = i + 1; j < num_down; j++) {
u8 col = scancodes[j] & 0x07;
u8 row = scancodes[j] >> KBC_ROW_SHIFT;
if (col == curr_col)
key_in_same_col = true;
if (row == curr_row)
key_in_same_row = true;
}
}
}
/*
* If the platform uses Fn keymaps, translate keys on a Fn keypress.
* Function keycodes are KBC_MAX_KEY apart from the plain keycodes.
*/
if (fn_keypress) {
for (i = 0; i < num_down; i++) {
scancodes[i] += KBC_MAX_KEY;
keycodes[i] = kbc->keycode[scancodes[i]];
}
}
spin_unlock_irqrestore(&kbc->lock, flags);
/* Ignore the key presses for this iteration? */
if (key_in_same_col && key_in_same_row)
return;
tegra_kbc_report_released_keys(kbc->idev,
kbc->current_keys, kbc->num_pressed_keys,
keycodes, num_down);
tegra_kbc_report_pressed_keys(kbc->idev, scancodes, keycodes, num_down);
input_sync(kbc->idev);
memcpy(kbc->current_keys, keycodes, sizeof(kbc->current_keys));
kbc->num_pressed_keys = num_down;
}
static void tegra_kbc_keypress_timer(unsigned long data)
{
struct tegra_kbc *kbc = (struct tegra_kbc *)data;
unsigned long flags;
u32 val;
unsigned int i;
val = (readl(kbc->mmio + KBC_INT_0) >> 4) & 0xf;
if (val) {
unsigned long dly;
tegra_kbc_report_keys(kbc);
/*
* If more than one keys are pressed we need not wait
* for the repoll delay.
*/
dly = (val == 1) ? kbc->repoll_dly : 1;
mod_timer(&kbc->timer, jiffies + msecs_to_jiffies(dly));
} else {
/* Release any pressed keys and exit the polling loop */
for (i = 0; i < kbc->num_pressed_keys; i++)
input_report_key(kbc->idev, kbc->current_keys[i], 0);
input_sync(kbc->idev);
kbc->num_pressed_keys = 0;
/* All keys are released so enable the keypress interrupt */
spin_lock_irqsave(&kbc->lock, flags);
val = readl(kbc->mmio + KBC_CONTROL_0);
val |= KBC_CONTROL_FIFO_CNT_INT_EN;
writel(val, kbc->mmio + KBC_CONTROL_0);
spin_unlock_irqrestore(&kbc->lock, flags);
}
}
static irqreturn_t tegra_kbc_isr(int irq, void *args)
{
struct tegra_kbc *kbc = args;
u32 val, ctl;
/*
* Until all keys are released, defer further processing to
* the polling loop in tegra_kbc_keypress_timer
*/
ctl = readl(kbc->mmio + KBC_CONTROL_0);
ctl &= ~KBC_CONTROL_FIFO_CNT_INT_EN;
writel(ctl, kbc->mmio + KBC_CONTROL_0);
/*
* Quickly bail out & reenable interrupts if the fifo threshold
* count interrupt wasn't the interrupt source
*/
val = readl(kbc->mmio + KBC_INT_0);
writel(val, kbc->mmio + KBC_INT_0);
if (val & KBC_INT_FIFO_CNT_INT_STATUS) {
/*
* Schedule timer to run when hardware is in continuous
* polling mode.
*/
mod_timer(&kbc->timer, jiffies + kbc->cp_dly_jiffies);
} else {
ctl |= KBC_CONTROL_FIFO_CNT_INT_EN;
writel(ctl, kbc->mmio + KBC_CONTROL_0);
}
return IRQ_HANDLED;
}
static void tegra_kbc_setup_wakekeys(struct tegra_kbc *kbc, bool filter)
{
const struct tegra_kbc_platform_data *pdata = kbc->pdata;
int i;
unsigned int rst_val;
/* Either mask all keys or none. */
rst_val = (filter && !pdata->wakeup) ? ~0 : 0;
for (i = 0; i < KBC_MAX_ROW; i++)
writel(rst_val, kbc->mmio + KBC_ROW0_MASK_0 + i * 4);
}
static void tegra_kbc_config_pins(struct tegra_kbc *kbc)
{
const struct tegra_kbc_platform_data *pdata = kbc->pdata;
int i;
for (i = 0; i < KBC_MAX_GPIO; i++) {
u32 r_shft = 5 * (i % 6);
u32 c_shft = 4 * (i % 8);
u32 r_mask = 0x1f << r_shft;
u32 c_mask = 0x0f << c_shft;
u32 r_offs = (i / 6) * 4 + KBC_ROW_CFG0_0;
u32 c_offs = (i / 8) * 4 + KBC_COL_CFG0_0;
u32 row_cfg = readl(kbc->mmio + r_offs);
u32 col_cfg = readl(kbc->mmio + c_offs);
row_cfg &= ~r_mask;
col_cfg &= ~c_mask;
if (pdata->pin_cfg[i].is_row)
row_cfg |= ((pdata->pin_cfg[i].num << 1) | 1) << r_shft;
else
col_cfg |= ((pdata->pin_cfg[i].num << 1) | 1) << c_shft;
writel(row_cfg, kbc->mmio + r_offs);
writel(col_cfg, kbc->mmio + c_offs);
}
}
static int tegra_kbc_start(struct tegra_kbc *kbc)
{
const struct tegra_kbc_platform_data *pdata = kbc->pdata;
unsigned long flags;
unsigned int debounce_cnt;
u32 val = 0;
clk_enable(kbc->clk);
/* Reset the KBC controller to clear all previous status.*/
tegra_periph_reset_assert(kbc->clk);
udelay(100);
tegra_periph_reset_deassert(kbc->clk);
udelay(100);
tegra_kbc_config_pins(kbc);
tegra_kbc_setup_wakekeys(kbc, false);
writel(pdata->repeat_cnt, kbc->mmio + KBC_RPT_DLY_0);
/* Keyboard debounce count is maximum of 12 bits. */
debounce_cnt = min(pdata->debounce_cnt, KBC_MAX_DEBOUNCE_CNT);
val = KBC_DEBOUNCE_CNT_SHIFT(debounce_cnt);
val |= KBC_FIFO_TH_CNT_SHIFT(1); /* set fifo interrupt threshold to 1 */
val |= KBC_CONTROL_FIFO_CNT_INT_EN; /* interrupt on FIFO threshold */
val |= KBC_CONTROL_KBC_EN; /* enable */
writel(val, kbc->mmio + KBC_CONTROL_0);
/*
* Compute the delay(ns) from interrupt mode to continuous polling
* mode so the timer routine is scheduled appropriately.
*/
val = readl(kbc->mmio + KBC_INIT_DLY_0);
kbc->cp_dly_jiffies = usecs_to_jiffies((val & 0xfffff) * 32);
kbc->num_pressed_keys = 0;
/*
* Atomically clear out any remaining entries in the key FIFO
* and enable keyboard interrupts.
*/
spin_lock_irqsave(&kbc->lock, flags);
while (1) {
val = readl(kbc->mmio + KBC_INT_0);
val >>= 4;
if (!val)
break;
val = readl(kbc->mmio + KBC_KP_ENT0_0);
val = readl(kbc->mmio + KBC_KP_ENT1_0);
}
writel(0x7, kbc->mmio + KBC_INT_0);
spin_unlock_irqrestore(&kbc->lock, flags);
enable_irq(kbc->irq);
return 0;
}
static void tegra_kbc_stop(struct tegra_kbc *kbc)
{
unsigned long flags;
u32 val;
spin_lock_irqsave(&kbc->lock, flags);
val = readl(kbc->mmio + KBC_CONTROL_0);
val &= ~1;
writel(val, kbc->mmio + KBC_CONTROL_0);
spin_unlock_irqrestore(&kbc->lock, flags);
disable_irq(kbc->irq);
del_timer_sync(&kbc->timer);
clk_disable(kbc->clk);
}
static int tegra_kbc_open(struct input_dev *dev)
{
struct tegra_kbc *kbc = input_get_drvdata(dev);
return tegra_kbc_start(kbc);
}
static void tegra_kbc_close(struct input_dev *dev)
{
struct tegra_kbc *kbc = input_get_drvdata(dev);
return tegra_kbc_stop(kbc);
}
static bool __devinit
tegra_kbc_check_pin_cfg(const struct tegra_kbc_platform_data *pdata,
struct device *dev, unsigned int *num_rows)
{
int i;
*num_rows = 0;
for (i = 0; i < KBC_MAX_GPIO; i++) {
const struct tegra_kbc_pin_cfg *pin_cfg = &pdata->pin_cfg[i];
if (pin_cfg->is_row) {
if (pin_cfg->num >= KBC_MAX_ROW) {
dev_err(dev,
"pin_cfg[%d]: invalid row number %d\n",
i, pin_cfg->num);
return false;
}
(*num_rows)++;
} else {
if (pin_cfg->num >= KBC_MAX_COL) {
dev_err(dev,
"pin_cfg[%d]: invalid column number %d\n",
i, pin_cfg->num);
return false;
}
}
}
return true;
}
static int __devinit tegra_kbc_probe(struct platform_device *pdev)
{
const struct tegra_kbc_platform_data *pdata = pdev->dev.platform_data;
const struct matrix_keymap_data *keymap_data;
struct tegra_kbc *kbc;
struct input_dev *input_dev;
struct resource *res;
int irq;
int err;
int num_rows = 0;
unsigned int debounce_cnt;
unsigned int scan_time_rows;
if (!pdata)
return -EINVAL;
if (!tegra_kbc_check_pin_cfg(pdata, &pdev->dev, &num_rows))
return -EINVAL;
res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
if (!res) {
dev_err(&pdev->dev, "failed to get I/O memory\n");
return -ENXIO;
}
irq = platform_get_irq(pdev, 0);
if (irq < 0) {
dev_err(&pdev->dev, "failed to get keyboard IRQ\n");
return -ENXIO;
}
kbc = kzalloc(sizeof(*kbc), GFP_KERNEL);
input_dev = input_allocate_device();
if (!kbc || !input_dev) {
err = -ENOMEM;
goto err_free_mem;
}
kbc->pdata = pdata;
kbc->idev = input_dev;
kbc->irq = irq;
spin_lock_init(&kbc->lock);
setup_timer(&kbc->timer, tegra_kbc_keypress_timer, (unsigned long)kbc);
res = request_mem_region(res->start, resource_size(res), pdev->name);
if (!res) {
dev_err(&pdev->dev, "failed to request I/O memory\n");
err = -EBUSY;
goto err_free_mem;
}
kbc->mmio = ioremap(res->start, resource_size(res));
if (!kbc->mmio) {
dev_err(&pdev->dev, "failed to remap I/O memory\n");
err = -ENXIO;
goto err_free_mem_region;
}
kbc->clk = clk_get(&pdev->dev, NULL);
if (IS_ERR(kbc->clk)) {
dev_err(&pdev->dev, "failed to get keyboard clock\n");
err = PTR_ERR(kbc->clk);
goto err_iounmap;
}
/*
* The time delay between two consecutive reads of the FIFO is
* the sum of the repeat time and the time taken for scanning
* the rows. There is an additional delay before the row scanning
* starts. The repoll delay is computed in milliseconds.
*/
debounce_cnt = min(pdata->debounce_cnt, KBC_MAX_DEBOUNCE_CNT);
scan_time_rows = (KBC_ROW_SCAN_TIME + debounce_cnt) * num_rows;
kbc->repoll_dly = KBC_ROW_SCAN_DLY + scan_time_rows + pdata->repeat_cnt;
kbc->repoll_dly = ((kbc->repoll_dly * KBC_CYCLE_USEC) + 999) / 1000;
input_dev->name = pdev->name;
input_dev->id.bustype = BUS_HOST;
input_dev->dev.parent = &pdev->dev;
input_dev->open = tegra_kbc_open;
input_dev->close = tegra_kbc_close;
input_set_drvdata(input_dev, kbc);
input_dev->evbit[0] = BIT_MASK(EV_KEY) | BIT_MASK(EV_REP);
input_set_capability(input_dev, EV_MSC, MSC_SCAN);
input_dev->keycode = kbc->keycode;
input_dev->keycodesize = sizeof(kbc->keycode[0]);
input_dev->keycodemax = KBC_MAX_KEY;
if (pdata->use_fn_map)
input_dev->keycodemax *= 2;
kbc->use_fn_map = pdata->use_fn_map;
kbc->use_ghost_filter = pdata->use_ghost_filter;
keymap_data = pdata->keymap_data ?: &tegra_kbc_default_keymap_data;
matrix_keypad_build_keymap(keymap_data, KBC_ROW_SHIFT,
input_dev->keycode, input_dev->keybit);
err = request_irq(kbc->irq, tegra_kbc_isr, IRQF_TRIGGER_HIGH,
pdev->name, kbc);
if (err) {
dev_err(&pdev->dev, "failed to request keyboard IRQ\n");
goto err_put_clk;
}
disable_irq(kbc->irq);
err = input_register_device(kbc->idev);
if (err) {
dev_err(&pdev->dev, "failed to register input device\n");
goto err_free_irq;
}
platform_set_drvdata(pdev, kbc);
device_init_wakeup(&pdev->dev, pdata->wakeup);
return 0;
err_free_irq:
free_irq(kbc->irq, pdev);
err_put_clk:
clk_put(kbc->clk);
err_iounmap:
iounmap(kbc->mmio);
err_free_mem_region:
release_mem_region(res->start, resource_size(res));
err_free_mem:
input_free_device(kbc->idev);
kfree(kbc);
return err;
}
static int __devexit tegra_kbc_remove(struct platform_device *pdev)
{
struct tegra_kbc *kbc = platform_get_drvdata(pdev);
struct resource *res;
free_irq(kbc->irq, pdev);
clk_put(kbc->clk);
input_unregister_device(kbc->idev);
iounmap(kbc->mmio);
res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
release_mem_region(res->start, resource_size(res));
kfree(kbc);
platform_set_drvdata(pdev, NULL);
return 0;
}
#ifdef CONFIG_PM_SLEEP
static int tegra_kbc_suspend(struct device *dev)
{
struct platform_device *pdev = to_platform_device(dev);
struct tegra_kbc *kbc = platform_get_drvdata(pdev);
if (device_may_wakeup(&pdev->dev)) {
tegra_kbc_setup_wakekeys(kbc, true);
enable_irq_wake(kbc->irq);
/* Forcefully clear the interrupt status */
writel(0x7, kbc->mmio + KBC_INT_0);
msleep(30);
} else {
mutex_lock(&kbc->idev->mutex);
if (kbc->idev->users)
tegra_kbc_stop(kbc);
mutex_unlock(&kbc->idev->mutex);
}
return 0;
}
static int tegra_kbc_resume(struct device *dev)
{
struct platform_device *pdev = to_platform_device(dev);
struct tegra_kbc *kbc = platform_get_drvdata(pdev);
int err = 0;
if (device_may_wakeup(&pdev->dev)) {
disable_irq_wake(kbc->irq);
tegra_kbc_setup_wakekeys(kbc, false);
} else {
mutex_lock(&kbc->idev->mutex);
if (kbc->idev->users)
err = tegra_kbc_start(kbc);
mutex_unlock(&kbc->idev->mutex);
}
return err;
}
#endif
static SIMPLE_DEV_PM_OPS(tegra_kbc_pm_ops, tegra_kbc_suspend, tegra_kbc_resume);
static struct platform_driver tegra_kbc_driver = {
.probe = tegra_kbc_probe,
.remove = __devexit_p(tegra_kbc_remove),
.driver = {
.name = "tegra-kbc",
.owner = THIS_MODULE,
.pm = &tegra_kbc_pm_ops,
},
};
static void __exit tegra_kbc_exit(void)
{
platform_driver_unregister(&tegra_kbc_driver);
}
module_exit(tegra_kbc_exit);
static int __init tegra_kbc_init(void)
{
return platform_driver_register(&tegra_kbc_driver);
}
module_init(tegra_kbc_init);
MODULE_LICENSE("GPL");
MODULE_AUTHOR("Rakesh Iyer <riyer@nvidia.com>");
MODULE_DESCRIPTION("Tegra matrix keyboard controller driver");
MODULE_ALIAS("platform:tegra-kbc");