1
linux/drivers/scsi/libsas/sas_expander.c
James Bottomley a01e70e570 [SCSI] aci94xx: implement link rate setting
This patch implements the ability to set the minimum and maximum
linkrates for both libsas (for expanders) and aic94xx (for the host
phys).  It also tidies up the setting of the hardware min and max to
make sure they're updated when the expander emits a change broadcast.

Signed-off-by: James Bottomley <James.Bottomley@SteelEye.com>
2006-09-07 15:20:23 -05:00

1856 lines
45 KiB
C

/*
* Serial Attached SCSI (SAS) Expander discovery and configuration
*
* Copyright (C) 2005 Adaptec, Inc. All rights reserved.
* Copyright (C) 2005 Luben Tuikov <luben_tuikov@adaptec.com>
*
* This file is licensed under GPLv2.
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License as
* published by the Free Software Foundation; either version 2 of the
* License, or (at your option) any later version.
*
* This program is distributed in the hope that it will be useful, but
* WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
*
*/
#include <linux/pci.h>
#include <linux/scatterlist.h>
#include "sas_internal.h"
#include <scsi/scsi_transport.h>
#include <scsi/scsi_transport_sas.h>
#include "../scsi_sas_internal.h"
static int sas_discover_expander(struct domain_device *dev);
static int sas_configure_routing(struct domain_device *dev, u8 *sas_addr);
static int sas_configure_phy(struct domain_device *dev, int phy_id,
u8 *sas_addr, int include);
static int sas_disable_routing(struct domain_device *dev, u8 *sas_addr);
#if 0
/* FIXME: smp needs to migrate into the sas class */
static ssize_t smp_portal_read(struct kobject *, char *, loff_t, size_t);
static ssize_t smp_portal_write(struct kobject *, char *, loff_t, size_t);
#endif
/* ---------- SMP task management ---------- */
static void smp_task_timedout(unsigned long _task)
{
struct sas_task *task = (void *) _task;
unsigned long flags;
spin_lock_irqsave(&task->task_state_lock, flags);
if (!(task->task_state_flags & SAS_TASK_STATE_DONE))
task->task_state_flags |= SAS_TASK_STATE_ABORTED;
spin_unlock_irqrestore(&task->task_state_lock, flags);
complete(&task->completion);
}
static void smp_task_done(struct sas_task *task)
{
if (!del_timer(&task->timer))
return;
complete(&task->completion);
}
/* Give it some long enough timeout. In seconds. */
#define SMP_TIMEOUT 10
static int smp_execute_task(struct domain_device *dev, void *req, int req_size,
void *resp, int resp_size)
{
int res;
struct sas_task *task = sas_alloc_task(GFP_KERNEL);
struct sas_internal *i =
to_sas_internal(dev->port->ha->core.shost->transportt);
if (!task)
return -ENOMEM;
task->dev = dev;
task->task_proto = dev->tproto;
sg_init_one(&task->smp_task.smp_req, req, req_size);
sg_init_one(&task->smp_task.smp_resp, resp, resp_size);
task->task_done = smp_task_done;
task->timer.data = (unsigned long) task;
task->timer.function = smp_task_timedout;
task->timer.expires = jiffies + SMP_TIMEOUT*HZ;
add_timer(&task->timer);
res = i->dft->lldd_execute_task(task, 1, GFP_KERNEL);
if (res) {
del_timer(&task->timer);
SAS_DPRINTK("executing SMP task failed:%d\n", res);
goto ex_err;
}
wait_for_completion(&task->completion);
res = -ETASK;
if ((task->task_state_flags & SAS_TASK_STATE_ABORTED)) {
SAS_DPRINTK("smp task timed out or aborted\n");
i->dft->lldd_abort_task(task);
if (!(task->task_state_flags & SAS_TASK_STATE_DONE)) {
SAS_DPRINTK("SMP task aborted and not done\n");
goto ex_err;
}
}
if (task->task_status.resp == SAS_TASK_COMPLETE &&
task->task_status.stat == SAM_GOOD)
res = 0;
else
SAS_DPRINTK("%s: task to dev %016llx response: 0x%x "
"status 0x%x\n", __FUNCTION__,
SAS_ADDR(dev->sas_addr),
task->task_status.resp,
task->task_status.stat);
ex_err:
sas_free_task(task);
return res;
}
/* ---------- Allocations ---------- */
static inline void *alloc_smp_req(int size)
{
u8 *p = kzalloc(size, GFP_KERNEL);
if (p)
p[0] = SMP_REQUEST;
return p;
}
static inline void *alloc_smp_resp(int size)
{
return kzalloc(size, GFP_KERNEL);
}
/* ---------- Expander configuration ---------- */
static void sas_set_ex_phy(struct domain_device *dev, int phy_id,
void *disc_resp)
{
struct expander_device *ex = &dev->ex_dev;
struct ex_phy *phy = &ex->ex_phy[phy_id];
struct smp_resp *resp = disc_resp;
struct discover_resp *dr = &resp->disc;
struct sas_rphy *rphy = dev->rphy;
int rediscover = (phy->phy != NULL);
if (!rediscover) {
phy->phy = sas_phy_alloc(&rphy->dev, phy_id);
/* FIXME: error_handling */
BUG_ON(!phy->phy);
}
switch (resp->result) {
case SMP_RESP_PHY_VACANT:
phy->phy_state = PHY_VACANT;
return;
default:
phy->phy_state = PHY_NOT_PRESENT;
return;
case SMP_RESP_FUNC_ACC:
phy->phy_state = PHY_EMPTY; /* do not know yet */
break;
}
phy->phy_id = phy_id;
phy->attached_dev_type = dr->attached_dev_type;
phy->linkrate = dr->linkrate;
phy->attached_sata_host = dr->attached_sata_host;
phy->attached_sata_dev = dr->attached_sata_dev;
phy->attached_sata_ps = dr->attached_sata_ps;
phy->attached_iproto = dr->iproto << 1;
phy->attached_tproto = dr->tproto << 1;
memcpy(phy->attached_sas_addr, dr->attached_sas_addr, SAS_ADDR_SIZE);
phy->attached_phy_id = dr->attached_phy_id;
phy->phy_change_count = dr->change_count;
phy->routing_attr = dr->routing_attr;
phy->virtual = dr->virtual;
phy->last_da_index = -1;
phy->phy->identify.initiator_port_protocols = phy->attached_iproto;
phy->phy->identify.target_port_protocols = phy->attached_tproto;
phy->phy->identify.phy_identifier = phy_id;
phy->phy->minimum_linkrate_hw = dr->hmin_linkrate;
phy->phy->maximum_linkrate_hw = dr->hmax_linkrate;
phy->phy->minimum_linkrate = dr->pmin_linkrate;
phy->phy->maximum_linkrate = dr->pmax_linkrate;
phy->phy->negotiated_linkrate = phy->linkrate;
if (!rediscover)
sas_phy_add(phy->phy);
SAS_DPRINTK("ex %016llx phy%02d:%c attached: %016llx\n",
SAS_ADDR(dev->sas_addr), phy->phy_id,
phy->routing_attr == TABLE_ROUTING ? 'T' :
phy->routing_attr == DIRECT_ROUTING ? 'D' :
phy->routing_attr == SUBTRACTIVE_ROUTING ? 'S' : '?',
SAS_ADDR(phy->attached_sas_addr));
return;
}
#define DISCOVER_REQ_SIZE 16
#define DISCOVER_RESP_SIZE 56
static int sas_ex_phy_discover(struct domain_device *dev, int single)
{
struct expander_device *ex = &dev->ex_dev;
int res = 0;
u8 *disc_req;
u8 *disc_resp;
disc_req = alloc_smp_req(DISCOVER_REQ_SIZE);
if (!disc_req)
return -ENOMEM;
disc_resp = alloc_smp_req(DISCOVER_RESP_SIZE);
if (!disc_resp) {
kfree(disc_req);
return -ENOMEM;
}
disc_req[1] = SMP_DISCOVER;
if (0 <= single && single < ex->num_phys) {
disc_req[9] = single;
res = smp_execute_task(dev, disc_req, DISCOVER_REQ_SIZE,
disc_resp, DISCOVER_RESP_SIZE);
if (res)
goto out_err;
sas_set_ex_phy(dev, single, disc_resp);
} else {
int i;
for (i = 0; i < ex->num_phys; i++) {
disc_req[9] = i;
res = smp_execute_task(dev, disc_req,
DISCOVER_REQ_SIZE, disc_resp,
DISCOVER_RESP_SIZE);
if (res)
goto out_err;
sas_set_ex_phy(dev, i, disc_resp);
}
}
out_err:
kfree(disc_resp);
kfree(disc_req);
return res;
}
static int sas_expander_discover(struct domain_device *dev)
{
struct expander_device *ex = &dev->ex_dev;
int res = -ENOMEM;
ex->ex_phy = kzalloc(sizeof(*ex->ex_phy)*ex->num_phys, GFP_KERNEL);
if (!ex->ex_phy)
return -ENOMEM;
res = sas_ex_phy_discover(dev, -1);
if (res)
goto out_err;
return 0;
out_err:
kfree(ex->ex_phy);
ex->ex_phy = NULL;
return res;
}
#define MAX_EXPANDER_PHYS 128
static void ex_assign_report_general(struct domain_device *dev,
struct smp_resp *resp)
{
struct report_general_resp *rg = &resp->rg;
dev->ex_dev.ex_change_count = be16_to_cpu(rg->change_count);
dev->ex_dev.max_route_indexes = be16_to_cpu(rg->route_indexes);
dev->ex_dev.num_phys = min(rg->num_phys, (u8)MAX_EXPANDER_PHYS);
dev->ex_dev.conf_route_table = rg->conf_route_table;
dev->ex_dev.configuring = rg->configuring;
memcpy(dev->ex_dev.enclosure_logical_id, rg->enclosure_logical_id, 8);
}
#define RG_REQ_SIZE 8
#define RG_RESP_SIZE 32
static int sas_ex_general(struct domain_device *dev)
{
u8 *rg_req;
struct smp_resp *rg_resp;
int res;
int i;
rg_req = alloc_smp_req(RG_REQ_SIZE);
if (!rg_req)
return -ENOMEM;
rg_resp = alloc_smp_resp(RG_RESP_SIZE);
if (!rg_resp) {
kfree(rg_req);
return -ENOMEM;
}
rg_req[1] = SMP_REPORT_GENERAL;
for (i = 0; i < 5; i++) {
res = smp_execute_task(dev, rg_req, RG_REQ_SIZE, rg_resp,
RG_RESP_SIZE);
if (res) {
SAS_DPRINTK("RG to ex %016llx failed:0x%x\n",
SAS_ADDR(dev->sas_addr), res);
goto out;
} else if (rg_resp->result != SMP_RESP_FUNC_ACC) {
SAS_DPRINTK("RG:ex %016llx returned SMP result:0x%x\n",
SAS_ADDR(dev->sas_addr), rg_resp->result);
res = rg_resp->result;
goto out;
}
ex_assign_report_general(dev, rg_resp);
if (dev->ex_dev.configuring) {
SAS_DPRINTK("RG: ex %llx self-configuring...\n",
SAS_ADDR(dev->sas_addr));
schedule_timeout_interruptible(5*HZ);
} else
break;
}
out:
kfree(rg_req);
kfree(rg_resp);
return res;
}
static void ex_assign_manuf_info(struct domain_device *dev, void
*_mi_resp)
{
u8 *mi_resp = _mi_resp;
struct sas_rphy *rphy = dev->rphy;
struct sas_expander_device *edev = rphy_to_expander_device(rphy);
memcpy(edev->vendor_id, mi_resp + 12, SAS_EXPANDER_VENDOR_ID_LEN);
memcpy(edev->product_id, mi_resp + 20, SAS_EXPANDER_PRODUCT_ID_LEN);
memcpy(edev->product_rev, mi_resp + 36,
SAS_EXPANDER_PRODUCT_REV_LEN);
if (mi_resp[8] & 1) {
memcpy(edev->component_vendor_id, mi_resp + 40,
SAS_EXPANDER_COMPONENT_VENDOR_ID_LEN);
edev->component_id = mi_resp[48] << 8 | mi_resp[49];
edev->component_revision_id = mi_resp[50];
}
}
#define MI_REQ_SIZE 8
#define MI_RESP_SIZE 64
static int sas_ex_manuf_info(struct domain_device *dev)
{
u8 *mi_req;
u8 *mi_resp;
int res;
mi_req = alloc_smp_req(MI_REQ_SIZE);
if (!mi_req)
return -ENOMEM;
mi_resp = alloc_smp_resp(MI_RESP_SIZE);
if (!mi_resp) {
kfree(mi_req);
return -ENOMEM;
}
mi_req[1] = SMP_REPORT_MANUF_INFO;
res = smp_execute_task(dev, mi_req, MI_REQ_SIZE, mi_resp,MI_RESP_SIZE);
if (res) {
SAS_DPRINTK("MI: ex %016llx failed:0x%x\n",
SAS_ADDR(dev->sas_addr), res);
goto out;
} else if (mi_resp[2] != SMP_RESP_FUNC_ACC) {
SAS_DPRINTK("MI ex %016llx returned SMP result:0x%x\n",
SAS_ADDR(dev->sas_addr), mi_resp[2]);
goto out;
}
ex_assign_manuf_info(dev, mi_resp);
out:
kfree(mi_req);
kfree(mi_resp);
return res;
}
#define PC_REQ_SIZE 44
#define PC_RESP_SIZE 8
int sas_smp_phy_control(struct domain_device *dev, int phy_id,
enum phy_func phy_func,
struct sas_phy_linkrates *rates)
{
u8 *pc_req;
u8 *pc_resp;
int res;
pc_req = alloc_smp_req(PC_REQ_SIZE);
if (!pc_req)
return -ENOMEM;
pc_resp = alloc_smp_resp(PC_RESP_SIZE);
if (!pc_resp) {
kfree(pc_req);
return -ENOMEM;
}
pc_req[1] = SMP_PHY_CONTROL;
pc_req[9] = phy_id;
pc_req[10]= phy_func;
if (rates) {
pc_req[32] = rates->minimum_linkrate << 4;
pc_req[33] = rates->maximum_linkrate << 4;
}
res = smp_execute_task(dev, pc_req, PC_REQ_SIZE, pc_resp,PC_RESP_SIZE);
kfree(pc_resp);
kfree(pc_req);
return res;
}
static void sas_ex_disable_phy(struct domain_device *dev, int phy_id)
{
struct expander_device *ex = &dev->ex_dev;
struct ex_phy *phy = &ex->ex_phy[phy_id];
sas_smp_phy_control(dev, phy_id, PHY_FUNC_DISABLE, NULL);
phy->linkrate = SAS_PHY_DISABLED;
}
static void sas_ex_disable_port(struct domain_device *dev, u8 *sas_addr)
{
struct expander_device *ex = &dev->ex_dev;
int i;
for (i = 0; i < ex->num_phys; i++) {
struct ex_phy *phy = &ex->ex_phy[i];
if (phy->phy_state == PHY_VACANT ||
phy->phy_state == PHY_NOT_PRESENT)
continue;
if (SAS_ADDR(phy->attached_sas_addr) == SAS_ADDR(sas_addr))
sas_ex_disable_phy(dev, i);
}
}
static int sas_dev_present_in_domain(struct asd_sas_port *port,
u8 *sas_addr)
{
struct domain_device *dev;
if (SAS_ADDR(port->sas_addr) == SAS_ADDR(sas_addr))
return 1;
list_for_each_entry(dev, &port->dev_list, dev_list_node) {
if (SAS_ADDR(dev->sas_addr) == SAS_ADDR(sas_addr))
return 1;
}
return 0;
}
#define RPEL_REQ_SIZE 16
#define RPEL_RESP_SIZE 32
int sas_smp_get_phy_events(struct sas_phy *phy)
{
int res;
struct sas_rphy *rphy = dev_to_rphy(phy->dev.parent);
struct domain_device *dev = sas_find_dev_by_rphy(rphy);
u8 *req = alloc_smp_req(RPEL_REQ_SIZE);
u8 *resp = kzalloc(RPEL_RESP_SIZE, GFP_KERNEL);
if (!resp)
return -ENOMEM;
req[1] = SMP_REPORT_PHY_ERR_LOG;
req[9] = phy->number;
res = smp_execute_task(dev, req, RPEL_REQ_SIZE,
resp, RPEL_RESP_SIZE);
if (!res)
goto out;
phy->invalid_dword_count = scsi_to_u32(&resp[12]);
phy->running_disparity_error_count = scsi_to_u32(&resp[16]);
phy->loss_of_dword_sync_count = scsi_to_u32(&resp[20]);
phy->phy_reset_problem_count = scsi_to_u32(&resp[24]);
out:
kfree(resp);
return res;
}
#define RPS_REQ_SIZE 16
#define RPS_RESP_SIZE 60
static int sas_get_report_phy_sata(struct domain_device *dev,
int phy_id,
struct smp_resp *rps_resp)
{
int res;
u8 *rps_req = alloc_smp_req(RPS_REQ_SIZE);
if (!rps_req)
return -ENOMEM;
rps_req[1] = SMP_REPORT_PHY_SATA;
rps_req[9] = phy_id;
res = smp_execute_task(dev, rps_req, RPS_REQ_SIZE,
rps_resp, RPS_RESP_SIZE);
kfree(rps_req);
return 0;
}
static void sas_ex_get_linkrate(struct domain_device *parent,
struct domain_device *child,
struct ex_phy *parent_phy)
{
struct expander_device *parent_ex = &parent->ex_dev;
struct sas_port *port;
int i;
child->pathways = 0;
port = parent_phy->port;
for (i = 0; i < parent_ex->num_phys; i++) {
struct ex_phy *phy = &parent_ex->ex_phy[i];
if (phy->phy_state == PHY_VACANT ||
phy->phy_state == PHY_NOT_PRESENT)
continue;
if (SAS_ADDR(phy->attached_sas_addr) ==
SAS_ADDR(child->sas_addr)) {
child->min_linkrate = min(parent->min_linkrate,
phy->linkrate);
child->max_linkrate = max(parent->max_linkrate,
phy->linkrate);
child->pathways++;
sas_port_add_phy(port, phy->phy);
}
}
child->linkrate = min(parent_phy->linkrate, child->max_linkrate);
child->pathways = min(child->pathways, parent->pathways);
}
static struct domain_device *sas_ex_discover_end_dev(
struct domain_device *parent, int phy_id)
{
struct expander_device *parent_ex = &parent->ex_dev;
struct ex_phy *phy = &parent_ex->ex_phy[phy_id];
struct domain_device *child = NULL;
struct sas_rphy *rphy;
int res;
if (phy->attached_sata_host || phy->attached_sata_ps)
return NULL;
child = kzalloc(sizeof(*child), GFP_KERNEL);
if (!child)
return NULL;
child->parent = parent;
child->port = parent->port;
child->iproto = phy->attached_iproto;
memcpy(child->sas_addr, phy->attached_sas_addr, SAS_ADDR_SIZE);
sas_hash_addr(child->hashed_sas_addr, child->sas_addr);
phy->port = sas_port_alloc(&parent->rphy->dev, phy_id);
BUG_ON(!phy->port);
/* FIXME: better error handling*/
BUG_ON(sas_port_add(phy->port) != 0);
sas_ex_get_linkrate(parent, child, phy);
if ((phy->attached_tproto & SAS_PROTO_STP) || phy->attached_sata_dev) {
child->dev_type = SATA_DEV;
if (phy->attached_tproto & SAS_PROTO_STP)
child->tproto = phy->attached_tproto;
if (phy->attached_sata_dev)
child->tproto |= SATA_DEV;
res = sas_get_report_phy_sata(parent, phy_id,
&child->sata_dev.rps_resp);
if (res) {
SAS_DPRINTK("report phy sata to %016llx:0x%x returned "
"0x%x\n", SAS_ADDR(parent->sas_addr),
phy_id, res);
kfree(child);
return NULL;
}
memcpy(child->frame_rcvd, &child->sata_dev.rps_resp.rps.fis,
sizeof(struct dev_to_host_fis));
sas_init_dev(child);
res = sas_discover_sata(child);
if (res) {
SAS_DPRINTK("sas_discover_sata() for device %16llx at "
"%016llx:0x%x returned 0x%x\n",
SAS_ADDR(child->sas_addr),
SAS_ADDR(parent->sas_addr), phy_id, res);
kfree(child);
return NULL;
}
} else if (phy->attached_tproto & SAS_PROTO_SSP) {
child->dev_type = SAS_END_DEV;
rphy = sas_end_device_alloc(phy->port);
/* FIXME: error handling */
BUG_ON(!rphy);
child->tproto = phy->attached_tproto;
sas_init_dev(child);
child->rphy = rphy;
sas_fill_in_rphy(child, rphy);
spin_lock(&parent->port->dev_list_lock);
list_add_tail(&child->dev_list_node, &parent->port->dev_list);
spin_unlock(&parent->port->dev_list_lock);
res = sas_discover_end_dev(child);
if (res) {
SAS_DPRINTK("sas_discover_end_dev() for device %16llx "
"at %016llx:0x%x returned 0x%x\n",
SAS_ADDR(child->sas_addr),
SAS_ADDR(parent->sas_addr), phy_id, res);
/* FIXME: this kfrees list elements without removing them */
//kfree(child);
return NULL;
}
} else {
SAS_DPRINTK("target proto 0x%x at %016llx:0x%x not handled\n",
phy->attached_tproto, SAS_ADDR(parent->sas_addr),
phy_id);
}
list_add_tail(&child->siblings, &parent_ex->children);
return child;
}
static struct domain_device *sas_ex_discover_expander(
struct domain_device *parent, int phy_id)
{
struct sas_expander_device *parent_ex = rphy_to_expander_device(parent->rphy);
struct ex_phy *phy = &parent->ex_dev.ex_phy[phy_id];
struct domain_device *child = NULL;
struct sas_rphy *rphy;
struct sas_expander_device *edev;
struct asd_sas_port *port;
int res;
if (phy->routing_attr == DIRECT_ROUTING) {
SAS_DPRINTK("ex %016llx:0x%x:D <--> ex %016llx:0x%x is not "
"allowed\n",
SAS_ADDR(parent->sas_addr), phy_id,
SAS_ADDR(phy->attached_sas_addr),
phy->attached_phy_id);
return NULL;
}
child = kzalloc(sizeof(*child), GFP_KERNEL);
if (!child)
return NULL;
phy->port = sas_port_alloc(&parent->rphy->dev, phy_id);
/* FIXME: better error handling */
BUG_ON(sas_port_add(phy->port) != 0);
switch (phy->attached_dev_type) {
case EDGE_DEV:
rphy = sas_expander_alloc(phy->port,
SAS_EDGE_EXPANDER_DEVICE);
break;
case FANOUT_DEV:
rphy = sas_expander_alloc(phy->port,
SAS_FANOUT_EXPANDER_DEVICE);
break;
default:
rphy = NULL; /* shut gcc up */
BUG();
}
port = parent->port;
child->rphy = rphy;
edev = rphy_to_expander_device(rphy);
child->dev_type = phy->attached_dev_type;
child->parent = parent;
child->port = port;
child->iproto = phy->attached_iproto;
child->tproto = phy->attached_tproto;
memcpy(child->sas_addr, phy->attached_sas_addr, SAS_ADDR_SIZE);
sas_hash_addr(child->hashed_sas_addr, child->sas_addr);
sas_ex_get_linkrate(parent, child, phy);
edev->level = parent_ex->level + 1;
parent->port->disc.max_level = max(parent->port->disc.max_level,
edev->level);
sas_init_dev(child);
sas_fill_in_rphy(child, rphy);
sas_rphy_add(rphy);
spin_lock(&parent->port->dev_list_lock);
list_add_tail(&child->dev_list_node, &parent->port->dev_list);
spin_unlock(&parent->port->dev_list_lock);
res = sas_discover_expander(child);
if (res) {
kfree(child);
return NULL;
}
list_add_tail(&child->siblings, &parent->ex_dev.children);
return child;
}
static int sas_ex_discover_dev(struct domain_device *dev, int phy_id)
{
struct expander_device *ex = &dev->ex_dev;
struct ex_phy *ex_phy = &ex->ex_phy[phy_id];
struct domain_device *child = NULL;
int res = 0;
/* Phy state */
if (ex_phy->linkrate == SAS_SATA_SPINUP_HOLD) {
if (!sas_smp_phy_control(dev, phy_id, PHY_FUNC_LINK_RESET, NULL))
res = sas_ex_phy_discover(dev, phy_id);
if (res)
return res;
}
/* Parent and domain coherency */
if (!dev->parent && (SAS_ADDR(ex_phy->attached_sas_addr) ==
SAS_ADDR(dev->port->sas_addr))) {
sas_add_parent_port(dev, phy_id);
return 0;
}
if (dev->parent && (SAS_ADDR(ex_phy->attached_sas_addr) ==
SAS_ADDR(dev->parent->sas_addr))) {
sas_add_parent_port(dev, phy_id);
if (ex_phy->routing_attr == TABLE_ROUTING)
sas_configure_phy(dev, phy_id, dev->port->sas_addr, 1);
return 0;
}
if (sas_dev_present_in_domain(dev->port, ex_phy->attached_sas_addr))
sas_ex_disable_port(dev, ex_phy->attached_sas_addr);
if (ex_phy->attached_dev_type == NO_DEVICE) {
if (ex_phy->routing_attr == DIRECT_ROUTING) {
memset(ex_phy->attached_sas_addr, 0, SAS_ADDR_SIZE);
sas_configure_routing(dev, ex_phy->attached_sas_addr);
}
return 0;
} else if (ex_phy->linkrate == SAS_LINK_RATE_UNKNOWN)
return 0;
if (ex_phy->attached_dev_type != SAS_END_DEV &&
ex_phy->attached_dev_type != FANOUT_DEV &&
ex_phy->attached_dev_type != EDGE_DEV) {
SAS_DPRINTK("unknown device type(0x%x) attached to ex %016llx "
"phy 0x%x\n", ex_phy->attached_dev_type,
SAS_ADDR(dev->sas_addr),
phy_id);
return 0;
}
res = sas_configure_routing(dev, ex_phy->attached_sas_addr);
if (res) {
SAS_DPRINTK("configure routing for dev %016llx "
"reported 0x%x. Forgotten\n",
SAS_ADDR(ex_phy->attached_sas_addr), res);
sas_disable_routing(dev, ex_phy->attached_sas_addr);
return res;
}
switch (ex_phy->attached_dev_type) {
case SAS_END_DEV:
child = sas_ex_discover_end_dev(dev, phy_id);
break;
case FANOUT_DEV:
if (SAS_ADDR(dev->port->disc.fanout_sas_addr)) {
SAS_DPRINTK("second fanout expander %016llx phy 0x%x "
"attached to ex %016llx phy 0x%x\n",
SAS_ADDR(ex_phy->attached_sas_addr),
ex_phy->attached_phy_id,
SAS_ADDR(dev->sas_addr),
phy_id);
sas_ex_disable_phy(dev, phy_id);
break;
} else
memcpy(dev->port->disc.fanout_sas_addr,
ex_phy->attached_sas_addr, SAS_ADDR_SIZE);
/* fallthrough */
case EDGE_DEV:
child = sas_ex_discover_expander(dev, phy_id);
break;
default:
break;
}
if (child) {
int i;
for (i = 0; i < ex->num_phys; i++) {
if (ex->ex_phy[i].phy_state == PHY_VACANT ||
ex->ex_phy[i].phy_state == PHY_NOT_PRESENT)
continue;
if (SAS_ADDR(ex->ex_phy[i].attached_sas_addr) ==
SAS_ADDR(child->sas_addr))
ex->ex_phy[i].phy_state= PHY_DEVICE_DISCOVERED;
}
}
return res;
}
static int sas_find_sub_addr(struct domain_device *dev, u8 *sub_addr)
{
struct expander_device *ex = &dev->ex_dev;
int i;
for (i = 0; i < ex->num_phys; i++) {
struct ex_phy *phy = &ex->ex_phy[i];
if (phy->phy_state == PHY_VACANT ||
phy->phy_state == PHY_NOT_PRESENT)
continue;
if ((phy->attached_dev_type == EDGE_DEV ||
phy->attached_dev_type == FANOUT_DEV) &&
phy->routing_attr == SUBTRACTIVE_ROUTING) {
memcpy(sub_addr, phy->attached_sas_addr,SAS_ADDR_SIZE);
return 1;
}
}
return 0;
}
static int sas_check_level_subtractive_boundary(struct domain_device *dev)
{
struct expander_device *ex = &dev->ex_dev;
struct domain_device *child;
u8 sub_addr[8] = {0, };
list_for_each_entry(child, &ex->children, siblings) {
if (child->dev_type != EDGE_DEV &&
child->dev_type != FANOUT_DEV)
continue;
if (sub_addr[0] == 0) {
sas_find_sub_addr(child, sub_addr);
continue;
} else {
u8 s2[8];
if (sas_find_sub_addr(child, s2) &&
(SAS_ADDR(sub_addr) != SAS_ADDR(s2))) {
SAS_DPRINTK("ex %016llx->%016llx-?->%016llx "
"diverges from subtractive "
"boundary %016llx\n",
SAS_ADDR(dev->sas_addr),
SAS_ADDR(child->sas_addr),
SAS_ADDR(s2),
SAS_ADDR(sub_addr));
sas_ex_disable_port(child, s2);
}
}
}
return 0;
}
/**
* sas_ex_discover_devices -- discover devices attached to this expander
* dev: pointer to the expander domain device
* single: if you want to do a single phy, else set to -1;
*
* Configure this expander for use with its devices and register the
* devices of this expander.
*/
static int sas_ex_discover_devices(struct domain_device *dev, int single)
{
struct expander_device *ex = &dev->ex_dev;
int i = 0, end = ex->num_phys;
int res = 0;
if (0 <= single && single < end) {
i = single;
end = i+1;
}
for ( ; i < end; i++) {
struct ex_phy *ex_phy = &ex->ex_phy[i];
if (ex_phy->phy_state == PHY_VACANT ||
ex_phy->phy_state == PHY_NOT_PRESENT ||
ex_phy->phy_state == PHY_DEVICE_DISCOVERED)
continue;
switch (ex_phy->linkrate) {
case SAS_PHY_DISABLED:
case SAS_PHY_RESET_PROBLEM:
case SAS_SATA_PORT_SELECTOR:
continue;
default:
res = sas_ex_discover_dev(dev, i);
if (res)
break;
continue;
}
}
if (!res)
sas_check_level_subtractive_boundary(dev);
return res;
}
static int sas_check_ex_subtractive_boundary(struct domain_device *dev)
{
struct expander_device *ex = &dev->ex_dev;
int i;
u8 *sub_sas_addr = NULL;
if (dev->dev_type != EDGE_DEV)
return 0;
for (i = 0; i < ex->num_phys; i++) {
struct ex_phy *phy = &ex->ex_phy[i];
if (phy->phy_state == PHY_VACANT ||
phy->phy_state == PHY_NOT_PRESENT)
continue;
if ((phy->attached_dev_type == FANOUT_DEV ||
phy->attached_dev_type == EDGE_DEV) &&
phy->routing_attr == SUBTRACTIVE_ROUTING) {
if (!sub_sas_addr)
sub_sas_addr = &phy->attached_sas_addr[0];
else if (SAS_ADDR(sub_sas_addr) !=
SAS_ADDR(phy->attached_sas_addr)) {
SAS_DPRINTK("ex %016llx phy 0x%x "
"diverges(%016llx) on subtractive "
"boundary(%016llx). Disabled\n",
SAS_ADDR(dev->sas_addr), i,
SAS_ADDR(phy->attached_sas_addr),
SAS_ADDR(sub_sas_addr));
sas_ex_disable_phy(dev, i);
}
}
}
return 0;
}
static void sas_print_parent_topology_bug(struct domain_device *child,
struct ex_phy *parent_phy,
struct ex_phy *child_phy)
{
static const char ra_char[] = {
[DIRECT_ROUTING] = 'D',
[SUBTRACTIVE_ROUTING] = 'S',
[TABLE_ROUTING] = 'T',
};
static const char *ex_type[] = {
[EDGE_DEV] = "edge",
[FANOUT_DEV] = "fanout",
};
struct domain_device *parent = child->parent;
sas_printk("%s ex %016llx phy 0x%x <--> %s ex %016llx phy 0x%x "
"has %c:%c routing link!\n",
ex_type[parent->dev_type],
SAS_ADDR(parent->sas_addr),
parent_phy->phy_id,
ex_type[child->dev_type],
SAS_ADDR(child->sas_addr),
child_phy->phy_id,
ra_char[parent_phy->routing_attr],
ra_char[child_phy->routing_attr]);
}
static int sas_check_eeds(struct domain_device *child,
struct ex_phy *parent_phy,
struct ex_phy *child_phy)
{
int res = 0;
struct domain_device *parent = child->parent;
if (SAS_ADDR(parent->port->disc.fanout_sas_addr) != 0) {
res = -ENODEV;
SAS_DPRINTK("edge ex %016llx phy S:0x%x <--> edge ex %016llx "
"phy S:0x%x, while there is a fanout ex %016llx\n",
SAS_ADDR(parent->sas_addr),
parent_phy->phy_id,
SAS_ADDR(child->sas_addr),
child_phy->phy_id,
SAS_ADDR(parent->port->disc.fanout_sas_addr));
} else if (SAS_ADDR(parent->port->disc.eeds_a) == 0) {
memcpy(parent->port->disc.eeds_a, parent->sas_addr,
SAS_ADDR_SIZE);
memcpy(parent->port->disc.eeds_b, child->sas_addr,
SAS_ADDR_SIZE);
} else if (((SAS_ADDR(parent->port->disc.eeds_a) ==
SAS_ADDR(parent->sas_addr)) ||
(SAS_ADDR(parent->port->disc.eeds_a) ==
SAS_ADDR(child->sas_addr)))
&&
((SAS_ADDR(parent->port->disc.eeds_b) ==
SAS_ADDR(parent->sas_addr)) ||
(SAS_ADDR(parent->port->disc.eeds_b) ==
SAS_ADDR(child->sas_addr))))
;
else {
res = -ENODEV;
SAS_DPRINTK("edge ex %016llx phy 0x%x <--> edge ex %016llx "
"phy 0x%x link forms a third EEDS!\n",
SAS_ADDR(parent->sas_addr),
parent_phy->phy_id,
SAS_ADDR(child->sas_addr),
child_phy->phy_id);
}
return res;
}
/* Here we spill over 80 columns. It is intentional.
*/
static int sas_check_parent_topology(struct domain_device *child)
{
struct expander_device *child_ex = &child->ex_dev;
struct expander_device *parent_ex;
int i;
int res = 0;
if (!child->parent)
return 0;
if (child->parent->dev_type != EDGE_DEV &&
child->parent->dev_type != FANOUT_DEV)
return 0;
parent_ex = &child->parent->ex_dev;
for (i = 0; i < parent_ex->num_phys; i++) {
struct ex_phy *parent_phy = &parent_ex->ex_phy[i];
struct ex_phy *child_phy;
if (parent_phy->phy_state == PHY_VACANT ||
parent_phy->phy_state == PHY_NOT_PRESENT)
continue;
if (SAS_ADDR(parent_phy->attached_sas_addr) != SAS_ADDR(child->sas_addr))
continue;
child_phy = &child_ex->ex_phy[parent_phy->attached_phy_id];
switch (child->parent->dev_type) {
case EDGE_DEV:
if (child->dev_type == FANOUT_DEV) {
if (parent_phy->routing_attr != SUBTRACTIVE_ROUTING ||
child_phy->routing_attr != TABLE_ROUTING) {
sas_print_parent_topology_bug(child, parent_phy, child_phy);
res = -ENODEV;
}
} else if (parent_phy->routing_attr == SUBTRACTIVE_ROUTING) {
if (child_phy->routing_attr == SUBTRACTIVE_ROUTING) {
res = sas_check_eeds(child, parent_phy, child_phy);
} else if (child_phy->routing_attr != TABLE_ROUTING) {
sas_print_parent_topology_bug(child, parent_phy, child_phy);
res = -ENODEV;
}
} else if (parent_phy->routing_attr == TABLE_ROUTING &&
child_phy->routing_attr != SUBTRACTIVE_ROUTING) {
sas_print_parent_topology_bug(child, parent_phy, child_phy);
res = -ENODEV;
}
break;
case FANOUT_DEV:
if (parent_phy->routing_attr != TABLE_ROUTING ||
child_phy->routing_attr != SUBTRACTIVE_ROUTING) {
sas_print_parent_topology_bug(child, parent_phy, child_phy);
res = -ENODEV;
}
break;
default:
break;
}
}
return res;
}
#define RRI_REQ_SIZE 16
#define RRI_RESP_SIZE 44
static int sas_configure_present(struct domain_device *dev, int phy_id,
u8 *sas_addr, int *index, int *present)
{
int i, res = 0;
struct expander_device *ex = &dev->ex_dev;
struct ex_phy *phy = &ex->ex_phy[phy_id];
u8 *rri_req;
u8 *rri_resp;
*present = 0;
*index = 0;
rri_req = alloc_smp_req(RRI_REQ_SIZE);
if (!rri_req)
return -ENOMEM;
rri_resp = alloc_smp_resp(RRI_RESP_SIZE);
if (!rri_resp) {
kfree(rri_req);
return -ENOMEM;
}
rri_req[1] = SMP_REPORT_ROUTE_INFO;
rri_req[9] = phy_id;
for (i = 0; i < ex->max_route_indexes ; i++) {
*(__be16 *)(rri_req+6) = cpu_to_be16(i);
res = smp_execute_task(dev, rri_req, RRI_REQ_SIZE, rri_resp,
RRI_RESP_SIZE);
if (res)
goto out;
res = rri_resp[2];
if (res == SMP_RESP_NO_INDEX) {
SAS_DPRINTK("overflow of indexes: dev %016llx "
"phy 0x%x index 0x%x\n",
SAS_ADDR(dev->sas_addr), phy_id, i);
goto out;
} else if (res != SMP_RESP_FUNC_ACC) {
SAS_DPRINTK("%s: dev %016llx phy 0x%x index 0x%x "
"result 0x%x\n", __FUNCTION__,
SAS_ADDR(dev->sas_addr), phy_id, i, res);
goto out;
}
if (SAS_ADDR(sas_addr) != 0) {
if (SAS_ADDR(rri_resp+16) == SAS_ADDR(sas_addr)) {
*index = i;
if ((rri_resp[12] & 0x80) == 0x80)
*present = 0;
else
*present = 1;
goto out;
} else if (SAS_ADDR(rri_resp+16) == 0) {
*index = i;
*present = 0;
goto out;
}
} else if (SAS_ADDR(rri_resp+16) == 0 &&
phy->last_da_index < i) {
phy->last_da_index = i;
*index = i;
*present = 0;
goto out;
}
}
res = -1;
out:
kfree(rri_req);
kfree(rri_resp);
return res;
}
#define CRI_REQ_SIZE 44
#define CRI_RESP_SIZE 8
static int sas_configure_set(struct domain_device *dev, int phy_id,
u8 *sas_addr, int index, int include)
{
int res;
u8 *cri_req;
u8 *cri_resp;
cri_req = alloc_smp_req(CRI_REQ_SIZE);
if (!cri_req)
return -ENOMEM;
cri_resp = alloc_smp_resp(CRI_RESP_SIZE);
if (!cri_resp) {
kfree(cri_req);
return -ENOMEM;
}
cri_req[1] = SMP_CONF_ROUTE_INFO;
*(__be16 *)(cri_req+6) = cpu_to_be16(index);
cri_req[9] = phy_id;
if (SAS_ADDR(sas_addr) == 0 || !include)
cri_req[12] |= 0x80;
memcpy(cri_req+16, sas_addr, SAS_ADDR_SIZE);
res = smp_execute_task(dev, cri_req, CRI_REQ_SIZE, cri_resp,
CRI_RESP_SIZE);
if (res)
goto out;
res = cri_resp[2];
if (res == SMP_RESP_NO_INDEX) {
SAS_DPRINTK("overflow of indexes: dev %016llx phy 0x%x "
"index 0x%x\n",
SAS_ADDR(dev->sas_addr), phy_id, index);
}
out:
kfree(cri_req);
kfree(cri_resp);
return res;
}
static int sas_configure_phy(struct domain_device *dev, int phy_id,
u8 *sas_addr, int include)
{
int index;
int present;
int res;
res = sas_configure_present(dev, phy_id, sas_addr, &index, &present);
if (res)
return res;
if (include ^ present)
return sas_configure_set(dev, phy_id, sas_addr, index,include);
return res;
}
/**
* sas_configure_parent -- configure routing table of parent
* parent: parent expander
* child: child expander
* sas_addr: SAS port identifier of device directly attached to child
*/
static int sas_configure_parent(struct domain_device *parent,
struct domain_device *child,
u8 *sas_addr, int include)
{
struct expander_device *ex_parent = &parent->ex_dev;
int res = 0;
int i;
if (parent->parent) {
res = sas_configure_parent(parent->parent, parent, sas_addr,
include);
if (res)
return res;
}
if (ex_parent->conf_route_table == 0) {
SAS_DPRINTK("ex %016llx has self-configuring routing table\n",
SAS_ADDR(parent->sas_addr));
return 0;
}
for (i = 0; i < ex_parent->num_phys; i++) {
struct ex_phy *phy = &ex_parent->ex_phy[i];
if ((phy->routing_attr == TABLE_ROUTING) &&
(SAS_ADDR(phy->attached_sas_addr) ==
SAS_ADDR(child->sas_addr))) {
res = sas_configure_phy(parent, i, sas_addr, include);
if (res)
return res;
}
}
return res;
}
/**
* sas_configure_routing -- configure routing
* dev: expander device
* sas_addr: port identifier of device directly attached to the expander device
*/
static int sas_configure_routing(struct domain_device *dev, u8 *sas_addr)
{
if (dev->parent)
return sas_configure_parent(dev->parent, dev, sas_addr, 1);
return 0;
}
static int sas_disable_routing(struct domain_device *dev, u8 *sas_addr)
{
if (dev->parent)
return sas_configure_parent(dev->parent, dev, sas_addr, 0);
return 0;
}
#if 0
#define SMP_BIN_ATTR_NAME "smp_portal"
static void sas_ex_smp_hook(struct domain_device *dev)
{
struct expander_device *ex_dev = &dev->ex_dev;
struct bin_attribute *bin_attr = &ex_dev->smp_bin_attr;
memset(bin_attr, 0, sizeof(*bin_attr));
bin_attr->attr.name = SMP_BIN_ATTR_NAME;
bin_attr->attr.owner = THIS_MODULE;
bin_attr->attr.mode = 0600;
bin_attr->size = 0;
bin_attr->private = NULL;
bin_attr->read = smp_portal_read;
bin_attr->write= smp_portal_write;
bin_attr->mmap = NULL;
ex_dev->smp_portal_pid = -1;
init_MUTEX(&ex_dev->smp_sema);
}
#endif
/**
* sas_discover_expander -- expander discovery
* @ex: pointer to expander domain device
*
* See comment in sas_discover_sata().
*/
static int sas_discover_expander(struct domain_device *dev)
{
int res;
res = sas_notify_lldd_dev_found(dev);
if (res)
return res;
res = sas_ex_general(dev);
if (res)
goto out_err;
res = sas_ex_manuf_info(dev);
if (res)
goto out_err;
res = sas_expander_discover(dev);
if (res) {
SAS_DPRINTK("expander %016llx discovery failed(0x%x)\n",
SAS_ADDR(dev->sas_addr), res);
goto out_err;
}
sas_check_ex_subtractive_boundary(dev);
res = sas_check_parent_topology(dev);
if (res)
goto out_err;
return 0;
out_err:
sas_notify_lldd_dev_gone(dev);
return res;
}
static int sas_ex_level_discovery(struct asd_sas_port *port, const int level)
{
int res = 0;
struct domain_device *dev;
list_for_each_entry(dev, &port->dev_list, dev_list_node) {
if (dev->dev_type == EDGE_DEV ||
dev->dev_type == FANOUT_DEV) {
struct sas_expander_device *ex =
rphy_to_expander_device(dev->rphy);
if (level == ex->level)
res = sas_ex_discover_devices(dev, -1);
else if (level > 0)
res = sas_ex_discover_devices(port->port_dev, -1);
}
}
return res;
}
static int sas_ex_bfs_disc(struct asd_sas_port *port)
{
int res;
int level;
do {
level = port->disc.max_level;
res = sas_ex_level_discovery(port, level);
mb();
} while (level < port->disc.max_level);
return res;
}
int sas_discover_root_expander(struct domain_device *dev)
{
int res;
struct sas_expander_device *ex = rphy_to_expander_device(dev->rphy);
sas_rphy_add(dev->rphy);
ex->level = dev->port->disc.max_level; /* 0 */
res = sas_discover_expander(dev);
if (!res)
sas_ex_bfs_disc(dev->port);
return res;
}
/* ---------- Domain revalidation ---------- */
static int sas_get_phy_discover(struct domain_device *dev,
int phy_id, struct smp_resp *disc_resp)
{
int res;
u8 *disc_req;
disc_req = alloc_smp_req(DISCOVER_REQ_SIZE);
if (!disc_req)
return -ENOMEM;
disc_req[1] = SMP_DISCOVER;
disc_req[9] = phy_id;
res = smp_execute_task(dev, disc_req, DISCOVER_REQ_SIZE,
disc_resp, DISCOVER_RESP_SIZE);
if (res)
goto out;
else if (disc_resp->result != SMP_RESP_FUNC_ACC) {
res = disc_resp->result;
goto out;
}
out:
kfree(disc_req);
return res;
}
static int sas_get_phy_change_count(struct domain_device *dev,
int phy_id, int *pcc)
{
int res;
struct smp_resp *disc_resp;
disc_resp = alloc_smp_resp(DISCOVER_RESP_SIZE);
if (!disc_resp)
return -ENOMEM;
res = sas_get_phy_discover(dev, phy_id, disc_resp);
if (!res)
*pcc = disc_resp->disc.change_count;
kfree(disc_resp);
return res;
}
static int sas_get_phy_attached_sas_addr(struct domain_device *dev,
int phy_id, u8 *attached_sas_addr)
{
int res;
struct smp_resp *disc_resp;
struct discover_resp *dr;
disc_resp = alloc_smp_resp(DISCOVER_RESP_SIZE);
if (!disc_resp)
return -ENOMEM;
dr = &disc_resp->disc;
res = sas_get_phy_discover(dev, phy_id, disc_resp);
if (!res) {
memcpy(attached_sas_addr,disc_resp->disc.attached_sas_addr,8);
if (dr->attached_dev_type == 0)
memset(attached_sas_addr, 0, 8);
}
kfree(disc_resp);
return res;
}
static int sas_find_bcast_phy(struct domain_device *dev, int *phy_id,
int from_phy)
{
struct expander_device *ex = &dev->ex_dev;
int res = 0;
int i;
for (i = from_phy; i < ex->num_phys; i++) {
int phy_change_count = 0;
res = sas_get_phy_change_count(dev, i, &phy_change_count);
if (res)
goto out;
else if (phy_change_count != ex->ex_phy[i].phy_change_count) {
ex->ex_phy[i].phy_change_count = phy_change_count;
*phy_id = i;
return 0;
}
}
out:
return res;
}
static int sas_get_ex_change_count(struct domain_device *dev, int *ecc)
{
int res;
u8 *rg_req;
struct smp_resp *rg_resp;
rg_req = alloc_smp_req(RG_REQ_SIZE);
if (!rg_req)
return -ENOMEM;
rg_resp = alloc_smp_resp(RG_RESP_SIZE);
if (!rg_resp) {
kfree(rg_req);
return -ENOMEM;
}
rg_req[1] = SMP_REPORT_GENERAL;
res = smp_execute_task(dev, rg_req, RG_REQ_SIZE, rg_resp,
RG_RESP_SIZE);
if (res)
goto out;
if (rg_resp->result != SMP_RESP_FUNC_ACC) {
res = rg_resp->result;
goto out;
}
*ecc = be16_to_cpu(rg_resp->rg.change_count);
out:
kfree(rg_resp);
kfree(rg_req);
return res;
}
static int sas_find_bcast_dev(struct domain_device *dev,
struct domain_device **src_dev)
{
struct expander_device *ex = &dev->ex_dev;
int ex_change_count = -1;
int res;
res = sas_get_ex_change_count(dev, &ex_change_count);
if (res)
goto out;
if (ex_change_count != -1 &&
ex_change_count != ex->ex_change_count) {
*src_dev = dev;
ex->ex_change_count = ex_change_count;
} else {
struct domain_device *ch;
list_for_each_entry(ch, &ex->children, siblings) {
if (ch->dev_type == EDGE_DEV ||
ch->dev_type == FANOUT_DEV) {
res = sas_find_bcast_dev(ch, src_dev);
if (src_dev)
return res;
}
}
}
out:
return res;
}
static void sas_unregister_ex_tree(struct domain_device *dev)
{
struct expander_device *ex = &dev->ex_dev;
struct domain_device *child, *n;
list_for_each_entry_safe(child, n, &ex->children, siblings) {
if (child->dev_type == EDGE_DEV ||
child->dev_type == FANOUT_DEV)
sas_unregister_ex_tree(child);
else
sas_unregister_dev(child);
}
sas_unregister_dev(dev);
}
static void sas_unregister_devs_sas_addr(struct domain_device *parent,
int phy_id)
{
struct expander_device *ex_dev = &parent->ex_dev;
struct ex_phy *phy = &ex_dev->ex_phy[phy_id];
struct domain_device *child, *n;
list_for_each_entry_safe(child, n, &ex_dev->children, siblings) {
if (SAS_ADDR(child->sas_addr) ==
SAS_ADDR(phy->attached_sas_addr)) {
if (child->dev_type == EDGE_DEV ||
child->dev_type == FANOUT_DEV)
sas_unregister_ex_tree(child);
else
sas_unregister_dev(child);
break;
}
}
sas_disable_routing(parent, phy->attached_sas_addr);
memset(phy->attached_sas_addr, 0, SAS_ADDR_SIZE);
sas_port_delete_phy(phy->port, phy->phy);
if (phy->port->num_phys == 0)
sas_port_delete(phy->port);
phy->port = NULL;
}
static int sas_discover_bfs_by_root_level(struct domain_device *root,
const int level)
{
struct expander_device *ex_root = &root->ex_dev;
struct domain_device *child;
int res = 0;
list_for_each_entry(child, &ex_root->children, siblings) {
if (child->dev_type == EDGE_DEV ||
child->dev_type == FANOUT_DEV) {
struct sas_expander_device *ex =
rphy_to_expander_device(child->rphy);
if (level > ex->level)
res = sas_discover_bfs_by_root_level(child,
level);
else if (level == ex->level)
res = sas_ex_discover_devices(child, -1);
}
}
return res;
}
static int sas_discover_bfs_by_root(struct domain_device *dev)
{
int res;
struct sas_expander_device *ex = rphy_to_expander_device(dev->rphy);
int level = ex->level+1;
res = sas_ex_discover_devices(dev, -1);
if (res)
goto out;
do {
res = sas_discover_bfs_by_root_level(dev, level);
mb();
level += 1;
} while (level <= dev->port->disc.max_level);
out:
return res;
}
static int sas_discover_new(struct domain_device *dev, int phy_id)
{
struct ex_phy *ex_phy = &dev->ex_dev.ex_phy[phy_id];
struct domain_device *child;
int res;
SAS_DPRINTK("ex %016llx phy%d new device attached\n",
SAS_ADDR(dev->sas_addr), phy_id);
res = sas_ex_phy_discover(dev, phy_id);
if (res)
goto out;
res = sas_ex_discover_devices(dev, phy_id);
if (res)
goto out;
list_for_each_entry(child, &dev->ex_dev.children, siblings) {
if (SAS_ADDR(child->sas_addr) ==
SAS_ADDR(ex_phy->attached_sas_addr)) {
if (child->dev_type == EDGE_DEV ||
child->dev_type == FANOUT_DEV)
res = sas_discover_bfs_by_root(child);
break;
}
}
out:
return res;
}
static int sas_rediscover_dev(struct domain_device *dev, int phy_id)
{
struct expander_device *ex = &dev->ex_dev;
struct ex_phy *phy = &ex->ex_phy[phy_id];
u8 attached_sas_addr[8];
int res;
res = sas_get_phy_attached_sas_addr(dev, phy_id, attached_sas_addr);
switch (res) {
case SMP_RESP_NO_PHY:
phy->phy_state = PHY_NOT_PRESENT;
sas_unregister_devs_sas_addr(dev, phy_id);
goto out; break;
case SMP_RESP_PHY_VACANT:
phy->phy_state = PHY_VACANT;
sas_unregister_devs_sas_addr(dev, phy_id);
goto out; break;
case SMP_RESP_FUNC_ACC:
break;
}
if (SAS_ADDR(attached_sas_addr) == 0) {
phy->phy_state = PHY_EMPTY;
sas_unregister_devs_sas_addr(dev, phy_id);
} else if (SAS_ADDR(attached_sas_addr) ==
SAS_ADDR(phy->attached_sas_addr)) {
SAS_DPRINTK("ex %016llx phy 0x%x broadcast flutter\n",
SAS_ADDR(dev->sas_addr), phy_id);
sas_ex_phy_discover(dev, phy_id);
} else
res = sas_discover_new(dev, phy_id);
out:
return res;
}
static int sas_rediscover(struct domain_device *dev, const int phy_id)
{
struct expander_device *ex = &dev->ex_dev;
struct ex_phy *changed_phy = &ex->ex_phy[phy_id];
int res = 0;
int i;
SAS_DPRINTK("ex %016llx phy%d originated BROADCAST(CHANGE)\n",
SAS_ADDR(dev->sas_addr), phy_id);
if (SAS_ADDR(changed_phy->attached_sas_addr) != 0) {
for (i = 0; i < ex->num_phys; i++) {
struct ex_phy *phy = &ex->ex_phy[i];
if (i == phy_id)
continue;
if (SAS_ADDR(phy->attached_sas_addr) ==
SAS_ADDR(changed_phy->attached_sas_addr)) {
SAS_DPRINTK("phy%d part of wide port with "
"phy%d\n", phy_id, i);
goto out;
}
}
res = sas_rediscover_dev(dev, phy_id);
} else
res = sas_discover_new(dev, phy_id);
out:
return res;
}
/**
* sas_revalidate_domain -- revalidate the domain
* @port: port to the domain of interest
*
* NOTE: this process _must_ quit (return) as soon as any connection
* errors are encountered. Connection recovery is done elsewhere.
* Discover process only interrogates devices in order to discover the
* domain.
*/
int sas_ex_revalidate_domain(struct domain_device *port_dev)
{
int res;
struct domain_device *dev = NULL;
res = sas_find_bcast_dev(port_dev, &dev);
if (res)
goto out;
if (dev) {
struct expander_device *ex = &dev->ex_dev;
int i = 0, phy_id;
do {
phy_id = -1;
res = sas_find_bcast_phy(dev, &phy_id, i);
if (phy_id == -1)
break;
res = sas_rediscover(dev, phy_id);
i = phy_id + 1;
} while (i < ex->num_phys);
}
out:
return res;
}
#if 0
/* ---------- SMP portal ---------- */
static ssize_t smp_portal_write(struct kobject *kobj, char *buf, loff_t offs,
size_t size)
{
struct domain_device *dev = to_dom_device(kobj);
struct expander_device *ex = &dev->ex_dev;
if (offs != 0)
return -EFBIG;
else if (size == 0)
return 0;
down_interruptible(&ex->smp_sema);
if (ex->smp_req)
kfree(ex->smp_req);
ex->smp_req = kzalloc(size, GFP_USER);
if (!ex->smp_req) {
up(&ex->smp_sema);
return -ENOMEM;
}
memcpy(ex->smp_req, buf, size);
ex->smp_req_size = size;
ex->smp_portal_pid = current->pid;
up(&ex->smp_sema);
return size;
}
static ssize_t smp_portal_read(struct kobject *kobj, char *buf, loff_t offs,
size_t size)
{
struct domain_device *dev = to_dom_device(kobj);
struct expander_device *ex = &dev->ex_dev;
u8 *smp_resp;
int res = -EINVAL;
/* XXX: sysfs gives us an offset of 0x10 or 0x8 while in fact
* it should be 0.
*/
down_interruptible(&ex->smp_sema);
if (!ex->smp_req || ex->smp_portal_pid != current->pid)
goto out;
res = 0;
if (size == 0)
goto out;
res = -ENOMEM;
smp_resp = alloc_smp_resp(size);
if (!smp_resp)
goto out;
res = smp_execute_task(dev, ex->smp_req, ex->smp_req_size,
smp_resp, size);
if (!res) {
memcpy(buf, smp_resp, size);
res = size;
}
kfree(smp_resp);
out:
kfree(ex->smp_req);
ex->smp_req = NULL;
ex->smp_req_size = 0;
ex->smp_portal_pid = -1;
up(&ex->smp_sema);
return res;
}
#endif