1
linux/net/rose/rose_out.c
Tim Schmielau cd354f1ae7 [PATCH] remove many unneeded #includes of sched.h
After Al Viro (finally) succeeded in removing the sched.h #include in module.h
recently, it makes sense again to remove other superfluous sched.h includes.
There are quite a lot of files which include it but don't actually need
anything defined in there.  Presumably these includes were once needed for
macros that used to live in sched.h, but moved to other header files in the
course of cleaning it up.

To ease the pain, this time I did not fiddle with any header files and only
removed #includes from .c-files, which tend to cause less trouble.

Compile tested against 2.6.20-rc2 and 2.6.20-rc2-mm2 (with offsets) on alpha,
arm, i386, ia64, mips, powerpc, and x86_64 with allnoconfig, defconfig,
allmodconfig, and allyesconfig as well as a few randconfigs on x86_64 and all
configs in arch/arm/configs on arm.  I also checked that no new warnings were
introduced by the patch (actually, some warnings are removed that were emitted
by unnecessarily included header files).

Signed-off-by: Tim Schmielau <tim@physik3.uni-rostock.de>
Acked-by: Russell King <rmk+kernel@arm.linux.org.uk>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2007-02-14 08:09:54 -08:00

126 lines
2.8 KiB
C

/*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*
* Copyright (C) Jonathan Naylor G4KLX (g4klx@g4klx.demon.co.uk)
*/
#include <linux/errno.h>
#include <linux/types.h>
#include <linux/socket.h>
#include <linux/in.h>
#include <linux/kernel.h>
#include <linux/timer.h>
#include <linux/string.h>
#include <linux/sockios.h>
#include <linux/net.h>
#include <net/ax25.h>
#include <linux/inet.h>
#include <linux/netdevice.h>
#include <linux/skbuff.h>
#include <net/sock.h>
#include <asm/system.h>
#include <linux/fcntl.h>
#include <linux/mm.h>
#include <linux/interrupt.h>
#include <net/rose.h>
/*
* This procedure is passed a buffer descriptor for an iframe. It builds
* the rest of the control part of the frame and then writes it out.
*/
static void rose_send_iframe(struct sock *sk, struct sk_buff *skb)
{
struct rose_sock *rose = rose_sk(sk);
if (skb == NULL)
return;
skb->data[2] |= (rose->vr << 5) & 0xE0;
skb->data[2] |= (rose->vs << 1) & 0x0E;
rose_start_idletimer(sk);
rose_transmit_link(skb, rose->neighbour);
}
void rose_kick(struct sock *sk)
{
struct rose_sock *rose = rose_sk(sk);
struct sk_buff *skb, *skbn;
unsigned short start, end;
if (rose->state != ROSE_STATE_3)
return;
if (rose->condition & ROSE_COND_PEER_RX_BUSY)
return;
if (!skb_peek(&sk->sk_write_queue))
return;
start = (skb_peek(&rose->ack_queue) == NULL) ? rose->va : rose->vs;
end = (rose->va + sysctl_rose_window_size) % ROSE_MODULUS;
if (start == end)
return;
rose->vs = start;
/*
* Transmit data until either we're out of data to send or
* the window is full.
*/
skb = skb_dequeue(&sk->sk_write_queue);
do {
if ((skbn = skb_clone(skb, GFP_ATOMIC)) == NULL) {
skb_queue_head(&sk->sk_write_queue, skb);
break;
}
skb_set_owner_w(skbn, sk);
/*
* Transmit the frame copy.
*/
rose_send_iframe(sk, skbn);
rose->vs = (rose->vs + 1) % ROSE_MODULUS;
/*
* Requeue the original data frame.
*/
skb_queue_tail(&rose->ack_queue, skb);
} while (rose->vs != end &&
(skb = skb_dequeue(&sk->sk_write_queue)) != NULL);
rose->vl = rose->vr;
rose->condition &= ~ROSE_COND_ACK_PENDING;
rose_stop_timer(sk);
}
/*
* The following routines are taken from page 170 of the 7th ARRL Computer
* Networking Conference paper, as is the whole state machine.
*/
void rose_enquiry_response(struct sock *sk)
{
struct rose_sock *rose = rose_sk(sk);
if (rose->condition & ROSE_COND_OWN_RX_BUSY)
rose_write_internal(sk, ROSE_RNR);
else
rose_write_internal(sk, ROSE_RR);
rose->vl = rose->vr;
rose->condition &= ~ROSE_COND_ACK_PENDING;
rose_stop_timer(sk);
}