1
linux/drivers/net/bnx2x/bnx2x_cmn.h
2011-03-10 14:26:00 -08:00

1077 lines
25 KiB
C

/* bnx2x_cmn.h: Broadcom Everest network driver.
*
* Copyright (c) 2007-2010 Broadcom Corporation
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation.
*
* Maintained by: Eilon Greenstein <eilong@broadcom.com>
* Written by: Eliezer Tamir
* Based on code from Michael Chan's bnx2 driver
* UDP CSUM errata workaround by Arik Gendelman
* Slowpath and fastpath rework by Vladislav Zolotarov
* Statistics and Link management by Yitchak Gertner
*
*/
#ifndef BNX2X_CMN_H
#define BNX2X_CMN_H
#include <linux/types.h>
#include <linux/netdevice.h>
#include "bnx2x.h"
extern int num_queues;
/*********************** Interfaces ****************************
* Functions that need to be implemented by each driver version
*/
/**
* Initialize link parameters structure variables.
*
* @param bp
* @param load_mode
*
* @return u8
*/
u8 bnx2x_initial_phy_init(struct bnx2x *bp, int load_mode);
/**
* Configure hw according to link parameters structure.
*
* @param bp
*/
void bnx2x_link_set(struct bnx2x *bp);
/**
* Query link status
*
* @param bp
* @param is_serdes
*
* @return 0 - link is UP
*/
u8 bnx2x_link_test(struct bnx2x *bp, u8 is_serdes);
/**
* Handles link status change
*
* @param bp
*/
void bnx2x__link_status_update(struct bnx2x *bp);
/**
* Report link status to upper layer
*
* @param bp
*
* @return int
*/
void bnx2x_link_report(struct bnx2x *bp);
/**
* calculates MF speed according to current linespeed and MF
* configuration
*
* @param bp
*
* @return u16
*/
u16 bnx2x_get_mf_speed(struct bnx2x *bp);
/**
* MSI-X slowpath interrupt handler
*
* @param irq
* @param dev_instance
*
* @return irqreturn_t
*/
irqreturn_t bnx2x_msix_sp_int(int irq, void *dev_instance);
/**
* non MSI-X interrupt handler
*
* @param irq
* @param dev_instance
*
* @return irqreturn_t
*/
irqreturn_t bnx2x_interrupt(int irq, void *dev_instance);
#ifdef BCM_CNIC
/**
* Send command to cnic driver
*
* @param bp
* @param cmd
*/
int bnx2x_cnic_notify(struct bnx2x *bp, int cmd);
/**
* Provides cnic information for proper interrupt handling
*
* @param bp
*/
void bnx2x_setup_cnic_irq_info(struct bnx2x *bp);
#endif
/**
* Enable HW interrupts.
*
* @param bp
*/
void bnx2x_int_enable(struct bnx2x *bp);
/**
* Disable interrupts. This function ensures that there are no
* ISRs or SP DPCs (sp_task) are running after it returns.
*
* @param bp
* @param disable_hw if true, disable HW interrupts.
*/
void bnx2x_int_disable_sync(struct bnx2x *bp, int disable_hw);
/**
* Loads device firmware
*
* @param bp
*
* @return int
*/
int bnx2x_init_firmware(struct bnx2x *bp);
/**
* Init HW blocks according to current initialization stage:
* COMMON, PORT or FUNCTION.
*
* @param bp
* @param load_code: COMMON, PORT or FUNCTION
*
* @return int
*/
int bnx2x_init_hw(struct bnx2x *bp, u32 load_code);
/**
* Init driver internals:
* - rings
* - status blocks
* - etc.
*
* @param bp
* @param load_code COMMON, PORT or FUNCTION
*/
void bnx2x_nic_init(struct bnx2x *bp, u32 load_code);
/**
* Allocate driver's memory.
*
* @param bp
*
* @return int
*/
int bnx2x_alloc_mem(struct bnx2x *bp);
/**
* Release driver's memory.
*
* @param bp
*/
void bnx2x_free_mem(struct bnx2x *bp);
/**
* Setup eth Client.
*
* @param bp
* @param fp
* @param is_leading
*
* @return int
*/
int bnx2x_setup_client(struct bnx2x *bp, struct bnx2x_fastpath *fp,
int is_leading);
/**
* Set number of queues according to mode
*
* @param bp
*
*/
void bnx2x_set_num_queues(struct bnx2x *bp);
/**
* Cleanup chip internals:
* - Cleanup MAC configuration.
* - Close clients.
* - etc.
*
* @param bp
* @param unload_mode
*/
void bnx2x_chip_cleanup(struct bnx2x *bp, int unload_mode);
/**
* Acquire HW lock.
*
* @param bp
* @param resource Resource bit which was locked
*
* @return int
*/
int bnx2x_acquire_hw_lock(struct bnx2x *bp, u32 resource);
/**
* Release HW lock.
*
* @param bp driver handle
* @param resource Resource bit which was locked
*
* @return int
*/
int bnx2x_release_hw_lock(struct bnx2x *bp, u32 resource);
/**
* Configure eth MAC address in the HW according to the value in
* netdev->dev_addr.
*
* @param bp driver handle
* @param set
*/
void bnx2x_set_eth_mac(struct bnx2x *bp, int set);
#ifdef BCM_CNIC
/**
* Set/Clear FIP MAC(s) at the next enties in the CAM after the ETH
* MAC(s). This function will wait until the ramdord completion
* returns.
*
* @param bp driver handle
* @param set set or clear the CAM entry
*
* @return 0 if cussess, -ENODEV if ramrod doesn't return.
*/
int bnx2x_set_fip_eth_mac_addr(struct bnx2x *bp, int set);
/**
* Set/Clear ALL_ENODE mcast MAC.
*
* @param bp
* @param set
*
* @return int
*/
int bnx2x_set_all_enode_macs(struct bnx2x *bp, int set);
#endif
/**
* Set MAC filtering configurations.
*
* @remarks called with netif_tx_lock from dev_mcast.c
*
* @param dev net_device
*/
void bnx2x_set_rx_mode(struct net_device *dev);
/**
* Configure MAC filtering rules in a FW.
*
* @param bp driver handle
*/
void bnx2x_set_storm_rx_mode(struct bnx2x *bp);
/* Parity errors related */
void bnx2x_inc_load_cnt(struct bnx2x *bp);
u32 bnx2x_dec_load_cnt(struct bnx2x *bp);
bool bnx2x_chk_parity_attn(struct bnx2x *bp);
bool bnx2x_reset_is_done(struct bnx2x *bp);
void bnx2x_disable_close_the_gate(struct bnx2x *bp);
/**
* Perform statistics handling according to event
*
* @param bp driver handle
* @param event bnx2x_stats_event
*/
void bnx2x_stats_handle(struct bnx2x *bp, enum bnx2x_stats_event event);
/**
* Handle ramrods completion
*
* @param fp fastpath handle for the event
* @param rr_cqe eth_rx_cqe
*/
void bnx2x_sp_event(struct bnx2x_fastpath *fp, union eth_rx_cqe *rr_cqe);
/**
* Init/halt function before/after sending
* CLIENT_SETUP/CFC_DEL for the first/last client.
*
* @param bp
*
* @return int
*/
int bnx2x_func_start(struct bnx2x *bp);
/**
* Prepare ILT configurations according to current driver
* parameters.
*
* @param bp
*/
void bnx2x_ilt_set_info(struct bnx2x *bp);
/**
* Inintialize dcbx protocol
*
* @param bp
*/
void bnx2x_dcbx_init(struct bnx2x *bp);
/**
* Set power state to the requested value. Currently only D0 and
* D3hot are supported.
*
* @param bp
* @param state D0 or D3hot
*
* @return int
*/
int bnx2x_set_power_state(struct bnx2x *bp, pci_power_t state);
/**
* Updates MAX part of MF configuration in HW
* (if required)
*
* @param bp
* @param value
*/
void bnx2x_update_max_mf_config(struct bnx2x *bp, u32 value);
/* dev_close main block */
int bnx2x_nic_unload(struct bnx2x *bp, int unload_mode);
/* dev_open main block */
int bnx2x_nic_load(struct bnx2x *bp, int load_mode);
/* hard_xmit callback */
netdev_tx_t bnx2x_start_xmit(struct sk_buff *skb, struct net_device *dev);
/* select_queue callback */
u16 bnx2x_select_queue(struct net_device *dev, struct sk_buff *skb);
int bnx2x_change_mac_addr(struct net_device *dev, void *p);
/* NAPI poll Rx part */
int bnx2x_rx_int(struct bnx2x_fastpath *fp, int budget);
/* NAPI poll Tx part */
int bnx2x_tx_int(struct bnx2x_fastpath *fp);
/* suspend/resume callbacks */
int bnx2x_suspend(struct pci_dev *pdev, pm_message_t state);
int bnx2x_resume(struct pci_dev *pdev);
/* Release IRQ vectors */
void bnx2x_free_irq(struct bnx2x *bp);
void bnx2x_init_rx_rings(struct bnx2x *bp);
void bnx2x_free_skbs(struct bnx2x *bp);
void bnx2x_netif_stop(struct bnx2x *bp, int disable_hw);
void bnx2x_netif_start(struct bnx2x *bp);
/**
* Fill msix_table, request vectors, update num_queues according
* to number of available vectors
*
* @param bp
*
* @return int
*/
int bnx2x_enable_msix(struct bnx2x *bp);
/**
* Request msi mode from OS, updated internals accordingly
*
* @param bp
*
* @return int
*/
int bnx2x_enable_msi(struct bnx2x *bp);
/**
* NAPI callback
*
* @param napi
* @param budget
*
* @return int
*/
int bnx2x_poll(struct napi_struct *napi, int budget);
/**
* Allocate/release memories outsize main driver structure
*
* @param bp
*
* @return int
*/
int __devinit bnx2x_alloc_mem_bp(struct bnx2x *bp);
void bnx2x_free_mem_bp(struct bnx2x *bp);
/**
* Change mtu netdev callback
*
* @param dev
* @param new_mtu
*
* @return int
*/
int bnx2x_change_mtu(struct net_device *dev, int new_mtu);
/**
* tx timeout netdev callback
*
* @param dev
* @param new_mtu
*
* @return int
*/
void bnx2x_tx_timeout(struct net_device *dev);
#ifdef BCM_VLAN
/**
* vlan rx register netdev callback
*
* @param dev
* @param new_mtu
*
* @return int
*/
void bnx2x_vlan_rx_register(struct net_device *dev,
struct vlan_group *vlgrp);
#endif
static inline void bnx2x_update_fpsb_idx(struct bnx2x_fastpath *fp)
{
barrier(); /* status block is written to by the chip */
fp->fp_hc_idx = fp->sb_running_index[SM_RX_ID];
}
static inline void bnx2x_update_rx_prod(struct bnx2x *bp,
struct bnx2x_fastpath *fp,
u16 bd_prod, u16 rx_comp_prod,
u16 rx_sge_prod)
{
struct ustorm_eth_rx_producers rx_prods = {0};
int i;
/* Update producers */
rx_prods.bd_prod = bd_prod;
rx_prods.cqe_prod = rx_comp_prod;
rx_prods.sge_prod = rx_sge_prod;
/*
* Make sure that the BD and SGE data is updated before updating the
* producers since FW might read the BD/SGE right after the producer
* is updated.
* This is only applicable for weak-ordered memory model archs such
* as IA-64. The following barrier is also mandatory since FW will
* assumes BDs must have buffers.
*/
wmb();
for (i = 0; i < sizeof(struct ustorm_eth_rx_producers)/4; i++)
REG_WR(bp,
BAR_USTRORM_INTMEM + fp->ustorm_rx_prods_offset + i*4,
((u32 *)&rx_prods)[i]);
mmiowb(); /* keep prod updates ordered */
DP(NETIF_MSG_RX_STATUS,
"queue[%d]: wrote bd_prod %u cqe_prod %u sge_prod %u\n",
fp->index, bd_prod, rx_comp_prod, rx_sge_prod);
}
static inline void bnx2x_igu_ack_sb_gen(struct bnx2x *bp, u8 igu_sb_id,
u8 segment, u16 index, u8 op,
u8 update, u32 igu_addr)
{
struct igu_regular cmd_data = {0};
cmd_data.sb_id_and_flags =
((index << IGU_REGULAR_SB_INDEX_SHIFT) |
(segment << IGU_REGULAR_SEGMENT_ACCESS_SHIFT) |
(update << IGU_REGULAR_BUPDATE_SHIFT) |
(op << IGU_REGULAR_ENABLE_INT_SHIFT));
DP(NETIF_MSG_HW, "write 0x%08x to IGU addr 0x%x\n",
cmd_data.sb_id_and_flags, igu_addr);
REG_WR(bp, igu_addr, cmd_data.sb_id_and_flags);
/* Make sure that ACK is written */
mmiowb();
barrier();
}
static inline void bnx2x_igu_clear_sb_gen(struct bnx2x *bp,
u8 idu_sb_id, bool is_Pf)
{
u32 data, ctl, cnt = 100;
u32 igu_addr_data = IGU_REG_COMMAND_REG_32LSB_DATA;
u32 igu_addr_ctl = IGU_REG_COMMAND_REG_CTRL;
u32 igu_addr_ack = IGU_REG_CSTORM_TYPE_0_SB_CLEANUP + (idu_sb_id/32)*4;
u32 sb_bit = 1 << (idu_sb_id%32);
u32 func_encode = BP_FUNC(bp) |
((is_Pf == true ? 1 : 0) << IGU_FID_ENCODE_IS_PF_SHIFT);
u32 addr_encode = IGU_CMD_E2_PROD_UPD_BASE + idu_sb_id;
/* Not supported in BC mode */
if (CHIP_INT_MODE_IS_BC(bp))
return;
data = (IGU_USE_REGISTER_cstorm_type_0_sb_cleanup
<< IGU_REGULAR_CLEANUP_TYPE_SHIFT) |
IGU_REGULAR_CLEANUP_SET |
IGU_REGULAR_BCLEANUP;
ctl = addr_encode << IGU_CTRL_REG_ADDRESS_SHIFT |
func_encode << IGU_CTRL_REG_FID_SHIFT |
IGU_CTRL_CMD_TYPE_WR << IGU_CTRL_REG_TYPE_SHIFT;
DP(NETIF_MSG_HW, "write 0x%08x to IGU(via GRC) addr 0x%x\n",
data, igu_addr_data);
REG_WR(bp, igu_addr_data, data);
mmiowb();
barrier();
DP(NETIF_MSG_HW, "write 0x%08x to IGU(via GRC) addr 0x%x\n",
ctl, igu_addr_ctl);
REG_WR(bp, igu_addr_ctl, ctl);
mmiowb();
barrier();
/* wait for clean up to finish */
while (!(REG_RD(bp, igu_addr_ack) & sb_bit) && --cnt)
msleep(20);
if (!(REG_RD(bp, igu_addr_ack) & sb_bit)) {
DP(NETIF_MSG_HW, "Unable to finish IGU cleanup: "
"idu_sb_id %d offset %d bit %d (cnt %d)\n",
idu_sb_id, idu_sb_id/32, idu_sb_id%32, cnt);
}
}
static inline void bnx2x_hc_ack_sb(struct bnx2x *bp, u8 sb_id,
u8 storm, u16 index, u8 op, u8 update)
{
u32 hc_addr = (HC_REG_COMMAND_REG + BP_PORT(bp)*32 +
COMMAND_REG_INT_ACK);
struct igu_ack_register igu_ack;
igu_ack.status_block_index = index;
igu_ack.sb_id_and_flags =
((sb_id << IGU_ACK_REGISTER_STATUS_BLOCK_ID_SHIFT) |
(storm << IGU_ACK_REGISTER_STORM_ID_SHIFT) |
(update << IGU_ACK_REGISTER_UPDATE_INDEX_SHIFT) |
(op << IGU_ACK_REGISTER_INTERRUPT_MODE_SHIFT));
DP(BNX2X_MSG_OFF, "write 0x%08x to HC addr 0x%x\n",
(*(u32 *)&igu_ack), hc_addr);
REG_WR(bp, hc_addr, (*(u32 *)&igu_ack));
/* Make sure that ACK is written */
mmiowb();
barrier();
}
static inline void bnx2x_igu_ack_sb(struct bnx2x *bp, u8 igu_sb_id, u8 segment,
u16 index, u8 op, u8 update)
{
u32 igu_addr = BAR_IGU_INTMEM + (IGU_CMD_INT_ACK_BASE + igu_sb_id)*8;
bnx2x_igu_ack_sb_gen(bp, igu_sb_id, segment, index, op, update,
igu_addr);
}
static inline void bnx2x_ack_sb(struct bnx2x *bp, u8 igu_sb_id, u8 storm,
u16 index, u8 op, u8 update)
{
if (bp->common.int_block == INT_BLOCK_HC)
bnx2x_hc_ack_sb(bp, igu_sb_id, storm, index, op, update);
else {
u8 segment;
if (CHIP_INT_MODE_IS_BC(bp))
segment = storm;
else if (igu_sb_id != bp->igu_dsb_id)
segment = IGU_SEG_ACCESS_DEF;
else if (storm == ATTENTION_ID)
segment = IGU_SEG_ACCESS_ATTN;
else
segment = IGU_SEG_ACCESS_DEF;
bnx2x_igu_ack_sb(bp, igu_sb_id, segment, index, op, update);
}
}
static inline u16 bnx2x_hc_ack_int(struct bnx2x *bp)
{
u32 hc_addr = (HC_REG_COMMAND_REG + BP_PORT(bp)*32 +
COMMAND_REG_SIMD_MASK);
u32 result = REG_RD(bp, hc_addr);
DP(BNX2X_MSG_OFF, "read 0x%08x from HC addr 0x%x\n",
result, hc_addr);
barrier();
return result;
}
static inline u16 bnx2x_igu_ack_int(struct bnx2x *bp)
{
u32 igu_addr = (BAR_IGU_INTMEM + IGU_REG_SISR_MDPC_WMASK_LSB_UPPER*8);
u32 result = REG_RD(bp, igu_addr);
DP(NETIF_MSG_HW, "read 0x%08x from IGU addr 0x%x\n",
result, igu_addr);
barrier();
return result;
}
static inline u16 bnx2x_ack_int(struct bnx2x *bp)
{
barrier();
if (bp->common.int_block == INT_BLOCK_HC)
return bnx2x_hc_ack_int(bp);
else
return bnx2x_igu_ack_int(bp);
}
static inline int bnx2x_has_tx_work_unload(struct bnx2x_fastpath *fp)
{
/* Tell compiler that consumer and producer can change */
barrier();
return fp->tx_pkt_prod != fp->tx_pkt_cons;
}
static inline u16 bnx2x_tx_avail(struct bnx2x_fastpath *fp)
{
s16 used;
u16 prod;
u16 cons;
prod = fp->tx_bd_prod;
cons = fp->tx_bd_cons;
/* NUM_TX_RINGS = number of "next-page" entries
It will be used as a threshold */
used = SUB_S16(prod, cons) + (s16)NUM_TX_RINGS;
#ifdef BNX2X_STOP_ON_ERROR
WARN_ON(used < 0);
WARN_ON(used > fp->bp->tx_ring_size);
WARN_ON((fp->bp->tx_ring_size - used) > MAX_TX_AVAIL);
#endif
return (s16)(fp->bp->tx_ring_size) - used;
}
static inline int bnx2x_has_tx_work(struct bnx2x_fastpath *fp)
{
u16 hw_cons;
/* Tell compiler that status block fields can change */
barrier();
hw_cons = le16_to_cpu(*fp->tx_cons_sb);
return hw_cons != fp->tx_pkt_cons;
}
static inline int bnx2x_has_rx_work(struct bnx2x_fastpath *fp)
{
u16 rx_cons_sb;
/* Tell compiler that status block fields can change */
barrier();
rx_cons_sb = le16_to_cpu(*fp->rx_cons_sb);
if ((rx_cons_sb & MAX_RCQ_DESC_CNT) == MAX_RCQ_DESC_CNT)
rx_cons_sb++;
return (fp->rx_comp_cons != rx_cons_sb);
}
/**
* disables tx from stack point of view
*
* @param bp
*/
static inline void bnx2x_tx_disable(struct bnx2x *bp)
{
netif_tx_disable(bp->dev);
netif_carrier_off(bp->dev);
}
static inline void bnx2x_free_rx_sge(struct bnx2x *bp,
struct bnx2x_fastpath *fp, u16 index)
{
struct sw_rx_page *sw_buf = &fp->rx_page_ring[index];
struct page *page = sw_buf->page;
struct eth_rx_sge *sge = &fp->rx_sge_ring[index];
/* Skip "next page" elements */
if (!page)
return;
dma_unmap_page(&bp->pdev->dev, dma_unmap_addr(sw_buf, mapping),
SGE_PAGE_SIZE*PAGES_PER_SGE, DMA_FROM_DEVICE);
__free_pages(page, PAGES_PER_SGE_SHIFT);
sw_buf->page = NULL;
sge->addr_hi = 0;
sge->addr_lo = 0;
}
static inline void bnx2x_add_all_napi(struct bnx2x *bp)
{
int i;
/* Add NAPI objects */
for_each_napi_queue(bp, i)
netif_napi_add(bp->dev, &bnx2x_fp(bp, i, napi),
bnx2x_poll, BNX2X_NAPI_WEIGHT);
}
static inline void bnx2x_del_all_napi(struct bnx2x *bp)
{
int i;
for_each_napi_queue(bp, i)
netif_napi_del(&bnx2x_fp(bp, i, napi));
}
static inline void bnx2x_disable_msi(struct bnx2x *bp)
{
if (bp->flags & USING_MSIX_FLAG) {
pci_disable_msix(bp->pdev);
bp->flags &= ~USING_MSIX_FLAG;
} else if (bp->flags & USING_MSI_FLAG) {
pci_disable_msi(bp->pdev);
bp->flags &= ~USING_MSI_FLAG;
}
}
static inline int bnx2x_calc_num_queues(struct bnx2x *bp)
{
return num_queues ?
min_t(int, num_queues, BNX2X_MAX_QUEUES(bp)) :
min_t(int, num_online_cpus(), BNX2X_MAX_QUEUES(bp));
}
static inline void bnx2x_clear_sge_mask_next_elems(struct bnx2x_fastpath *fp)
{
int i, j;
for (i = 1; i <= NUM_RX_SGE_PAGES; i++) {
int idx = RX_SGE_CNT * i - 1;
for (j = 0; j < 2; j++) {
SGE_MASK_CLEAR_BIT(fp, idx);
idx--;
}
}
}
static inline void bnx2x_init_sge_ring_bit_mask(struct bnx2x_fastpath *fp)
{
/* Set the mask to all 1-s: it's faster to compare to 0 than to 0xf-s */
memset(fp->sge_mask, 0xff,
(NUM_RX_SGE >> RX_SGE_MASK_ELEM_SHIFT)*sizeof(u64));
/* Clear the two last indices in the page to 1:
these are the indices that correspond to the "next" element,
hence will never be indicated and should be removed from
the calculations. */
bnx2x_clear_sge_mask_next_elems(fp);
}
static inline int bnx2x_alloc_rx_sge(struct bnx2x *bp,
struct bnx2x_fastpath *fp, u16 index)
{
struct page *page = alloc_pages(GFP_ATOMIC, PAGES_PER_SGE_SHIFT);
struct sw_rx_page *sw_buf = &fp->rx_page_ring[index];
struct eth_rx_sge *sge = &fp->rx_sge_ring[index];
dma_addr_t mapping;
if (unlikely(page == NULL))
return -ENOMEM;
mapping = dma_map_page(&bp->pdev->dev, page, 0,
SGE_PAGE_SIZE*PAGES_PER_SGE, DMA_FROM_DEVICE);
if (unlikely(dma_mapping_error(&bp->pdev->dev, mapping))) {
__free_pages(page, PAGES_PER_SGE_SHIFT);
return -ENOMEM;
}
sw_buf->page = page;
dma_unmap_addr_set(sw_buf, mapping, mapping);
sge->addr_hi = cpu_to_le32(U64_HI(mapping));
sge->addr_lo = cpu_to_le32(U64_LO(mapping));
return 0;
}
static inline int bnx2x_alloc_rx_skb(struct bnx2x *bp,
struct bnx2x_fastpath *fp, u16 index)
{
struct sk_buff *skb;
struct sw_rx_bd *rx_buf = &fp->rx_buf_ring[index];
struct eth_rx_bd *rx_bd = &fp->rx_desc_ring[index];
dma_addr_t mapping;
skb = netdev_alloc_skb(bp->dev, fp->rx_buf_size);
if (unlikely(skb == NULL))
return -ENOMEM;
mapping = dma_map_single(&bp->pdev->dev, skb->data, fp->rx_buf_size,
DMA_FROM_DEVICE);
if (unlikely(dma_mapping_error(&bp->pdev->dev, mapping))) {
dev_kfree_skb(skb);
return -ENOMEM;
}
rx_buf->skb = skb;
dma_unmap_addr_set(rx_buf, mapping, mapping);
rx_bd->addr_hi = cpu_to_le32(U64_HI(mapping));
rx_bd->addr_lo = cpu_to_le32(U64_LO(mapping));
return 0;
}
/* note that we are not allocating a new skb,
* we are just moving one from cons to prod
* we are not creating a new mapping,
* so there is no need to check for dma_mapping_error().
*/
static inline void bnx2x_reuse_rx_skb(struct bnx2x_fastpath *fp,
u16 cons, u16 prod)
{
struct bnx2x *bp = fp->bp;
struct sw_rx_bd *cons_rx_buf = &fp->rx_buf_ring[cons];
struct sw_rx_bd *prod_rx_buf = &fp->rx_buf_ring[prod];
struct eth_rx_bd *cons_bd = &fp->rx_desc_ring[cons];
struct eth_rx_bd *prod_bd = &fp->rx_desc_ring[prod];
dma_sync_single_for_device(&bp->pdev->dev,
dma_unmap_addr(cons_rx_buf, mapping),
RX_COPY_THRESH, DMA_FROM_DEVICE);
prod_rx_buf->skb = cons_rx_buf->skb;
dma_unmap_addr_set(prod_rx_buf, mapping,
dma_unmap_addr(cons_rx_buf, mapping));
*prod_bd = *cons_bd;
}
static inline void bnx2x_free_rx_sge_range(struct bnx2x *bp,
struct bnx2x_fastpath *fp, int last)
{
int i;
for (i = 0; i < last; i++)
bnx2x_free_rx_sge(bp, fp, i);
}
static inline void bnx2x_free_tpa_pool(struct bnx2x *bp,
struct bnx2x_fastpath *fp, int last)
{
int i;
for (i = 0; i < last; i++) {
struct sw_rx_bd *rx_buf = &(fp->tpa_pool[i]);
struct sk_buff *skb = rx_buf->skb;
if (skb == NULL) {
DP(NETIF_MSG_IFDOWN, "tpa bin %d empty on free\n", i);
continue;
}
if (fp->tpa_state[i] == BNX2X_TPA_START)
dma_unmap_single(&bp->pdev->dev,
dma_unmap_addr(rx_buf, mapping),
fp->rx_buf_size, DMA_FROM_DEVICE);
dev_kfree_skb(skb);
rx_buf->skb = NULL;
}
}
static inline void bnx2x_init_tx_rings(struct bnx2x *bp)
{
int i, j;
for_each_tx_queue(bp, j) {
struct bnx2x_fastpath *fp = &bp->fp[j];
for (i = 1; i <= NUM_TX_RINGS; i++) {
struct eth_tx_next_bd *tx_next_bd =
&fp->tx_desc_ring[TX_DESC_CNT * i - 1].next_bd;
tx_next_bd->addr_hi =
cpu_to_le32(U64_HI(fp->tx_desc_mapping +
BCM_PAGE_SIZE*(i % NUM_TX_RINGS)));
tx_next_bd->addr_lo =
cpu_to_le32(U64_LO(fp->tx_desc_mapping +
BCM_PAGE_SIZE*(i % NUM_TX_RINGS)));
}
SET_FLAG(fp->tx_db.data.header.header, DOORBELL_HDR_DB_TYPE, 1);
fp->tx_db.data.zero_fill1 = 0;
fp->tx_db.data.prod = 0;
fp->tx_pkt_prod = 0;
fp->tx_pkt_cons = 0;
fp->tx_bd_prod = 0;
fp->tx_bd_cons = 0;
fp->tx_pkt = 0;
}
}
static inline void bnx2x_set_next_page_rx_bd(struct bnx2x_fastpath *fp)
{
int i;
for (i = 1; i <= NUM_RX_RINGS; i++) {
struct eth_rx_bd *rx_bd;
rx_bd = &fp->rx_desc_ring[RX_DESC_CNT * i - 2];
rx_bd->addr_hi =
cpu_to_le32(U64_HI(fp->rx_desc_mapping +
BCM_PAGE_SIZE*(i % NUM_RX_RINGS)));
rx_bd->addr_lo =
cpu_to_le32(U64_LO(fp->rx_desc_mapping +
BCM_PAGE_SIZE*(i % NUM_RX_RINGS)));
}
}
static inline void bnx2x_set_next_page_sgl(struct bnx2x_fastpath *fp)
{
int i;
for (i = 1; i <= NUM_RX_SGE_PAGES; i++) {
struct eth_rx_sge *sge;
sge = &fp->rx_sge_ring[RX_SGE_CNT * i - 2];
sge->addr_hi =
cpu_to_le32(U64_HI(fp->rx_sge_mapping +
BCM_PAGE_SIZE*(i % NUM_RX_SGE_PAGES)));
sge->addr_lo =
cpu_to_le32(U64_LO(fp->rx_sge_mapping +
BCM_PAGE_SIZE*(i % NUM_RX_SGE_PAGES)));
}
}
static inline void bnx2x_set_next_page_rx_cq(struct bnx2x_fastpath *fp)
{
int i;
for (i = 1; i <= NUM_RCQ_RINGS; i++) {
struct eth_rx_cqe_next_page *nextpg;
nextpg = (struct eth_rx_cqe_next_page *)
&fp->rx_comp_ring[RCQ_DESC_CNT * i - 1];
nextpg->addr_hi =
cpu_to_le32(U64_HI(fp->rx_comp_mapping +
BCM_PAGE_SIZE*(i % NUM_RCQ_RINGS)));
nextpg->addr_lo =
cpu_to_le32(U64_LO(fp->rx_comp_mapping +
BCM_PAGE_SIZE*(i % NUM_RCQ_RINGS)));
}
}
#ifdef BCM_CNIC
static inline void bnx2x_init_fcoe_fp(struct bnx2x *bp)
{
bnx2x_fcoe(bp, cl_id) = BNX2X_FCOE_ETH_CL_ID +
BP_E1HVN(bp) * NONE_ETH_CONTEXT_USE;
bnx2x_fcoe(bp, cid) = BNX2X_FCOE_ETH_CID;
bnx2x_fcoe(bp, fw_sb_id) = DEF_SB_ID;
bnx2x_fcoe(bp, igu_sb_id) = bp->igu_dsb_id;
bnx2x_fcoe(bp, bp) = bp;
bnx2x_fcoe(bp, state) = BNX2X_FP_STATE_CLOSED;
bnx2x_fcoe(bp, index) = FCOE_IDX;
bnx2x_fcoe(bp, rx_cons_sb) = BNX2X_FCOE_L2_RX_INDEX;
bnx2x_fcoe(bp, tx_cons_sb) = BNX2X_FCOE_L2_TX_INDEX;
/* qZone id equals to FW (per path) client id */
bnx2x_fcoe(bp, cl_qzone_id) = bnx2x_fcoe(bp, cl_id) +
BP_PORT(bp)*(CHIP_IS_E2(bp) ? ETH_MAX_RX_CLIENTS_E2 :
ETH_MAX_RX_CLIENTS_E1H);
/* init shortcut */
bnx2x_fcoe(bp, ustorm_rx_prods_offset) = CHIP_IS_E2(bp) ?
USTORM_RX_PRODS_E2_OFFSET(bnx2x_fcoe(bp, cl_qzone_id)) :
USTORM_RX_PRODS_E1X_OFFSET(BP_PORT(bp), bnx2x_fcoe_fp(bp)->cl_id);
}
#endif
static inline void __storm_memset_struct(struct bnx2x *bp,
u32 addr, size_t size, u32 *data)
{
int i;
for (i = 0; i < size/4; i++)
REG_WR(bp, addr + (i * 4), data[i]);
}
static inline void storm_memset_mac_filters(struct bnx2x *bp,
struct tstorm_eth_mac_filter_config *mac_filters,
u16 abs_fid)
{
size_t size = sizeof(struct tstorm_eth_mac_filter_config);
u32 addr = BAR_TSTRORM_INTMEM +
TSTORM_MAC_FILTER_CONFIG_OFFSET(abs_fid);
__storm_memset_struct(bp, addr, size, (u32 *)mac_filters);
}
static inline void storm_memset_cmng(struct bnx2x *bp,
struct cmng_struct_per_port *cmng,
u8 port)
{
size_t size = sizeof(struct cmng_struct_per_port);
u32 addr = BAR_XSTRORM_INTMEM +
XSTORM_CMNG_PER_PORT_VARS_OFFSET(port);
__storm_memset_struct(bp, addr, size, (u32 *)cmng);
}
/* HW Lock for shared dual port PHYs */
void bnx2x_acquire_phy_lock(struct bnx2x *bp);
void bnx2x_release_phy_lock(struct bnx2x *bp);
/**
* Extracts MAX BW part from MF configuration.
*
* @param bp
* @param mf_cfg
*
* @return u16
*/
static inline u16 bnx2x_extract_max_cfg(struct bnx2x *bp, u32 mf_cfg)
{
u16 max_cfg = (mf_cfg & FUNC_MF_CFG_MAX_BW_MASK) >>
FUNC_MF_CFG_MAX_BW_SHIFT;
if (!max_cfg) {
BNX2X_ERR("Illegal configuration detected for Max BW - "
"using 100 instead\n");
max_cfg = 100;
}
return max_cfg;
}
#endif /* BNX2X_CMN_H */