1
linux/arch/s390/kernel/process.c
Frederic Weisbecker 280f06774a nohz: Separate out irq exit and idle loop dyntick logic
The tick_nohz_stop_sched_tick() function, which tries to delay
the next timer tick as long as possible, can be called from two
places:

- From the idle loop to start the dytick idle mode
- From interrupt exit if we have interrupted the dyntick
idle mode, so that we reprogram the next tick event in
case the irq changed some internal state that requires this
action.

There are only few minor differences between both that
are handled by that function, driven by the ts->inidle
cpu variable and the inidle parameter. The whole guarantees
that we only update the dyntick mode on irq exit if we actually
interrupted the dyntick idle mode, and that we enter in RCU extended
quiescent state from idle loop entry only.

Split this function into:

- tick_nohz_idle_enter(), which sets ts->inidle to 1, enters
dynticks idle mode unconditionally if it can, and enters into RCU
extended quiescent state.

- tick_nohz_irq_exit() which only updates the dynticks idle mode
when ts->inidle is set (ie: if tick_nohz_idle_enter() has been called).

To maintain symmetry, tick_nohz_restart_sched_tick() has been renamed
into tick_nohz_idle_exit().

This simplifies the code and micro-optimize the irq exit path (no need
for local_irq_save there). This also prepares for the split between
dynticks and rcu extended quiescent state logics. We'll need this split to
further fix illegal uses of RCU in extended quiescent states in the idle
loop.

Signed-off-by: Frederic Weisbecker <fweisbec@gmail.com>
Cc: Mike Frysinger <vapier@gentoo.org>
Cc: Guan Xuetao <gxt@mprc.pku.edu.cn>
Cc: David Miller <davem@davemloft.net>
Cc: Chris Metcalf <cmetcalf@tilera.com>
Cc: Hans-Christian Egtvedt <hans-christian.egtvedt@atmel.com>
Cc: Ralf Baechle <ralf@linux-mips.org>
Cc: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: Peter Zijlstra <a.p.zijlstra@chello.nl>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: H. Peter Anvin <hpa@zytor.com>
Cc: Russell King <linux@arm.linux.org.uk>
Cc: Paul Mackerras <paulus@samba.org>
Cc: Heiko Carstens <heiko.carstens@de.ibm.com>
Cc: Paul Mundt <lethal@linux-sh.org>
Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
Reviewed-by: Josh Triplett <josh@joshtriplett.org>
2011-12-11 10:31:35 -08:00

360 lines
9.0 KiB
C

/*
* This file handles the architecture dependent parts of process handling.
*
* Copyright IBM Corp. 1999,2009
* Author(s): Martin Schwidefsky <schwidefsky@de.ibm.com>,
* Hartmut Penner <hp@de.ibm.com>,
* Denis Joseph Barrow,
*/
#include <linux/compiler.h>
#include <linux/cpu.h>
#include <linux/sched.h>
#include <linux/kernel.h>
#include <linux/mm.h>
#include <linux/elfcore.h>
#include <linux/smp.h>
#include <linux/slab.h>
#include <linux/interrupt.h>
#include <linux/tick.h>
#include <linux/personality.h>
#include <linux/syscalls.h>
#include <linux/compat.h>
#include <linux/kprobes.h>
#include <linux/random.h>
#include <linux/module.h>
#include <asm/system.h>
#include <asm/io.h>
#include <asm/processor.h>
#include <asm/irq.h>
#include <asm/timer.h>
#include <asm/nmi.h>
#include <asm/compat.h>
#include <asm/smp.h>
#include "entry.h"
asmlinkage void ret_from_fork(void) asm ("ret_from_fork");
/*
* Return saved PC of a blocked thread. used in kernel/sched.
* resume in entry.S does not create a new stack frame, it
* just stores the registers %r6-%r15 to the frame given by
* schedule. We want to return the address of the caller of
* schedule, so we have to walk the backchain one time to
* find the frame schedule() store its return address.
*/
unsigned long thread_saved_pc(struct task_struct *tsk)
{
struct stack_frame *sf, *low, *high;
if (!tsk || !task_stack_page(tsk))
return 0;
low = task_stack_page(tsk);
high = (struct stack_frame *) task_pt_regs(tsk);
sf = (struct stack_frame *) (tsk->thread.ksp & PSW_ADDR_INSN);
if (sf <= low || sf > high)
return 0;
sf = (struct stack_frame *) (sf->back_chain & PSW_ADDR_INSN);
if (sf <= low || sf > high)
return 0;
return sf->gprs[8];
}
/*
* The idle loop on a S390...
*/
static void default_idle(void)
{
if (cpu_is_offline(smp_processor_id()))
cpu_die();
local_irq_disable();
if (need_resched()) {
local_irq_enable();
return;
}
local_mcck_disable();
if (test_thread_flag(TIF_MCCK_PENDING)) {
local_mcck_enable();
local_irq_enable();
s390_handle_mcck();
return;
}
trace_hardirqs_on();
/* Don't trace preempt off for idle. */
stop_critical_timings();
/* Stop virtual timer and halt the cpu. */
vtime_stop_cpu();
/* Reenable preemption tracer. */
start_critical_timings();
}
void cpu_idle(void)
{
for (;;) {
tick_nohz_idle_enter();
while (!need_resched())
default_idle();
tick_nohz_idle_exit();
preempt_enable_no_resched();
schedule();
preempt_disable();
}
}
extern void __kprobes kernel_thread_starter(void);
asm(
".section .kprobes.text, \"ax\"\n"
".global kernel_thread_starter\n"
"kernel_thread_starter:\n"
" la 2,0(10)\n"
" basr 14,9\n"
" la 2,0\n"
" br 11\n"
".previous\n");
int kernel_thread(int (*fn)(void *), void * arg, unsigned long flags)
{
struct pt_regs regs;
memset(&regs, 0, sizeof(regs));
regs.psw.mask = psw_kernel_bits |
PSW_MASK_DAT | PSW_MASK_IO | PSW_MASK_EXT | PSW_MASK_MCHECK;
regs.psw.addr = (unsigned long) kernel_thread_starter | PSW_ADDR_AMODE;
regs.gprs[9] = (unsigned long) fn;
regs.gprs[10] = (unsigned long) arg;
regs.gprs[11] = (unsigned long) do_exit;
regs.orig_gpr2 = -1;
/* Ok, create the new process.. */
return do_fork(flags | CLONE_VM | CLONE_UNTRACED,
0, &regs, 0, NULL, NULL);
}
EXPORT_SYMBOL(kernel_thread);
/*
* Free current thread data structures etc..
*/
void exit_thread(void)
{
}
void flush_thread(void)
{
}
void release_thread(struct task_struct *dead_task)
{
}
int copy_thread(unsigned long clone_flags, unsigned long new_stackp,
unsigned long unused,
struct task_struct *p, struct pt_regs *regs)
{
struct thread_info *ti;
struct fake_frame
{
struct stack_frame sf;
struct pt_regs childregs;
} *frame;
frame = container_of(task_pt_regs(p), struct fake_frame, childregs);
p->thread.ksp = (unsigned long) frame;
/* Store access registers to kernel stack of new process. */
frame->childregs = *regs;
frame->childregs.gprs[2] = 0; /* child returns 0 on fork. */
frame->childregs.gprs[15] = new_stackp;
frame->sf.back_chain = 0;
/* new return point is ret_from_fork */
frame->sf.gprs[8] = (unsigned long) ret_from_fork;
/* fake return stack for resume(), don't go back to schedule */
frame->sf.gprs[9] = (unsigned long) frame;
/* Save access registers to new thread structure. */
save_access_regs(&p->thread.acrs[0]);
#ifndef CONFIG_64BIT
/*
* save fprs to current->thread.fp_regs to merge them with
* the emulated registers and then copy the result to the child.
*/
save_fp_regs(&current->thread.fp_regs);
memcpy(&p->thread.fp_regs, &current->thread.fp_regs,
sizeof(s390_fp_regs));
/* Set a new TLS ? */
if (clone_flags & CLONE_SETTLS)
p->thread.acrs[0] = regs->gprs[6];
#else /* CONFIG_64BIT */
/* Save the fpu registers to new thread structure. */
save_fp_regs(&p->thread.fp_regs);
/* Set a new TLS ? */
if (clone_flags & CLONE_SETTLS) {
if (is_compat_task()) {
p->thread.acrs[0] = (unsigned int) regs->gprs[6];
} else {
p->thread.acrs[0] = (unsigned int)(regs->gprs[6] >> 32);
p->thread.acrs[1] = (unsigned int) regs->gprs[6];
}
}
#endif /* CONFIG_64BIT */
/* start new process with ar4 pointing to the correct address space */
p->thread.mm_segment = get_fs();
/* Don't copy debug registers */
memset(&p->thread.per_user, 0, sizeof(p->thread.per_user));
memset(&p->thread.per_event, 0, sizeof(p->thread.per_event));
clear_tsk_thread_flag(p, TIF_SINGLE_STEP);
clear_tsk_thread_flag(p, TIF_PER_TRAP);
/* Initialize per thread user and system timer values */
ti = task_thread_info(p);
ti->user_timer = 0;
ti->system_timer = 0;
return 0;
}
SYSCALL_DEFINE0(fork)
{
struct pt_regs *regs = task_pt_regs(current);
return do_fork(SIGCHLD, regs->gprs[15], regs, 0, NULL, NULL);
}
SYSCALL_DEFINE4(clone, unsigned long, newsp, unsigned long, clone_flags,
int __user *, parent_tidptr, int __user *, child_tidptr)
{
struct pt_regs *regs = task_pt_regs(current);
if (!newsp)
newsp = regs->gprs[15];
return do_fork(clone_flags, newsp, regs, 0,
parent_tidptr, child_tidptr);
}
/*
* This is trivial, and on the face of it looks like it
* could equally well be done in user mode.
*
* Not so, for quite unobvious reasons - register pressure.
* In user mode vfork() cannot have a stack frame, and if
* done by calling the "clone()" system call directly, you
* do not have enough call-clobbered registers to hold all
* the information you need.
*/
SYSCALL_DEFINE0(vfork)
{
struct pt_regs *regs = task_pt_regs(current);
return do_fork(CLONE_VFORK | CLONE_VM | SIGCHLD,
regs->gprs[15], regs, 0, NULL, NULL);
}
asmlinkage void execve_tail(void)
{
current->thread.fp_regs.fpc = 0;
if (MACHINE_HAS_IEEE)
asm volatile("sfpc %0,%0" : : "d" (0));
}
/*
* sys_execve() executes a new program.
*/
SYSCALL_DEFINE3(execve, const char __user *, name,
const char __user *const __user *, argv,
const char __user *const __user *, envp)
{
struct pt_regs *regs = task_pt_regs(current);
char *filename;
long rc;
filename = getname(name);
rc = PTR_ERR(filename);
if (IS_ERR(filename))
return rc;
rc = do_execve(filename, argv, envp, regs);
if (rc)
goto out;
execve_tail();
rc = regs->gprs[2];
out:
putname(filename);
return rc;
}
/*
* fill in the FPU structure for a core dump.
*/
int dump_fpu (struct pt_regs * regs, s390_fp_regs *fpregs)
{
#ifndef CONFIG_64BIT
/*
* save fprs to current->thread.fp_regs to merge them with
* the emulated registers and then copy the result to the dump.
*/
save_fp_regs(&current->thread.fp_regs);
memcpy(fpregs, &current->thread.fp_regs, sizeof(s390_fp_regs));
#else /* CONFIG_64BIT */
save_fp_regs(fpregs);
#endif /* CONFIG_64BIT */
return 1;
}
EXPORT_SYMBOL(dump_fpu);
unsigned long get_wchan(struct task_struct *p)
{
struct stack_frame *sf, *low, *high;
unsigned long return_address;
int count;
if (!p || p == current || p->state == TASK_RUNNING || !task_stack_page(p))
return 0;
low = task_stack_page(p);
high = (struct stack_frame *) task_pt_regs(p);
sf = (struct stack_frame *) (p->thread.ksp & PSW_ADDR_INSN);
if (sf <= low || sf > high)
return 0;
for (count = 0; count < 16; count++) {
sf = (struct stack_frame *) (sf->back_chain & PSW_ADDR_INSN);
if (sf <= low || sf > high)
return 0;
return_address = sf->gprs[8] & PSW_ADDR_INSN;
if (!in_sched_functions(return_address))
return return_address;
}
return 0;
}
unsigned long arch_align_stack(unsigned long sp)
{
if (!(current->personality & ADDR_NO_RANDOMIZE) && randomize_va_space)
sp -= get_random_int() & ~PAGE_MASK;
return sp & ~0xf;
}
static inline unsigned long brk_rnd(void)
{
/* 8MB for 32bit, 1GB for 64bit */
if (is_32bit_task())
return (get_random_int() & 0x7ffUL) << PAGE_SHIFT;
else
return (get_random_int() & 0x3ffffUL) << PAGE_SHIFT;
}
unsigned long arch_randomize_brk(struct mm_struct *mm)
{
unsigned long ret = PAGE_ALIGN(mm->brk + brk_rnd());
if (ret < mm->brk)
return mm->brk;
return ret;
}
unsigned long randomize_et_dyn(unsigned long base)
{
unsigned long ret = PAGE_ALIGN(base + brk_rnd());
if (!(current->flags & PF_RANDOMIZE))
return base;
if (ret < base)
return base;
return ret;
}