1
linux/drivers/net/wireless/rt2x00/rt2x00dev.c
Mattias Nissler 2700f8b048 rt2x00: Correctly set ACK bit in tx descriptors
Add a flag to struct txdata_entry_desc that specifies whether an ack for the
frame is to be expected. Use this flag to set the ACK bit in the tx descriptor.
Previously, the ACK bit could be set incorrectly on CTS-to-self frames, so they
caused retries and were reported to be failed in the txdone handlers.

Signed-off-by: Mattias Nissler <mattias.nissler@gmx.de>
Signed-off-by: Ivo van Doorn <IvDoorn@gmail.com>
Signed-off-by: John W. Linville <linville@tuxdriver.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
2008-01-28 15:03:04 -08:00

1359 lines
33 KiB
C

/*
Copyright (C) 2004 - 2007 rt2x00 SourceForge Project
<http://rt2x00.serialmonkey.com>
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program; if not, write to the
Free Software Foundation, Inc.,
59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
*/
/*
Module: rt2x00lib
Abstract: rt2x00 generic device routines.
*/
/*
* Set enviroment defines for rt2x00.h
*/
#define DRV_NAME "rt2x00lib"
#include <linux/kernel.h>
#include <linux/module.h>
#include "rt2x00.h"
#include "rt2x00lib.h"
/*
* Ring handler.
*/
struct data_ring *rt2x00lib_get_ring(struct rt2x00_dev *rt2x00dev,
const unsigned int queue)
{
int beacon = test_bit(DRIVER_REQUIRE_BEACON_RING, &rt2x00dev->flags);
/*
* Check if we are requesting a reqular TX ring,
* or if we are requesting a Beacon or Atim ring.
* For Atim rings, we should check if it is supported.
*/
if (queue < rt2x00dev->hw->queues && rt2x00dev->tx)
return &rt2x00dev->tx[queue];
if (!rt2x00dev->bcn || !beacon)
return NULL;
if (queue == IEEE80211_TX_QUEUE_BEACON)
return &rt2x00dev->bcn[0];
else if (queue == IEEE80211_TX_QUEUE_AFTER_BEACON)
return &rt2x00dev->bcn[1];
return NULL;
}
EXPORT_SYMBOL_GPL(rt2x00lib_get_ring);
/*
* Link tuning handlers
*/
static void rt2x00lib_start_link_tuner(struct rt2x00_dev *rt2x00dev)
{
rt2x00dev->link.count = 0;
rt2x00dev->link.vgc_level = 0;
memset(&rt2x00dev->link.qual, 0, sizeof(rt2x00dev->link.qual));
/*
* The RX and TX percentage should start at 50%
* this will assure we will get at least get some
* decent value when the link tuner starts.
* The value will be dropped and overwritten with
* the correct (measured )value anyway during the
* first run of the link tuner.
*/
rt2x00dev->link.qual.rx_percentage = 50;
rt2x00dev->link.qual.tx_percentage = 50;
/*
* Reset the link tuner.
*/
rt2x00dev->ops->lib->reset_tuner(rt2x00dev);
queue_delayed_work(rt2x00dev->hw->workqueue,
&rt2x00dev->link.work, LINK_TUNE_INTERVAL);
}
static void rt2x00lib_stop_link_tuner(struct rt2x00_dev *rt2x00dev)
{
cancel_delayed_work_sync(&rt2x00dev->link.work);
}
void rt2x00lib_reset_link_tuner(struct rt2x00_dev *rt2x00dev)
{
if (!test_bit(DEVICE_ENABLED_RADIO, &rt2x00dev->flags))
return;
rt2x00lib_stop_link_tuner(rt2x00dev);
rt2x00lib_start_link_tuner(rt2x00dev);
}
/*
* Radio control handlers.
*/
int rt2x00lib_enable_radio(struct rt2x00_dev *rt2x00dev)
{
int status;
/*
* Don't enable the radio twice.
* And check if the hardware button has been disabled.
*/
if (test_bit(DEVICE_ENABLED_RADIO, &rt2x00dev->flags) ||
test_bit(DEVICE_DISABLED_RADIO_HW, &rt2x00dev->flags))
return 0;
/*
* Enable radio.
*/
status = rt2x00dev->ops->lib->set_device_state(rt2x00dev,
STATE_RADIO_ON);
if (status)
return status;
__set_bit(DEVICE_ENABLED_RADIO, &rt2x00dev->flags);
/*
* Enable RX.
*/
rt2x00lib_toggle_rx(rt2x00dev, STATE_RADIO_RX_ON);
/*
* Start the TX queues.
*/
ieee80211_start_queues(rt2x00dev->hw);
return 0;
}
void rt2x00lib_disable_radio(struct rt2x00_dev *rt2x00dev)
{
if (!__test_and_clear_bit(DEVICE_ENABLED_RADIO, &rt2x00dev->flags))
return;
/*
* Stop all scheduled work.
*/
if (work_pending(&rt2x00dev->beacon_work))
cancel_work_sync(&rt2x00dev->beacon_work);
if (work_pending(&rt2x00dev->filter_work))
cancel_work_sync(&rt2x00dev->filter_work);
if (work_pending(&rt2x00dev->config_work))
cancel_work_sync(&rt2x00dev->config_work);
/*
* Stop the TX queues.
*/
ieee80211_stop_queues(rt2x00dev->hw);
/*
* Disable RX.
*/
rt2x00lib_toggle_rx(rt2x00dev, STATE_RADIO_RX_OFF);
/*
* Disable radio.
*/
rt2x00dev->ops->lib->set_device_state(rt2x00dev, STATE_RADIO_OFF);
}
void rt2x00lib_toggle_rx(struct rt2x00_dev *rt2x00dev, enum dev_state state)
{
/*
* When we are disabling the RX, we should also stop the link tuner.
*/
if (state == STATE_RADIO_RX_OFF)
rt2x00lib_stop_link_tuner(rt2x00dev);
rt2x00dev->ops->lib->set_device_state(rt2x00dev, state);
/*
* When we are enabling the RX, we should also start the link tuner.
*/
if (state == STATE_RADIO_RX_ON &&
is_interface_present(&rt2x00dev->interface))
rt2x00lib_start_link_tuner(rt2x00dev);
}
static void rt2x00lib_evaluate_antenna_sample(struct rt2x00_dev *rt2x00dev)
{
enum antenna rx = rt2x00dev->link.ant.active.rx;
enum antenna tx = rt2x00dev->link.ant.active.tx;
int sample_a =
rt2x00_get_link_ant_rssi_history(&rt2x00dev->link, ANTENNA_A);
int sample_b =
rt2x00_get_link_ant_rssi_history(&rt2x00dev->link, ANTENNA_B);
/*
* We are done sampling. Now we should evaluate the results.
*/
rt2x00dev->link.ant.flags &= ~ANTENNA_MODE_SAMPLE;
/*
* During the last period we have sampled the RSSI
* from both antenna's. It now is time to determine
* which antenna demonstrated the best performance.
* When we are already on the antenna with the best
* performance, then there really is nothing for us
* left to do.
*/
if (sample_a == sample_b)
return;
if (rt2x00dev->link.ant.flags & ANTENNA_RX_DIVERSITY) {
if (sample_a > sample_b && rx == ANTENNA_B)
rx = ANTENNA_A;
else if (rx == ANTENNA_A)
rx = ANTENNA_B;
}
if (rt2x00dev->link.ant.flags & ANTENNA_TX_DIVERSITY) {
if (sample_a > sample_b && tx == ANTENNA_B)
tx = ANTENNA_A;
else if (tx == ANTENNA_A)
tx = ANTENNA_B;
}
rt2x00lib_config_antenna(rt2x00dev, rx, tx);
}
static void rt2x00lib_evaluate_antenna_eval(struct rt2x00_dev *rt2x00dev)
{
enum antenna rx = rt2x00dev->link.ant.active.rx;
enum antenna tx = rt2x00dev->link.ant.active.tx;
int rssi_curr = rt2x00_get_link_ant_rssi(&rt2x00dev->link);
int rssi_old = rt2x00_update_ant_rssi(&rt2x00dev->link, rssi_curr);
/*
* Legacy driver indicates that we should swap antenna's
* when the difference in RSSI is greater that 5. This
* also should be done when the RSSI was actually better
* then the previous sample.
* When the difference exceeds the threshold we should
* sample the rssi from the other antenna to make a valid
* comparison between the 2 antennas.
*/
if ((rssi_curr - rssi_old) > -5 || (rssi_curr - rssi_old) < 5)
return;
rt2x00dev->link.ant.flags |= ANTENNA_MODE_SAMPLE;
if (rt2x00dev->link.ant.flags & ANTENNA_RX_DIVERSITY)
rx = (rx == ANTENNA_A) ? ANTENNA_B : ANTENNA_A;
if (rt2x00dev->link.ant.flags & ANTENNA_TX_DIVERSITY)
tx = (tx == ANTENNA_A) ? ANTENNA_B : ANTENNA_A;
rt2x00lib_config_antenna(rt2x00dev, rx, tx);
}
static void rt2x00lib_evaluate_antenna(struct rt2x00_dev *rt2x00dev)
{
/*
* Determine if software diversity is enabled for
* either the TX or RX antenna (or both).
* Always perform this check since within the link
* tuner interval the configuration might have changed.
*/
rt2x00dev->link.ant.flags &= ~ANTENNA_RX_DIVERSITY;
rt2x00dev->link.ant.flags &= ~ANTENNA_TX_DIVERSITY;
if (rt2x00dev->hw->conf.antenna_sel_rx == 0 &&
rt2x00dev->default_ant.rx != ANTENNA_SW_DIVERSITY)
rt2x00dev->link.ant.flags |= ANTENNA_RX_DIVERSITY;
if (rt2x00dev->hw->conf.antenna_sel_tx == 0 &&
rt2x00dev->default_ant.tx != ANTENNA_SW_DIVERSITY)
rt2x00dev->link.ant.flags |= ANTENNA_TX_DIVERSITY;
if (!(rt2x00dev->link.ant.flags & ANTENNA_RX_DIVERSITY) &&
!(rt2x00dev->link.ant.flags & ANTENNA_TX_DIVERSITY)) {
rt2x00dev->link.ant.flags &= ~ANTENNA_MODE_SAMPLE;
return;
}
/*
* If we have only sampled the data over the last period
* we should now harvest the data. Otherwise just evaluate
* the data. The latter should only be performed once
* every 2 seconds.
*/
if (rt2x00dev->link.ant.flags & ANTENNA_MODE_SAMPLE)
rt2x00lib_evaluate_antenna_sample(rt2x00dev);
else if (rt2x00dev->link.count & 1)
rt2x00lib_evaluate_antenna_eval(rt2x00dev);
}
static void rt2x00lib_update_link_stats(struct link *link, int rssi)
{
int avg_rssi = rssi;
/*
* Update global RSSI
*/
if (link->qual.avg_rssi)
avg_rssi = MOVING_AVERAGE(link->qual.avg_rssi, rssi, 8);
link->qual.avg_rssi = avg_rssi;
/*
* Update antenna RSSI
*/
if (link->ant.rssi_ant)
rssi = MOVING_AVERAGE(link->ant.rssi_ant, rssi, 8);
link->ant.rssi_ant = rssi;
}
static void rt2x00lib_precalculate_link_signal(struct link_qual *qual)
{
if (qual->rx_failed || qual->rx_success)
qual->rx_percentage =
(qual->rx_success * 100) /
(qual->rx_failed + qual->rx_success);
else
qual->rx_percentage = 50;
if (qual->tx_failed || qual->tx_success)
qual->tx_percentage =
(qual->tx_success * 100) /
(qual->tx_failed + qual->tx_success);
else
qual->tx_percentage = 50;
qual->rx_success = 0;
qual->rx_failed = 0;
qual->tx_success = 0;
qual->tx_failed = 0;
}
static int rt2x00lib_calculate_link_signal(struct rt2x00_dev *rt2x00dev,
int rssi)
{
int rssi_percentage = 0;
int signal;
/*
* We need a positive value for the RSSI.
*/
if (rssi < 0)
rssi += rt2x00dev->rssi_offset;
/*
* Calculate the different percentages,
* which will be used for the signal.
*/
if (rt2x00dev->rssi_offset)
rssi_percentage = (rssi * 100) / rt2x00dev->rssi_offset;
/*
* Add the individual percentages and use the WEIGHT
* defines to calculate the current link signal.
*/
signal = ((WEIGHT_RSSI * rssi_percentage) +
(WEIGHT_TX * rt2x00dev->link.qual.tx_percentage) +
(WEIGHT_RX * rt2x00dev->link.qual.rx_percentage)) / 100;
return (signal > 100) ? 100 : signal;
}
static void rt2x00lib_link_tuner(struct work_struct *work)
{
struct rt2x00_dev *rt2x00dev =
container_of(work, struct rt2x00_dev, link.work.work);
/*
* When the radio is shutting down we should
* immediately cease all link tuning.
*/
if (!test_bit(DEVICE_ENABLED_RADIO, &rt2x00dev->flags))
return;
/*
* Update statistics.
*/
rt2x00dev->ops->lib->link_stats(rt2x00dev, &rt2x00dev->link.qual);
rt2x00dev->low_level_stats.dot11FCSErrorCount +=
rt2x00dev->link.qual.rx_failed;
/*
* Only perform the link tuning when Link tuning
* has been enabled (This could have been disabled from the EEPROM).
*/
if (!test_bit(CONFIG_DISABLE_LINK_TUNING, &rt2x00dev->flags))
rt2x00dev->ops->lib->link_tuner(rt2x00dev);
/*
* Evaluate antenna setup.
*/
rt2x00lib_evaluate_antenna(rt2x00dev);
/*
* Precalculate a portion of the link signal which is
* in based on the tx/rx success/failure counters.
*/
rt2x00lib_precalculate_link_signal(&rt2x00dev->link.qual);
/*
* Increase tuner counter, and reschedule the next link tuner run.
*/
rt2x00dev->link.count++;
queue_delayed_work(rt2x00dev->hw->workqueue, &rt2x00dev->link.work,
LINK_TUNE_INTERVAL);
}
static void rt2x00lib_packetfilter_scheduled(struct work_struct *work)
{
struct rt2x00_dev *rt2x00dev =
container_of(work, struct rt2x00_dev, filter_work);
unsigned int filter = rt2x00dev->interface.filter;
/*
* Since we had stored the filter inside interface.filter,
* we should now clear that field. Otherwise the driver will
* assume nothing has changed (*total_flags will be compared
* to interface.filter to determine if any action is required).
*/
rt2x00dev->interface.filter = 0;
rt2x00dev->ops->hw->configure_filter(rt2x00dev->hw,
filter, &filter, 0, NULL);
}
static void rt2x00lib_configuration_scheduled(struct work_struct *work)
{
struct rt2x00_dev *rt2x00dev =
container_of(work, struct rt2x00_dev, config_work);
int preamble = !test_bit(CONFIG_SHORT_PREAMBLE, &rt2x00dev->flags);
rt2x00mac_erp_ie_changed(rt2x00dev->hw,
IEEE80211_ERP_CHANGE_PREAMBLE, 0, preamble);
}
/*
* Interrupt context handlers.
*/
static void rt2x00lib_beacondone_scheduled(struct work_struct *work)
{
struct rt2x00_dev *rt2x00dev =
container_of(work, struct rt2x00_dev, beacon_work);
struct data_ring *ring =
rt2x00lib_get_ring(rt2x00dev, IEEE80211_TX_QUEUE_BEACON);
struct data_entry *entry = rt2x00_get_data_entry(ring);
struct sk_buff *skb;
skb = ieee80211_beacon_get(rt2x00dev->hw,
rt2x00dev->interface.id,
&entry->tx_status.control);
if (!skb)
return;
rt2x00dev->ops->hw->beacon_update(rt2x00dev->hw, skb,
&entry->tx_status.control);
dev_kfree_skb(skb);
}
void rt2x00lib_beacondone(struct rt2x00_dev *rt2x00dev)
{
if (!test_bit(DEVICE_ENABLED_RADIO, &rt2x00dev->flags))
return;
queue_work(rt2x00dev->hw->workqueue, &rt2x00dev->beacon_work);
}
EXPORT_SYMBOL_GPL(rt2x00lib_beacondone);
void rt2x00lib_txdone(struct data_entry *entry,
const int status, const int retry)
{
struct rt2x00_dev *rt2x00dev = entry->ring->rt2x00dev;
struct ieee80211_tx_status *tx_status = &entry->tx_status;
struct ieee80211_low_level_stats *stats = &rt2x00dev->low_level_stats;
int success = !!(status == TX_SUCCESS || status == TX_SUCCESS_RETRY);
int fail = !!(status == TX_FAIL_RETRY || status == TX_FAIL_INVALID ||
status == TX_FAIL_OTHER);
/*
* Update TX statistics.
*/
tx_status->flags = 0;
tx_status->ack_signal = 0;
tx_status->excessive_retries = (status == TX_FAIL_RETRY);
tx_status->retry_count = retry;
rt2x00dev->link.qual.tx_success += success;
rt2x00dev->link.qual.tx_failed += retry + fail;
if (!(tx_status->control.flags & IEEE80211_TXCTL_NO_ACK)) {
if (success)
tx_status->flags |= IEEE80211_TX_STATUS_ACK;
else
stats->dot11ACKFailureCount++;
}
tx_status->queue_length = entry->ring->stats.limit;
tx_status->queue_number = tx_status->control.queue;
if (tx_status->control.flags & IEEE80211_TXCTL_USE_RTS_CTS) {
if (success)
stats->dot11RTSSuccessCount++;
else
stats->dot11RTSFailureCount++;
}
/*
* Send the tx_status to mac80211,
* that method also cleans up the skb structure.
*/
ieee80211_tx_status_irqsafe(rt2x00dev->hw, entry->skb, tx_status);
entry->skb = NULL;
}
EXPORT_SYMBOL_GPL(rt2x00lib_txdone);
void rt2x00lib_rxdone(struct data_entry *entry, struct sk_buff *skb,
struct rxdata_entry_desc *desc)
{
struct rt2x00_dev *rt2x00dev = entry->ring->rt2x00dev;
struct ieee80211_rx_status *rx_status = &rt2x00dev->rx_status;
struct ieee80211_hw_mode *mode;
struct ieee80211_rate *rate;
unsigned int i;
int val = 0;
/*
* Update RX statistics.
*/
mode = &rt2x00dev->hwmodes[rt2x00dev->curr_hwmode];
for (i = 0; i < mode->num_rates; i++) {
rate = &mode->rates[i];
/*
* When frame was received with an OFDM bitrate,
* the signal is the PLCP value. If it was received with
* a CCK bitrate the signal is the rate in 0.5kbit/s.
*/
if (!desc->ofdm)
val = DEVICE_GET_RATE_FIELD(rate->val, RATE);
else
val = DEVICE_GET_RATE_FIELD(rate->val, PLCP);
if (val == desc->signal) {
val = rate->val;
break;
}
}
rt2x00lib_update_link_stats(&rt2x00dev->link, desc->rssi);
rt2x00dev->link.qual.rx_success++;
rx_status->rate = val;
rx_status->signal =
rt2x00lib_calculate_link_signal(rt2x00dev, desc->rssi);
rx_status->ssi = desc->rssi;
rx_status->flag = desc->flags;
rx_status->antenna = rt2x00dev->link.ant.active.rx;
/*
* Send frame to mac80211
*/
ieee80211_rx_irqsafe(rt2x00dev->hw, skb, rx_status);
}
EXPORT_SYMBOL_GPL(rt2x00lib_rxdone);
/*
* TX descriptor initializer
*/
void rt2x00lib_write_tx_desc(struct rt2x00_dev *rt2x00dev,
__le32 *txd,
struct ieee80211_hdr *ieee80211hdr,
unsigned int length,
struct ieee80211_tx_control *control)
{
struct txdata_entry_desc desc;
struct data_ring *ring;
int tx_rate;
int bitrate;
int duration;
int residual;
u16 frame_control;
u16 seq_ctrl;
/*
* Make sure the descriptor is properly cleared.
*/
memset(&desc, 0x00, sizeof(desc));
/*
* Get ring pointer, if we fail to obtain the
* correct ring, then use the first TX ring.
*/
ring = rt2x00lib_get_ring(rt2x00dev, control->queue);
if (!ring)
ring = rt2x00lib_get_ring(rt2x00dev, IEEE80211_TX_QUEUE_DATA0);
desc.cw_min = ring->tx_params.cw_min;
desc.cw_max = ring->tx_params.cw_max;
desc.aifs = ring->tx_params.aifs;
/*
* Identify queue
*/
if (control->queue < rt2x00dev->hw->queues)
desc.queue = control->queue;
else if (control->queue == IEEE80211_TX_QUEUE_BEACON ||
control->queue == IEEE80211_TX_QUEUE_AFTER_BEACON)
desc.queue = QUEUE_MGMT;
else
desc.queue = QUEUE_OTHER;
/*
* Read required fields from ieee80211 header.
*/
frame_control = le16_to_cpu(ieee80211hdr->frame_control);
seq_ctrl = le16_to_cpu(ieee80211hdr->seq_ctrl);
tx_rate = control->tx_rate;
/*
* Check whether this frame is to be acked
*/
if (!(control->flags & IEEE80211_TXCTL_NO_ACK))
__set_bit(ENTRY_TXD_ACK, &desc.flags);
/*
* Check if this is a RTS/CTS frame
*/
if (is_rts_frame(frame_control) || is_cts_frame(frame_control)) {
__set_bit(ENTRY_TXD_BURST, &desc.flags);
if (is_rts_frame(frame_control)) {
__set_bit(ENTRY_TXD_RTS_FRAME, &desc.flags);
__set_bit(ENTRY_TXD_ACK, &desc.flags);
} else
__clear_bit(ENTRY_TXD_ACK, &desc.flags);
if (control->rts_cts_rate)
tx_rate = control->rts_cts_rate;
}
/*
* Check for OFDM
*/
if (DEVICE_GET_RATE_FIELD(tx_rate, RATEMASK) & DEV_OFDM_RATEMASK)
__set_bit(ENTRY_TXD_OFDM_RATE, &desc.flags);
/*
* Check if more fragments are pending
*/
if (ieee80211_get_morefrag(ieee80211hdr)) {
__set_bit(ENTRY_TXD_BURST, &desc.flags);
__set_bit(ENTRY_TXD_MORE_FRAG, &desc.flags);
}
/*
* Beacons and probe responses require the tsf timestamp
* to be inserted into the frame.
*/
if (control->queue == IEEE80211_TX_QUEUE_BEACON ||
is_probe_resp(frame_control))
__set_bit(ENTRY_TXD_REQ_TIMESTAMP, &desc.flags);
/*
* Determine with what IFS priority this frame should be send.
* Set ifs to IFS_SIFS when the this is not the first fragment,
* or this fragment came after RTS/CTS.
*/
if ((seq_ctrl & IEEE80211_SCTL_FRAG) > 0 ||
test_bit(ENTRY_TXD_RTS_FRAME, &desc.flags))
desc.ifs = IFS_SIFS;
else
desc.ifs = IFS_BACKOFF;
/*
* PLCP setup
* Length calculation depends on OFDM/CCK rate.
*/
desc.signal = DEVICE_GET_RATE_FIELD(tx_rate, PLCP);
desc.service = 0x04;
if (test_bit(ENTRY_TXD_OFDM_RATE, &desc.flags)) {
desc.length_high = ((length + FCS_LEN) >> 6) & 0x3f;
desc.length_low = ((length + FCS_LEN) & 0x3f);
} else {
bitrate = DEVICE_GET_RATE_FIELD(tx_rate, RATE);
/*
* Convert length to microseconds.
*/
residual = get_duration_res(length + FCS_LEN, bitrate);
duration = get_duration(length + FCS_LEN, bitrate);
if (residual != 0) {
duration++;
/*
* Check if we need to set the Length Extension
*/
if (bitrate == 110 && residual <= 30)
desc.service |= 0x80;
}
desc.length_high = (duration >> 8) & 0xff;
desc.length_low = duration & 0xff;
/*
* When preamble is enabled we should set the
* preamble bit for the signal.
*/
if (DEVICE_GET_RATE_FIELD(tx_rate, PREAMBLE))
desc.signal |= 0x08;
}
rt2x00dev->ops->lib->write_tx_desc(rt2x00dev, txd, &desc,
ieee80211hdr, length, control);
}
EXPORT_SYMBOL_GPL(rt2x00lib_write_tx_desc);
/*
* Driver initialization handlers.
*/
static void rt2x00lib_channel(struct ieee80211_channel *entry,
const int channel, const int tx_power,
const int value)
{
entry->chan = channel;
if (channel <= 14)
entry->freq = 2407 + (5 * channel);
else
entry->freq = 5000 + (5 * channel);
entry->val = value;
entry->flag =
IEEE80211_CHAN_W_IBSS |
IEEE80211_CHAN_W_ACTIVE_SCAN |
IEEE80211_CHAN_W_SCAN;
entry->power_level = tx_power;
entry->antenna_max = 0xff;
}
static void rt2x00lib_rate(struct ieee80211_rate *entry,
const int rate, const int mask,
const int plcp, const int flags)
{
entry->rate = rate;
entry->val =
DEVICE_SET_RATE_FIELD(rate, RATE) |
DEVICE_SET_RATE_FIELD(mask, RATEMASK) |
DEVICE_SET_RATE_FIELD(plcp, PLCP);
entry->flags = flags;
entry->val2 = entry->val;
if (entry->flags & IEEE80211_RATE_PREAMBLE2)
entry->val2 |= DEVICE_SET_RATE_FIELD(1, PREAMBLE);
entry->min_rssi_ack = 0;
entry->min_rssi_ack_delta = 0;
}
static int rt2x00lib_probe_hw_modes(struct rt2x00_dev *rt2x00dev,
struct hw_mode_spec *spec)
{
struct ieee80211_hw *hw = rt2x00dev->hw;
struct ieee80211_hw_mode *hwmodes;
struct ieee80211_channel *channels;
struct ieee80211_rate *rates;
unsigned int i;
unsigned char tx_power;
hwmodes = kzalloc(sizeof(*hwmodes) * spec->num_modes, GFP_KERNEL);
if (!hwmodes)
goto exit;
channels = kzalloc(sizeof(*channels) * spec->num_channels, GFP_KERNEL);
if (!channels)
goto exit_free_modes;
rates = kzalloc(sizeof(*rates) * spec->num_rates, GFP_KERNEL);
if (!rates)
goto exit_free_channels;
/*
* Initialize Rate list.
*/
rt2x00lib_rate(&rates[0], 10, DEV_RATEMASK_1MB,
0x00, IEEE80211_RATE_CCK);
rt2x00lib_rate(&rates[1], 20, DEV_RATEMASK_2MB,
0x01, IEEE80211_RATE_CCK_2);
rt2x00lib_rate(&rates[2], 55, DEV_RATEMASK_5_5MB,
0x02, IEEE80211_RATE_CCK_2);
rt2x00lib_rate(&rates[3], 110, DEV_RATEMASK_11MB,
0x03, IEEE80211_RATE_CCK_2);
if (spec->num_rates > 4) {
rt2x00lib_rate(&rates[4], 60, DEV_RATEMASK_6MB,
0x0b, IEEE80211_RATE_OFDM);
rt2x00lib_rate(&rates[5], 90, DEV_RATEMASK_9MB,
0x0f, IEEE80211_RATE_OFDM);
rt2x00lib_rate(&rates[6], 120, DEV_RATEMASK_12MB,
0x0a, IEEE80211_RATE_OFDM);
rt2x00lib_rate(&rates[7], 180, DEV_RATEMASK_18MB,
0x0e, IEEE80211_RATE_OFDM);
rt2x00lib_rate(&rates[8], 240, DEV_RATEMASK_24MB,
0x09, IEEE80211_RATE_OFDM);
rt2x00lib_rate(&rates[9], 360, DEV_RATEMASK_36MB,
0x0d, IEEE80211_RATE_OFDM);
rt2x00lib_rate(&rates[10], 480, DEV_RATEMASK_48MB,
0x08, IEEE80211_RATE_OFDM);
rt2x00lib_rate(&rates[11], 540, DEV_RATEMASK_54MB,
0x0c, IEEE80211_RATE_OFDM);
}
/*
* Initialize Channel list.
*/
for (i = 0; i < spec->num_channels; i++) {
if (spec->channels[i].channel <= 14)
tx_power = spec->tx_power_bg[i];
else if (spec->tx_power_a)
tx_power = spec->tx_power_a[i];
else
tx_power = spec->tx_power_default;
rt2x00lib_channel(&channels[i],
spec->channels[i].channel, tx_power, i);
}
/*
* Intitialize 802.11b
* Rates: CCK.
* Channels: OFDM.
*/
if (spec->num_modes > HWMODE_B) {
hwmodes[HWMODE_B].mode = MODE_IEEE80211B;
hwmodes[HWMODE_B].num_channels = 14;
hwmodes[HWMODE_B].num_rates = 4;
hwmodes[HWMODE_B].channels = channels;
hwmodes[HWMODE_B].rates = rates;
}
/*
* Intitialize 802.11g
* Rates: CCK, OFDM.
* Channels: OFDM.
*/
if (spec->num_modes > HWMODE_G) {
hwmodes[HWMODE_G].mode = MODE_IEEE80211G;
hwmodes[HWMODE_G].num_channels = 14;
hwmodes[HWMODE_G].num_rates = spec->num_rates;
hwmodes[HWMODE_G].channels = channels;
hwmodes[HWMODE_G].rates = rates;
}
/*
* Intitialize 802.11a
* Rates: OFDM.
* Channels: OFDM, UNII, HiperLAN2.
*/
if (spec->num_modes > HWMODE_A) {
hwmodes[HWMODE_A].mode = MODE_IEEE80211A;
hwmodes[HWMODE_A].num_channels = spec->num_channels - 14;
hwmodes[HWMODE_A].num_rates = spec->num_rates - 4;
hwmodes[HWMODE_A].channels = &channels[14];
hwmodes[HWMODE_A].rates = &rates[4];
}
if (spec->num_modes > HWMODE_G &&
ieee80211_register_hwmode(hw, &hwmodes[HWMODE_G]))
goto exit_free_rates;
if (spec->num_modes > HWMODE_B &&
ieee80211_register_hwmode(hw, &hwmodes[HWMODE_B]))
goto exit_free_rates;
if (spec->num_modes > HWMODE_A &&
ieee80211_register_hwmode(hw, &hwmodes[HWMODE_A]))
goto exit_free_rates;
rt2x00dev->hwmodes = hwmodes;
return 0;
exit_free_rates:
kfree(rates);
exit_free_channels:
kfree(channels);
exit_free_modes:
kfree(hwmodes);
exit:
ERROR(rt2x00dev, "Allocation ieee80211 modes failed.\n");
return -ENOMEM;
}
static void rt2x00lib_remove_hw(struct rt2x00_dev *rt2x00dev)
{
if (test_bit(DEVICE_REGISTERED_HW, &rt2x00dev->flags))
ieee80211_unregister_hw(rt2x00dev->hw);
if (likely(rt2x00dev->hwmodes)) {
kfree(rt2x00dev->hwmodes->channels);
kfree(rt2x00dev->hwmodes->rates);
kfree(rt2x00dev->hwmodes);
rt2x00dev->hwmodes = NULL;
}
}
static int rt2x00lib_probe_hw(struct rt2x00_dev *rt2x00dev)
{
struct hw_mode_spec *spec = &rt2x00dev->spec;
int status;
/*
* Initialize HW modes.
*/
status = rt2x00lib_probe_hw_modes(rt2x00dev, spec);
if (status)
return status;
/*
* Register HW.
*/
status = ieee80211_register_hw(rt2x00dev->hw);
if (status) {
rt2x00lib_remove_hw(rt2x00dev);
return status;
}
__set_bit(DEVICE_REGISTERED_HW, &rt2x00dev->flags);
return 0;
}
/*
* Initialization/uninitialization handlers.
*/
static int rt2x00lib_alloc_entries(struct data_ring *ring,
const u16 max_entries, const u16 data_size,
const u16 desc_size)
{
struct data_entry *entry;
unsigned int i;
ring->stats.limit = max_entries;
ring->data_size = data_size;
ring->desc_size = desc_size;
/*
* Allocate all ring entries.
*/
entry = kzalloc(ring->stats.limit * sizeof(*entry), GFP_KERNEL);
if (!entry)
return -ENOMEM;
for (i = 0; i < ring->stats.limit; i++) {
entry[i].flags = 0;
entry[i].ring = ring;
entry[i].skb = NULL;
}
ring->entry = entry;
return 0;
}
static int rt2x00lib_alloc_ring_entries(struct rt2x00_dev *rt2x00dev)
{
struct data_ring *ring;
/*
* Allocate the RX ring.
*/
if (rt2x00lib_alloc_entries(rt2x00dev->rx, RX_ENTRIES, DATA_FRAME_SIZE,
rt2x00dev->ops->rxd_size))
return -ENOMEM;
/*
* First allocate the TX rings.
*/
txring_for_each(rt2x00dev, ring) {
if (rt2x00lib_alloc_entries(ring, TX_ENTRIES, DATA_FRAME_SIZE,
rt2x00dev->ops->txd_size))
return -ENOMEM;
}
if (!test_bit(DRIVER_REQUIRE_BEACON_RING, &rt2x00dev->flags))
return 0;
/*
* Allocate the BEACON ring.
*/
if (rt2x00lib_alloc_entries(&rt2x00dev->bcn[0], BEACON_ENTRIES,
MGMT_FRAME_SIZE, rt2x00dev->ops->txd_size))
return -ENOMEM;
/*
* Allocate the Atim ring.
*/
if (rt2x00lib_alloc_entries(&rt2x00dev->bcn[1], ATIM_ENTRIES,
DATA_FRAME_SIZE, rt2x00dev->ops->txd_size))
return -ENOMEM;
return 0;
}
static void rt2x00lib_free_ring_entries(struct rt2x00_dev *rt2x00dev)
{
struct data_ring *ring;
ring_for_each(rt2x00dev, ring) {
kfree(ring->entry);
ring->entry = NULL;
}
}
void rt2x00lib_uninitialize(struct rt2x00_dev *rt2x00dev)
{
if (!__test_and_clear_bit(DEVICE_INITIALIZED, &rt2x00dev->flags))
return;
/*
* Unregister rfkill.
*/
rt2x00rfkill_unregister(rt2x00dev);
/*
* Allow the HW to uninitialize.
*/
rt2x00dev->ops->lib->uninitialize(rt2x00dev);
/*
* Free allocated ring entries.
*/
rt2x00lib_free_ring_entries(rt2x00dev);
}
int rt2x00lib_initialize(struct rt2x00_dev *rt2x00dev)
{
int status;
if (test_bit(DEVICE_INITIALIZED, &rt2x00dev->flags))
return 0;
/*
* Allocate all ring entries.
*/
status = rt2x00lib_alloc_ring_entries(rt2x00dev);
if (status) {
ERROR(rt2x00dev, "Ring entries allocation failed.\n");
return status;
}
/*
* Initialize the device.
*/
status = rt2x00dev->ops->lib->initialize(rt2x00dev);
if (status)
goto exit;
__set_bit(DEVICE_INITIALIZED, &rt2x00dev->flags);
/*
* Register the rfkill handler.
*/
status = rt2x00rfkill_register(rt2x00dev);
if (status)
goto exit_unitialize;
return 0;
exit_unitialize:
rt2x00lib_uninitialize(rt2x00dev);
exit:
rt2x00lib_free_ring_entries(rt2x00dev);
return status;
}
/*
* driver allocation handlers.
*/
static int rt2x00lib_alloc_rings(struct rt2x00_dev *rt2x00dev)
{
struct data_ring *ring;
/*
* We need the following rings:
* RX: 1
* TX: hw->queues
* Beacon: 1 (if required)
* Atim: 1 (if required)
*/
rt2x00dev->data_rings = 1 + rt2x00dev->hw->queues +
(2 * test_bit(DRIVER_REQUIRE_BEACON_RING, &rt2x00dev->flags));
ring = kzalloc(rt2x00dev->data_rings * sizeof(*ring), GFP_KERNEL);
if (!ring) {
ERROR(rt2x00dev, "Ring allocation failed.\n");
return -ENOMEM;
}
/*
* Initialize pointers
*/
rt2x00dev->rx = ring;
rt2x00dev->tx = &rt2x00dev->rx[1];
if (test_bit(DRIVER_REQUIRE_BEACON_RING, &rt2x00dev->flags))
rt2x00dev->bcn = &rt2x00dev->tx[rt2x00dev->hw->queues];
/*
* Initialize ring parameters.
* cw_min: 2^5 = 32.
* cw_max: 2^10 = 1024.
*/
ring_for_each(rt2x00dev, ring) {
ring->rt2x00dev = rt2x00dev;
ring->tx_params.aifs = 2;
ring->tx_params.cw_min = 5;
ring->tx_params.cw_max = 10;
}
return 0;
}
static void rt2x00lib_free_rings(struct rt2x00_dev *rt2x00dev)
{
kfree(rt2x00dev->rx);
rt2x00dev->rx = NULL;
rt2x00dev->tx = NULL;
rt2x00dev->bcn = NULL;
}
int rt2x00lib_probe_dev(struct rt2x00_dev *rt2x00dev)
{
int retval = -ENOMEM;
/*
* Let the driver probe the device to detect the capabilities.
*/
retval = rt2x00dev->ops->lib->probe_hw(rt2x00dev);
if (retval) {
ERROR(rt2x00dev, "Failed to allocate device.\n");
goto exit;
}
/*
* Initialize configuration work.
*/
INIT_WORK(&rt2x00dev->beacon_work, rt2x00lib_beacondone_scheduled);
INIT_WORK(&rt2x00dev->filter_work, rt2x00lib_packetfilter_scheduled);
INIT_WORK(&rt2x00dev->config_work, rt2x00lib_configuration_scheduled);
INIT_DELAYED_WORK(&rt2x00dev->link.work, rt2x00lib_link_tuner);
/*
* Reset current working type.
*/
rt2x00dev->interface.type = INVALID_INTERFACE;
/*
* Allocate ring array.
*/
retval = rt2x00lib_alloc_rings(rt2x00dev);
if (retval)
goto exit;
/*
* Initialize ieee80211 structure.
*/
retval = rt2x00lib_probe_hw(rt2x00dev);
if (retval) {
ERROR(rt2x00dev, "Failed to initialize hw.\n");
goto exit;
}
/*
* Allocatie rfkill.
*/
retval = rt2x00rfkill_allocate(rt2x00dev);
if (retval)
goto exit;
/*
* Open the debugfs entry.
*/
rt2x00debug_register(rt2x00dev);
__set_bit(DEVICE_PRESENT, &rt2x00dev->flags);
return 0;
exit:
rt2x00lib_remove_dev(rt2x00dev);
return retval;
}
EXPORT_SYMBOL_GPL(rt2x00lib_probe_dev);
void rt2x00lib_remove_dev(struct rt2x00_dev *rt2x00dev)
{
__clear_bit(DEVICE_PRESENT, &rt2x00dev->flags);
/*
* Disable radio.
*/
rt2x00lib_disable_radio(rt2x00dev);
/*
* Uninitialize device.
*/
rt2x00lib_uninitialize(rt2x00dev);
/*
* Close debugfs entry.
*/
rt2x00debug_deregister(rt2x00dev);
/*
* Free rfkill
*/
rt2x00rfkill_free(rt2x00dev);
/*
* Free ieee80211_hw memory.
*/
rt2x00lib_remove_hw(rt2x00dev);
/*
* Free firmware image.
*/
rt2x00lib_free_firmware(rt2x00dev);
/*
* Free ring structures.
*/
rt2x00lib_free_rings(rt2x00dev);
}
EXPORT_SYMBOL_GPL(rt2x00lib_remove_dev);
/*
* Device state handlers
*/
#ifdef CONFIG_PM
int rt2x00lib_suspend(struct rt2x00_dev *rt2x00dev, pm_message_t state)
{
int retval;
NOTICE(rt2x00dev, "Going to sleep.\n");
__clear_bit(DEVICE_PRESENT, &rt2x00dev->flags);
/*
* Only continue if mac80211 has open interfaces.
*/
if (!test_bit(DEVICE_STARTED, &rt2x00dev->flags))
goto exit;
__set_bit(DEVICE_STARTED_SUSPEND, &rt2x00dev->flags);
/*
* Disable radio and unitialize all items
* that must be recreated on resume.
*/
rt2x00mac_stop(rt2x00dev->hw);
rt2x00lib_uninitialize(rt2x00dev);
rt2x00debug_deregister(rt2x00dev);
exit:
/*
* Set device mode to sleep for power management.
*/
retval = rt2x00dev->ops->lib->set_device_state(rt2x00dev, STATE_SLEEP);
if (retval)
return retval;
return 0;
}
EXPORT_SYMBOL_GPL(rt2x00lib_suspend);
int rt2x00lib_resume(struct rt2x00_dev *rt2x00dev)
{
struct interface *intf = &rt2x00dev->interface;
int retval;
NOTICE(rt2x00dev, "Waking up.\n");
__set_bit(DEVICE_PRESENT, &rt2x00dev->flags);
/*
* Open the debugfs entry.
*/
rt2x00debug_register(rt2x00dev);
/*
* Only continue if mac80211 had open interfaces.
*/
if (!__test_and_clear_bit(DEVICE_STARTED_SUSPEND, &rt2x00dev->flags))
return 0;
/*
* Reinitialize device and all active interfaces.
*/
retval = rt2x00mac_start(rt2x00dev->hw);
if (retval)
goto exit;
/*
* Reconfigure device.
*/
rt2x00lib_config(rt2x00dev, &rt2x00dev->hw->conf, 1);
if (!rt2x00dev->hw->conf.radio_enabled)
rt2x00lib_disable_radio(rt2x00dev);
rt2x00lib_config_mac_addr(rt2x00dev, intf->mac);
rt2x00lib_config_bssid(rt2x00dev, intf->bssid);
rt2x00lib_config_type(rt2x00dev, intf->type);
/*
* It is possible that during that mac80211 has attempted
* to send frames while we were suspending or resuming.
* In that case we have disabled the TX queue and should
* now enable it again
*/
ieee80211_start_queues(rt2x00dev->hw);
/*
* When in Master or Ad-hoc mode,
* restart Beacon transmitting by faking a beacondone event.
*/
if (intf->type == IEEE80211_IF_TYPE_AP ||
intf->type == IEEE80211_IF_TYPE_IBSS)
rt2x00lib_beacondone(rt2x00dev);
return 0;
exit:
rt2x00lib_disable_radio(rt2x00dev);
rt2x00lib_uninitialize(rt2x00dev);
rt2x00debug_deregister(rt2x00dev);
return retval;
}
EXPORT_SYMBOL_GPL(rt2x00lib_resume);
#endif /* CONFIG_PM */
/*
* rt2x00lib module information.
*/
MODULE_AUTHOR(DRV_PROJECT);
MODULE_VERSION(DRV_VERSION);
MODULE_DESCRIPTION("rt2x00 library");
MODULE_LICENSE("GPL");