1
linux/fs/ecryptfs/messaging.c
Serge Hallyn 18b6e0414e User namespaces: set of cleanups (v2)
The user_ns is moved from nsproxy to user_struct, so that a struct
cred by itself is sufficient to determine access (which it otherwise
would not be).  Corresponding ecryptfs fixes (by David Howells) are
here as well.

Fix refcounting.  The following rules now apply:
        1. The task pins the user struct.
        2. The user struct pins its user namespace.
        3. The user namespace pins the struct user which created it.

User namespaces are cloned during copy_creds().  Unsharing a new user_ns
is no longer possible.  (We could re-add that, but it'll cause code
duplication and doesn't seem useful if PAM doesn't need to clone user
namespaces).

When a user namespace is created, its first user (uid 0) gets empty
keyrings and a clean group_info.

This incorporates a previous patch by David Howells.  Here
is his original patch description:

>I suggest adding the attached incremental patch.  It makes the following
>changes:
>
> (1) Provides a current_user_ns() macro to wrap accesses to current's user
>     namespace.
>
> (2) Fixes eCryptFS.
>
> (3) Renames create_new_userns() to create_user_ns() to be more consistent
>     with the other associated functions and because the 'new' in the name is
>     superfluous.
>
> (4) Moves the argument and permission checks made for CLONE_NEWUSER to the
>     beginning of do_fork() so that they're done prior to making any attempts
>     at allocation.
>
> (5) Calls create_user_ns() after prepare_creds(), and gives it the new creds
>     to fill in rather than have it return the new root user.  I don't imagine
>     the new root user being used for anything other than filling in a cred
>     struct.
>
>     This also permits me to get rid of a get_uid() and a free_uid(), as the
>     reference the creds were holding on the old user_struct can just be
>     transferred to the new namespace's creator pointer.
>
> (6) Makes create_user_ns() reset the UIDs and GIDs of the creds under
>     preparation rather than doing it in copy_creds().
>
>David

>Signed-off-by: David Howells <dhowells@redhat.com>

Changelog:
	Oct 20: integrate dhowells comments
		1. leave thread_keyring alone
		2. use current_user_ns() in set_user()

Signed-off-by: Serge Hallyn <serue@us.ibm.com>
2008-11-24 18:57:41 -05:00

660 lines
20 KiB
C

/**
* eCryptfs: Linux filesystem encryption layer
*
* Copyright (C) 2004-2008 International Business Machines Corp.
* Author(s): Michael A. Halcrow <mhalcrow@us.ibm.com>
* Tyler Hicks <tyhicks@ou.edu>
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License version
* 2 as published by the Free Software Foundation.
*
* This program is distributed in the hope that it will be useful, but
* WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA
* 02111-1307, USA.
*/
#include <linux/sched.h>
#include <linux/user_namespace.h>
#include <linux/nsproxy.h>
#include "ecryptfs_kernel.h"
static LIST_HEAD(ecryptfs_msg_ctx_free_list);
static LIST_HEAD(ecryptfs_msg_ctx_alloc_list);
static struct mutex ecryptfs_msg_ctx_lists_mux;
static struct hlist_head *ecryptfs_daemon_hash;
struct mutex ecryptfs_daemon_hash_mux;
static int ecryptfs_hash_buckets;
#define ecryptfs_uid_hash(uid) \
hash_long((unsigned long)uid, ecryptfs_hash_buckets)
static u32 ecryptfs_msg_counter;
static struct ecryptfs_msg_ctx *ecryptfs_msg_ctx_arr;
/**
* ecryptfs_acquire_free_msg_ctx
* @msg_ctx: The context that was acquired from the free list
*
* Acquires a context element from the free list and locks the mutex
* on the context. Sets the msg_ctx task to current. Returns zero on
* success; non-zero on error or upon failure to acquire a free
* context element. Must be called with ecryptfs_msg_ctx_lists_mux
* held.
*/
static int ecryptfs_acquire_free_msg_ctx(struct ecryptfs_msg_ctx **msg_ctx)
{
struct list_head *p;
int rc;
if (list_empty(&ecryptfs_msg_ctx_free_list)) {
printk(KERN_WARNING "%s: The eCryptfs free "
"context list is empty. It may be helpful to "
"specify the ecryptfs_message_buf_len "
"parameter to be greater than the current "
"value of [%d]\n", __func__, ecryptfs_message_buf_len);
rc = -ENOMEM;
goto out;
}
list_for_each(p, &ecryptfs_msg_ctx_free_list) {
*msg_ctx = list_entry(p, struct ecryptfs_msg_ctx, node);
if (mutex_trylock(&(*msg_ctx)->mux)) {
(*msg_ctx)->task = current;
rc = 0;
goto out;
}
}
rc = -ENOMEM;
out:
return rc;
}
/**
* ecryptfs_msg_ctx_free_to_alloc
* @msg_ctx: The context to move from the free list to the alloc list
*
* Must be called with ecryptfs_msg_ctx_lists_mux held.
*/
static void ecryptfs_msg_ctx_free_to_alloc(struct ecryptfs_msg_ctx *msg_ctx)
{
list_move(&msg_ctx->node, &ecryptfs_msg_ctx_alloc_list);
msg_ctx->state = ECRYPTFS_MSG_CTX_STATE_PENDING;
msg_ctx->counter = ++ecryptfs_msg_counter;
}
/**
* ecryptfs_msg_ctx_alloc_to_free
* @msg_ctx: The context to move from the alloc list to the free list
*
* Must be called with ecryptfs_msg_ctx_lists_mux held.
*/
void ecryptfs_msg_ctx_alloc_to_free(struct ecryptfs_msg_ctx *msg_ctx)
{
list_move(&(msg_ctx->node), &ecryptfs_msg_ctx_free_list);
if (msg_ctx->msg)
kfree(msg_ctx->msg);
msg_ctx->msg = NULL;
msg_ctx->state = ECRYPTFS_MSG_CTX_STATE_FREE;
}
/**
* ecryptfs_find_daemon_by_euid
* @euid: The effective user id which maps to the desired daemon id
* @user_ns: The namespace in which @euid applies
* @daemon: If return value is zero, points to the desired daemon pointer
*
* Must be called with ecryptfs_daemon_hash_mux held.
*
* Search the hash list for the given user id.
*
* Returns zero if the user id exists in the list; non-zero otherwise.
*/
int ecryptfs_find_daemon_by_euid(struct ecryptfs_daemon **daemon, uid_t euid,
struct user_namespace *user_ns)
{
struct hlist_node *elem;
int rc;
hlist_for_each_entry(*daemon, elem,
&ecryptfs_daemon_hash[ecryptfs_uid_hash(euid)],
euid_chain) {
if ((*daemon)->euid == euid && (*daemon)->user_ns == user_ns) {
rc = 0;
goto out;
}
}
rc = -EINVAL;
out:
return rc;
}
static int
ecryptfs_send_message_locked(char *data, int data_len, u8 msg_type,
struct ecryptfs_msg_ctx **msg_ctx);
/**
* ecryptfs_send_raw_message
* @msg_type: Message type
* @daemon: Daemon struct for recipient of message
*
* A raw message is one that does not include an ecryptfs_message
* struct. It simply has a type.
*
* Must be called with ecryptfs_daemon_hash_mux held.
*
* Returns zero on success; non-zero otherwise
*/
static int ecryptfs_send_raw_message(u8 msg_type,
struct ecryptfs_daemon *daemon)
{
struct ecryptfs_msg_ctx *msg_ctx;
int rc;
rc = ecryptfs_send_message_locked(NULL, 0, msg_type, &msg_ctx);
if (rc) {
printk(KERN_ERR "%s: Error whilst attempting to send "
"message to ecryptfsd; rc = [%d]\n", __func__, rc);
goto out;
}
/* Raw messages are logically context-free (e.g., no
* reply is expected), so we set the state of the
* ecryptfs_msg_ctx object to indicate that it should
* be freed as soon as the message is sent. */
mutex_lock(&msg_ctx->mux);
msg_ctx->state = ECRYPTFS_MSG_CTX_STATE_NO_REPLY;
mutex_unlock(&msg_ctx->mux);
out:
return rc;
}
/**
* ecryptfs_spawn_daemon - Create and initialize a new daemon struct
* @daemon: Pointer to set to newly allocated daemon struct
* @euid: Effective user id for the daemon
* @user_ns: The namespace in which @euid applies
* @pid: Process id for the daemon
*
* Must be called ceremoniously while in possession of
* ecryptfs_sacred_daemon_hash_mux
*
* Returns zero on success; non-zero otherwise
*/
int
ecryptfs_spawn_daemon(struct ecryptfs_daemon **daemon, uid_t euid,
struct user_namespace *user_ns, struct pid *pid)
{
int rc = 0;
(*daemon) = kzalloc(sizeof(**daemon), GFP_KERNEL);
if (!(*daemon)) {
rc = -ENOMEM;
printk(KERN_ERR "%s: Failed to allocate [%Zd] bytes of "
"GFP_KERNEL memory\n", __func__, sizeof(**daemon));
goto out;
}
(*daemon)->euid = euid;
(*daemon)->user_ns = get_user_ns(user_ns);
(*daemon)->pid = get_pid(pid);
(*daemon)->task = current;
mutex_init(&(*daemon)->mux);
INIT_LIST_HEAD(&(*daemon)->msg_ctx_out_queue);
init_waitqueue_head(&(*daemon)->wait);
(*daemon)->num_queued_msg_ctx = 0;
hlist_add_head(&(*daemon)->euid_chain,
&ecryptfs_daemon_hash[ecryptfs_uid_hash(euid)]);
out:
return rc;
}
/**
* ecryptfs_process_helo
* @euid: The user ID owner of the message
* @user_ns: The namespace in which @euid applies
* @pid: The process ID for the userspace program that sent the
* message
*
* Adds the euid and pid values to the daemon euid hash. If an euid
* already has a daemon pid registered, the daemon will be
* unregistered before the new daemon is put into the hash list.
* Returns zero after adding a new daemon to the hash list;
* non-zero otherwise.
*/
int ecryptfs_process_helo(uid_t euid, struct user_namespace *user_ns,
struct pid *pid)
{
struct ecryptfs_daemon *new_daemon;
struct ecryptfs_daemon *old_daemon;
int rc;
mutex_lock(&ecryptfs_daemon_hash_mux);
rc = ecryptfs_find_daemon_by_euid(&old_daemon, euid, user_ns);
if (rc != 0) {
printk(KERN_WARNING "Received request from user [%d] "
"to register daemon [0x%p]; unregistering daemon "
"[0x%p]\n", euid, pid, old_daemon->pid);
rc = ecryptfs_send_raw_message(ECRYPTFS_MSG_QUIT, old_daemon);
if (rc)
printk(KERN_WARNING "Failed to send QUIT "
"message to daemon [0x%p]; rc = [%d]\n",
old_daemon->pid, rc);
hlist_del(&old_daemon->euid_chain);
kfree(old_daemon);
}
rc = ecryptfs_spawn_daemon(&new_daemon, euid, user_ns, pid);
if (rc)
printk(KERN_ERR "%s: The gods are displeased with this attempt "
"to create a new daemon object for euid [%d]; pid "
"[0x%p]; rc = [%d]\n", __func__, euid, pid, rc);
mutex_unlock(&ecryptfs_daemon_hash_mux);
return rc;
}
/**
* ecryptfs_exorcise_daemon - Destroy the daemon struct
*
* Must be called ceremoniously while in possession of
* ecryptfs_daemon_hash_mux and the daemon's own mux.
*/
int ecryptfs_exorcise_daemon(struct ecryptfs_daemon *daemon)
{
struct ecryptfs_msg_ctx *msg_ctx, *msg_ctx_tmp;
int rc = 0;
mutex_lock(&daemon->mux);
if ((daemon->flags & ECRYPTFS_DAEMON_IN_READ)
|| (daemon->flags & ECRYPTFS_DAEMON_IN_POLL)) {
rc = -EBUSY;
printk(KERN_WARNING "%s: Attempt to destroy daemon with pid "
"[0x%p], but it is in the midst of a read or a poll\n",
__func__, daemon->pid);
mutex_unlock(&daemon->mux);
goto out;
}
list_for_each_entry_safe(msg_ctx, msg_ctx_tmp,
&daemon->msg_ctx_out_queue, daemon_out_list) {
list_del(&msg_ctx->daemon_out_list);
daemon->num_queued_msg_ctx--;
printk(KERN_WARNING "%s: Warning: dropping message that is in "
"the out queue of a dying daemon\n", __func__);
ecryptfs_msg_ctx_alloc_to_free(msg_ctx);
}
hlist_del(&daemon->euid_chain);
if (daemon->task)
wake_up_process(daemon->task);
if (daemon->pid)
put_pid(daemon->pid);
if (daemon->user_ns)
put_user_ns(daemon->user_ns);
mutex_unlock(&daemon->mux);
memset(daemon, 0, sizeof(*daemon));
kfree(daemon);
out:
return rc;
}
/**
* ecryptfs_process_quit
* @euid: The user ID owner of the message
* @user_ns: The namespace in which @euid applies
* @pid: The process ID for the userspace program that sent the
* message
*
* Deletes the corresponding daemon for the given euid and pid, if
* it is the registered that is requesting the deletion. Returns zero
* after deleting the desired daemon; non-zero otherwise.
*/
int ecryptfs_process_quit(uid_t euid, struct user_namespace *user_ns,
struct pid *pid)
{
struct ecryptfs_daemon *daemon;
int rc;
mutex_lock(&ecryptfs_daemon_hash_mux);
rc = ecryptfs_find_daemon_by_euid(&daemon, euid, user_ns);
if (rc || !daemon) {
rc = -EINVAL;
printk(KERN_ERR "Received request from user [%d] to "
"unregister unrecognized daemon [0x%p]\n", euid, pid);
goto out_unlock;
}
rc = ecryptfs_exorcise_daemon(daemon);
out_unlock:
mutex_unlock(&ecryptfs_daemon_hash_mux);
return rc;
}
/**
* ecryptfs_process_reponse
* @msg: The ecryptfs message received; the caller should sanity check
* msg->data_len and free the memory
* @pid: The process ID of the userspace application that sent the
* message
* @seq: The sequence number of the message; must match the sequence
* number for the existing message context waiting for this
* response
*
* Processes a response message after sending an operation request to
* userspace. Some other process is awaiting this response. Before
* sending out its first communications, the other process allocated a
* msg_ctx from the ecryptfs_msg_ctx_arr at a particular index. The
* response message contains this index so that we can copy over the
* response message into the msg_ctx that the process holds a
* reference to. The other process is going to wake up, check to see
* that msg_ctx->state == ECRYPTFS_MSG_CTX_STATE_DONE, and then
* proceed to read off and process the response message. Returns zero
* upon delivery to desired context element; non-zero upon delivery
* failure or error.
*
* Returns zero on success; non-zero otherwise
*/
int ecryptfs_process_response(struct ecryptfs_message *msg, uid_t euid,
struct user_namespace *user_ns, struct pid *pid,
u32 seq)
{
struct ecryptfs_daemon *daemon;
struct ecryptfs_msg_ctx *msg_ctx;
size_t msg_size;
struct nsproxy *nsproxy;
struct user_namespace *tsk_user_ns;
uid_t ctx_euid;
int rc;
if (msg->index >= ecryptfs_message_buf_len) {
rc = -EINVAL;
printk(KERN_ERR "%s: Attempt to reference "
"context buffer at index [%d]; maximum "
"allowable is [%d]\n", __func__, msg->index,
(ecryptfs_message_buf_len - 1));
goto out;
}
msg_ctx = &ecryptfs_msg_ctx_arr[msg->index];
mutex_lock(&msg_ctx->mux);
mutex_lock(&ecryptfs_daemon_hash_mux);
rcu_read_lock();
nsproxy = task_nsproxy(msg_ctx->task);
if (nsproxy == NULL) {
rc = -EBADMSG;
printk(KERN_ERR "%s: Receiving process is a zombie. Dropping "
"message.\n", __func__);
rcu_read_unlock();
mutex_unlock(&ecryptfs_daemon_hash_mux);
goto wake_up;
}
tsk_user_ns = __task_cred(msg_ctx->task)->user->user_ns;
ctx_euid = task_euid(msg_ctx->task);
rc = ecryptfs_find_daemon_by_euid(&daemon, ctx_euid, tsk_user_ns);
rcu_read_unlock();
mutex_unlock(&ecryptfs_daemon_hash_mux);
if (rc) {
rc = -EBADMSG;
printk(KERN_WARNING "%s: User [%d] received a "
"message response from process [0x%p] but does "
"not have a registered daemon\n", __func__,
ctx_euid, pid);
goto wake_up;
}
if (ctx_euid != euid) {
rc = -EBADMSG;
printk(KERN_WARNING "%s: Received message from user "
"[%d]; expected message from user [%d]\n", __func__,
euid, ctx_euid);
goto unlock;
}
if (tsk_user_ns != user_ns) {
rc = -EBADMSG;
printk(KERN_WARNING "%s: Received message from user_ns "
"[0x%p]; expected message from user_ns [0x%p]\n",
__func__, user_ns, tsk_user_ns);
goto unlock;
}
if (daemon->pid != pid) {
rc = -EBADMSG;
printk(KERN_ERR "%s: User [%d] sent a message response "
"from an unrecognized process [0x%p]\n",
__func__, ctx_euid, pid);
goto unlock;
}
if (msg_ctx->state != ECRYPTFS_MSG_CTX_STATE_PENDING) {
rc = -EINVAL;
printk(KERN_WARNING "%s: Desired context element is not "
"pending a response\n", __func__);
goto unlock;
} else if (msg_ctx->counter != seq) {
rc = -EINVAL;
printk(KERN_WARNING "%s: Invalid message sequence; "
"expected [%d]; received [%d]\n", __func__,
msg_ctx->counter, seq);
goto unlock;
}
msg_size = (sizeof(*msg) + msg->data_len);
msg_ctx->msg = kmalloc(msg_size, GFP_KERNEL);
if (!msg_ctx->msg) {
rc = -ENOMEM;
printk(KERN_ERR "%s: Failed to allocate [%Zd] bytes of "
"GFP_KERNEL memory\n", __func__, msg_size);
goto unlock;
}
memcpy(msg_ctx->msg, msg, msg_size);
msg_ctx->state = ECRYPTFS_MSG_CTX_STATE_DONE;
rc = 0;
wake_up:
wake_up_process(msg_ctx->task);
unlock:
mutex_unlock(&msg_ctx->mux);
out:
return rc;
}
/**
* ecryptfs_send_message_locked
* @data: The data to send
* @data_len: The length of data
* @msg_ctx: The message context allocated for the send
*
* Must be called with ecryptfs_daemon_hash_mux held.
*
* Returns zero on success; non-zero otherwise
*/
static int
ecryptfs_send_message_locked(char *data, int data_len, u8 msg_type,
struct ecryptfs_msg_ctx **msg_ctx)
{
struct ecryptfs_daemon *daemon;
uid_t euid = current_euid();
int rc;
rc = ecryptfs_find_daemon_by_euid(&daemon, euid, current_user_ns());
if (rc || !daemon) {
rc = -ENOTCONN;
printk(KERN_ERR "%s: User [%d] does not have a daemon "
"registered\n", __func__, euid);
goto out;
}
mutex_lock(&ecryptfs_msg_ctx_lists_mux);
rc = ecryptfs_acquire_free_msg_ctx(msg_ctx);
if (rc) {
mutex_unlock(&ecryptfs_msg_ctx_lists_mux);
printk(KERN_WARNING "%s: Could not claim a free "
"context element\n", __func__);
goto out;
}
ecryptfs_msg_ctx_free_to_alloc(*msg_ctx);
mutex_unlock(&(*msg_ctx)->mux);
mutex_unlock(&ecryptfs_msg_ctx_lists_mux);
rc = ecryptfs_send_miscdev(data, data_len, *msg_ctx, msg_type, 0,
daemon);
if (rc)
printk(KERN_ERR "%s: Error attempting to send message to "
"userspace daemon; rc = [%d]\n", __func__, rc);
out:
return rc;
}
/**
* ecryptfs_send_message
* @data: The data to send
* @data_len: The length of data
* @msg_ctx: The message context allocated for the send
*
* Grabs ecryptfs_daemon_hash_mux.
*
* Returns zero on success; non-zero otherwise
*/
int ecryptfs_send_message(char *data, int data_len,
struct ecryptfs_msg_ctx **msg_ctx)
{
int rc;
mutex_lock(&ecryptfs_daemon_hash_mux);
rc = ecryptfs_send_message_locked(data, data_len, ECRYPTFS_MSG_REQUEST,
msg_ctx);
mutex_unlock(&ecryptfs_daemon_hash_mux);
return rc;
}
/**
* ecryptfs_wait_for_response
* @msg_ctx: The context that was assigned when sending a message
* @msg: The incoming message from userspace; not set if rc != 0
*
* Sleeps until awaken by ecryptfs_receive_message or until the amount
* of time exceeds ecryptfs_message_wait_timeout. If zero is
* returned, msg will point to a valid message from userspace; a
* non-zero value is returned upon failure to receive a message or an
* error occurs. Callee must free @msg on success.
*/
int ecryptfs_wait_for_response(struct ecryptfs_msg_ctx *msg_ctx,
struct ecryptfs_message **msg)
{
signed long timeout = ecryptfs_message_wait_timeout * HZ;
int rc = 0;
sleep:
timeout = schedule_timeout_interruptible(timeout);
mutex_lock(&ecryptfs_msg_ctx_lists_mux);
mutex_lock(&msg_ctx->mux);
if (msg_ctx->state != ECRYPTFS_MSG_CTX_STATE_DONE) {
if (timeout) {
mutex_unlock(&msg_ctx->mux);
mutex_unlock(&ecryptfs_msg_ctx_lists_mux);
goto sleep;
}
rc = -ENOMSG;
} else {
*msg = msg_ctx->msg;
msg_ctx->msg = NULL;
}
ecryptfs_msg_ctx_alloc_to_free(msg_ctx);
mutex_unlock(&msg_ctx->mux);
mutex_unlock(&ecryptfs_msg_ctx_lists_mux);
return rc;
}
int ecryptfs_init_messaging(void)
{
int i;
int rc = 0;
if (ecryptfs_number_of_users > ECRYPTFS_MAX_NUM_USERS) {
ecryptfs_number_of_users = ECRYPTFS_MAX_NUM_USERS;
printk(KERN_WARNING "%s: Specified number of users is "
"too large, defaulting to [%d] users\n", __func__,
ecryptfs_number_of_users);
}
mutex_init(&ecryptfs_daemon_hash_mux);
mutex_lock(&ecryptfs_daemon_hash_mux);
ecryptfs_hash_buckets = 1;
while (ecryptfs_number_of_users >> ecryptfs_hash_buckets)
ecryptfs_hash_buckets++;
ecryptfs_daemon_hash = kmalloc((sizeof(struct hlist_head)
* ecryptfs_hash_buckets), GFP_KERNEL);
if (!ecryptfs_daemon_hash) {
rc = -ENOMEM;
printk(KERN_ERR "%s: Failed to allocate memory\n", __func__);
mutex_unlock(&ecryptfs_daemon_hash_mux);
goto out;
}
for (i = 0; i < ecryptfs_hash_buckets; i++)
INIT_HLIST_HEAD(&ecryptfs_daemon_hash[i]);
mutex_unlock(&ecryptfs_daemon_hash_mux);
ecryptfs_msg_ctx_arr = kmalloc((sizeof(struct ecryptfs_msg_ctx)
* ecryptfs_message_buf_len),
GFP_KERNEL);
if (!ecryptfs_msg_ctx_arr) {
rc = -ENOMEM;
printk(KERN_ERR "%s: Failed to allocate memory\n", __func__);
goto out;
}
mutex_init(&ecryptfs_msg_ctx_lists_mux);
mutex_lock(&ecryptfs_msg_ctx_lists_mux);
ecryptfs_msg_counter = 0;
for (i = 0; i < ecryptfs_message_buf_len; i++) {
INIT_LIST_HEAD(&ecryptfs_msg_ctx_arr[i].node);
INIT_LIST_HEAD(&ecryptfs_msg_ctx_arr[i].daemon_out_list);
mutex_init(&ecryptfs_msg_ctx_arr[i].mux);
mutex_lock(&ecryptfs_msg_ctx_arr[i].mux);
ecryptfs_msg_ctx_arr[i].index = i;
ecryptfs_msg_ctx_arr[i].state = ECRYPTFS_MSG_CTX_STATE_FREE;
ecryptfs_msg_ctx_arr[i].counter = 0;
ecryptfs_msg_ctx_arr[i].task = NULL;
ecryptfs_msg_ctx_arr[i].msg = NULL;
list_add_tail(&ecryptfs_msg_ctx_arr[i].node,
&ecryptfs_msg_ctx_free_list);
mutex_unlock(&ecryptfs_msg_ctx_arr[i].mux);
}
mutex_unlock(&ecryptfs_msg_ctx_lists_mux);
rc = ecryptfs_init_ecryptfs_miscdev();
if (rc)
ecryptfs_release_messaging();
out:
return rc;
}
void ecryptfs_release_messaging(void)
{
if (ecryptfs_msg_ctx_arr) {
int i;
mutex_lock(&ecryptfs_msg_ctx_lists_mux);
for (i = 0; i < ecryptfs_message_buf_len; i++) {
mutex_lock(&ecryptfs_msg_ctx_arr[i].mux);
if (ecryptfs_msg_ctx_arr[i].msg)
kfree(ecryptfs_msg_ctx_arr[i].msg);
mutex_unlock(&ecryptfs_msg_ctx_arr[i].mux);
}
kfree(ecryptfs_msg_ctx_arr);
mutex_unlock(&ecryptfs_msg_ctx_lists_mux);
}
if (ecryptfs_daemon_hash) {
struct hlist_node *elem;
struct ecryptfs_daemon *daemon;
int i;
mutex_lock(&ecryptfs_daemon_hash_mux);
for (i = 0; i < ecryptfs_hash_buckets; i++) {
int rc;
hlist_for_each_entry(daemon, elem,
&ecryptfs_daemon_hash[i],
euid_chain) {
rc = ecryptfs_exorcise_daemon(daemon);
if (rc)
printk(KERN_ERR "%s: Error whilst "
"attempting to destroy daemon; "
"rc = [%d]. Dazed and confused, "
"but trying to continue.\n",
__func__, rc);
}
}
kfree(ecryptfs_daemon_hash);
mutex_unlock(&ecryptfs_daemon_hash_mux);
}
ecryptfs_destroy_ecryptfs_miscdev();
return;
}