1
linux/drivers/net/wireless/wavelan.c
Stephen Hemminger d0cf9c0dad wireless: convert drivers to netdev_tx_t
Mostly just simple conversions:
  * ray_cs had bogus return of NET_TX_LOCKED but driver
    was not using NETIF_F_LLTX
  * hostap and ipw2x00 had some code that returned value
    from a called function that also had to change to return netdev_tx_t

Signed-off-by: Stephen Hemminger <shemminger@vyatta.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
2009-09-01 01:14:04 -07:00

4384 lines
120 KiB
C

/*
* WaveLAN ISA driver
*
* Jean II - HPLB '96
*
* Reorganisation and extension of the driver.
* Original copyright follows (also see the end of this file).
* See wavelan.p.h for details.
*
*
*
* AT&T GIS (nee NCR) WaveLAN card:
* An Ethernet-like radio transceiver
* controlled by an Intel 82586 coprocessor.
*/
#include "wavelan.p.h" /* Private header */
/************************* MISC SUBROUTINES **************************/
/*
* Subroutines which won't fit in one of the following category
* (WaveLAN modem or i82586)
*/
/*------------------------------------------------------------------*/
/*
* Translate irq number to PSA irq parameter
*/
static u8 wv_irq_to_psa(int irq)
{
if (irq < 0 || irq >= ARRAY_SIZE(irqvals))
return 0;
return irqvals[irq];
}
/*------------------------------------------------------------------*/
/*
* Translate PSA irq parameter to irq number
*/
static int __init wv_psa_to_irq(u8 irqval)
{
int i;
for (i = 0; i < ARRAY_SIZE(irqvals); i++)
if (irqvals[i] == irqval)
return i;
return -1;
}
/********************* HOST ADAPTER SUBROUTINES *********************/
/*
* Useful subroutines to manage the WaveLAN ISA interface
*
* One major difference with the PCMCIA hardware (except the port mapping)
* is that we have to keep the state of the Host Control Register
* because of the interrupt enable & bus size flags.
*/
/*------------------------------------------------------------------*/
/*
* Read from card's Host Adaptor Status Register.
*/
static inline u16 hasr_read(unsigned long ioaddr)
{
return (inw(HASR(ioaddr)));
} /* hasr_read */
/*------------------------------------------------------------------*/
/*
* Write to card's Host Adapter Command Register.
*/
static inline void hacr_write(unsigned long ioaddr, u16 hacr)
{
outw(hacr, HACR(ioaddr));
} /* hacr_write */
/*------------------------------------------------------------------*/
/*
* Write to card's Host Adapter Command Register. Include a delay for
* those times when it is needed.
*/
static void hacr_write_slow(unsigned long ioaddr, u16 hacr)
{
hacr_write(ioaddr, hacr);
/* delay might only be needed sometimes */
mdelay(1);
} /* hacr_write_slow */
/*------------------------------------------------------------------*/
/*
* Set the channel attention bit.
*/
static inline void set_chan_attn(unsigned long ioaddr, u16 hacr)
{
hacr_write(ioaddr, hacr | HACR_CA);
} /* set_chan_attn */
/*------------------------------------------------------------------*/
/*
* Reset, and then set host adaptor into default mode.
*/
static inline void wv_hacr_reset(unsigned long ioaddr)
{
hacr_write_slow(ioaddr, HACR_RESET);
hacr_write(ioaddr, HACR_DEFAULT);
} /* wv_hacr_reset */
/*------------------------------------------------------------------*/
/*
* Set the I/O transfer over the ISA bus to 8-bit mode
*/
static inline void wv_16_off(unsigned long ioaddr, u16 hacr)
{
hacr &= ~HACR_16BITS;
hacr_write(ioaddr, hacr);
} /* wv_16_off */
/*------------------------------------------------------------------*/
/*
* Set the I/O transfer over the ISA bus to 8-bit mode
*/
static inline void wv_16_on(unsigned long ioaddr, u16 hacr)
{
hacr |= HACR_16BITS;
hacr_write(ioaddr, hacr);
} /* wv_16_on */
/*------------------------------------------------------------------*/
/*
* Disable interrupts on the WaveLAN hardware.
* (called by wv_82586_stop())
*/
static inline void wv_ints_off(struct net_device * dev)
{
net_local *lp = netdev_priv(dev);
unsigned long ioaddr = dev->base_addr;
lp->hacr &= ~HACR_INTRON;
hacr_write(ioaddr, lp->hacr);
} /* wv_ints_off */
/*------------------------------------------------------------------*/
/*
* Enable interrupts on the WaveLAN hardware.
* (called by wv_hw_reset())
*/
static inline void wv_ints_on(struct net_device * dev)
{
net_local *lp = netdev_priv(dev);
unsigned long ioaddr = dev->base_addr;
lp->hacr |= HACR_INTRON;
hacr_write(ioaddr, lp->hacr);
} /* wv_ints_on */
/******************* MODEM MANAGEMENT SUBROUTINES *******************/
/*
* Useful subroutines to manage the modem of the WaveLAN
*/
/*------------------------------------------------------------------*/
/*
* Read the Parameter Storage Area from the WaveLAN card's memory
*/
/*
* Read bytes from the PSA.
*/
static void psa_read(unsigned long ioaddr, u16 hacr, int o, /* offset in PSA */
u8 * b, /* buffer to fill */
int n)
{ /* size to read */
wv_16_off(ioaddr, hacr);
while (n-- > 0) {
outw(o, PIOR2(ioaddr));
o++;
*b++ = inb(PIOP2(ioaddr));
}
wv_16_on(ioaddr, hacr);
} /* psa_read */
/*------------------------------------------------------------------*/
/*
* Write the Parameter Storage Area to the WaveLAN card's memory.
*/
static void psa_write(unsigned long ioaddr, u16 hacr, int o, /* Offset in PSA */
u8 * b, /* Buffer in memory */
int n)
{ /* Length of buffer */
int count = 0;
wv_16_off(ioaddr, hacr);
while (n-- > 0) {
outw(o, PIOR2(ioaddr));
o++;
outb(*b, PIOP2(ioaddr));
b++;
/* Wait for the memory to finish its write cycle */
count = 0;
while ((count++ < 100) &&
(hasr_read(ioaddr) & HASR_PSA_BUSY)) mdelay(1);
}
wv_16_on(ioaddr, hacr);
} /* psa_write */
#ifdef SET_PSA_CRC
/*------------------------------------------------------------------*/
/*
* Calculate the PSA CRC
* Thanks to Valster, Nico <NVALSTER@wcnd.nl.lucent.com> for the code
* NOTE: By specifying a length including the CRC position the
* returned value should be zero. (i.e. a correct checksum in the PSA)
*
* The Windows drivers don't use the CRC, but the AP and the PtP tool
* depend on it.
*/
static u16 psa_crc(u8 * psa, /* The PSA */
int size)
{ /* Number of short for CRC */
int byte_cnt; /* Loop on the PSA */
u16 crc_bytes = 0; /* Data in the PSA */
int bit_cnt; /* Loop on the bits of the short */
for (byte_cnt = 0; byte_cnt < size; byte_cnt++) {
crc_bytes ^= psa[byte_cnt]; /* Its an xor */
for (bit_cnt = 1; bit_cnt < 9; bit_cnt++) {
if (crc_bytes & 0x0001)
crc_bytes = (crc_bytes >> 1) ^ 0xA001;
else
crc_bytes >>= 1;
}
}
return crc_bytes;
} /* psa_crc */
#endif /* SET_PSA_CRC */
/*------------------------------------------------------------------*/
/*
* update the checksum field in the Wavelan's PSA
*/
static void update_psa_checksum(struct net_device * dev, unsigned long ioaddr, u16 hacr)
{
#ifdef SET_PSA_CRC
psa_t psa;
u16 crc;
/* read the parameter storage area */
psa_read(ioaddr, hacr, 0, (unsigned char *) &psa, sizeof(psa));
/* update the checksum */
crc = psa_crc((unsigned char *) &psa,
sizeof(psa) - sizeof(psa.psa_crc[0]) -
sizeof(psa.psa_crc[1])
- sizeof(psa.psa_crc_status));
psa.psa_crc[0] = crc & 0xFF;
psa.psa_crc[1] = (crc & 0xFF00) >> 8;
/* Write it ! */
psa_write(ioaddr, hacr, (char *) &psa.psa_crc - (char *) &psa,
(unsigned char *) &psa.psa_crc, 2);
#ifdef DEBUG_IOCTL_INFO
printk(KERN_DEBUG "%s: update_psa_checksum(): crc = 0x%02x%02x\n",
dev->name, psa.psa_crc[0], psa.psa_crc[1]);
/* Check again (luxury !) */
crc = psa_crc((unsigned char *) &psa,
sizeof(psa) - sizeof(psa.psa_crc_status));
if (crc != 0)
printk(KERN_WARNING
"%s: update_psa_checksum(): CRC does not agree with PSA data (even after recalculating)\n",
dev->name);
#endif /* DEBUG_IOCTL_INFO */
#endif /* SET_PSA_CRC */
} /* update_psa_checksum */
/*------------------------------------------------------------------*/
/*
* Write 1 byte to the MMC.
*/
static void mmc_out(unsigned long ioaddr, u16 o, u8 d)
{
int count = 0;
/* Wait for MMC to go idle */
while ((count++ < 100) && (inw(HASR(ioaddr)) & HASR_MMC_BUSY))
udelay(10);
outw((u16) (((u16) d << 8) | (o << 1) | 1), MMCR(ioaddr));
}
/*------------------------------------------------------------------*/
/*
* Routine to write bytes to the Modem Management Controller.
* We start at the end because it is the way it should be!
*/
static void mmc_write(unsigned long ioaddr, u8 o, u8 * b, int n)
{
o += n;
b += n;
while (n-- > 0)
mmc_out(ioaddr, --o, *(--b));
} /* mmc_write */
/*------------------------------------------------------------------*/
/*
* Read a byte from the MMC.
* Optimised version for 1 byte, avoid using memory.
*/
static u8 mmc_in(unsigned long ioaddr, u16 o)
{
int count = 0;
while ((count++ < 100) && (inw(HASR(ioaddr)) & HASR_MMC_BUSY))
udelay(10);
outw(o << 1, MMCR(ioaddr));
while ((count++ < 100) && (inw(HASR(ioaddr)) & HASR_MMC_BUSY))
udelay(10);
return (u8) (inw(MMCR(ioaddr)) >> 8);
}
/*------------------------------------------------------------------*/
/*
* Routine to read bytes from the Modem Management Controller.
* The implementation is complicated by a lack of address lines,
* which prevents decoding of the low-order bit.
* (code has just been moved in the above function)
* We start at the end because it is the way it should be!
*/
static inline void mmc_read(unsigned long ioaddr, u8 o, u8 * b, int n)
{
o += n;
b += n;
while (n-- > 0)
*(--b) = mmc_in(ioaddr, --o);
} /* mmc_read */
/*------------------------------------------------------------------*/
/*
* Get the type of encryption available.
*/
static inline int mmc_encr(unsigned long ioaddr)
{ /* I/O port of the card */
int temp;
temp = mmc_in(ioaddr, mmroff(0, mmr_des_avail));
if ((temp != MMR_DES_AVAIL_DES) && (temp != MMR_DES_AVAIL_AES))
return 0;
else
return temp;
}
/*------------------------------------------------------------------*/
/*
* Wait for the frequency EEPROM to complete a command.
* I hope this one will be optimally inlined.
*/
static inline void fee_wait(unsigned long ioaddr, /* I/O port of the card */
int delay, /* Base delay to wait for */
int number)
{ /* Number of time to wait */
int count = 0; /* Wait only a limited time */
while ((count++ < number) &&
(mmc_in(ioaddr, mmroff(0, mmr_fee_status)) &
MMR_FEE_STATUS_BUSY)) udelay(delay);
}
/*------------------------------------------------------------------*/
/*
* Read bytes from the Frequency EEPROM (frequency select cards).
*/
static void fee_read(unsigned long ioaddr, /* I/O port of the card */
u16 o, /* destination offset */
u16 * b, /* data buffer */
int n)
{ /* number of registers */
b += n; /* Position at the end of the area */
/* Write the address */
mmc_out(ioaddr, mmwoff(0, mmw_fee_addr), o + n - 1);
/* Loop on all buffer */
while (n-- > 0) {
/* Write the read command */
mmc_out(ioaddr, mmwoff(0, mmw_fee_ctrl),
MMW_FEE_CTRL_READ);
/* Wait until EEPROM is ready (should be quick). */
fee_wait(ioaddr, 10, 100);
/* Read the value. */
*--b = ((mmc_in(ioaddr, mmroff(0, mmr_fee_data_h)) << 8) |
mmc_in(ioaddr, mmroff(0, mmr_fee_data_l)));
}
}
/*------------------------------------------------------------------*/
/*
* Write bytes from the Frequency EEPROM (frequency select cards).
* This is a bit complicated, because the frequency EEPROM has to
* be unprotected and the write enabled.
* Jean II
*/
static void fee_write(unsigned long ioaddr, /* I/O port of the card */
u16 o, /* destination offset */
u16 * b, /* data buffer */
int n)
{ /* number of registers */
b += n; /* Position at the end of the area. */
#ifdef EEPROM_IS_PROTECTED /* disabled */
#ifdef DOESNT_SEEM_TO_WORK /* disabled */
/* Ask to read the protected register */
mmc_out(ioaddr, mmwoff(0, mmw_fee_ctrl), MMW_FEE_CTRL_PRREAD);
fee_wait(ioaddr, 10, 100);
/* Read the protected register. */
printk("Protected 2: %02X-%02X\n",
mmc_in(ioaddr, mmroff(0, mmr_fee_data_h)),
mmc_in(ioaddr, mmroff(0, mmr_fee_data_l)));
#endif /* DOESNT_SEEM_TO_WORK */
/* Enable protected register. */
mmc_out(ioaddr, mmwoff(0, mmw_fee_addr), MMW_FEE_ADDR_EN);
mmc_out(ioaddr, mmwoff(0, mmw_fee_ctrl), MMW_FEE_CTRL_PREN);
fee_wait(ioaddr, 10, 100);
/* Unprotect area. */
mmc_out(ioaddr, mmwoff(0, mmw_fee_addr), o + n);
mmc_out(ioaddr, mmwoff(0, mmw_fee_ctrl), MMW_FEE_CTRL_PRWRITE);
#ifdef DOESNT_SEEM_TO_WORK /* disabled */
/* or use: */
mmc_out(ioaddr, mmwoff(0, mmw_fee_ctrl), MMW_FEE_CTRL_PRCLEAR);
#endif /* DOESNT_SEEM_TO_WORK */
fee_wait(ioaddr, 10, 100);
#endif /* EEPROM_IS_PROTECTED */
/* Write enable. */
mmc_out(ioaddr, mmwoff(0, mmw_fee_addr), MMW_FEE_ADDR_EN);
mmc_out(ioaddr, mmwoff(0, mmw_fee_ctrl), MMW_FEE_CTRL_WREN);
fee_wait(ioaddr, 10, 100);
/* Write the EEPROM address. */
mmc_out(ioaddr, mmwoff(0, mmw_fee_addr), o + n - 1);
/* Loop on all buffer */
while (n-- > 0) {
/* Write the value. */
mmc_out(ioaddr, mmwoff(0, mmw_fee_data_h), (*--b) >> 8);
mmc_out(ioaddr, mmwoff(0, mmw_fee_data_l), *b & 0xFF);
/* Write the write command. */
mmc_out(ioaddr, mmwoff(0, mmw_fee_ctrl),
MMW_FEE_CTRL_WRITE);
/* WaveLAN documentation says to wait at least 10 ms for EEBUSY = 0 */
mdelay(10);
fee_wait(ioaddr, 10, 100);
}
/* Write disable. */
mmc_out(ioaddr, mmwoff(0, mmw_fee_addr), MMW_FEE_ADDR_DS);
mmc_out(ioaddr, mmwoff(0, mmw_fee_ctrl), MMW_FEE_CTRL_WDS);
fee_wait(ioaddr, 10, 100);
#ifdef EEPROM_IS_PROTECTED /* disabled */
/* Reprotect EEPROM. */
mmc_out(ioaddr, mmwoff(0, mmw_fee_addr), 0x00);
mmc_out(ioaddr, mmwoff(0, mmw_fee_ctrl), MMW_FEE_CTRL_PRWRITE);
fee_wait(ioaddr, 10, 100);
#endif /* EEPROM_IS_PROTECTED */
}
/************************ I82586 SUBROUTINES *************************/
/*
* Useful subroutines to manage the Ethernet controller
*/
/*------------------------------------------------------------------*/
/*
* Read bytes from the on-board RAM.
* Why does inlining this function make it fail?
*/
static /*inline */ void obram_read(unsigned long ioaddr,
u16 o, u8 * b, int n)
{
outw(o, PIOR1(ioaddr));
insw(PIOP1(ioaddr), (unsigned short *) b, (n + 1) >> 1);
}
/*------------------------------------------------------------------*/
/*
* Write bytes to the on-board RAM.
*/
static inline void obram_write(unsigned long ioaddr, u16 o, u8 * b, int n)
{
outw(o, PIOR1(ioaddr));
outsw(PIOP1(ioaddr), (unsigned short *) b, (n + 1) >> 1);
}
/*------------------------------------------------------------------*/
/*
* Acknowledge the reading of the status issued by the i82586.
*/
static void wv_ack(struct net_device * dev)
{
net_local *lp = netdev_priv(dev);
unsigned long ioaddr = dev->base_addr;
u16 scb_cs;
int i;
obram_read(ioaddr, scboff(OFFSET_SCB, scb_status),
(unsigned char *) &scb_cs, sizeof(scb_cs));
scb_cs &= SCB_ST_INT;
if (scb_cs == 0)
return;
obram_write(ioaddr, scboff(OFFSET_SCB, scb_command),
(unsigned char *) &scb_cs, sizeof(scb_cs));
set_chan_attn(ioaddr, lp->hacr);
for (i = 1000; i > 0; i--) {
obram_read(ioaddr, scboff(OFFSET_SCB, scb_command),
(unsigned char *) &scb_cs, sizeof(scb_cs));
if (scb_cs == 0)
break;
udelay(10);
}
udelay(100);
#ifdef DEBUG_CONFIG_ERROR
if (i <= 0)
printk(KERN_INFO
"%s: wv_ack(): board not accepting command.\n",
dev->name);
#endif
}
/*------------------------------------------------------------------*/
/*
* Set channel attention bit and busy wait until command has
* completed, then acknowledge completion of the command.
*/
static int wv_synchronous_cmd(struct net_device * dev, const char *str)
{
net_local *lp = netdev_priv(dev);
unsigned long ioaddr = dev->base_addr;
u16 scb_cmd;
ach_t cb;
int i;
scb_cmd = SCB_CMD_CUC & SCB_CMD_CUC_GO;
obram_write(ioaddr, scboff(OFFSET_SCB, scb_command),
(unsigned char *) &scb_cmd, sizeof(scb_cmd));
set_chan_attn(ioaddr, lp->hacr);
for (i = 1000; i > 0; i--) {
obram_read(ioaddr, OFFSET_CU, (unsigned char *) &cb,
sizeof(cb));
if (cb.ac_status & AC_SFLD_C)
break;
udelay(10);
}
udelay(100);
if (i <= 0 || !(cb.ac_status & AC_SFLD_OK)) {
#ifdef DEBUG_CONFIG_ERROR
printk(KERN_INFO "%s: %s failed; status = 0x%x\n",
dev->name, str, cb.ac_status);
#endif
#ifdef DEBUG_I82586_SHOW
wv_scb_show(ioaddr);
#endif
return -1;
}
/* Ack the status */
wv_ack(dev);
return 0;
}
/*------------------------------------------------------------------*/
/*
* Configuration commands completion interrupt.
* Check if done, and if OK.
*/
static int
wv_config_complete(struct net_device * dev, unsigned long ioaddr, net_local * lp)
{
unsigned short mcs_addr;
unsigned short status;
int ret;
#ifdef DEBUG_INTERRUPT_TRACE
printk(KERN_DEBUG "%s: ->wv_config_complete()\n", dev->name);
#endif
mcs_addr = lp->tx_first_in_use + sizeof(ac_tx_t) + sizeof(ac_nop_t)
+ sizeof(tbd_t) + sizeof(ac_cfg_t) + sizeof(ac_ias_t);
/* Read the status of the last command (set mc list). */
obram_read(ioaddr, acoff(mcs_addr, ac_status),
(unsigned char *) &status, sizeof(status));
/* If not completed -> exit */
if ((status & AC_SFLD_C) == 0)
ret = 0; /* Not ready to be scrapped */
else {
#ifdef DEBUG_CONFIG_ERROR
unsigned short cfg_addr;
unsigned short ias_addr;
/* Check mc_config command */
if ((status & AC_SFLD_OK) != AC_SFLD_OK)
printk(KERN_INFO
"%s: wv_config_complete(): set_multicast_address failed; status = 0x%x\n",
dev->name, status);
/* check ia-config command */
ias_addr = mcs_addr - sizeof(ac_ias_t);
obram_read(ioaddr, acoff(ias_addr, ac_status),
(unsigned char *) &status, sizeof(status));
if ((status & AC_SFLD_OK) != AC_SFLD_OK)
printk(KERN_INFO
"%s: wv_config_complete(): set_MAC_address failed; status = 0x%x\n",
dev->name, status);
/* Check config command. */
cfg_addr = ias_addr - sizeof(ac_cfg_t);
obram_read(ioaddr, acoff(cfg_addr, ac_status),
(unsigned char *) &status, sizeof(status));
if ((status & AC_SFLD_OK) != AC_SFLD_OK)
printk(KERN_INFO
"%s: wv_config_complete(): configure failed; status = 0x%x\n",
dev->name, status);
#endif /* DEBUG_CONFIG_ERROR */
ret = 1; /* Ready to be scrapped */
}
#ifdef DEBUG_INTERRUPT_TRACE
printk(KERN_DEBUG "%s: <-wv_config_complete() - %d\n", dev->name,
ret);
#endif
return ret;
}
/*------------------------------------------------------------------*/
/*
* Command completion interrupt.
* Reclaim as many freed tx buffers as we can.
* (called in wavelan_interrupt()).
* Note : the spinlock is already grabbed for us.
*/
static int wv_complete(struct net_device * dev, unsigned long ioaddr, net_local * lp)
{
int nreaped = 0;
#ifdef DEBUG_INTERRUPT_TRACE
printk(KERN_DEBUG "%s: ->wv_complete()\n", dev->name);
#endif
/* Loop on all the transmit buffers */
while (lp->tx_first_in_use != I82586NULL) {
unsigned short tx_status;
/* Read the first transmit buffer */
obram_read(ioaddr, acoff(lp->tx_first_in_use, ac_status),
(unsigned char *) &tx_status,
sizeof(tx_status));
/* If not completed -> exit */
if ((tx_status & AC_SFLD_C) == 0)
break;
/* Hack for reconfiguration */
if (tx_status == 0xFFFF)
if (!wv_config_complete(dev, ioaddr, lp))
break; /* Not completed */
/* We now remove this buffer */
nreaped++;
--lp->tx_n_in_use;
/*
if (lp->tx_n_in_use > 0)
printk("%c", "0123456789abcdefghijk"[lp->tx_n_in_use]);
*/
/* Was it the last one? */
if (lp->tx_n_in_use <= 0)
lp->tx_first_in_use = I82586NULL;
else {
/* Next one in the chain */
lp->tx_first_in_use += TXBLOCKZ;
if (lp->tx_first_in_use >=
OFFSET_CU +
NTXBLOCKS * TXBLOCKZ) lp->tx_first_in_use -=
NTXBLOCKS * TXBLOCKZ;
}
/* Hack for reconfiguration */
if (tx_status == 0xFFFF)
continue;
/* Now, check status of the finished command */
if (tx_status & AC_SFLD_OK) {
int ncollisions;
dev->stats.tx_packets++;
ncollisions = tx_status & AC_SFLD_MAXCOL;
dev->stats.collisions += ncollisions;
#ifdef DEBUG_TX_INFO
if (ncollisions > 0)
printk(KERN_DEBUG
"%s: wv_complete(): tx completed after %d collisions.\n",
dev->name, ncollisions);
#endif
} else {
dev->stats.tx_errors++;
if (tx_status & AC_SFLD_S10) {
dev->stats.tx_carrier_errors++;
#ifdef DEBUG_TX_FAIL
printk(KERN_DEBUG
"%s: wv_complete(): tx error: no CS.\n",
dev->name);
#endif
}
if (tx_status & AC_SFLD_S9) {
dev->stats.tx_carrier_errors++;
#ifdef DEBUG_TX_FAIL
printk(KERN_DEBUG
"%s: wv_complete(): tx error: lost CTS.\n",
dev->name);
#endif
}
if (tx_status & AC_SFLD_S8) {
dev->stats.tx_fifo_errors++;
#ifdef DEBUG_TX_FAIL
printk(KERN_DEBUG
"%s: wv_complete(): tx error: slow DMA.\n",
dev->name);
#endif
}
if (tx_status & AC_SFLD_S6) {
dev->stats.tx_heartbeat_errors++;
#ifdef DEBUG_TX_FAIL
printk(KERN_DEBUG
"%s: wv_complete(): tx error: heart beat.\n",
dev->name);
#endif
}
if (tx_status & AC_SFLD_S5) {
dev->stats.tx_aborted_errors++;
#ifdef DEBUG_TX_FAIL
printk(KERN_DEBUG
"%s: wv_complete(): tx error: too many collisions.\n",
dev->name);
#endif
}
}
#ifdef DEBUG_TX_INFO
printk(KERN_DEBUG
"%s: wv_complete(): tx completed, tx_status 0x%04x\n",
dev->name, tx_status);
#endif
}
#ifdef DEBUG_INTERRUPT_INFO
if (nreaped > 1)
printk(KERN_DEBUG "%s: wv_complete(): reaped %d\n",
dev->name, nreaped);
#endif
/*
* Inform upper layers.
*/
if (lp->tx_n_in_use < NTXBLOCKS - 1) {
netif_wake_queue(dev);
}
#ifdef DEBUG_INTERRUPT_TRACE
printk(KERN_DEBUG "%s: <-wv_complete()\n", dev->name);
#endif
return nreaped;
}
/*------------------------------------------------------------------*/
/*
* Reconfigure the i82586, or at least ask for it.
* Because wv_82586_config uses a transmission buffer, we must do it
* when we are sure that there is one left, so we do it now
* or in wavelan_packet_xmit() (I can't find any better place,
* wavelan_interrupt is not an option), so you may experience
* delays sometimes.
*/
static void wv_82586_reconfig(struct net_device * dev)
{
net_local *lp = netdev_priv(dev);
unsigned long flags;
/* Arm the flag, will be cleard in wv_82586_config() */
lp->reconfig_82586 = 1;
/* Check if we can do it now ! */
if((netif_running(dev)) && !(netif_queue_stopped(dev))) {
spin_lock_irqsave(&lp->spinlock, flags);
/* May fail */
wv_82586_config(dev);
spin_unlock_irqrestore(&lp->spinlock, flags);
}
else {
#ifdef DEBUG_CONFIG_INFO
printk(KERN_DEBUG
"%s: wv_82586_reconfig(): delayed (state = %lX)\n",
dev->name, dev->state);
#endif
}
}
/********************* DEBUG & INFO SUBROUTINES *********************/
/*
* This routine is used in the code to show information for debugging.
* Most of the time, it dumps the contents of hardware structures.
*/
#ifdef DEBUG_PSA_SHOW
/*------------------------------------------------------------------*/
/*
* Print the formatted contents of the Parameter Storage Area.
*/
static void wv_psa_show(psa_t * p)
{
printk(KERN_DEBUG "##### WaveLAN PSA contents: #####\n");
printk(KERN_DEBUG "psa_io_base_addr_1: 0x%02X %02X %02X %02X\n",
p->psa_io_base_addr_1,
p->psa_io_base_addr_2,
p->psa_io_base_addr_3, p->psa_io_base_addr_4);
printk(KERN_DEBUG "psa_rem_boot_addr_1: 0x%02X %02X %02X\n",
p->psa_rem_boot_addr_1,
p->psa_rem_boot_addr_2, p->psa_rem_boot_addr_3);
printk(KERN_DEBUG "psa_holi_params: 0x%02x, ", p->psa_holi_params);
printk("psa_int_req_no: %d\n", p->psa_int_req_no);
#ifdef DEBUG_SHOW_UNUSED
printk(KERN_DEBUG "psa_unused0[]: %pM\n", p->psa_unused0);
#endif /* DEBUG_SHOW_UNUSED */
printk(KERN_DEBUG "psa_univ_mac_addr[]: %pM\n", p->psa_univ_mac_addr);
printk(KERN_DEBUG "psa_local_mac_addr[]: %pM\n", p->psa_local_mac_addr);
printk(KERN_DEBUG "psa_univ_local_sel: %d, ",
p->psa_univ_local_sel);
printk("psa_comp_number: %d, ", p->psa_comp_number);
printk("psa_thr_pre_set: 0x%02x\n", p->psa_thr_pre_set);
printk(KERN_DEBUG "psa_feature_select/decay_prm: 0x%02x, ",
p->psa_feature_select);
printk("psa_subband/decay_update_prm: %d\n", p->psa_subband);
printk(KERN_DEBUG "psa_quality_thr: 0x%02x, ", p->psa_quality_thr);
printk("psa_mod_delay: 0x%02x\n", p->psa_mod_delay);
printk(KERN_DEBUG "psa_nwid: 0x%02x%02x, ", p->psa_nwid[0],
p->psa_nwid[1]);
printk("psa_nwid_select: %d\n", p->psa_nwid_select);
printk(KERN_DEBUG "psa_encryption_select: %d, ",
p->psa_encryption_select);
printk
("psa_encryption_key[]: %02x:%02x:%02x:%02x:%02x:%02x:%02x:%02x\n",
p->psa_encryption_key[0], p->psa_encryption_key[1],
p->psa_encryption_key[2], p->psa_encryption_key[3],
p->psa_encryption_key[4], p->psa_encryption_key[5],
p->psa_encryption_key[6], p->psa_encryption_key[7]);
printk(KERN_DEBUG "psa_databus_width: %d\n", p->psa_databus_width);
printk(KERN_DEBUG "psa_call_code/auto_squelch: 0x%02x, ",
p->psa_call_code[0]);
printk
("psa_call_code[]: %02X:%02X:%02X:%02X:%02X:%02X:%02X:%02X\n",
p->psa_call_code[0], p->psa_call_code[1], p->psa_call_code[2],
p->psa_call_code[3], p->psa_call_code[4], p->psa_call_code[5],
p->psa_call_code[6], p->psa_call_code[7]);
#ifdef DEBUG_SHOW_UNUSED
printk(KERN_DEBUG "psa_reserved[]: %02X:%02X\n",
p->psa_reserved[0],
p->psa_reserved[1]);
#endif /* DEBUG_SHOW_UNUSED */
printk(KERN_DEBUG "psa_conf_status: %d, ", p->psa_conf_status);
printk("psa_crc: 0x%02x%02x, ", p->psa_crc[0], p->psa_crc[1]);
printk("psa_crc_status: 0x%02x\n", p->psa_crc_status);
} /* wv_psa_show */
#endif /* DEBUG_PSA_SHOW */
#ifdef DEBUG_MMC_SHOW
/*------------------------------------------------------------------*/
/*
* Print the formatted status of the Modem Management Controller.
* This function needs to be completed.
*/
static void wv_mmc_show(struct net_device * dev)
{
unsigned long ioaddr = dev->base_addr;
net_local *lp = netdev_priv(dev);
mmr_t m;
/* Basic check */
if (hasr_read(ioaddr) & HASR_NO_CLK) {
printk(KERN_WARNING
"%s: wv_mmc_show: modem not connected\n",
dev->name);
return;
}
/* Read the mmc */
mmc_out(ioaddr, mmwoff(0, mmw_freeze), 1);
mmc_read(ioaddr, 0, (u8 *) & m, sizeof(m));
mmc_out(ioaddr, mmwoff(0, mmw_freeze), 0);
/* Don't forget to update statistics */
lp->wstats.discard.nwid +=
(m.mmr_wrong_nwid_h << 8) | m.mmr_wrong_nwid_l;
printk(KERN_DEBUG "##### WaveLAN modem status registers: #####\n");
#ifdef DEBUG_SHOW_UNUSED
printk(KERN_DEBUG
"mmc_unused0[]: %02X:%02X:%02X:%02X:%02X:%02X:%02X:%02X\n",
m.mmr_unused0[0], m.mmr_unused0[1], m.mmr_unused0[2],
m.mmr_unused0[3], m.mmr_unused0[4], m.mmr_unused0[5],
m.mmr_unused0[6], m.mmr_unused0[7]);
#endif /* DEBUG_SHOW_UNUSED */
printk(KERN_DEBUG "Encryption algorithm: %02X - Status: %02X\n",
m.mmr_des_avail, m.mmr_des_status);
#ifdef DEBUG_SHOW_UNUSED
printk(KERN_DEBUG "mmc_unused1[]: %02X:%02X:%02X:%02X:%02X\n",
m.mmr_unused1[0],
m.mmr_unused1[1],
m.mmr_unused1[2], m.mmr_unused1[3], m.mmr_unused1[4]);
#endif /* DEBUG_SHOW_UNUSED */
printk(KERN_DEBUG "dce_status: 0x%x [%s%s%s%s]\n",
m.mmr_dce_status,
(m.
mmr_dce_status & MMR_DCE_STATUS_RX_BUSY) ?
"energy detected," : "",
(m.
mmr_dce_status & MMR_DCE_STATUS_LOOPT_IND) ?
"loop test indicated," : "",
(m.
mmr_dce_status & MMR_DCE_STATUS_TX_BUSY) ?
"transmitter on," : "",
(m.
mmr_dce_status & MMR_DCE_STATUS_JBR_EXPIRED) ?
"jabber timer expired," : "");
printk(KERN_DEBUG "Dsp ID: %02X\n", m.mmr_dsp_id);
#ifdef DEBUG_SHOW_UNUSED
printk(KERN_DEBUG "mmc_unused2[]: %02X:%02X\n",
m.mmr_unused2[0], m.mmr_unused2[1]);
#endif /* DEBUG_SHOW_UNUSED */
printk(KERN_DEBUG "# correct_nwid: %d, # wrong_nwid: %d\n",
(m.mmr_correct_nwid_h << 8) | m.mmr_correct_nwid_l,
(m.mmr_wrong_nwid_h << 8) | m.mmr_wrong_nwid_l);
printk(KERN_DEBUG "thr_pre_set: 0x%x [current signal %s]\n",
m.mmr_thr_pre_set & MMR_THR_PRE_SET,
(m.
mmr_thr_pre_set & MMR_THR_PRE_SET_CUR) ? "above" :
"below");
printk(KERN_DEBUG "signal_lvl: %d [%s], ",
m.mmr_signal_lvl & MMR_SIGNAL_LVL,
(m.
mmr_signal_lvl & MMR_SIGNAL_LVL_VALID) ? "new msg" :
"no new msg");
printk("silence_lvl: %d [%s], ",
m.mmr_silence_lvl & MMR_SILENCE_LVL,
(m.
mmr_silence_lvl & MMR_SILENCE_LVL_VALID) ? "update done" :
"no new update");
printk("sgnl_qual: 0x%x [%s]\n", m.mmr_sgnl_qual & MMR_SGNL_QUAL,
(m.
mmr_sgnl_qual & MMR_SGNL_QUAL_ANT) ? "Antenna 1" :
"Antenna 0");
#ifdef DEBUG_SHOW_UNUSED
printk(KERN_DEBUG "netw_id_l: %x\n", m.mmr_netw_id_l);
#endif /* DEBUG_SHOW_UNUSED */
} /* wv_mmc_show */
#endif /* DEBUG_MMC_SHOW */
#ifdef DEBUG_I82586_SHOW
/*------------------------------------------------------------------*/
/*
* Print the last block of the i82586 memory.
*/
static void wv_scb_show(unsigned long ioaddr)
{
scb_t scb;
obram_read(ioaddr, OFFSET_SCB, (unsigned char *) &scb,
sizeof(scb));
printk(KERN_DEBUG "##### WaveLAN system control block: #####\n");
printk(KERN_DEBUG "status: ");
printk("stat 0x%x[%s%s%s%s] ",
(scb.
scb_status & (SCB_ST_CX | SCB_ST_FR | SCB_ST_CNA |
SCB_ST_RNR)) >> 12,
(scb.
scb_status & SCB_ST_CX) ? "command completion interrupt," :
"", (scb.scb_status & SCB_ST_FR) ? "frame received," : "",
(scb.
scb_status & SCB_ST_CNA) ? "command unit not active," : "",
(scb.
scb_status & SCB_ST_RNR) ? "receiving unit not ready," :
"");
printk("cus 0x%x[%s%s%s] ", (scb.scb_status & SCB_ST_CUS) >> 8,
((scb.scb_status & SCB_ST_CUS) ==
SCB_ST_CUS_IDLE) ? "idle" : "",
((scb.scb_status & SCB_ST_CUS) ==
SCB_ST_CUS_SUSP) ? "suspended" : "",
((scb.scb_status & SCB_ST_CUS) ==
SCB_ST_CUS_ACTV) ? "active" : "");
printk("rus 0x%x[%s%s%s%s]\n", (scb.scb_status & SCB_ST_RUS) >> 4,
((scb.scb_status & SCB_ST_RUS) ==
SCB_ST_RUS_IDLE) ? "idle" : "",
((scb.scb_status & SCB_ST_RUS) ==
SCB_ST_RUS_SUSP) ? "suspended" : "",
((scb.scb_status & SCB_ST_RUS) ==
SCB_ST_RUS_NRES) ? "no resources" : "",
((scb.scb_status & SCB_ST_RUS) ==
SCB_ST_RUS_RDY) ? "ready" : "");
printk(KERN_DEBUG "command: ");
printk("ack 0x%x[%s%s%s%s] ",
(scb.
scb_command & (SCB_CMD_ACK_CX | SCB_CMD_ACK_FR |
SCB_CMD_ACK_CNA | SCB_CMD_ACK_RNR)) >> 12,
(scb.
scb_command & SCB_CMD_ACK_CX) ? "ack cmd completion," : "",
(scb.
scb_command & SCB_CMD_ACK_FR) ? "ack frame received," : "",
(scb.
scb_command & SCB_CMD_ACK_CNA) ? "ack CU not active," : "",
(scb.
scb_command & SCB_CMD_ACK_RNR) ? "ack RU not ready," : "");
printk("cuc 0x%x[%s%s%s%s%s] ",
(scb.scb_command & SCB_CMD_CUC) >> 8,
((scb.scb_command & SCB_CMD_CUC) ==
SCB_CMD_CUC_NOP) ? "nop" : "",
((scb.scb_command & SCB_CMD_CUC) ==
SCB_CMD_CUC_GO) ? "start cbl_offset" : "",
((scb.scb_command & SCB_CMD_CUC) ==
SCB_CMD_CUC_RES) ? "resume execution" : "",
((scb.scb_command & SCB_CMD_CUC) ==
SCB_CMD_CUC_SUS) ? "suspend execution" : "",
((scb.scb_command & SCB_CMD_CUC) ==
SCB_CMD_CUC_ABT) ? "abort execution" : "");
printk("ruc 0x%x[%s%s%s%s%s]\n",
(scb.scb_command & SCB_CMD_RUC) >> 4,
((scb.scb_command & SCB_CMD_RUC) ==
SCB_CMD_RUC_NOP) ? "nop" : "",
((scb.scb_command & SCB_CMD_RUC) ==
SCB_CMD_RUC_GO) ? "start rfa_offset" : "",
((scb.scb_command & SCB_CMD_RUC) ==
SCB_CMD_RUC_RES) ? "resume reception" : "",
((scb.scb_command & SCB_CMD_RUC) ==
SCB_CMD_RUC_SUS) ? "suspend reception" : "",
((scb.scb_command & SCB_CMD_RUC) ==
SCB_CMD_RUC_ABT) ? "abort reception" : "");
printk(KERN_DEBUG "cbl_offset 0x%x ", scb.scb_cbl_offset);
printk("rfa_offset 0x%x\n", scb.scb_rfa_offset);
printk(KERN_DEBUG "crcerrs %d ", scb.scb_crcerrs);
printk("alnerrs %d ", scb.scb_alnerrs);
printk("rscerrs %d ", scb.scb_rscerrs);
printk("ovrnerrs %d\n", scb.scb_ovrnerrs);
}
/*------------------------------------------------------------------*/
/*
* Print the formatted status of the i82586's receive unit.
*/
static void wv_ru_show(struct net_device * dev)
{
printk(KERN_DEBUG
"##### WaveLAN i82586 receiver unit status: #####\n");
printk(KERN_DEBUG "ru:");
/*
* Not implemented yet
*/
printk("\n");
} /* wv_ru_show */
/*------------------------------------------------------------------*/
/*
* Display info about one control block of the i82586 memory.
*/
static void wv_cu_show_one(struct net_device * dev, net_local * lp, int i, u16 p)
{
unsigned long ioaddr;
ac_tx_t actx;
ioaddr = dev->base_addr;
printk("%d: 0x%x:", i, p);
obram_read(ioaddr, p, (unsigned char *) &actx, sizeof(actx));
printk(" status=0x%x,", actx.tx_h.ac_status);
printk(" command=0x%x,", actx.tx_h.ac_command);
/*
{
tbd_t tbd;
obram_read(ioaddr, actx.tx_tbd_offset, (unsigned char *)&tbd, sizeof(tbd));
printk(" tbd_status=0x%x,", tbd.tbd_status);
}
*/
printk("|");
}
/*------------------------------------------------------------------*/
/*
* Print status of the command unit of the i82586.
*/
static void wv_cu_show(struct net_device * dev)
{
net_local *lp = netdev_priv(dev);
unsigned int i;
u16 p;
printk(KERN_DEBUG
"##### WaveLAN i82586 command unit status: #####\n");
printk(KERN_DEBUG);
for (i = 0, p = lp->tx_first_in_use; i < NTXBLOCKS; i++) {
wv_cu_show_one(dev, lp, i, p);
p += TXBLOCKZ;
if (p >= OFFSET_CU + NTXBLOCKS * TXBLOCKZ)
p -= NTXBLOCKS * TXBLOCKZ;
}
printk("\n");
}
#endif /* DEBUG_I82586_SHOW */
#ifdef DEBUG_DEVICE_SHOW
/*------------------------------------------------------------------*/
/*
* Print the formatted status of the WaveLAN PCMCIA device driver.
*/
static void wv_dev_show(struct net_device * dev)
{
printk(KERN_DEBUG "dev:");
printk(" state=%lX,", dev->state);
printk(" trans_start=%ld,", dev->trans_start);
printk(" flags=0x%x,", dev->flags);
printk("\n");
} /* wv_dev_show */
/*------------------------------------------------------------------*/
/*
* Print the formatted status of the WaveLAN PCMCIA device driver's
* private information.
*/
static void wv_local_show(struct net_device * dev)
{
net_local *lp;
lp = netdev_priv(dev);
printk(KERN_DEBUG "local:");
printk(" tx_n_in_use=%d,", lp->tx_n_in_use);
printk(" hacr=0x%x,", lp->hacr);
printk(" rx_head=0x%x,", lp->rx_head);
printk(" rx_last=0x%x,", lp->rx_last);
printk(" tx_first_free=0x%x,", lp->tx_first_free);
printk(" tx_first_in_use=0x%x,", lp->tx_first_in_use);
printk("\n");
} /* wv_local_show */
#endif /* DEBUG_DEVICE_SHOW */
#if defined(DEBUG_RX_INFO) || defined(DEBUG_TX_INFO)
/*------------------------------------------------------------------*/
/*
* Dump packet header (and content if necessary) on the screen
*/
static inline void wv_packet_info(u8 * p, /* Packet to dump */
int length, /* Length of the packet */
char *msg1, /* Name of the device */
char *msg2)
{ /* Name of the function */
int i;
int maxi;
printk(KERN_DEBUG
"%s: %s(): dest %pM, length %d\n",
msg1, msg2, p, length);
printk(KERN_DEBUG
"%s: %s(): src %pM, type 0x%02X%02X\n",
msg1, msg2, &p[6], p[12], p[13]);
#ifdef DEBUG_PACKET_DUMP
printk(KERN_DEBUG "data=\"");
if ((maxi = length) > DEBUG_PACKET_DUMP)
maxi = DEBUG_PACKET_DUMP;
for (i = 14; i < maxi; i++)
if (p[i] >= ' ' && p[i] <= '~')
printk(" %c", p[i]);
else
printk("%02X", p[i]);
if (maxi < length)
printk("..");
printk("\"\n");
printk(KERN_DEBUG "\n");
#endif /* DEBUG_PACKET_DUMP */
}
#endif /* defined(DEBUG_RX_INFO) || defined(DEBUG_TX_INFO) */
/*------------------------------------------------------------------*/
/*
* This is the information which is displayed by the driver at startup.
* There are lots of flags for configuring it to your liking.
*/
static void wv_init_info(struct net_device * dev)
{
short ioaddr = dev->base_addr;
net_local *lp = netdev_priv(dev);
psa_t psa;
/* Read the parameter storage area */
psa_read(ioaddr, lp->hacr, 0, (unsigned char *) &psa, sizeof(psa));
#ifdef DEBUG_PSA_SHOW
wv_psa_show(&psa);
#endif
#ifdef DEBUG_MMC_SHOW
wv_mmc_show(dev);
#endif
#ifdef DEBUG_I82586_SHOW
wv_cu_show(dev);
#endif
#ifdef DEBUG_BASIC_SHOW
/* Now, let's go for the basic stuff. */
printk(KERN_NOTICE "%s: WaveLAN at %#x, %pM, IRQ %d",
dev->name, ioaddr, dev->dev_addr, dev->irq);
/* Print current network ID. */
if (psa.psa_nwid_select)
printk(", nwid 0x%02X-%02X", psa.psa_nwid[0],
psa.psa_nwid[1]);
else
printk(", nwid off");
/* If 2.00 card */
if (!(mmc_in(ioaddr, mmroff(0, mmr_fee_status)) &
(MMR_FEE_STATUS_DWLD | MMR_FEE_STATUS_BUSY))) {
unsigned short freq;
/* Ask the EEPROM to read the frequency from the first area. */
fee_read(ioaddr, 0x00, &freq, 1);
/* Print frequency */
printk(", 2.00, %ld", (freq >> 6) + 2400L);
/* Hack! */
if (freq & 0x20)
printk(".5");
} else {
printk(", PC");
switch (psa.psa_comp_number) {
case PSA_COMP_PC_AT_915:
case PSA_COMP_PC_AT_2400:
printk("-AT");
break;
case PSA_COMP_PC_MC_915:
case PSA_COMP_PC_MC_2400:
printk("-MC");
break;
case PSA_COMP_PCMCIA_915:
printk("MCIA");
break;
default:
printk("?");
}
printk(", ");
switch (psa.psa_subband) {
case PSA_SUBBAND_915:
printk("915");
break;
case PSA_SUBBAND_2425:
printk("2425");
break;
case PSA_SUBBAND_2460:
printk("2460");
break;
case PSA_SUBBAND_2484:
printk("2484");
break;
case PSA_SUBBAND_2430_5:
printk("2430.5");
break;
default:
printk("?");
}
}
printk(" MHz\n");
#endif /* DEBUG_BASIC_SHOW */
#ifdef DEBUG_VERSION_SHOW
/* Print version information */
printk(KERN_NOTICE "%s", version);
#endif
} /* wv_init_info */
/********************* IOCTL, STATS & RECONFIG *********************/
/*
* We found here routines that are called by Linux on different
* occasions after the configuration and not for transmitting data
* These may be called when the user use ifconfig, /proc/net/dev
* or wireless extensions
*/
/*------------------------------------------------------------------*/
/*
* Set or clear the multicast filter for this adaptor.
* num_addrs == -1 Promiscuous mode, receive all packets
* num_addrs == 0 Normal mode, clear multicast list
* num_addrs > 0 Multicast mode, receive normal and MC packets,
* and do best-effort filtering.
*/
static void wavelan_set_multicast_list(struct net_device * dev)
{
net_local *lp = netdev_priv(dev);
#ifdef DEBUG_IOCTL_TRACE
printk(KERN_DEBUG "%s: ->wavelan_set_multicast_list()\n",
dev->name);
#endif
#ifdef DEBUG_IOCTL_INFO
printk(KERN_DEBUG
"%s: wavelan_set_multicast_list(): setting Rx mode %02X to %d addresses.\n",
dev->name, dev->flags, dev->mc_count);
#endif
/* Are we asking for promiscuous mode,
* or all multicast addresses (we don't have that!)
* or too many multicast addresses for the hardware filter? */
if ((dev->flags & IFF_PROMISC) ||
(dev->flags & IFF_ALLMULTI) ||
(dev->mc_count > I82586_MAX_MULTICAST_ADDRESSES)) {
/*
* Enable promiscuous mode: receive all packets.
*/
if (!lp->promiscuous) {
lp->promiscuous = 1;
lp->mc_count = 0;
wv_82586_reconfig(dev);
}
} else
/* Are there multicast addresses to send? */
if (dev->mc_list != (struct dev_mc_list *) NULL) {
/*
* Disable promiscuous mode, but receive all packets
* in multicast list
*/
#ifdef MULTICAST_AVOID
if (lp->promiscuous || (dev->mc_count != lp->mc_count))
#endif
{
lp->promiscuous = 0;
lp->mc_count = dev->mc_count;
wv_82586_reconfig(dev);
}
} else {
/*
* Switch to normal mode: disable promiscuous mode and
* clear the multicast list.
*/
if (lp->promiscuous || lp->mc_count == 0) {
lp->promiscuous = 0;
lp->mc_count = 0;
wv_82586_reconfig(dev);
}
}
#ifdef DEBUG_IOCTL_TRACE
printk(KERN_DEBUG "%s: <-wavelan_set_multicast_list()\n",
dev->name);
#endif
}
/*------------------------------------------------------------------*/
/*
* This function doesn't exist.
* (Note : it was a nice way to test the reconfigure stuff...)
*/
#ifdef SET_MAC_ADDRESS
static int wavelan_set_mac_address(struct net_device * dev, void *addr)
{
struct sockaddr *mac = addr;
/* Copy the address. */
memcpy(dev->dev_addr, mac->sa_data, WAVELAN_ADDR_SIZE);
/* Reconfigure the beast. */
wv_82586_reconfig(dev);
return 0;
}
#endif /* SET_MAC_ADDRESS */
/*------------------------------------------------------------------*/
/*
* Frequency setting (for hardware capable of it)
* It's a bit complicated and you don't really want to look into it.
* (called in wavelan_ioctl)
*/
static int wv_set_frequency(unsigned long ioaddr, /* I/O port of the card */
iw_freq * frequency)
{
const int BAND_NUM = 10; /* Number of bands */
long freq = 0L; /* offset to 2.4 GHz in .5 MHz */
#ifdef DEBUG_IOCTL_INFO
int i;
#endif
/* Setting by frequency */
/* Theoretically, you may set any frequency between
* the two limits with a 0.5 MHz precision. In practice,
* I don't want you to have trouble with local regulations.
*/
if ((frequency->e == 1) &&
(frequency->m >= (int) 2.412e8)
&& (frequency->m <= (int) 2.487e8)) {
freq = ((frequency->m / 10000) - 24000L) / 5;
}
/* Setting by channel (same as wfreqsel) */
/* Warning: each channel is 22 MHz wide, so some of the channels
* will interfere. */
if ((frequency->e == 0) && (frequency->m < BAND_NUM)) {
/* Get frequency offset. */
freq = channel_bands[frequency->m] >> 1;
}
/* Verify that the frequency is allowed. */
if (freq != 0L) {
u16 table[10]; /* Authorized frequency table */
/* Read the frequency table. */
fee_read(ioaddr, 0x71, table, 10);
#ifdef DEBUG_IOCTL_INFO
printk(KERN_DEBUG "Frequency table: ");
for (i = 0; i < 10; i++) {
printk(" %04X", table[i]);
}
printk("\n");
#endif
/* Look in the table to see whether the frequency is allowed. */
if (!(table[9 - ((freq - 24) / 16)] &
(1 << ((freq - 24) % 16)))) return -EINVAL; /* not allowed */
} else
return -EINVAL;
/* if we get a usable frequency */
if (freq != 0L) {
unsigned short area[16];
unsigned short dac[2];
unsigned short area_verify[16];
unsigned short dac_verify[2];
/* Corresponding gain (in the power adjust value table)
* See AT&T WaveLAN Data Manual, REF 407-024689/E, page 3-8
* and WCIN062D.DOC, page 6.2.9. */
unsigned short power_limit[] = { 40, 80, 120, 160, 0 };
int power_band = 0; /* Selected band */
unsigned short power_adjust; /* Correct value */
/* Search for the gain. */
power_band = 0;
while ((freq > power_limit[power_band]) &&
(power_limit[++power_band] != 0));
/* Read the first area. */
fee_read(ioaddr, 0x00, area, 16);
/* Read the DAC. */
fee_read(ioaddr, 0x60, dac, 2);
/* Read the new power adjust value. */
fee_read(ioaddr, 0x6B - (power_band >> 1), &power_adjust,
1);
if (power_band & 0x1)
power_adjust >>= 8;
else
power_adjust &= 0xFF;
#ifdef DEBUG_IOCTL_INFO
printk(KERN_DEBUG "WaveLAN EEPROM Area 1: ");
for (i = 0; i < 16; i++) {
printk(" %04X", area[i]);
}
printk("\n");
printk(KERN_DEBUG "WaveLAN EEPROM DAC: %04X %04X\n",
dac[0], dac[1]);
#endif
/* Frequency offset (for info only) */
area[0] = ((freq << 5) & 0xFFE0) | (area[0] & 0x1F);
/* Receiver Principle main divider coefficient */
area[3] = (freq >> 1) + 2400L - 352L;
area[2] = ((freq & 0x1) << 4) | (area[2] & 0xFFEF);
/* Transmitter Main divider coefficient */
area[13] = (freq >> 1) + 2400L;
area[12] = ((freq & 0x1) << 4) | (area[2] & 0xFFEF);
/* Other parts of the area are flags, bit streams or unused. */
/* Set the value in the DAC. */
dac[1] = ((power_adjust >> 1) & 0x7F) | (dac[1] & 0xFF80);
dac[0] = ((power_adjust & 0x1) << 4) | (dac[0] & 0xFFEF);
/* Write the first area. */
fee_write(ioaddr, 0x00, area, 16);
/* Write the DAC. */
fee_write(ioaddr, 0x60, dac, 2);
/* We now should verify here that the writing of the EEPROM went OK. */
/* Reread the first area. */
fee_read(ioaddr, 0x00, area_verify, 16);
/* Reread the DAC. */
fee_read(ioaddr, 0x60, dac_verify, 2);
/* Compare. */
if (memcmp(area, area_verify, 16 * 2) ||
memcmp(dac, dac_verify, 2 * 2)) {
#ifdef DEBUG_IOCTL_ERROR
printk(KERN_INFO
"WaveLAN: wv_set_frequency: unable to write new frequency to EEPROM(?).\n");
#endif
return -EOPNOTSUPP;
}
/* We must download the frequency parameters to the
* synthesizers (from the EEPROM - area 1)
* Note: as the EEPROM is automatically decremented, we set the end
* if the area... */
mmc_out(ioaddr, mmwoff(0, mmw_fee_addr), 0x0F);
mmc_out(ioaddr, mmwoff(0, mmw_fee_ctrl),
MMW_FEE_CTRL_READ | MMW_FEE_CTRL_DWLD);
/* Wait until the download is finished. */
fee_wait(ioaddr, 100, 100);
/* We must now download the power adjust value (gain) to
* the synthesizers (from the EEPROM - area 7 - DAC). */
mmc_out(ioaddr, mmwoff(0, mmw_fee_addr), 0x61);
mmc_out(ioaddr, mmwoff(0, mmw_fee_ctrl),
MMW_FEE_CTRL_READ | MMW_FEE_CTRL_DWLD);
/* Wait for the download to finish. */
fee_wait(ioaddr, 100, 100);
#ifdef DEBUG_IOCTL_INFO
/* Verification of what we have done */
printk(KERN_DEBUG "WaveLAN EEPROM Area 1: ");
for (i = 0; i < 16; i++) {
printk(" %04X", area_verify[i]);
}
printk("\n");
printk(KERN_DEBUG "WaveLAN EEPROM DAC: %04X %04X\n",
dac_verify[0], dac_verify[1]);
#endif
return 0;
} else
return -EINVAL; /* Bah, never get there... */
}
/*------------------------------------------------------------------*/
/*
* Give the list of available frequencies.
*/
static int wv_frequency_list(unsigned long ioaddr, /* I/O port of the card */
iw_freq * list, /* List of frequencies to fill */
int max)
{ /* Maximum number of frequencies */
u16 table[10]; /* Authorized frequency table */
long freq = 0L; /* offset to 2.4 GHz in .5 MHz + 12 MHz */
int i; /* index in the table */
int c = 0; /* Channel number */
/* Read the frequency table. */
fee_read(ioaddr, 0x71 /* frequency table */ , table, 10);
/* Check all frequencies. */
i = 0;
for (freq = 0; freq < 150; freq++)
/* Look in the table if the frequency is allowed */
if (table[9 - (freq / 16)] & (1 << (freq % 16))) {
/* Compute approximate channel number */
while ((c < ARRAY_SIZE(channel_bands)) &&
(((channel_bands[c] >> 1) - 24) < freq))
c++;
list[i].i = c; /* Set the list index */
/* put in the list */
list[i].m = (((freq + 24) * 5) + 24000L) * 10000;
list[i++].e = 1;
/* Check number. */
if (i >= max)
return (i);
}
return (i);
}
#ifdef IW_WIRELESS_SPY
/*------------------------------------------------------------------*/
/*
* Gather wireless spy statistics: for each packet, compare the source
* address with our list, and if they match, get the statistics.
* Sorry, but this function really needs the wireless extensions.
*/
static inline void wl_spy_gather(struct net_device * dev,
u8 * mac, /* MAC address */
u8 * stats) /* Statistics to gather */
{
struct iw_quality wstats;
wstats.qual = stats[2] & MMR_SGNL_QUAL;
wstats.level = stats[0] & MMR_SIGNAL_LVL;
wstats.noise = stats[1] & MMR_SILENCE_LVL;
wstats.updated = 0x7;
/* Update spy records */
wireless_spy_update(dev, mac, &wstats);
}
#endif /* IW_WIRELESS_SPY */
#ifdef HISTOGRAM
/*------------------------------------------------------------------*/
/*
* This function calculates a histogram of the signal level.
* As the noise is quite constant, it's like doing it on the SNR.
* We have defined a set of interval (lp->his_range), and each time
* the level goes in that interval, we increment the count (lp->his_sum).
* With this histogram you may detect if one WaveLAN is really weak,
* or you may also calculate the mean and standard deviation of the level.
*/
static inline void wl_his_gather(struct net_device * dev, u8 * stats)
{ /* Statistics to gather */
net_local *lp = netdev_priv(dev);
u8 level = stats[0] & MMR_SIGNAL_LVL;
int i;
/* Find the correct interval. */
i = 0;
while ((i < (lp->his_number - 1))
&& (level >= lp->his_range[i++]));
/* Increment interval counter. */
(lp->his_sum[i])++;
}
#endif /* HISTOGRAM */
/*------------------------------------------------------------------*/
/*
* Wireless Handler : get protocol name
*/
static int wavelan_get_name(struct net_device *dev,
struct iw_request_info *info,
union iwreq_data *wrqu,
char *extra)
{
strcpy(wrqu->name, "WaveLAN");
return 0;
}
/*------------------------------------------------------------------*/
/*
* Wireless Handler : set NWID
*/
static int wavelan_set_nwid(struct net_device *dev,
struct iw_request_info *info,
union iwreq_data *wrqu,
char *extra)
{
unsigned long ioaddr = dev->base_addr;
net_local *lp = netdev_priv(dev); /* lp is not unused */
psa_t psa;
mm_t m;
unsigned long flags;
int ret = 0;
/* Disable interrupts and save flags. */
spin_lock_irqsave(&lp->spinlock, flags);
/* Set NWID in WaveLAN. */
if (!wrqu->nwid.disabled) {
/* Set NWID in psa */
psa.psa_nwid[0] = (wrqu->nwid.value & 0xFF00) >> 8;
psa.psa_nwid[1] = wrqu->nwid.value & 0xFF;
psa.psa_nwid_select = 0x01;
psa_write(ioaddr, lp->hacr,
(char *) psa.psa_nwid - (char *) &psa,
(unsigned char *) psa.psa_nwid, 3);
/* Set NWID in mmc. */
m.w.mmw_netw_id_l = psa.psa_nwid[1];
m.w.mmw_netw_id_h = psa.psa_nwid[0];
mmc_write(ioaddr,
(char *) &m.w.mmw_netw_id_l -
(char *) &m,
(unsigned char *) &m.w.mmw_netw_id_l, 2);
mmc_out(ioaddr, mmwoff(0, mmw_loopt_sel), 0x00);
} else {
/* Disable NWID in the psa. */
psa.psa_nwid_select = 0x00;
psa_write(ioaddr, lp->hacr,
(char *) &psa.psa_nwid_select -
(char *) &psa,
(unsigned char *) &psa.psa_nwid_select,
1);
/* Disable NWID in the mmc (no filtering). */
mmc_out(ioaddr, mmwoff(0, mmw_loopt_sel),
MMW_LOOPT_SEL_DIS_NWID);
}
/* update the Wavelan checksum */
update_psa_checksum(dev, ioaddr, lp->hacr);
/* Enable interrupts and restore flags. */
spin_unlock_irqrestore(&lp->spinlock, flags);
return ret;
}
/*------------------------------------------------------------------*/
/*
* Wireless Handler : get NWID
*/
static int wavelan_get_nwid(struct net_device *dev,
struct iw_request_info *info,
union iwreq_data *wrqu,
char *extra)
{
unsigned long ioaddr = dev->base_addr;
net_local *lp = netdev_priv(dev); /* lp is not unused */
psa_t psa;
unsigned long flags;
int ret = 0;
/* Disable interrupts and save flags. */
spin_lock_irqsave(&lp->spinlock, flags);
/* Read the NWID. */
psa_read(ioaddr, lp->hacr,
(char *) psa.psa_nwid - (char *) &psa,
(unsigned char *) psa.psa_nwid, 3);
wrqu->nwid.value = (psa.psa_nwid[0] << 8) + psa.psa_nwid[1];
wrqu->nwid.disabled = !(psa.psa_nwid_select);
wrqu->nwid.fixed = 1; /* Superfluous */
/* Enable interrupts and restore flags. */
spin_unlock_irqrestore(&lp->spinlock, flags);
return ret;
}
/*------------------------------------------------------------------*/
/*
* Wireless Handler : set frequency
*/
static int wavelan_set_freq(struct net_device *dev,
struct iw_request_info *info,
union iwreq_data *wrqu,
char *extra)
{
unsigned long ioaddr = dev->base_addr;
net_local *lp = netdev_priv(dev); /* lp is not unused */
unsigned long flags;
int ret;
/* Disable interrupts and save flags. */
spin_lock_irqsave(&lp->spinlock, flags);
/* Attempt to recognise 2.00 cards (2.4 GHz frequency selectable). */
if (!(mmc_in(ioaddr, mmroff(0, mmr_fee_status)) &
(MMR_FEE_STATUS_DWLD | MMR_FEE_STATUS_BUSY)))
ret = wv_set_frequency(ioaddr, &(wrqu->freq));
else
ret = -EOPNOTSUPP;
/* Enable interrupts and restore flags. */
spin_unlock_irqrestore(&lp->spinlock, flags);
return ret;
}
/*------------------------------------------------------------------*/
/*
* Wireless Handler : get frequency
*/
static int wavelan_get_freq(struct net_device *dev,
struct iw_request_info *info,
union iwreq_data *wrqu,
char *extra)
{
unsigned long ioaddr = dev->base_addr;
net_local *lp = netdev_priv(dev); /* lp is not unused */
psa_t psa;
unsigned long flags;
int ret = 0;
/* Disable interrupts and save flags. */
spin_lock_irqsave(&lp->spinlock, flags);
/* Attempt to recognise 2.00 cards (2.4 GHz frequency selectable).
* Does it work for everybody, especially old cards? */
if (!(mmc_in(ioaddr, mmroff(0, mmr_fee_status)) &
(MMR_FEE_STATUS_DWLD | MMR_FEE_STATUS_BUSY))) {
unsigned short freq;
/* Ask the EEPROM to read the frequency from the first area. */
fee_read(ioaddr, 0x00, &freq, 1);
wrqu->freq.m = ((freq >> 5) * 5 + 24000L) * 10000;
wrqu->freq.e = 1;
} else {
psa_read(ioaddr, lp->hacr,
(char *) &psa.psa_subband - (char *) &psa,
(unsigned char *) &psa.psa_subband, 1);
if (psa.psa_subband <= 4) {
wrqu->freq.m = fixed_bands[psa.psa_subband];
wrqu->freq.e = (psa.psa_subband != 0);
} else
ret = -EOPNOTSUPP;
}
/* Enable interrupts and restore flags. */
spin_unlock_irqrestore(&lp->spinlock, flags);
return ret;
}
/*------------------------------------------------------------------*/
/*
* Wireless Handler : set level threshold
*/
static int wavelan_set_sens(struct net_device *dev,
struct iw_request_info *info,
union iwreq_data *wrqu,
char *extra)
{
unsigned long ioaddr = dev->base_addr;
net_local *lp = netdev_priv(dev); /* lp is not unused */
psa_t psa;
unsigned long flags;
int ret = 0;
/* Disable interrupts and save flags. */
spin_lock_irqsave(&lp->spinlock, flags);
/* Set the level threshold. */
/* We should complain loudly if wrqu->sens.fixed = 0, because we
* can't set auto mode... */
psa.psa_thr_pre_set = wrqu->sens.value & 0x3F;
psa_write(ioaddr, lp->hacr,
(char *) &psa.psa_thr_pre_set - (char *) &psa,
(unsigned char *) &psa.psa_thr_pre_set, 1);
/* update the Wavelan checksum */
update_psa_checksum(dev, ioaddr, lp->hacr);
mmc_out(ioaddr, mmwoff(0, mmw_thr_pre_set),
psa.psa_thr_pre_set);
/* Enable interrupts and restore flags. */
spin_unlock_irqrestore(&lp->spinlock, flags);
return ret;
}
/*------------------------------------------------------------------*/
/*
* Wireless Handler : get level threshold
*/
static int wavelan_get_sens(struct net_device *dev,
struct iw_request_info *info,
union iwreq_data *wrqu,
char *extra)
{
unsigned long ioaddr = dev->base_addr;
net_local *lp = netdev_priv(dev); /* lp is not unused */
psa_t psa;
unsigned long flags;
int ret = 0;
/* Disable interrupts and save flags. */
spin_lock_irqsave(&lp->spinlock, flags);
/* Read the level threshold. */
psa_read(ioaddr, lp->hacr,
(char *) &psa.psa_thr_pre_set - (char *) &psa,
(unsigned char *) &psa.psa_thr_pre_set, 1);
wrqu->sens.value = psa.psa_thr_pre_set & 0x3F;
wrqu->sens.fixed = 1;
/* Enable interrupts and restore flags. */
spin_unlock_irqrestore(&lp->spinlock, flags);
return ret;
}
/*------------------------------------------------------------------*/
/*
* Wireless Handler : set encryption key
*/
static int wavelan_set_encode(struct net_device *dev,
struct iw_request_info *info,
union iwreq_data *wrqu,
char *extra)
{
unsigned long ioaddr = dev->base_addr;
net_local *lp = netdev_priv(dev); /* lp is not unused */
unsigned long flags;
psa_t psa;
int ret = 0;
/* Disable interrupts and save flags. */
spin_lock_irqsave(&lp->spinlock, flags);
/* Check if capable of encryption */
if (!mmc_encr(ioaddr)) {
ret = -EOPNOTSUPP;
}
/* Check the size of the key */
if((wrqu->encoding.length != 8) && (wrqu->encoding.length != 0)) {
ret = -EINVAL;
}
if(!ret) {
/* Basic checking... */
if (wrqu->encoding.length == 8) {
/* Copy the key in the driver */
memcpy(psa.psa_encryption_key, extra,
wrqu->encoding.length);
psa.psa_encryption_select = 1;
psa_write(ioaddr, lp->hacr,
(char *) &psa.psa_encryption_select -
(char *) &psa,
(unsigned char *) &psa.
psa_encryption_select, 8 + 1);
mmc_out(ioaddr, mmwoff(0, mmw_encr_enable),
MMW_ENCR_ENABLE_EN | MMW_ENCR_ENABLE_MODE);
mmc_write(ioaddr, mmwoff(0, mmw_encr_key),
(unsigned char *) &psa.
psa_encryption_key, 8);
}
/* disable encryption */
if (wrqu->encoding.flags & IW_ENCODE_DISABLED) {
psa.psa_encryption_select = 0;
psa_write(ioaddr, lp->hacr,
(char *) &psa.psa_encryption_select -
(char *) &psa,
(unsigned char *) &psa.
psa_encryption_select, 1);
mmc_out(ioaddr, mmwoff(0, mmw_encr_enable), 0);
}
/* update the Wavelan checksum */
update_psa_checksum(dev, ioaddr, lp->hacr);
}
/* Enable interrupts and restore flags. */
spin_unlock_irqrestore(&lp->spinlock, flags);
return ret;
}
/*------------------------------------------------------------------*/
/*
* Wireless Handler : get encryption key
*/
static int wavelan_get_encode(struct net_device *dev,
struct iw_request_info *info,
union iwreq_data *wrqu,
char *extra)
{
unsigned long ioaddr = dev->base_addr;
net_local *lp = netdev_priv(dev); /* lp is not unused */
psa_t psa;
unsigned long flags;
int ret = 0;
/* Disable interrupts and save flags. */
spin_lock_irqsave(&lp->spinlock, flags);
/* Check if encryption is available */
if (!mmc_encr(ioaddr)) {
ret = -EOPNOTSUPP;
} else {
/* Read the encryption key */
psa_read(ioaddr, lp->hacr,
(char *) &psa.psa_encryption_select -
(char *) &psa,
(unsigned char *) &psa.
psa_encryption_select, 1 + 8);
/* encryption is enabled ? */
if (psa.psa_encryption_select)
wrqu->encoding.flags = IW_ENCODE_ENABLED;
else
wrqu->encoding.flags = IW_ENCODE_DISABLED;
wrqu->encoding.flags |= mmc_encr(ioaddr);
/* Copy the key to the user buffer */
wrqu->encoding.length = 8;
memcpy(extra, psa.psa_encryption_key, wrqu->encoding.length);
}
/* Enable interrupts and restore flags. */
spin_unlock_irqrestore(&lp->spinlock, flags);
return ret;
}
/*------------------------------------------------------------------*/
/*
* Wireless Handler : get range info
*/
static int wavelan_get_range(struct net_device *dev,
struct iw_request_info *info,
union iwreq_data *wrqu,
char *extra)
{
unsigned long ioaddr = dev->base_addr;
net_local *lp = netdev_priv(dev); /* lp is not unused */
struct iw_range *range = (struct iw_range *) extra;
unsigned long flags;
int ret = 0;
/* Set the length (very important for backward compatibility) */
wrqu->data.length = sizeof(struct iw_range);
/* Set all the info we don't care or don't know about to zero */
memset(range, 0, sizeof(struct iw_range));
/* Set the Wireless Extension versions */
range->we_version_compiled = WIRELESS_EXT;
range->we_version_source = 9;
/* Set information in the range struct. */
range->throughput = 1.6 * 1000 * 1000; /* don't argue on this ! */
range->min_nwid = 0x0000;
range->max_nwid = 0xFFFF;
range->sensitivity = 0x3F;
range->max_qual.qual = MMR_SGNL_QUAL;
range->max_qual.level = MMR_SIGNAL_LVL;
range->max_qual.noise = MMR_SILENCE_LVL;
range->avg_qual.qual = MMR_SGNL_QUAL; /* Always max */
/* Need to get better values for those two */
range->avg_qual.level = 30;
range->avg_qual.noise = 8;
range->num_bitrates = 1;
range->bitrate[0] = 2000000; /* 2 Mb/s */
/* Event capability (kernel + driver) */
range->event_capa[0] = (IW_EVENT_CAPA_MASK(0x8B02) |
IW_EVENT_CAPA_MASK(0x8B04));
range->event_capa[1] = IW_EVENT_CAPA_K_1;
/* Disable interrupts and save flags. */
spin_lock_irqsave(&lp->spinlock, flags);
/* Attempt to recognise 2.00 cards (2.4 GHz frequency selectable). */
if (!(mmc_in(ioaddr, mmroff(0, mmr_fee_status)) &
(MMR_FEE_STATUS_DWLD | MMR_FEE_STATUS_BUSY))) {
range->num_channels = 10;
range->num_frequency = wv_frequency_list(ioaddr, range->freq,
IW_MAX_FREQUENCIES);
} else
range->num_channels = range->num_frequency = 0;
/* Encryption supported ? */
if (mmc_encr(ioaddr)) {
range->encoding_size[0] = 8; /* DES = 64 bits key */
range->num_encoding_sizes = 1;
range->max_encoding_tokens = 1; /* Only one key possible */
} else {
range->num_encoding_sizes = 0;
range->max_encoding_tokens = 0;
}
/* Enable interrupts and restore flags. */
spin_unlock_irqrestore(&lp->spinlock, flags);
return ret;
}
/*------------------------------------------------------------------*/
/*
* Wireless Private Handler : set quality threshold
*/
static int wavelan_set_qthr(struct net_device *dev,
struct iw_request_info *info,
union iwreq_data *wrqu,
char *extra)
{
unsigned long ioaddr = dev->base_addr;
net_local *lp = netdev_priv(dev); /* lp is not unused */
psa_t psa;
unsigned long flags;
/* Disable interrupts and save flags. */
spin_lock_irqsave(&lp->spinlock, flags);
psa.psa_quality_thr = *(extra) & 0x0F;
psa_write(ioaddr, lp->hacr,
(char *) &psa.psa_quality_thr - (char *) &psa,
(unsigned char *) &psa.psa_quality_thr, 1);
/* update the Wavelan checksum */
update_psa_checksum(dev, ioaddr, lp->hacr);
mmc_out(ioaddr, mmwoff(0, mmw_quality_thr),
psa.psa_quality_thr);
/* Enable interrupts and restore flags. */
spin_unlock_irqrestore(&lp->spinlock, flags);
return 0;
}
/*------------------------------------------------------------------*/
/*
* Wireless Private Handler : get quality threshold
*/
static int wavelan_get_qthr(struct net_device *dev,
struct iw_request_info *info,
union iwreq_data *wrqu,
char *extra)
{
unsigned long ioaddr = dev->base_addr;
net_local *lp = netdev_priv(dev); /* lp is not unused */
psa_t psa;
unsigned long flags;
/* Disable interrupts and save flags. */
spin_lock_irqsave(&lp->spinlock, flags);
psa_read(ioaddr, lp->hacr,
(char *) &psa.psa_quality_thr - (char *) &psa,
(unsigned char *) &psa.psa_quality_thr, 1);
*(extra) = psa.psa_quality_thr & 0x0F;
/* Enable interrupts and restore flags. */
spin_unlock_irqrestore(&lp->spinlock, flags);
return 0;
}
#ifdef HISTOGRAM
/*------------------------------------------------------------------*/
/*
* Wireless Private Handler : set histogram
*/
static int wavelan_set_histo(struct net_device *dev,
struct iw_request_info *info,
union iwreq_data *wrqu,
char *extra)
{
net_local *lp = netdev_priv(dev); /* lp is not unused */
/* Check the number of intervals. */
if (wrqu->data.length > 16) {
return(-E2BIG);
}
/* Disable histo while we copy the addresses.
* As we don't disable interrupts, we need to do this */
lp->his_number = 0;
/* Are there ranges to copy? */
if (wrqu->data.length > 0) {
/* Copy interval ranges to the driver */
memcpy(lp->his_range, extra, wrqu->data.length);
{
int i;
printk(KERN_DEBUG "Histo :");
for(i = 0; i < wrqu->data.length; i++)
printk(" %d", lp->his_range[i]);
printk("\n");
}
/* Reset result structure. */
memset(lp->his_sum, 0x00, sizeof(long) * 16);
}
/* Now we can set the number of ranges */
lp->his_number = wrqu->data.length;
return(0);
}
/*------------------------------------------------------------------*/
/*
* Wireless Private Handler : get histogram
*/
static int wavelan_get_histo(struct net_device *dev,
struct iw_request_info *info,
union iwreq_data *wrqu,
char *extra)
{
net_local *lp = netdev_priv(dev); /* lp is not unused */
/* Set the number of intervals. */
wrqu->data.length = lp->his_number;
/* Give back the distribution statistics */
if(lp->his_number > 0)
memcpy(extra, lp->his_sum, sizeof(long) * lp->his_number);
return(0);
}
#endif /* HISTOGRAM */
/*------------------------------------------------------------------*/
/*
* Structures to export the Wireless Handlers
*/
static const iw_handler wavelan_handler[] =
{
NULL, /* SIOCSIWNAME */
wavelan_get_name, /* SIOCGIWNAME */
wavelan_set_nwid, /* SIOCSIWNWID */
wavelan_get_nwid, /* SIOCGIWNWID */
wavelan_set_freq, /* SIOCSIWFREQ */
wavelan_get_freq, /* SIOCGIWFREQ */
NULL, /* SIOCSIWMODE */
NULL, /* SIOCGIWMODE */
wavelan_set_sens, /* SIOCSIWSENS */
wavelan_get_sens, /* SIOCGIWSENS */
NULL, /* SIOCSIWRANGE */
wavelan_get_range, /* SIOCGIWRANGE */
NULL, /* SIOCSIWPRIV */
NULL, /* SIOCGIWPRIV */
NULL, /* SIOCSIWSTATS */
NULL, /* SIOCGIWSTATS */
iw_handler_set_spy, /* SIOCSIWSPY */
iw_handler_get_spy, /* SIOCGIWSPY */
iw_handler_set_thrspy, /* SIOCSIWTHRSPY */
iw_handler_get_thrspy, /* SIOCGIWTHRSPY */
NULL, /* SIOCSIWAP */
NULL, /* SIOCGIWAP */
NULL, /* -- hole -- */
NULL, /* SIOCGIWAPLIST */
NULL, /* -- hole -- */
NULL, /* -- hole -- */
NULL, /* SIOCSIWESSID */
NULL, /* SIOCGIWESSID */
NULL, /* SIOCSIWNICKN */
NULL, /* SIOCGIWNICKN */
NULL, /* -- hole -- */
NULL, /* -- hole -- */
NULL, /* SIOCSIWRATE */
NULL, /* SIOCGIWRATE */
NULL, /* SIOCSIWRTS */
NULL, /* SIOCGIWRTS */
NULL, /* SIOCSIWFRAG */
NULL, /* SIOCGIWFRAG */
NULL, /* SIOCSIWTXPOW */
NULL, /* SIOCGIWTXPOW */
NULL, /* SIOCSIWRETRY */
NULL, /* SIOCGIWRETRY */
/* Bummer ! Why those are only at the end ??? */
wavelan_set_encode, /* SIOCSIWENCODE */
wavelan_get_encode, /* SIOCGIWENCODE */
};
static const iw_handler wavelan_private_handler[] =
{
wavelan_set_qthr, /* SIOCIWFIRSTPRIV */
wavelan_get_qthr, /* SIOCIWFIRSTPRIV + 1 */
#ifdef HISTOGRAM
wavelan_set_histo, /* SIOCIWFIRSTPRIV + 2 */
wavelan_get_histo, /* SIOCIWFIRSTPRIV + 3 */
#endif /* HISTOGRAM */
};
static const struct iw_priv_args wavelan_private_args[] = {
/*{ cmd, set_args, get_args, name } */
{ SIOCSIPQTHR, IW_PRIV_TYPE_BYTE | IW_PRIV_SIZE_FIXED | 1, 0, "setqualthr" },
{ SIOCGIPQTHR, 0, IW_PRIV_TYPE_BYTE | IW_PRIV_SIZE_FIXED | 1, "getqualthr" },
{ SIOCSIPHISTO, IW_PRIV_TYPE_BYTE | 16, 0, "sethisto" },
{ SIOCGIPHISTO, 0, IW_PRIV_TYPE_INT | 16, "gethisto" },
};
static const struct iw_handler_def wavelan_handler_def =
{
.num_standard = ARRAY_SIZE(wavelan_handler),
.num_private = ARRAY_SIZE(wavelan_private_handler),
.num_private_args = ARRAY_SIZE(wavelan_private_args),
.standard = wavelan_handler,
.private = wavelan_private_handler,
.private_args = wavelan_private_args,
.get_wireless_stats = wavelan_get_wireless_stats,
};
/*------------------------------------------------------------------*/
/*
* Get wireless statistics.
* Called by /proc/net/wireless
*/
static iw_stats *wavelan_get_wireless_stats(struct net_device * dev)
{
unsigned long ioaddr = dev->base_addr;
net_local *lp = netdev_priv(dev);
mmr_t m;
iw_stats *wstats;
unsigned long flags;
#ifdef DEBUG_IOCTL_TRACE
printk(KERN_DEBUG "%s: ->wavelan_get_wireless_stats()\n",
dev->name);
#endif
/* Check */
if (lp == (net_local *) NULL)
return (iw_stats *) NULL;
/* Disable interrupts and save flags. */
spin_lock_irqsave(&lp->spinlock, flags);
wstats = &lp->wstats;
/* Get data from the mmc. */
mmc_out(ioaddr, mmwoff(0, mmw_freeze), 1);
mmc_read(ioaddr, mmroff(0, mmr_dce_status), &m.mmr_dce_status, 1);
mmc_read(ioaddr, mmroff(0, mmr_wrong_nwid_l), &m.mmr_wrong_nwid_l,
2);
mmc_read(ioaddr, mmroff(0, mmr_thr_pre_set), &m.mmr_thr_pre_set,
4);
mmc_out(ioaddr, mmwoff(0, mmw_freeze), 0);
/* Copy data to wireless stuff. */
wstats->status = m.mmr_dce_status & MMR_DCE_STATUS;
wstats->qual.qual = m.mmr_sgnl_qual & MMR_SGNL_QUAL;
wstats->qual.level = m.mmr_signal_lvl & MMR_SIGNAL_LVL;
wstats->qual.noise = m.mmr_silence_lvl & MMR_SILENCE_LVL;
wstats->qual.updated = (((m. mmr_signal_lvl & MMR_SIGNAL_LVL_VALID) >> 7)
| ((m.mmr_signal_lvl & MMR_SIGNAL_LVL_VALID) >> 6)
| ((m.mmr_silence_lvl & MMR_SILENCE_LVL_VALID) >> 5));
wstats->discard.nwid += (m.mmr_wrong_nwid_h << 8) | m.mmr_wrong_nwid_l;
wstats->discard.code = 0L;
wstats->discard.misc = 0L;
/* Enable interrupts and restore flags. */
spin_unlock_irqrestore(&lp->spinlock, flags);
#ifdef DEBUG_IOCTL_TRACE
printk(KERN_DEBUG "%s: <-wavelan_get_wireless_stats()\n",
dev->name);
#endif
return &lp->wstats;
}
/************************* PACKET RECEPTION *************************/
/*
* This part deals with receiving the packets.
* The interrupt handler gets an interrupt when a packet has been
* successfully received and calls this part.
*/
/*------------------------------------------------------------------*/
/*
* This routine does the actual copying of data (including the Ethernet
* header structure) from the WaveLAN card to an sk_buff chain that
* will be passed up to the network interface layer. NOTE: we
* currently don't handle trailer protocols (neither does the rest of
* the network interface), so if that is needed, it will (at least in
* part) be added here. The contents of the receive ring buffer are
* copied to a message chain that is then passed to the kernel.
*
* Note: if any errors occur, the packet is "dropped on the floor".
* (called by wv_packet_rcv())
*/
static void
wv_packet_read(struct net_device * dev, u16 buf_off, int sksize)
{
net_local *lp = netdev_priv(dev);
unsigned long ioaddr = dev->base_addr;
struct sk_buff *skb;
#ifdef DEBUG_RX_TRACE
printk(KERN_DEBUG "%s: ->wv_packet_read(0x%X, %d)\n",
dev->name, buf_off, sksize);
#endif
/* Allocate buffer for the data */
if ((skb = dev_alloc_skb(sksize)) == (struct sk_buff *) NULL) {
#ifdef DEBUG_RX_ERROR
printk(KERN_INFO
"%s: wv_packet_read(): could not alloc_skb(%d, GFP_ATOMIC).\n",
dev->name, sksize);
#endif
dev->stats.rx_dropped++;
return;
}
/* Copy the packet to the buffer. */
obram_read(ioaddr, buf_off, skb_put(skb, sksize), sksize);
skb->protocol = eth_type_trans(skb, dev);
#ifdef DEBUG_RX_INFO
wv_packet_info(skb_mac_header(skb), sksize, dev->name,
"wv_packet_read");
#endif /* DEBUG_RX_INFO */
/* Statistics-gathering and associated stuff.
* It seem a bit messy with all the define, but it's really
* simple... */
if (
#ifdef IW_WIRELESS_SPY /* defined in iw_handler.h */
(lp->spy_data.spy_number > 0) ||
#endif /* IW_WIRELESS_SPY */
#ifdef HISTOGRAM
(lp->his_number > 0) ||
#endif /* HISTOGRAM */
0) {
u8 stats[3]; /* signal level, noise level, signal quality */
/* Read signal level, silence level and signal quality bytes */
/* Note: in the PCMCIA hardware, these are part of the frame.
* It seems that for the ISA hardware, it's nowhere to be
* found in the frame, so I'm obliged to do this (it has a
* side effect on /proc/net/wireless).
* Any ideas?
*/
mmc_out(ioaddr, mmwoff(0, mmw_freeze), 1);
mmc_read(ioaddr, mmroff(0, mmr_signal_lvl), stats, 3);
mmc_out(ioaddr, mmwoff(0, mmw_freeze), 0);
#ifdef DEBUG_RX_INFO
printk(KERN_DEBUG
"%s: wv_packet_read(): Signal level %d/63, Silence level %d/63, signal quality %d/16\n",
dev->name, stats[0] & 0x3F, stats[1] & 0x3F,
stats[2] & 0x0F);
#endif
/* Spying stuff */
#ifdef IW_WIRELESS_SPY
wl_spy_gather(dev, skb_mac_header(skb) + WAVELAN_ADDR_SIZE,
stats);
#endif /* IW_WIRELESS_SPY */
#ifdef HISTOGRAM
wl_his_gather(dev, stats);
#endif /* HISTOGRAM */
}
/*
* Hand the packet to the network module.
*/
netif_rx(skb);
/* Keep statistics up to date */
dev->stats.rx_packets++;
dev->stats.rx_bytes += sksize;
#ifdef DEBUG_RX_TRACE
printk(KERN_DEBUG "%s: <-wv_packet_read()\n", dev->name);
#endif
}
/*------------------------------------------------------------------*/
/*
* Transfer as many packets as we can
* from the device RAM.
* (called in wavelan_interrupt()).
* Note : the spinlock is already grabbed for us.
*/
static void wv_receive(struct net_device * dev)
{
unsigned long ioaddr = dev->base_addr;
net_local *lp = netdev_priv(dev);
fd_t fd;
rbd_t rbd;
int nreaped = 0;
#ifdef DEBUG_RX_TRACE
printk(KERN_DEBUG "%s: ->wv_receive()\n", dev->name);
#endif
/* Loop on each received packet. */
for (;;) {
obram_read(ioaddr, lp->rx_head, (unsigned char *) &fd,
sizeof(fd));
/* Note about the status :
* It start up to be 0 (the value we set). Then, when the RU
* grab the buffer to prepare for reception, it sets the
* FD_STATUS_B flag. When the RU has finished receiving the
* frame, it clears FD_STATUS_B, set FD_STATUS_C to indicate
* completion and set the other flags to indicate the eventual
* errors. FD_STATUS_OK indicates that the reception was OK.
*/
/* If the current frame is not complete, we have reached the end. */
if ((fd.fd_status & FD_STATUS_C) != FD_STATUS_C)
break; /* This is how we exit the loop. */
nreaped++;
/* Check whether frame was correctly received. */
if ((fd.fd_status & FD_STATUS_OK) == FD_STATUS_OK) {
/* Does the frame contain a pointer to the data? Let's check. */
if (fd.fd_rbd_offset != I82586NULL) {
/* Read the receive buffer descriptor */
obram_read(ioaddr, fd.fd_rbd_offset,
(unsigned char *) &rbd,
sizeof(rbd));
#ifdef DEBUG_RX_ERROR
if ((rbd.rbd_status & RBD_STATUS_EOF) !=
RBD_STATUS_EOF) printk(KERN_INFO
"%s: wv_receive(): missing EOF flag.\n",
dev->name);
if ((rbd.rbd_status & RBD_STATUS_F) !=
RBD_STATUS_F) printk(KERN_INFO
"%s: wv_receive(): missing F flag.\n",
dev->name);
#endif /* DEBUG_RX_ERROR */
/* Read the packet and transmit to Linux */
wv_packet_read(dev, rbd.rbd_bufl,
rbd.
rbd_status &
RBD_STATUS_ACNT);
}
#ifdef DEBUG_RX_ERROR
else /* if frame has no data */
printk(KERN_INFO
"%s: wv_receive(): frame has no data.\n",
dev->name);
#endif
} else { /* If reception was no successful */
dev->stats.rx_errors++;
#ifdef DEBUG_RX_INFO
printk(KERN_DEBUG
"%s: wv_receive(): frame not received successfully (%X).\n",
dev->name, fd.fd_status);
#endif
#ifdef DEBUG_RX_ERROR
if ((fd.fd_status & FD_STATUS_S6) != 0)
printk(KERN_INFO
"%s: wv_receive(): no EOF flag.\n",
dev->name);
#endif
if ((fd.fd_status & FD_STATUS_S7) != 0) {
dev->stats.rx_length_errors++;
#ifdef DEBUG_RX_FAIL
printk(KERN_DEBUG
"%s: wv_receive(): frame too short.\n",
dev->name);
#endif
}
if ((fd.fd_status & FD_STATUS_S8) != 0) {
dev->stats.rx_over_errors++;
#ifdef DEBUG_RX_FAIL
printk(KERN_DEBUG
"%s: wv_receive(): rx DMA overrun.\n",
dev->name);
#endif
}
if ((fd.fd_status & FD_STATUS_S9) != 0) {
dev->stats.rx_fifo_errors++;
#ifdef DEBUG_RX_FAIL
printk(KERN_DEBUG
"%s: wv_receive(): ran out of resources.\n",
dev->name);
#endif
}
if ((fd.fd_status & FD_STATUS_S10) != 0) {
dev->stats.rx_frame_errors++;
#ifdef DEBUG_RX_FAIL
printk(KERN_DEBUG
"%s: wv_receive(): alignment error.\n",
dev->name);
#endif
}
if ((fd.fd_status & FD_STATUS_S11) != 0) {
dev->stats.rx_crc_errors++;
#ifdef DEBUG_RX_FAIL
printk(KERN_DEBUG
"%s: wv_receive(): CRC error.\n",
dev->name);
#endif
}
}
fd.fd_status = 0;
obram_write(ioaddr, fdoff(lp->rx_head, fd_status),
(unsigned char *) &fd.fd_status,
sizeof(fd.fd_status));
fd.fd_command = FD_COMMAND_EL;
obram_write(ioaddr, fdoff(lp->rx_head, fd_command),
(unsigned char *) &fd.fd_command,
sizeof(fd.fd_command));
fd.fd_command = 0;
obram_write(ioaddr, fdoff(lp->rx_last, fd_command),
(unsigned char *) &fd.fd_command,
sizeof(fd.fd_command));
lp->rx_last = lp->rx_head;
lp->rx_head = fd.fd_link_offset;
} /* for(;;) -> loop on all frames */
#ifdef DEBUG_RX_INFO
if (nreaped > 1)
printk(KERN_DEBUG "%s: wv_receive(): reaped %d\n",
dev->name, nreaped);
#endif
#ifdef DEBUG_RX_TRACE
printk(KERN_DEBUG "%s: <-wv_receive()\n", dev->name);
#endif
}
/*********************** PACKET TRANSMISSION ***********************/
/*
* This part deals with sending packets through the WaveLAN.
*
*/
/*------------------------------------------------------------------*/
/*
* This routine fills in the appropriate registers and memory
* locations on the WaveLAN card and starts the card off on
* the transmit.
*
* The principle:
* Each block contains a transmit command, a NOP command,
* a transmit block descriptor and a buffer.
* The CU read the transmit block which point to the tbd,
* read the tbd and the content of the buffer.
* When it has finish with it, it goes to the next command
* which in our case is the NOP. The NOP points on itself,
* so the CU stop here.
* When we add the next block, we modify the previous nop
* to make it point on the new tx command.
* Simple, isn't it ?
*
* (called in wavelan_packet_xmit())
*/
static int wv_packet_write(struct net_device * dev, void *buf, short length)
{
net_local *lp = netdev_priv(dev);
unsigned long ioaddr = dev->base_addr;
unsigned short txblock;
unsigned short txpred;
unsigned short tx_addr;
unsigned short nop_addr;
unsigned short tbd_addr;
unsigned short buf_addr;
ac_tx_t tx;
ac_nop_t nop;
tbd_t tbd;
int clen = length;
unsigned long flags;
#ifdef DEBUG_TX_TRACE
printk(KERN_DEBUG "%s: ->wv_packet_write(%d)\n", dev->name,
length);
#endif
spin_lock_irqsave(&lp->spinlock, flags);
/* Check nothing bad has happened */
if (lp->tx_n_in_use == (NTXBLOCKS - 1)) {
#ifdef DEBUG_TX_ERROR
printk(KERN_INFO "%s: wv_packet_write(): Tx queue full.\n",
dev->name);
#endif
spin_unlock_irqrestore(&lp->spinlock, flags);
return 1;
}
/* Calculate addresses of next block and previous block. */
txblock = lp->tx_first_free;
txpred = txblock - TXBLOCKZ;
if (txpred < OFFSET_CU)
txpred += NTXBLOCKS * TXBLOCKZ;
lp->tx_first_free += TXBLOCKZ;
if (lp->tx_first_free >= OFFSET_CU + NTXBLOCKS * TXBLOCKZ)
lp->tx_first_free -= NTXBLOCKS * TXBLOCKZ;
lp->tx_n_in_use++;
/* Calculate addresses of the different parts of the block. */
tx_addr = txblock;
nop_addr = tx_addr + sizeof(tx);
tbd_addr = nop_addr + sizeof(nop);
buf_addr = tbd_addr + sizeof(tbd);
/*
* Transmit command
*/
tx.tx_h.ac_status = 0;
obram_write(ioaddr, toff(ac_tx_t, tx_addr, tx_h.ac_status),
(unsigned char *) &tx.tx_h.ac_status,
sizeof(tx.tx_h.ac_status));
/*
* NOP command
*/
nop.nop_h.ac_status = 0;
obram_write(ioaddr, toff(ac_nop_t, nop_addr, nop_h.ac_status),
(unsigned char *) &nop.nop_h.ac_status,
sizeof(nop.nop_h.ac_status));
nop.nop_h.ac_link = nop_addr;
obram_write(ioaddr, toff(ac_nop_t, nop_addr, nop_h.ac_link),
(unsigned char *) &nop.nop_h.ac_link,
sizeof(nop.nop_h.ac_link));
/*
* Transmit buffer descriptor
*/
tbd.tbd_status = TBD_STATUS_EOF | (TBD_STATUS_ACNT & clen);
tbd.tbd_next_bd_offset = I82586NULL;
tbd.tbd_bufl = buf_addr;
tbd.tbd_bufh = 0;
obram_write(ioaddr, tbd_addr, (unsigned char *) &tbd, sizeof(tbd));
/*
* Data
*/
obram_write(ioaddr, buf_addr, buf, length);
/*
* Overwrite the predecessor NOP link
* so that it points to this txblock.
*/
nop_addr = txpred + sizeof(tx);
nop.nop_h.ac_status = 0;
obram_write(ioaddr, toff(ac_nop_t, nop_addr, nop_h.ac_status),
(unsigned char *) &nop.nop_h.ac_status,
sizeof(nop.nop_h.ac_status));
nop.nop_h.ac_link = txblock;
obram_write(ioaddr, toff(ac_nop_t, nop_addr, nop_h.ac_link),
(unsigned char *) &nop.nop_h.ac_link,
sizeof(nop.nop_h.ac_link));
/* Make sure the watchdog will keep quiet for a while */
dev->trans_start = jiffies;
/* Keep stats up to date. */
dev->stats.tx_bytes += length;
if (lp->tx_first_in_use == I82586NULL)
lp->tx_first_in_use = txblock;
if (lp->tx_n_in_use < NTXBLOCKS - 1)
netif_wake_queue(dev);
spin_unlock_irqrestore(&lp->spinlock, flags);
#ifdef DEBUG_TX_INFO
wv_packet_info((u8 *) buf, length, dev->name,
"wv_packet_write");
#endif /* DEBUG_TX_INFO */
#ifdef DEBUG_TX_TRACE
printk(KERN_DEBUG "%s: <-wv_packet_write()\n", dev->name);
#endif
return 0;
}
/*------------------------------------------------------------------*/
/*
* This routine is called when we want to send a packet (NET3 callback)
* In this routine, we check if the harware is ready to accept
* the packet. We also prevent reentrance. Then we call the function
* to send the packet.
*/
static netdev_tx_t wavelan_packet_xmit(struct sk_buff *skb,
struct net_device * dev)
{
net_local *lp = netdev_priv(dev);
unsigned long flags;
char data[ETH_ZLEN];
#ifdef DEBUG_TX_TRACE
printk(KERN_DEBUG "%s: ->wavelan_packet_xmit(0x%X)\n", dev->name,
(unsigned) skb);
#endif
/*
* Block a timer-based transmit from overlapping.
* In other words, prevent reentering this routine.
*/
netif_stop_queue(dev);
/* If somebody has asked to reconfigure the controller,
* we can do it now.
*/
if (lp->reconfig_82586) {
spin_lock_irqsave(&lp->spinlock, flags);
wv_82586_config(dev);
spin_unlock_irqrestore(&lp->spinlock, flags);
/* Check that we can continue */
if (lp->tx_n_in_use == (NTXBLOCKS - 1))
return NETDEV_TX_BUSY;
}
/* Do we need some padding? */
/* Note : on wireless the propagation time is in the order of 1us,
* and we don't have the Ethernet specific requirement of beeing
* able to detect collisions, therefore in theory we don't really
* need to pad. Jean II */
if (skb->len < ETH_ZLEN) {
memset(data, 0, ETH_ZLEN);
skb_copy_from_linear_data(skb, data, skb->len);
/* Write packet on the card */
if(wv_packet_write(dev, data, ETH_ZLEN))
return NETDEV_TX_BUSY; /* We failed */
}
else if(wv_packet_write(dev, skb->data, skb->len))
return NETDEV_TX_BUSY; /* We failed */
dev_kfree_skb(skb);
#ifdef DEBUG_TX_TRACE
printk(KERN_DEBUG "%s: <-wavelan_packet_xmit()\n", dev->name);
#endif
return NETDEV_TX_OK;
}
/*********************** HARDWARE CONFIGURATION ***********************/
/*
* This part does the real job of starting and configuring the hardware.
*/
/*--------------------------------------------------------------------*/
/*
* Routine to initialize the Modem Management Controller.
* (called by wv_hw_reset())
*/
static int wv_mmc_init(struct net_device * dev)
{
unsigned long ioaddr = dev->base_addr;
net_local *lp = netdev_priv(dev);
psa_t psa;
mmw_t m;
int configured;
#ifdef DEBUG_CONFIG_TRACE
printk(KERN_DEBUG "%s: ->wv_mmc_init()\n", dev->name);
#endif
/* Read the parameter storage area. */
psa_read(ioaddr, lp->hacr, 0, (unsigned char *) &psa, sizeof(psa));
#ifdef USE_PSA_CONFIG
configured = psa.psa_conf_status & 1;
#else
configured = 0;
#endif
/* Is the PSA is not configured */
if (!configured) {
/* User will be able to configure NWID later (with iwconfig). */
psa.psa_nwid[0] = 0;
psa.psa_nwid[1] = 0;
/* no NWID checking since NWID is not set */
psa.psa_nwid_select = 0;
/* Disable encryption */
psa.psa_encryption_select = 0;
/* Set to standard values:
* 0x04 for AT,
* 0x01 for MCA,
* 0x04 for PCMCIA and 2.00 card (AT&T 407-024689/E document)
*/
if (psa.psa_comp_number & 1)
psa.psa_thr_pre_set = 0x01;
else
psa.psa_thr_pre_set = 0x04;
psa.psa_quality_thr = 0x03;
/* It is configured */
psa.psa_conf_status |= 1;
#ifdef USE_PSA_CONFIG
/* Write the psa. */
psa_write(ioaddr, lp->hacr,
(char *) psa.psa_nwid - (char *) &psa,
(unsigned char *) psa.psa_nwid, 4);
psa_write(ioaddr, lp->hacr,
(char *) &psa.psa_thr_pre_set - (char *) &psa,
(unsigned char *) &psa.psa_thr_pre_set, 1);
psa_write(ioaddr, lp->hacr,
(char *) &psa.psa_quality_thr - (char *) &psa,
(unsigned char *) &psa.psa_quality_thr, 1);
psa_write(ioaddr, lp->hacr,
(char *) &psa.psa_conf_status - (char *) &psa,
(unsigned char *) &psa.psa_conf_status, 1);
/* update the Wavelan checksum */
update_psa_checksum(dev, ioaddr, lp->hacr);
#endif
}
/* Zero the mmc structure. */
memset(&m, 0x00, sizeof(m));
/* Copy PSA info to the mmc. */
m.mmw_netw_id_l = psa.psa_nwid[1];
m.mmw_netw_id_h = psa.psa_nwid[0];
if (psa.psa_nwid_select & 1)
m.mmw_loopt_sel = 0x00;
else
m.mmw_loopt_sel = MMW_LOOPT_SEL_DIS_NWID;
memcpy(&m.mmw_encr_key, &psa.psa_encryption_key,
sizeof(m.mmw_encr_key));
if (psa.psa_encryption_select)
m.mmw_encr_enable =
MMW_ENCR_ENABLE_EN | MMW_ENCR_ENABLE_MODE;
else
m.mmw_encr_enable = 0;
m.mmw_thr_pre_set = psa.psa_thr_pre_set & 0x3F;
m.mmw_quality_thr = psa.psa_quality_thr & 0x0F;
/*
* Set default modem control parameters.
* See NCR document 407-0024326 Rev. A.
*/
m.mmw_jabber_enable = 0x01;
m.mmw_freeze = 0;
m.mmw_anten_sel = MMW_ANTEN_SEL_ALG_EN;
m.mmw_ifs = 0x20;
m.mmw_mod_delay = 0x04;
m.mmw_jam_time = 0x38;
m.mmw_des_io_invert = 0;
m.mmw_decay_prm = 0;
m.mmw_decay_updat_prm = 0;
/* Write all info to MMC. */
mmc_write(ioaddr, 0, (u8 *) & m, sizeof(m));
/* The following code starts the modem of the 2.00 frequency
* selectable cards at power on. It's not strictly needed for the
* following boots.
* The original patch was by Joe Finney for the PCMCIA driver, but
* I've cleaned it up a bit and added documentation.
* Thanks to Loeke Brederveld from Lucent for the info.
*/
/* Attempt to recognise 2.00 cards (2.4 GHz frequency selectable)
* Does it work for everybody, especially old cards? */
/* Note: WFREQSEL verifies that it is able to read a sensible
* frequency from EEPROM (address 0x00) and that MMR_FEE_STATUS_ID
* is 0xA (Xilinx version) or 0xB (Ariadne version).
* My test is more crude but does work. */
if (!(mmc_in(ioaddr, mmroff(0, mmr_fee_status)) &
(MMR_FEE_STATUS_DWLD | MMR_FEE_STATUS_BUSY))) {
/* We must download the frequency parameters to the
* synthesizers (from the EEPROM - area 1)
* Note: as the EEPROM is automatically decremented, we set the end
* if the area... */
m.mmw_fee_addr = 0x0F;
m.mmw_fee_ctrl = MMW_FEE_CTRL_READ | MMW_FEE_CTRL_DWLD;
mmc_write(ioaddr, (char *) &m.mmw_fee_ctrl - (char *) &m,
(unsigned char *) &m.mmw_fee_ctrl, 2);
/* Wait until the download is finished. */
fee_wait(ioaddr, 100, 100);
#ifdef DEBUG_CONFIG_INFO
/* The frequency was in the last word downloaded. */
mmc_read(ioaddr, (char *) &m.mmw_fee_data_l - (char *) &m,
(unsigned char *) &m.mmw_fee_data_l, 2);
/* Print some info for the user. */
printk(KERN_DEBUG
"%s: WaveLAN 2.00 recognised (frequency select). Current frequency = %ld\n",
dev->name,
((m.
mmw_fee_data_h << 4) | (m.mmw_fee_data_l >> 4)) *
5 / 2 + 24000L);
#endif
/* We must now download the power adjust value (gain) to
* the synthesizers (from the EEPROM - area 7 - DAC). */
m.mmw_fee_addr = 0x61;
m.mmw_fee_ctrl = MMW_FEE_CTRL_READ | MMW_FEE_CTRL_DWLD;
mmc_write(ioaddr, (char *) &m.mmw_fee_ctrl - (char *) &m,
(unsigned char *) &m.mmw_fee_ctrl, 2);
/* Wait until the download is finished. */
}
/* if 2.00 card */
#ifdef DEBUG_CONFIG_TRACE
printk(KERN_DEBUG "%s: <-wv_mmc_init()\n", dev->name);
#endif
return 0;
}
/*------------------------------------------------------------------*/
/*
* Construct the fd and rbd structures.
* Start the receive unit.
* (called by wv_hw_reset())
*/
static int wv_ru_start(struct net_device * dev)
{
net_local *lp = netdev_priv(dev);
unsigned long ioaddr = dev->base_addr;
u16 scb_cs;
fd_t fd;
rbd_t rbd;
u16 rx;
u16 rx_next;
int i;
#ifdef DEBUG_CONFIG_TRACE
printk(KERN_DEBUG "%s: ->wv_ru_start()\n", dev->name);
#endif
obram_read(ioaddr, scboff(OFFSET_SCB, scb_status),
(unsigned char *) &scb_cs, sizeof(scb_cs));
if ((scb_cs & SCB_ST_RUS) == SCB_ST_RUS_RDY)
return 0;
lp->rx_head = OFFSET_RU;
for (i = 0, rx = lp->rx_head; i < NRXBLOCKS; i++, rx = rx_next) {
rx_next =
(i == NRXBLOCKS - 1) ? lp->rx_head : rx + RXBLOCKZ;
fd.fd_status = 0;
fd.fd_command = (i == NRXBLOCKS - 1) ? FD_COMMAND_EL : 0;
fd.fd_link_offset = rx_next;
fd.fd_rbd_offset = rx + sizeof(fd);
obram_write(ioaddr, rx, (unsigned char *) &fd, sizeof(fd));
rbd.rbd_status = 0;
rbd.rbd_next_rbd_offset = I82586NULL;
rbd.rbd_bufl = rx + sizeof(fd) + sizeof(rbd);
rbd.rbd_bufh = 0;
rbd.rbd_el_size = RBD_EL | (RBD_SIZE & MAXDATAZ);
obram_write(ioaddr, rx + sizeof(fd),
(unsigned char *) &rbd, sizeof(rbd));
lp->rx_last = rx;
}
obram_write(ioaddr, scboff(OFFSET_SCB, scb_rfa_offset),
(unsigned char *) &lp->rx_head, sizeof(lp->rx_head));
scb_cs = SCB_CMD_RUC_GO;
obram_write(ioaddr, scboff(OFFSET_SCB, scb_command),
(unsigned char *) &scb_cs, sizeof(scb_cs));
set_chan_attn(ioaddr, lp->hacr);
for (i = 1000; i > 0; i--) {
obram_read(ioaddr, scboff(OFFSET_SCB, scb_command),
(unsigned char *) &scb_cs, sizeof(scb_cs));
if (scb_cs == 0)
break;
udelay(10);
}
if (i <= 0) {
#ifdef DEBUG_CONFIG_ERROR
printk(KERN_INFO
"%s: wavelan_ru_start(): board not accepting command.\n",
dev->name);
#endif
return -1;
}
#ifdef DEBUG_CONFIG_TRACE
printk(KERN_DEBUG "%s: <-wv_ru_start()\n", dev->name);
#endif
return 0;
}
/*------------------------------------------------------------------*/
/*
* Initialise the transmit blocks.
* Start the command unit executing the NOP
* self-loop of the first transmit block.
*
* Here we create the list of send buffers used to transmit packets
* between the PC and the command unit. For each buffer, we create a
* buffer descriptor (pointing on the buffer), a transmit command
* (pointing to the buffer descriptor) and a NOP command.
* The transmit command is linked to the NOP, and the NOP to itself.
* When we will have finished executing the transmit command, we will
* then loop on the NOP. By releasing the NOP link to a new command,
* we may send another buffer.
*
* (called by wv_hw_reset())
*/
static int wv_cu_start(struct net_device * dev)
{
net_local *lp = netdev_priv(dev);
unsigned long ioaddr = dev->base_addr;
int i;
u16 txblock;
u16 first_nop;
u16 scb_cs;
#ifdef DEBUG_CONFIG_TRACE
printk(KERN_DEBUG "%s: ->wv_cu_start()\n", dev->name);
#endif
lp->tx_first_free = OFFSET_CU;
lp->tx_first_in_use = I82586NULL;
for (i = 0, txblock = OFFSET_CU;
i < NTXBLOCKS; i++, txblock += TXBLOCKZ) {
ac_tx_t tx;
ac_nop_t nop;
tbd_t tbd;
unsigned short tx_addr;
unsigned short nop_addr;
unsigned short tbd_addr;
unsigned short buf_addr;
tx_addr = txblock;
nop_addr = tx_addr + sizeof(tx);
tbd_addr = nop_addr + sizeof(nop);
buf_addr = tbd_addr + sizeof(tbd);
tx.tx_h.ac_status = 0;
tx.tx_h.ac_command = acmd_transmit | AC_CFLD_I;
tx.tx_h.ac_link = nop_addr;
tx.tx_tbd_offset = tbd_addr;
obram_write(ioaddr, tx_addr, (unsigned char *) &tx,
sizeof(tx));
nop.nop_h.ac_status = 0;
nop.nop_h.ac_command = acmd_nop;
nop.nop_h.ac_link = nop_addr;
obram_write(ioaddr, nop_addr, (unsigned char *) &nop,
sizeof(nop));
tbd.tbd_status = TBD_STATUS_EOF;
tbd.tbd_next_bd_offset = I82586NULL;
tbd.tbd_bufl = buf_addr;
tbd.tbd_bufh = 0;
obram_write(ioaddr, tbd_addr, (unsigned char *) &tbd,
sizeof(tbd));
}
first_nop =
OFFSET_CU + (NTXBLOCKS - 1) * TXBLOCKZ + sizeof(ac_tx_t);
obram_write(ioaddr, scboff(OFFSET_SCB, scb_cbl_offset),
(unsigned char *) &first_nop, sizeof(first_nop));
scb_cs = SCB_CMD_CUC_GO;
obram_write(ioaddr, scboff(OFFSET_SCB, scb_command),
(unsigned char *) &scb_cs, sizeof(scb_cs));
set_chan_attn(ioaddr, lp->hacr);
for (i = 1000; i > 0; i--) {
obram_read(ioaddr, scboff(OFFSET_SCB, scb_command),
(unsigned char *) &scb_cs, sizeof(scb_cs));
if (scb_cs == 0)
break;
udelay(10);
}
if (i <= 0) {
#ifdef DEBUG_CONFIG_ERROR
printk(KERN_INFO
"%s: wavelan_cu_start(): board not accepting command.\n",
dev->name);
#endif
return -1;
}
lp->tx_n_in_use = 0;
netif_start_queue(dev);
#ifdef DEBUG_CONFIG_TRACE
printk(KERN_DEBUG "%s: <-wv_cu_start()\n", dev->name);
#endif
return 0;
}
/*------------------------------------------------------------------*/
/*
* This routine does a standard configuration of the WaveLAN
* controller (i82586).
*
* It initialises the scp, iscp and scb structure
* The first two are just pointers to the next.
* The last one is used for basic configuration and for basic
* communication (interrupt status).
*
* (called by wv_hw_reset())
*/
static int wv_82586_start(struct net_device * dev)
{
net_local *lp = netdev_priv(dev);
unsigned long ioaddr = dev->base_addr;
scp_t scp; /* system configuration pointer */
iscp_t iscp; /* intermediate scp */
scb_t scb; /* system control block */
ach_t cb; /* Action command header */
u8 zeroes[512];
int i;
#ifdef DEBUG_CONFIG_TRACE
printk(KERN_DEBUG "%s: ->wv_82586_start()\n", dev->name);
#endif
/*
* Clear the onboard RAM.
*/
memset(&zeroes[0], 0x00, sizeof(zeroes));
for (i = 0; i < I82586_MEMZ; i += sizeof(zeroes))
obram_write(ioaddr, i, &zeroes[0], sizeof(zeroes));
/*
* Construct the command unit structures:
* scp, iscp, scb, cb.
*/
memset(&scp, 0x00, sizeof(scp));
scp.scp_sysbus = SCP_SY_16BBUS;
scp.scp_iscpl = OFFSET_ISCP;
obram_write(ioaddr, OFFSET_SCP, (unsigned char *) &scp,
sizeof(scp));
memset(&iscp, 0x00, sizeof(iscp));
iscp.iscp_busy = 1;
iscp.iscp_offset = OFFSET_SCB;
obram_write(ioaddr, OFFSET_ISCP, (unsigned char *) &iscp,
sizeof(iscp));
/* Our first command is to reset the i82586. */
memset(&scb, 0x00, sizeof(scb));
scb.scb_command = SCB_CMD_RESET;
scb.scb_cbl_offset = OFFSET_CU;
scb.scb_rfa_offset = OFFSET_RU;
obram_write(ioaddr, OFFSET_SCB, (unsigned char *) &scb,
sizeof(scb));
set_chan_attn(ioaddr, lp->hacr);
/* Wait for command to finish. */
for (i = 1000; i > 0; i--) {
obram_read(ioaddr, OFFSET_ISCP, (unsigned char *) &iscp,
sizeof(iscp));
if (iscp.iscp_busy == (unsigned short) 0)
break;
udelay(10);
}
if (i <= 0) {
#ifdef DEBUG_CONFIG_ERROR
printk(KERN_INFO
"%s: wv_82586_start(): iscp_busy timeout.\n",
dev->name);
#endif
return -1;
}
/* Check command completion. */
for (i = 15; i > 0; i--) {
obram_read(ioaddr, OFFSET_SCB, (unsigned char *) &scb,
sizeof(scb));
if (scb.scb_status == (SCB_ST_CX | SCB_ST_CNA))
break;
udelay(10);
}
if (i <= 0) {
#ifdef DEBUG_CONFIG_ERROR
printk(KERN_INFO
"%s: wv_82586_start(): status: expected 0x%02x, got 0x%02x.\n",
dev->name, SCB_ST_CX | SCB_ST_CNA, scb.scb_status);
#endif
return -1;
}
wv_ack(dev);
/* Set the action command header. */
memset(&cb, 0x00, sizeof(cb));
cb.ac_command = AC_CFLD_EL | (AC_CFLD_CMD & acmd_diagnose);
cb.ac_link = OFFSET_CU;
obram_write(ioaddr, OFFSET_CU, (unsigned char *) &cb, sizeof(cb));
if (wv_synchronous_cmd(dev, "diag()") == -1)
return -1;
obram_read(ioaddr, OFFSET_CU, (unsigned char *) &cb, sizeof(cb));
if (cb.ac_status & AC_SFLD_FAIL) {
#ifdef DEBUG_CONFIG_ERROR
printk(KERN_INFO
"%s: wv_82586_start(): i82586 Self Test failed.\n",
dev->name);
#endif
return -1;
}
#ifdef DEBUG_I82586_SHOW
wv_scb_show(ioaddr);
#endif
#ifdef DEBUG_CONFIG_TRACE
printk(KERN_DEBUG "%s: <-wv_82586_start()\n", dev->name);
#endif
return 0;
}
/*------------------------------------------------------------------*/
/*
* This routine does a standard configuration of the WaveLAN
* controller (i82586).
*
* This routine is a violent hack. We use the first free transmit block
* to make our configuration. In the buffer area, we create the three
* configuration commands (linked). We make the previous NOP point to
* the beginning of the buffer instead of the tx command. After, we go
* as usual to the NOP command.
* Note that only the last command (mc_set) will generate an interrupt.
*
* (called by wv_hw_reset(), wv_82586_reconfig(), wavelan_packet_xmit())
*/
static void wv_82586_config(struct net_device * dev)
{
net_local *lp = netdev_priv(dev);
unsigned long ioaddr = dev->base_addr;
unsigned short txblock;
unsigned short txpred;
unsigned short tx_addr;
unsigned short nop_addr;
unsigned short tbd_addr;
unsigned short cfg_addr;
unsigned short ias_addr;
unsigned short mcs_addr;
ac_tx_t tx;
ac_nop_t nop;
ac_cfg_t cfg; /* Configure action */
ac_ias_t ias; /* IA-setup action */
ac_mcs_t mcs; /* Multicast setup */
struct dev_mc_list *dmi;
#ifdef DEBUG_CONFIG_TRACE
printk(KERN_DEBUG "%s: ->wv_82586_config()\n", dev->name);
#endif
/* Check nothing bad has happened */
if (lp->tx_n_in_use == (NTXBLOCKS - 1)) {
#ifdef DEBUG_CONFIG_ERROR
printk(KERN_INFO "%s: wv_82586_config(): Tx queue full.\n",
dev->name);
#endif
return;
}
/* Calculate addresses of next block and previous block. */
txblock = lp->tx_first_free;
txpred = txblock - TXBLOCKZ;
if (txpred < OFFSET_CU)
txpred += NTXBLOCKS * TXBLOCKZ;
lp->tx_first_free += TXBLOCKZ;
if (lp->tx_first_free >= OFFSET_CU + NTXBLOCKS * TXBLOCKZ)
lp->tx_first_free -= NTXBLOCKS * TXBLOCKZ;
lp->tx_n_in_use++;
/* Calculate addresses of the different parts of the block. */
tx_addr = txblock;
nop_addr = tx_addr + sizeof(tx);
tbd_addr = nop_addr + sizeof(nop);
cfg_addr = tbd_addr + sizeof(tbd_t); /* beginning of the buffer */
ias_addr = cfg_addr + sizeof(cfg);
mcs_addr = ias_addr + sizeof(ias);
/*
* Transmit command
*/
tx.tx_h.ac_status = 0xFFFF; /* Fake completion value */
obram_write(ioaddr, toff(ac_tx_t, tx_addr, tx_h.ac_status),
(unsigned char *) &tx.tx_h.ac_status,
sizeof(tx.tx_h.ac_status));
/*
* NOP command
*/
nop.nop_h.ac_status = 0;
obram_write(ioaddr, toff(ac_nop_t, nop_addr, nop_h.ac_status),
(unsigned char *) &nop.nop_h.ac_status,
sizeof(nop.nop_h.ac_status));
nop.nop_h.ac_link = nop_addr;
obram_write(ioaddr, toff(ac_nop_t, nop_addr, nop_h.ac_link),
(unsigned char *) &nop.nop_h.ac_link,
sizeof(nop.nop_h.ac_link));
/* Create a configure action. */
memset(&cfg, 0x00, sizeof(cfg));
/*
* For Linux we invert AC_CFG_ALOC() so as to conform
* to the way that net packets reach us from above.
* (See also ac_tx_t.)
*
* Updated from Wavelan Manual WCIN085B
*/
cfg.cfg_byte_cnt =
AC_CFG_BYTE_CNT(sizeof(ac_cfg_t) - sizeof(ach_t));
cfg.cfg_fifolim = AC_CFG_FIFOLIM(4);
cfg.cfg_byte8 = AC_CFG_SAV_BF(1) | AC_CFG_SRDY(0);
cfg.cfg_byte9 = AC_CFG_ELPBCK(0) |
AC_CFG_ILPBCK(0) |
AC_CFG_PRELEN(AC_CFG_PLEN_2) |
AC_CFG_ALOC(1) | AC_CFG_ADDRLEN(WAVELAN_ADDR_SIZE);
cfg.cfg_byte10 = AC_CFG_BOFMET(1) |
AC_CFG_ACR(6) | AC_CFG_LINPRIO(0);
cfg.cfg_ifs = 0x20;
cfg.cfg_slotl = 0x0C;
cfg.cfg_byte13 = AC_CFG_RETRYNUM(15) | AC_CFG_SLTTMHI(0);
cfg.cfg_byte14 = AC_CFG_FLGPAD(0) |
AC_CFG_BTSTF(0) |
AC_CFG_CRC16(0) |
AC_CFG_NCRC(0) |
AC_CFG_TNCRS(1) |
AC_CFG_MANCH(0) |
AC_CFG_BCDIS(0) | AC_CFG_PRM(lp->promiscuous);
cfg.cfg_byte15 = AC_CFG_ICDS(0) |
AC_CFG_CDTF(0) | AC_CFG_ICSS(0) | AC_CFG_CSTF(0);
/*
cfg.cfg_min_frm_len = AC_CFG_MNFRM(64);
*/
cfg.cfg_min_frm_len = AC_CFG_MNFRM(8);
cfg.cfg_h.ac_command = (AC_CFLD_CMD & acmd_configure);
cfg.cfg_h.ac_link = ias_addr;
obram_write(ioaddr, cfg_addr, (unsigned char *) &cfg, sizeof(cfg));
/* Set up the MAC address */
memset(&ias, 0x00, sizeof(ias));
ias.ias_h.ac_command = (AC_CFLD_CMD & acmd_ia_setup);
ias.ias_h.ac_link = mcs_addr;
memcpy(&ias.ias_addr[0], (unsigned char *) &dev->dev_addr[0],
sizeof(ias.ias_addr));
obram_write(ioaddr, ias_addr, (unsigned char *) &ias, sizeof(ias));
/* Initialize adapter's Ethernet multicast addresses */
memset(&mcs, 0x00, sizeof(mcs));
mcs.mcs_h.ac_command = AC_CFLD_I | (AC_CFLD_CMD & acmd_mc_setup);
mcs.mcs_h.ac_link = nop_addr;
mcs.mcs_cnt = WAVELAN_ADDR_SIZE * lp->mc_count;
obram_write(ioaddr, mcs_addr, (unsigned char *) &mcs, sizeof(mcs));
/* Any address to set? */
if (lp->mc_count) {
for (dmi = dev->mc_list; dmi; dmi = dmi->next)
outsw(PIOP1(ioaddr), (u16 *) dmi->dmi_addr,
WAVELAN_ADDR_SIZE >> 1);
#ifdef DEBUG_CONFIG_INFO
printk(KERN_DEBUG
"%s: wv_82586_config(): set %d multicast addresses:\n",
dev->name, lp->mc_count);
for (dmi = dev->mc_list; dmi; dmi = dmi->next)
printk(KERN_DEBUG " %pM\n", dmi->dmi_addr);
#endif
}
/*
* Overwrite the predecessor NOP link
* so that it points to the configure action.
*/
nop_addr = txpred + sizeof(tx);
nop.nop_h.ac_status = 0;
obram_write(ioaddr, toff(ac_nop_t, nop_addr, nop_h.ac_status),
(unsigned char *) &nop.nop_h.ac_status,
sizeof(nop.nop_h.ac_status));
nop.nop_h.ac_link = cfg_addr;
obram_write(ioaddr, toff(ac_nop_t, nop_addr, nop_h.ac_link),
(unsigned char *) &nop.nop_h.ac_link,
sizeof(nop.nop_h.ac_link));
/* Job done, clear the flag */
lp->reconfig_82586 = 0;
if (lp->tx_first_in_use == I82586NULL)
lp->tx_first_in_use = txblock;
if (lp->tx_n_in_use == (NTXBLOCKS - 1))
netif_stop_queue(dev);
#ifdef DEBUG_CONFIG_TRACE
printk(KERN_DEBUG "%s: <-wv_82586_config()\n", dev->name);
#endif
}
/*------------------------------------------------------------------*/
/*
* This routine, called by wavelan_close(), gracefully stops the
* WaveLAN controller (i82586).
* (called by wavelan_close())
*/
static void wv_82586_stop(struct net_device * dev)
{
net_local *lp = netdev_priv(dev);
unsigned long ioaddr = dev->base_addr;
u16 scb_cmd;
#ifdef DEBUG_CONFIG_TRACE
printk(KERN_DEBUG "%s: ->wv_82586_stop()\n", dev->name);
#endif
/* Suspend both command unit and receive unit. */
scb_cmd =
(SCB_CMD_CUC & SCB_CMD_CUC_SUS) | (SCB_CMD_RUC &
SCB_CMD_RUC_SUS);
obram_write(ioaddr, scboff(OFFSET_SCB, scb_command),
(unsigned char *) &scb_cmd, sizeof(scb_cmd));
set_chan_attn(ioaddr, lp->hacr);
/* No more interrupts */
wv_ints_off(dev);
#ifdef DEBUG_CONFIG_TRACE
printk(KERN_DEBUG "%s: <-wv_82586_stop()\n", dev->name);
#endif
}
/*------------------------------------------------------------------*/
/*
* Totally reset the WaveLAN and restart it.
* Performs the following actions:
* 1. A power reset (reset DMA)
* 2. Initialize the radio modem (using wv_mmc_init)
* 3. Reset & Configure LAN controller (using wv_82586_start)
* 4. Start the LAN controller's command unit
* 5. Start the LAN controller's receive unit
* (called by wavelan_interrupt(), wavelan_watchdog() & wavelan_open())
*/
static int wv_hw_reset(struct net_device * dev)
{
net_local *lp = netdev_priv(dev);
unsigned long ioaddr = dev->base_addr;
#ifdef DEBUG_CONFIG_TRACE
printk(KERN_DEBUG "%s: ->wv_hw_reset(dev=0x%x)\n", dev->name,
(unsigned int) dev);
#endif
/* Increase the number of resets done. */
lp->nresets++;
wv_hacr_reset(ioaddr);
lp->hacr = HACR_DEFAULT;
if ((wv_mmc_init(dev) < 0) || (wv_82586_start(dev) < 0))
return -1;
/* Enable the card to send interrupts. */
wv_ints_on(dev);
/* Start card functions */
if (wv_cu_start(dev) < 0)
return -1;
/* Setup the controller and parameters */
wv_82586_config(dev);
/* Finish configuration with the receive unit */
if (wv_ru_start(dev) < 0)
return -1;
#ifdef DEBUG_CONFIG_TRACE
printk(KERN_DEBUG "%s: <-wv_hw_reset()\n", dev->name);
#endif
return 0;
}
/*------------------------------------------------------------------*/
/*
* Check if there is a WaveLAN at the specific base address.
* As a side effect, this reads the MAC address.
* (called in wavelan_probe() and init_module())
*/
static int wv_check_ioaddr(unsigned long ioaddr, u8 * mac)
{
int i; /* Loop counter */
/* Check if the base address if available. */
if (!request_region(ioaddr, sizeof(ha_t), "wavelan probe"))
return -EBUSY; /* ioaddr already used */
/* Reset host interface */
wv_hacr_reset(ioaddr);
/* Read the MAC address from the parameter storage area. */
psa_read(ioaddr, HACR_DEFAULT, psaoff(0, psa_univ_mac_addr),
mac, 6);
release_region(ioaddr, sizeof(ha_t));
/*
* Check the first three octets of the address for the manufacturer's code.
* Note: if this can't find your WaveLAN card, you've got a
* non-NCR/AT&T/Lucent ISA card. See wavelan.p.h for detail on
* how to configure your card.
*/
for (i = 0; i < ARRAY_SIZE(MAC_ADDRESSES); i++)
if ((mac[0] == MAC_ADDRESSES[i][0]) &&
(mac[1] == MAC_ADDRESSES[i][1]) &&
(mac[2] == MAC_ADDRESSES[i][2]))
return 0;
#ifdef DEBUG_CONFIG_INFO
printk(KERN_WARNING
"WaveLAN (0x%3X): your MAC address might be %02X:%02X:%02X.\n",
ioaddr, mac[0], mac[1], mac[2]);
#endif
return -ENODEV;
}
/************************ INTERRUPT HANDLING ************************/
/*
* This function is the interrupt handler for the WaveLAN card. This
* routine will be called whenever:
*/
static irqreturn_t wavelan_interrupt(int irq, void *dev_id)
{
struct net_device *dev;
unsigned long ioaddr;
net_local *lp;
u16 hasr;
u16 status;
u16 ack_cmd;
dev = dev_id;
#ifdef DEBUG_INTERRUPT_TRACE
printk(KERN_DEBUG "%s: ->wavelan_interrupt()\n", dev->name);
#endif
lp = netdev_priv(dev);
ioaddr = dev->base_addr;
#ifdef DEBUG_INTERRUPT_INFO
/* Check state of our spinlock */
if(spin_is_locked(&lp->spinlock))
printk(KERN_DEBUG
"%s: wavelan_interrupt(): spinlock is already locked !!!\n",
dev->name);
#endif
/* Prevent reentrancy. We need to do that because we may have
* multiple interrupt handler running concurrently.
* It is safe because interrupts are disabled before acquiring
* the spinlock. */
spin_lock(&lp->spinlock);
/* We always had spurious interrupts at startup, but lately I
* saw them comming *between* the request_irq() and the
* spin_lock_irqsave() in wavelan_open(), so the spinlock
* protection is no enough.
* So, we also check lp->hacr that will tell us is we enabled
* irqs or not (see wv_ints_on()).
* We can't use netif_running(dev) because we depend on the
* proper processing of the irq generated during the config. */
/* Which interrupt it is ? */
hasr = hasr_read(ioaddr);
#ifdef DEBUG_INTERRUPT_INFO
printk(KERN_INFO
"%s: wavelan_interrupt(): hasr 0x%04x; hacr 0x%04x.\n",
dev->name, hasr, lp->hacr);
#endif
/* Check modem interrupt */
if ((hasr & HASR_MMC_INTR) && (lp->hacr & HACR_MMC_INT_ENABLE)) {
u8 dce_status;
/*
* Interrupt from the modem management controller.
* This will clear it -- ignored for now.
*/
mmc_read(ioaddr, mmroff(0, mmr_dce_status), &dce_status,
sizeof(dce_status));
#ifdef DEBUG_INTERRUPT_ERROR
printk(KERN_INFO
"%s: wavelan_interrupt(): unexpected mmc interrupt: status 0x%04x.\n",
dev->name, dce_status);
#endif
}
/* Check if not controller interrupt */
if (((hasr & HASR_82586_INTR) == 0) ||
((lp->hacr & HACR_82586_INT_ENABLE) == 0)) {
#ifdef DEBUG_INTERRUPT_ERROR
printk(KERN_INFO
"%s: wavelan_interrupt(): interrupt not coming from i82586 - hasr 0x%04x.\n",
dev->name, hasr);
#endif
spin_unlock (&lp->spinlock);
return IRQ_NONE;
}
/* Read interrupt data. */
obram_read(ioaddr, scboff(OFFSET_SCB, scb_status),
(unsigned char *) &status, sizeof(status));
/*
* Acknowledge the interrupt(s).
*/
ack_cmd = status & SCB_ST_INT;
obram_write(ioaddr, scboff(OFFSET_SCB, scb_command),
(unsigned char *) &ack_cmd, sizeof(ack_cmd));
set_chan_attn(ioaddr, lp->hacr);
#ifdef DEBUG_INTERRUPT_INFO
printk(KERN_DEBUG "%s: wavelan_interrupt(): status 0x%04x.\n",
dev->name, status);
#endif
/* Command completed. */
if ((status & SCB_ST_CX) == SCB_ST_CX) {
#ifdef DEBUG_INTERRUPT_INFO
printk(KERN_DEBUG
"%s: wavelan_interrupt(): command completed.\n",
dev->name);
#endif
wv_complete(dev, ioaddr, lp);
}
/* Frame received. */
if ((status & SCB_ST_FR) == SCB_ST_FR) {
#ifdef DEBUG_INTERRUPT_INFO
printk(KERN_DEBUG
"%s: wavelan_interrupt(): received packet.\n",
dev->name);
#endif
wv_receive(dev);
}
/* Check the state of the command unit. */
if (((status & SCB_ST_CNA) == SCB_ST_CNA) ||
(((status & SCB_ST_CUS) != SCB_ST_CUS_ACTV) &&
(netif_running(dev)))) {
#ifdef DEBUG_INTERRUPT_ERROR
printk(KERN_INFO
"%s: wavelan_interrupt(): CU inactive -- restarting\n",
dev->name);
#endif
wv_hw_reset(dev);
}
/* Check the state of the command unit. */
if (((status & SCB_ST_RNR) == SCB_ST_RNR) ||
(((status & SCB_ST_RUS) != SCB_ST_RUS_RDY) &&
(netif_running(dev)))) {
#ifdef DEBUG_INTERRUPT_ERROR
printk(KERN_INFO
"%s: wavelan_interrupt(): RU not ready -- restarting\n",
dev->name);
#endif
wv_hw_reset(dev);
}
/* Release spinlock */
spin_unlock (&lp->spinlock);
#ifdef DEBUG_INTERRUPT_TRACE
printk(KERN_DEBUG "%s: <-wavelan_interrupt()\n", dev->name);
#endif
return IRQ_HANDLED;
}
/*------------------------------------------------------------------*/
/*
* Watchdog: when we start a transmission, a timer is set for us in the
* kernel. If the transmission completes, this timer is disabled. If
* the timer expires, we are called and we try to unlock the hardware.
*/
static void wavelan_watchdog(struct net_device * dev)
{
net_local *lp = netdev_priv(dev);
u_long ioaddr = dev->base_addr;
unsigned long flags;
unsigned int nreaped;
#ifdef DEBUG_INTERRUPT_TRACE
printk(KERN_DEBUG "%s: ->wavelan_watchdog()\n", dev->name);
#endif
#ifdef DEBUG_INTERRUPT_ERROR
printk(KERN_INFO "%s: wavelan_watchdog: watchdog timer expired\n",
dev->name);
#endif
/* Check that we came here for something */
if (lp->tx_n_in_use <= 0) {
return;
}
spin_lock_irqsave(&lp->spinlock, flags);
/* Try to see if some buffers are not free (in case we missed
* an interrupt */
nreaped = wv_complete(dev, ioaddr, lp);
#ifdef DEBUG_INTERRUPT_INFO
printk(KERN_DEBUG
"%s: wavelan_watchdog(): %d reaped, %d remain.\n",
dev->name, nreaped, lp->tx_n_in_use);
#endif
#ifdef DEBUG_PSA_SHOW
{
psa_t psa;
psa_read(dev, 0, (unsigned char *) &psa, sizeof(psa));
wv_psa_show(&psa);
}
#endif
#ifdef DEBUG_MMC_SHOW
wv_mmc_show(dev);
#endif
#ifdef DEBUG_I82586_SHOW
wv_cu_show(dev);
#endif
/* If no buffer has been freed */
if (nreaped == 0) {
#ifdef DEBUG_INTERRUPT_ERROR
printk(KERN_INFO
"%s: wavelan_watchdog(): cleanup failed, trying reset\n",
dev->name);
#endif
wv_hw_reset(dev);
}
/* At this point, we should have some free Tx buffer ;-) */
if (lp->tx_n_in_use < NTXBLOCKS - 1)
netif_wake_queue(dev);
spin_unlock_irqrestore(&lp->spinlock, flags);
#ifdef DEBUG_INTERRUPT_TRACE
printk(KERN_DEBUG "%s: <-wavelan_watchdog()\n", dev->name);
#endif
}
/********************* CONFIGURATION CALLBACKS *********************/
/*
* Here are the functions called by the Linux networking code (NET3)
* for initialization, configuration and deinstallations of the
* WaveLAN ISA hardware.
*/
/*------------------------------------------------------------------*/
/*
* Configure and start up the WaveLAN PCMCIA adaptor.
* Called by NET3 when it "opens" the device.
*/
static int wavelan_open(struct net_device * dev)
{
net_local *lp = netdev_priv(dev);
unsigned long flags;
#ifdef DEBUG_CALLBACK_TRACE
printk(KERN_DEBUG "%s: ->wavelan_open(dev=0x%x)\n", dev->name,
(unsigned int) dev);
#endif
/* Check irq */
if (dev->irq == 0) {
#ifdef DEBUG_CONFIG_ERROR
printk(KERN_WARNING "%s: wavelan_open(): no IRQ\n",
dev->name);
#endif
return -ENXIO;
}
if (request_irq(dev->irq, &wavelan_interrupt, 0, "WaveLAN", dev) != 0)
{
#ifdef DEBUG_CONFIG_ERROR
printk(KERN_WARNING "%s: wavelan_open(): invalid IRQ\n",
dev->name);
#endif
return -EAGAIN;
}
spin_lock_irqsave(&lp->spinlock, flags);
if (wv_hw_reset(dev) != -1) {
netif_start_queue(dev);
} else {
free_irq(dev->irq, dev);
#ifdef DEBUG_CONFIG_ERROR
printk(KERN_INFO
"%s: wavelan_open(): impossible to start the card\n",
dev->name);
#endif
spin_unlock_irqrestore(&lp->spinlock, flags);
return -EAGAIN;
}
spin_unlock_irqrestore(&lp->spinlock, flags);
#ifdef DEBUG_CALLBACK_TRACE
printk(KERN_DEBUG "%s: <-wavelan_open()\n", dev->name);
#endif
return 0;
}
/*------------------------------------------------------------------*/
/*
* Shut down the WaveLAN ISA card.
* Called by NET3 when it "closes" the device.
*/
static int wavelan_close(struct net_device * dev)
{
net_local *lp = netdev_priv(dev);
unsigned long flags;
#ifdef DEBUG_CALLBACK_TRACE
printk(KERN_DEBUG "%s: ->wavelan_close(dev=0x%x)\n", dev->name,
(unsigned int) dev);
#endif
netif_stop_queue(dev);
/*
* Flush the Tx and disable Rx.
*/
spin_lock_irqsave(&lp->spinlock, flags);
wv_82586_stop(dev);
spin_unlock_irqrestore(&lp->spinlock, flags);
free_irq(dev->irq, dev);
#ifdef DEBUG_CALLBACK_TRACE
printk(KERN_DEBUG "%s: <-wavelan_close()\n", dev->name);
#endif
return 0;
}
static const struct net_device_ops wavelan_netdev_ops = {
.ndo_open = wavelan_open,
.ndo_stop = wavelan_close,
.ndo_start_xmit = wavelan_packet_xmit,
.ndo_set_multicast_list = wavelan_set_multicast_list,
.ndo_tx_timeout = wavelan_watchdog,
.ndo_change_mtu = eth_change_mtu,
.ndo_validate_addr = eth_validate_addr,
#ifdef SET_MAC_ADDRESS
.ndo_set_mac_address = wavelan_set_mac_address
#else
.ndo_set_mac_address = eth_mac_addr,
#endif
};
/*------------------------------------------------------------------*/
/*
* Probe an I/O address, and if the WaveLAN is there configure the
* device structure
* (called by wavelan_probe() and via init_module()).
*/
static int __init wavelan_config(struct net_device *dev, unsigned short ioaddr)
{
u8 irq_mask;
int irq;
net_local *lp;
mac_addr mac;
int err;
if (!request_region(ioaddr, sizeof(ha_t), "wavelan"))
return -EADDRINUSE;
err = wv_check_ioaddr(ioaddr, mac);
if (err)
goto out;
memcpy(dev->dev_addr, mac, 6);
dev->base_addr = ioaddr;
#ifdef DEBUG_CALLBACK_TRACE
printk(KERN_DEBUG "%s: ->wavelan_config(dev=0x%x, ioaddr=0x%lx)\n",
dev->name, (unsigned int) dev, ioaddr);
#endif
/* Check IRQ argument on command line. */
if (dev->irq != 0) {
irq_mask = wv_irq_to_psa(dev->irq);
if (irq_mask == 0) {
#ifdef DEBUG_CONFIG_ERROR
printk(KERN_WARNING
"%s: wavelan_config(): invalid IRQ %d ignored.\n",
dev->name, dev->irq);
#endif
dev->irq = 0;
} else {
#ifdef DEBUG_CONFIG_INFO
printk(KERN_DEBUG
"%s: wavelan_config(): changing IRQ to %d\n",
dev->name, dev->irq);
#endif
psa_write(ioaddr, HACR_DEFAULT,
psaoff(0, psa_int_req_no), &irq_mask, 1);
/* update the Wavelan checksum */
update_psa_checksum(dev, ioaddr, HACR_DEFAULT);
wv_hacr_reset(ioaddr);
}
}
psa_read(ioaddr, HACR_DEFAULT, psaoff(0, psa_int_req_no),
&irq_mask, 1);
if ((irq = wv_psa_to_irq(irq_mask)) == -1) {
#ifdef DEBUG_CONFIG_ERROR
printk(KERN_INFO
"%s: wavelan_config(): could not wavelan_map_irq(%d).\n",
dev->name, irq_mask);
#endif
err = -EAGAIN;
goto out;
}
dev->irq = irq;
dev->mem_start = 0x0000;
dev->mem_end = 0x0000;
dev->if_port = 0;
/* Initialize device structures */
memset(netdev_priv(dev), 0, sizeof(net_local));
lp = netdev_priv(dev);
/* Back link to the device structure. */
lp->dev = dev;
/* Add the device at the beginning of the linked list. */
lp->next = wavelan_list;
wavelan_list = lp;
lp->hacr = HACR_DEFAULT;
/* Multicast stuff */
lp->promiscuous = 0;
lp->mc_count = 0;
/* Init spinlock */
spin_lock_init(&lp->spinlock);
dev->netdev_ops = &wavelan_netdev_ops;
dev->watchdog_timeo = WATCHDOG_JIFFIES;
dev->wireless_handlers = &wavelan_handler_def;
lp->wireless_data.spy_data = &lp->spy_data;
dev->wireless_data = &lp->wireless_data;
dev->mtu = WAVELAN_MTU;
/* Display nice information. */
wv_init_info(dev);
#ifdef DEBUG_CALLBACK_TRACE
printk(KERN_DEBUG "%s: <-wavelan_config()\n", dev->name);
#endif
return 0;
out:
release_region(ioaddr, sizeof(ha_t));
return err;
}
/*------------------------------------------------------------------*/
/*
* Check for a network adaptor of this type. Return '0' iff one
* exists. There seem to be different interpretations of
* the initial value of dev->base_addr.
* We follow the example in drivers/net/ne.c.
* (called in "Space.c")
*/
struct net_device * __init wavelan_probe(int unit)
{
struct net_device *dev;
short base_addr;
int def_irq;
int i;
int r = 0;
/* compile-time check the sizes of structures */
BUILD_BUG_ON(sizeof(psa_t) != PSA_SIZE);
BUILD_BUG_ON(sizeof(mmw_t) != MMW_SIZE);
BUILD_BUG_ON(sizeof(mmr_t) != MMR_SIZE);
BUILD_BUG_ON(sizeof(ha_t) != HA_SIZE);
dev = alloc_etherdev(sizeof(net_local));
if (!dev)
return ERR_PTR(-ENOMEM);
sprintf(dev->name, "eth%d", unit);
netdev_boot_setup_check(dev);
base_addr = dev->base_addr;
def_irq = dev->irq;
#ifdef DEBUG_CALLBACK_TRACE
printk(KERN_DEBUG
"%s: ->wavelan_probe(dev=%p (base_addr=0x%x))\n",
dev->name, dev, (unsigned int) dev->base_addr);
#endif
/* Don't probe at all. */
if (base_addr < 0) {
#ifdef DEBUG_CONFIG_ERROR
printk(KERN_WARNING
"%s: wavelan_probe(): invalid base address\n",
dev->name);
#endif
r = -ENXIO;
} else if (base_addr > 0x100) { /* Check a single specified location. */
r = wavelan_config(dev, base_addr);
#ifdef DEBUG_CONFIG_INFO
if (r != 0)
printk(KERN_DEBUG
"%s: wavelan_probe(): no device at specified base address (0x%X) or address already in use\n",
dev->name, base_addr);
#endif
#ifdef DEBUG_CALLBACK_TRACE
printk(KERN_DEBUG "%s: <-wavelan_probe()\n", dev->name);
#endif
} else { /* Scan all possible addresses of the WaveLAN hardware. */
for (i = 0; i < ARRAY_SIZE(iobase); i++) {
dev->irq = def_irq;
if (wavelan_config(dev, iobase[i]) == 0) {
#ifdef DEBUG_CALLBACK_TRACE
printk(KERN_DEBUG
"%s: <-wavelan_probe()\n",
dev->name);
#endif
break;
}
}
if (i == ARRAY_SIZE(iobase))
r = -ENODEV;
}
if (r)
goto out;
r = register_netdev(dev);
if (r)
goto out1;
return dev;
out1:
release_region(dev->base_addr, sizeof(ha_t));
wavelan_list = wavelan_list->next;
out:
free_netdev(dev);
return ERR_PTR(r);
}
/****************************** MODULE ******************************/
/*
* Module entry point: insertion and removal
*/
#ifdef MODULE
/*------------------------------------------------------------------*/
/*
* Insertion of the module
* I'm now quite proud of the multi-device support.
*/
int __init init_module(void)
{
int ret = -EIO; /* Return error if no cards found */
int i;
#ifdef DEBUG_MODULE_TRACE
printk(KERN_DEBUG "-> init_module()\n");
#endif
/* If probing is asked */
if (io[0] == 0) {
#ifdef DEBUG_CONFIG_ERROR
printk(KERN_WARNING
"WaveLAN init_module(): doing device probing (bad !)\n");
printk(KERN_WARNING
"Specify base addresses while loading module to correct the problem\n");
#endif
/* Copy the basic set of address to be probed. */
for (i = 0; i < ARRAY_SIZE(iobase); i++)
io[i] = iobase[i];
}
/* Loop on all possible base addresses. */
for (i = 0; i < ARRAY_SIZE(io) && io[i] != 0; i++) {
struct net_device *dev = alloc_etherdev(sizeof(net_local));
if (!dev)
break;
if (name[i])
strcpy(dev->name, name[i]); /* Copy name */
dev->base_addr = io[i];
dev->irq = irq[i];
/* Check if there is something at this base address. */
if (wavelan_config(dev, io[i]) == 0) {
if (register_netdev(dev) != 0) {
release_region(dev->base_addr, sizeof(ha_t));
wavelan_list = wavelan_list->next;
} else {
ret = 0;
continue;
}
}
free_netdev(dev);
}
#ifdef DEBUG_CONFIG_ERROR
if (!wavelan_list)
printk(KERN_WARNING
"WaveLAN init_module(): no device found\n");
#endif
#ifdef DEBUG_MODULE_TRACE
printk(KERN_DEBUG "<- init_module()\n");
#endif
return ret;
}
/*------------------------------------------------------------------*/
/*
* Removal of the module
*/
void cleanup_module(void)
{
#ifdef DEBUG_MODULE_TRACE
printk(KERN_DEBUG "-> cleanup_module()\n");
#endif
/* Loop on all devices and release them. */
while (wavelan_list) {
struct net_device *dev = wavelan_list->dev;
#ifdef DEBUG_CONFIG_INFO
printk(KERN_DEBUG
"%s: cleanup_module(): removing device at 0x%x\n",
dev->name, (unsigned int) dev);
#endif
unregister_netdev(dev);
release_region(dev->base_addr, sizeof(ha_t));
wavelan_list = wavelan_list->next;
free_netdev(dev);
}
#ifdef DEBUG_MODULE_TRACE
printk(KERN_DEBUG "<- cleanup_module()\n");
#endif
}
#endif /* MODULE */
MODULE_LICENSE("GPL");
/*
* This software may only be used and distributed
* according to the terms of the GNU General Public License.
*
* This software was developed as a component of the
* Linux operating system.
* It is based on other device drivers and information
* either written or supplied by:
* Ajay Bakre (bakre@paul.rutgers.edu),
* Donald Becker (becker@scyld.com),
* Loeke Brederveld (Loeke.Brederveld@Utrecht.NCR.com),
* Anders Klemets (klemets@it.kth.se),
* Vladimir V. Kolpakov (w@stier.koenig.ru),
* Marc Meertens (Marc.Meertens@Utrecht.NCR.com),
* Pauline Middelink (middelin@polyware.iaf.nl),
* Robert Morris (rtm@das.harvard.edu),
* Jean Tourrilhes (jt@hplb.hpl.hp.com),
* Girish Welling (welling@paul.rutgers.edu),
*
* Thanks go also to:
* James Ashton (jaa101@syseng.anu.edu.au),
* Alan Cox (alan@lxorguk.ukuu.org.uk),
* Allan Creighton (allanc@cs.usyd.edu.au),
* Matthew Geier (matthew@cs.usyd.edu.au),
* Remo di Giovanni (remo@cs.usyd.edu.au),
* Eckhard Grah (grah@wrcs1.urz.uni-wuppertal.de),
* Vipul Gupta (vgupta@cs.binghamton.edu),
* Mark Hagan (mhagan@wtcpost.daytonoh.NCR.COM),
* Tim Nicholson (tim@cs.usyd.edu.au),
* Ian Parkin (ian@cs.usyd.edu.au),
* John Rosenberg (johnr@cs.usyd.edu.au),
* George Rossi (george@phm.gov.au),
* Arthur Scott (arthur@cs.usyd.edu.au),
* Peter Storey,
* for their assistance and advice.
*
* Please send bug reports, updates, comments to:
*
* Bruce Janson Email: bruce@cs.usyd.edu.au
* Basser Department of Computer Science Phone: +61-2-9351-3423
* University of Sydney, N.S.W., 2006, AUSTRALIA Fax: +61-2-9351-3838
*/