1
linux/arch/powerpc/platforms/iseries/dt.c
Michael Ellerman 41999295b6 [POWERPC] Move iSeries initrd logic into device tree
Remove the iSeries initrd logic, instead just store the initrd location and
size in the device tree so generic code can do the rest for us.

The iSeries code had a "feature" which the generic code lacks, ie. if the
compressed initrd is bigger than the configured ram disk size, we make
the ram disk size bigger. That's bogus, as the compressed size of the initrd
tells us nothing about how big the ram disk needs to be. If the ram disk
isn't big enough you just need to make CONFIG_BLK_DEV_RAM_SIZE larger.

Signed-off-by: Michael Ellerman <michael@ellerman.id.au>
Signed-off-by: Paul Mackerras <paulus@samba.org>
2006-10-24 15:01:27 +10:00

668 lines
17 KiB
C

/*
* Copyright (C) 2005-2006 Michael Ellerman, IBM Corporation
* Copyright (C) 2000-2004, IBM Corporation
*
* Description:
* This file contains all the routines to build a flattened device
* tree for a legacy iSeries machine.
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License
* as published by the Free Software Foundation; either version
* 2 of the License, or (at your option) any later version.
*/
#undef DEBUG
#include <linux/types.h>
#include <linux/init.h>
#include <linux/pci.h>
#include <linux/pci_regs.h>
#include <linux/pci_ids.h>
#include <linux/threads.h>
#include <linux/bitops.h>
#include <linux/string.h>
#include <linux/kernel.h>
#include <linux/if_ether.h> /* ETH_ALEN */
#include <asm/machdep.h>
#include <asm/prom.h>
#include <asm/lppaca.h>
#include <asm/cputable.h>
#include <asm/abs_addr.h>
#include <asm/system.h>
#include <asm/iseries/hv_types.h>
#include <asm/iseries/hv_lp_config.h>
#include <asm/iseries/hv_call_xm.h>
#include <asm/udbg.h>
#include "processor_vpd.h"
#include "call_hpt.h"
#include "call_pci.h"
#include "pci.h"
#include "it_exp_vpd_panel.h"
#include "naca.h"
#ifdef DEBUG
#define DBG(fmt...) udbg_printf(fmt)
#else
#define DBG(fmt...)
#endif
/*
* These are created by the linker script at the start and end
* of the section containing all the strings from this file.
*/
extern char __dt_strings_start[];
extern char __dt_strings_end[];
struct iseries_flat_dt {
struct boot_param_header header;
u64 reserve_map[2];
};
static void * __initdata dt_data;
/*
* Putting these strings here keeps them out of the section
* that we rename to .dt_strings using objcopy and capture
* for the strings blob of the flattened device tree.
*/
static char __initdata device_type_cpu[] = "cpu";
static char __initdata device_type_memory[] = "memory";
static char __initdata device_type_serial[] = "serial";
static char __initdata device_type_network[] = "network";
static char __initdata device_type_block[] = "block";
static char __initdata device_type_byte[] = "byte";
static char __initdata device_type_pci[] = "pci";
static char __initdata device_type_vdevice[] = "vdevice";
static char __initdata device_type_vscsi[] = "vscsi";
/* EBCDIC to ASCII conversion routines */
static unsigned char __init e2a(unsigned char x)
{
switch (x) {
case 0x81 ... 0x89:
return x - 0x81 + 'a';
case 0x91 ... 0x99:
return x - 0x91 + 'j';
case 0xA2 ... 0xA9:
return x - 0xA2 + 's';
case 0xC1 ... 0xC9:
return x - 0xC1 + 'A';
case 0xD1 ... 0xD9:
return x - 0xD1 + 'J';
case 0xE2 ... 0xE9:
return x - 0xE2 + 'S';
case 0xF0 ... 0xF9:
return x - 0xF0 + '0';
}
return ' ';
}
static unsigned char * __init strne2a(unsigned char *dest,
const unsigned char *src, size_t n)
{
int i;
n = strnlen(src, n);
for (i = 0; i < n; i++)
dest[i] = e2a(src[i]);
return dest;
}
static struct iseries_flat_dt * __init dt_init(void)
{
struct iseries_flat_dt *dt;
unsigned long str_len;
str_len = __dt_strings_end - __dt_strings_start;
dt = (struct iseries_flat_dt *)ALIGN(klimit, 8);
dt->header.off_mem_rsvmap =
offsetof(struct iseries_flat_dt, reserve_map);
dt->header.off_dt_strings = ALIGN(sizeof(*dt), 8);
dt->header.off_dt_struct = dt->header.off_dt_strings
+ ALIGN(str_len, 8);
dt_data = (void *)((unsigned long)dt + dt->header.off_dt_struct);
dt->header.dt_strings_size = str_len;
/* There is no notion of hardware cpu id on iSeries */
dt->header.boot_cpuid_phys = smp_processor_id();
memcpy((char *)dt + dt->header.off_dt_strings, __dt_strings_start,
str_len);
dt->header.magic = OF_DT_HEADER;
dt->header.version = 0x10;
dt->header.last_comp_version = 0x10;
dt->reserve_map[0] = 0;
dt->reserve_map[1] = 0;
return dt;
}
static void __init dt_push_u32(struct iseries_flat_dt *dt, u32 value)
{
*((u32 *)dt_data) = value;
dt_data += sizeof(u32);
}
#ifdef notyet
static void __init dt_push_u64(struct iseries_flat_dt *dt, u64 value)
{
*((u64 *)dt_data) = value;
dt_data += sizeof(u64);
}
#endif
static void __init dt_push_bytes(struct iseries_flat_dt *dt, const char *data,
int len)
{
memcpy(dt_data, data, len);
dt_data += ALIGN(len, 4);
}
static void __init dt_start_node(struct iseries_flat_dt *dt, const char *name)
{
dt_push_u32(dt, OF_DT_BEGIN_NODE);
dt_push_bytes(dt, name, strlen(name) + 1);
}
#define dt_end_node(dt) dt_push_u32(dt, OF_DT_END_NODE)
static void __init dt_prop(struct iseries_flat_dt *dt, const char *name,
const void *data, int len)
{
unsigned long offset;
dt_push_u32(dt, OF_DT_PROP);
/* Length of the data */
dt_push_u32(dt, len);
offset = name - __dt_strings_start;
/* The offset of the properties name in the string blob. */
dt_push_u32(dt, (u32)offset);
/* The actual data. */
dt_push_bytes(dt, data, len);
}
static void __init dt_prop_str(struct iseries_flat_dt *dt, const char *name,
const char *data)
{
dt_prop(dt, name, data, strlen(data) + 1); /* + 1 for NULL */
}
static void __init dt_prop_u32(struct iseries_flat_dt *dt, const char *name,
u32 data)
{
dt_prop(dt, name, &data, sizeof(u32));
}
static void __init dt_prop_u64(struct iseries_flat_dt *dt, const char *name,
u64 data)
{
dt_prop(dt, name, &data, sizeof(u64));
}
static void __init dt_prop_u64_list(struct iseries_flat_dt *dt,
const char *name, u64 *data, int n)
{
dt_prop(dt, name, data, sizeof(u64) * n);
}
static void __init dt_prop_u32_list(struct iseries_flat_dt *dt,
const char *name, u32 *data, int n)
{
dt_prop(dt, name, data, sizeof(u32) * n);
}
#ifdef notyet
static void __init dt_prop_empty(struct iseries_flat_dt *dt, const char *name)
{
dt_prop(dt, name, NULL, 0);
}
#endif
static void __init dt_cpus(struct iseries_flat_dt *dt)
{
unsigned char buf[32];
unsigned char *p;
unsigned int i, index;
struct IoHriProcessorVpd *d;
u32 pft_size[2];
/* yuck */
snprintf(buf, 32, "PowerPC,%s", cur_cpu_spec->cpu_name);
p = strchr(buf, ' ');
if (!p) p = buf + strlen(buf);
dt_start_node(dt, "cpus");
dt_prop_u32(dt, "#address-cells", 1);
dt_prop_u32(dt, "#size-cells", 0);
pft_size[0] = 0; /* NUMA CEC cookie, 0 for non NUMA */
pft_size[1] = __ilog2(HvCallHpt_getHptPages() * HW_PAGE_SIZE);
for (i = 0; i < NR_CPUS; i++) {
if (lppaca[i].dyn_proc_status >= 2)
continue;
snprintf(p, 32 - (p - buf), "@%d", i);
dt_start_node(dt, buf);
dt_prop_str(dt, "device_type", device_type_cpu);
index = lppaca[i].dyn_hv_phys_proc_index;
d = &xIoHriProcessorVpd[index];
dt_prop_u32(dt, "i-cache-size", d->xInstCacheSize * 1024);
dt_prop_u32(dt, "i-cache-line-size", d->xInstCacheOperandSize);
dt_prop_u32(dt, "d-cache-size", d->xDataL1CacheSizeKB * 1024);
dt_prop_u32(dt, "d-cache-line-size", d->xDataCacheOperandSize);
/* magic conversions to Hz copied from old code */
dt_prop_u32(dt, "clock-frequency",
((1UL << 34) * 1000000) / d->xProcFreq);
dt_prop_u32(dt, "timebase-frequency",
((1UL << 32) * 1000000) / d->xTimeBaseFreq);
dt_prop_u32(dt, "reg", i);
dt_prop_u32_list(dt, "ibm,pft-size", pft_size, 2);
dt_end_node(dt);
}
dt_end_node(dt);
}
static void __init dt_model(struct iseries_flat_dt *dt)
{
char buf[16] = "IBM,";
/* N.B. lparcfg.c knows about the "IBM," prefixes ... */
/* "IBM," + mfgId[2:3] + systemSerial[1:5] */
strne2a(buf + 4, xItExtVpdPanel.mfgID + 2, 2);
strne2a(buf + 6, xItExtVpdPanel.systemSerial + 1, 5);
buf[11] = '\0';
dt_prop_str(dt, "system-id", buf);
/* "IBM," + machineType[0:4] */
strne2a(buf + 4, xItExtVpdPanel.machineType, 4);
buf[8] = '\0';
dt_prop_str(dt, "model", buf);
dt_prop_str(dt, "compatible", "IBM,iSeries");
dt_prop_u32(dt, "ibm,partition-no", HvLpConfig_getLpIndex());
}
static void __init dt_initrd(struct iseries_flat_dt *dt)
{
#ifdef CONFIG_BLK_DEV_INITRD
if (naca.xRamDisk) {
dt_prop_u64(dt, "linux,initrd-start", (u64)naca.xRamDisk);
dt_prop_u64(dt, "linux,initrd-end",
(u64)naca.xRamDisk + naca.xRamDiskSize * HW_PAGE_SIZE);
}
#endif
}
static void __init dt_do_vdevice(struct iseries_flat_dt *dt,
const char *name, u32 reg, int unit,
const char *type, const char *compat, int end)
{
char buf[32];
snprintf(buf, 32, "%s@%08x", name, reg + ((unit >= 0) ? unit : 0));
dt_start_node(dt, buf);
dt_prop_str(dt, "device_type", type);
if (compat)
dt_prop_str(dt, "compatible", compat);
dt_prop_u32(dt, "reg", reg + ((unit >= 0) ? unit : 0));
if (unit >= 0)
dt_prop_u32(dt, "linux,unit_address", unit);
if (end)
dt_end_node(dt);
}
static void __init dt_vdevices(struct iseries_flat_dt *dt)
{
u32 reg = 0;
HvLpIndexMap vlan_map;
int i;
dt_start_node(dt, "vdevice");
dt_prop_str(dt, "device_type", device_type_vdevice);
dt_prop_str(dt, "compatible", "IBM,iSeries-vdevice");
dt_prop_u32(dt, "#address-cells", 1);
dt_prop_u32(dt, "#size-cells", 0);
dt_do_vdevice(dt, "vty", reg, -1, device_type_serial,
"IBM,iSeries-vty", 1);
reg++;
dt_do_vdevice(dt, "v-scsi", reg, -1, device_type_vscsi,
"IBM,v-scsi", 1);
reg++;
vlan_map = HvLpConfig_getVirtualLanIndexMap();
for (i = 0; i < HVMAXARCHITECTEDVIRTUALLANS; i++) {
unsigned char mac_addr[ETH_ALEN];
if ((vlan_map & (0x8000 >> i)) == 0)
continue;
dt_do_vdevice(dt, "l-lan", reg, i, device_type_network,
"IBM,iSeries-l-lan", 0);
mac_addr[0] = 0x02;
mac_addr[1] = 0x01;
mac_addr[2] = 0xff;
mac_addr[3] = i;
mac_addr[4] = 0xff;
mac_addr[5] = HvLpConfig_getLpIndex_outline();
dt_prop(dt, "local-mac-address", (char *)mac_addr, ETH_ALEN);
dt_prop(dt, "mac-address", (char *)mac_addr, ETH_ALEN);
dt_prop_u32(dt, "max-frame-size", 9000);
dt_prop_u32(dt, "address-bits", 48);
dt_end_node(dt);
}
reg += HVMAXARCHITECTEDVIRTUALLANS;
for (i = 0; i < HVMAXARCHITECTEDVIRTUALDISKS; i++)
dt_do_vdevice(dt, "viodasd", reg, i, device_type_block,
"IBM,iSeries-viodasd", 1);
reg += HVMAXARCHITECTEDVIRTUALDISKS;
for (i = 0; i < HVMAXARCHITECTEDVIRTUALCDROMS; i++)
dt_do_vdevice(dt, "viocd", reg, i, device_type_block,
"IBM,iSeries-viocd", 1);
reg += HVMAXARCHITECTEDVIRTUALCDROMS;
for (i = 0; i < HVMAXARCHITECTEDVIRTUALTAPES; i++)
dt_do_vdevice(dt, "viotape", reg, i, device_type_byte,
"IBM,iSeries-viotape", 1);
dt_end_node(dt);
}
struct pci_class_name {
u16 code;
const char *name;
const char *type;
};
static struct pci_class_name __initdata pci_class_name[] = {
{ PCI_CLASS_NETWORK_ETHERNET, "ethernet", device_type_network },
};
static struct pci_class_name * __init dt_find_pci_class_name(u16 class_code)
{
struct pci_class_name *cp;
for (cp = pci_class_name;
cp < &pci_class_name[ARRAY_SIZE(pci_class_name)]; cp++)
if (cp->code == class_code)
return cp;
return NULL;
}
/*
* This assumes that the node slot is always on the primary bus!
*/
static void __init scan_bridge_slot(struct iseries_flat_dt *dt,
HvBusNumber bus, struct HvCallPci_BridgeInfo *bridge_info)
{
HvSubBusNumber sub_bus = bridge_info->subBusNumber;
u16 vendor_id;
u16 device_id;
u32 class_id;
int err;
char buf[32];
u32 reg[5];
int id_sel = ISERIES_GET_DEVICE_FROM_SUBBUS(sub_bus);
int function = ISERIES_GET_FUNCTION_FROM_SUBBUS(sub_bus);
HvAgentId eads_id_sel = ISERIES_PCI_AGENTID(id_sel, function);
u8 devfn;
struct pci_class_name *cp;
/*
* Connect all functions of any device found.
*/
for (id_sel = 1; id_sel <= bridge_info->maxAgents; id_sel++) {
for (function = 0; function < 8; function++) {
HvAgentId agent_id = ISERIES_PCI_AGENTID(id_sel,
function);
err = HvCallXm_connectBusUnit(bus, sub_bus,
agent_id, 0);
if (err) {
if (err != 0x302)
DBG("connectBusUnit(%x, %x, %x) %x\n",
bus, sub_bus, agent_id, err);
continue;
}
err = HvCallPci_configLoad16(bus, sub_bus, agent_id,
PCI_VENDOR_ID, &vendor_id);
if (err) {
DBG("ReadVendor(%x, %x, %x) %x\n",
bus, sub_bus, agent_id, err);
continue;
}
err = HvCallPci_configLoad16(bus, sub_bus, agent_id,
PCI_DEVICE_ID, &device_id);
if (err) {
DBG("ReadDevice(%x, %x, %x) %x\n",
bus, sub_bus, agent_id, err);
continue;
}
err = HvCallPci_configLoad32(bus, sub_bus, agent_id,
PCI_CLASS_REVISION , &class_id);
if (err) {
DBG("ReadClass(%x, %x, %x) %x\n",
bus, sub_bus, agent_id, err);
continue;
}
devfn = PCI_DEVFN(ISERIES_ENCODE_DEVICE(eads_id_sel),
function);
cp = dt_find_pci_class_name(class_id >> 16);
if (cp && cp->name)
strncpy(buf, cp->name, sizeof(buf) - 1);
else
snprintf(buf, sizeof(buf), "pci%x,%x",
vendor_id, device_id);
buf[sizeof(buf) - 1] = '\0';
snprintf(buf + strlen(buf), sizeof(buf) - strlen(buf),
"@%x", PCI_SLOT(devfn));
buf[sizeof(buf) - 1] = '\0';
if (function != 0)
snprintf(buf + strlen(buf),
sizeof(buf) - strlen(buf),
",%x", function);
dt_start_node(dt, buf);
reg[0] = (bus << 16) | (devfn << 8);
reg[1] = 0;
reg[2] = 0;
reg[3] = 0;
reg[4] = 0;
dt_prop_u32_list(dt, "reg", reg, 5);
if (cp && (cp->type || cp->name))
dt_prop_str(dt, "device_type",
cp->type ? cp->type : cp->name);
dt_prop_u32(dt, "vendor-id", vendor_id);
dt_prop_u32(dt, "device-id", device_id);
dt_prop_u32(dt, "class-code", class_id >> 8);
dt_prop_u32(dt, "revision-id", class_id & 0xff);
dt_prop_u32(dt, "linux,subbus", sub_bus);
dt_prop_u32(dt, "linux,agent-id", agent_id);
dt_prop_u32(dt, "linux,logical-slot-number",
bridge_info->logicalSlotNumber);
dt_end_node(dt);
}
}
}
static void __init scan_bridge(struct iseries_flat_dt *dt, HvBusNumber bus,
HvSubBusNumber sub_bus, int id_sel)
{
struct HvCallPci_BridgeInfo bridge_info;
HvAgentId agent_id;
int function;
int ret;
/* Note: hvSubBus and irq is always be 0 at this level! */
for (function = 0; function < 8; ++function) {
agent_id = ISERIES_PCI_AGENTID(id_sel, function);
ret = HvCallXm_connectBusUnit(bus, sub_bus, agent_id, 0);
if (ret != 0) {
if (ret != 0xb)
DBG("connectBusUnit(%x, %x, %x) %x\n",
bus, sub_bus, agent_id, ret);
continue;
}
DBG("found device at bus %d idsel %d func %d (AgentId %x)\n",
bus, id_sel, function, agent_id);
ret = HvCallPci_getBusUnitInfo(bus, sub_bus, agent_id,
iseries_hv_addr(&bridge_info),
sizeof(struct HvCallPci_BridgeInfo));
if (ret != 0)
continue;
DBG("bridge info: type %x subbus %x "
"maxAgents %x maxsubbus %x logslot %x\n",
bridge_info.busUnitInfo.deviceType,
bridge_info.subBusNumber,
bridge_info.maxAgents,
bridge_info.maxSubBusNumber,
bridge_info.logicalSlotNumber);
if (bridge_info.busUnitInfo.deviceType ==
HvCallPci_BridgeDevice)
scan_bridge_slot(dt, bus, &bridge_info);
else
DBG("PCI: Invalid Bridge Configuration(0x%02X)",
bridge_info.busUnitInfo.deviceType);
}
}
static void __init scan_phb(struct iseries_flat_dt *dt, HvBusNumber bus)
{
struct HvCallPci_DeviceInfo dev_info;
const HvSubBusNumber sub_bus = 0; /* EADs is always 0. */
int err;
int id_sel;
const int max_agents = 8;
/*
* Probe for EADs Bridges
*/
for (id_sel = 1; id_sel < max_agents; ++id_sel) {
err = HvCallPci_getDeviceInfo(bus, sub_bus, id_sel,
iseries_hv_addr(&dev_info),
sizeof(struct HvCallPci_DeviceInfo));
if (err) {
if (err != 0x302)
DBG("getDeviceInfo(%x, %x, %x) %x\n",
bus, sub_bus, id_sel, err);
continue;
}
if (dev_info.deviceType != HvCallPci_NodeDevice) {
DBG("PCI: Invalid System Configuration"
"(0x%02X) for bus 0x%02x id 0x%02x.\n",
dev_info.deviceType, bus, id_sel);
continue;
}
scan_bridge(dt, bus, sub_bus, id_sel);
}
}
static void __init dt_pci_devices(struct iseries_flat_dt *dt)
{
HvBusNumber bus;
char buf[32];
u32 buses[2];
int phb_num = 0;
/* Check all possible buses. */
for (bus = 0; bus < 256; bus++) {
int err = HvCallXm_testBus(bus);
if (err) {
/*
* Check for Unexpected Return code, a clue that
* something has gone wrong.
*/
if (err != 0x0301)
DBG("Unexpected Return on Probe(0x%02X) "
"0x%04X\n", bus, err);
continue;
}
DBG("bus %d appears to exist\n", bus);
snprintf(buf, 32, "pci@%d", phb_num);
dt_start_node(dt, buf);
dt_prop_str(dt, "device_type", device_type_pci);
dt_prop_str(dt, "compatible", "IBM,iSeries-Logical-PHB");
dt_prop_u32(dt, "#address-cells", 3);
dt_prop_u32(dt, "#size-cells", 2);
buses[0] = buses[1] = bus;
dt_prop_u32_list(dt, "bus-range", buses, 2);
scan_phb(dt, bus);
dt_end_node(dt);
phb_num++;
}
}
static void dt_finish(struct iseries_flat_dt *dt)
{
dt_push_u32(dt, OF_DT_END);
dt->header.totalsize = (unsigned long)dt_data - (unsigned long)dt;
klimit = ALIGN((unsigned long)dt_data, 8);
}
void * __init build_flat_dt(unsigned long phys_mem_size)
{
struct iseries_flat_dt *iseries_dt;
u64 tmp[2];
iseries_dt = dt_init();
dt_start_node(iseries_dt, "");
dt_prop_u32(iseries_dt, "#address-cells", 2);
dt_prop_u32(iseries_dt, "#size-cells", 2);
dt_model(iseries_dt);
/* /memory */
dt_start_node(iseries_dt, "memory@0");
dt_prop_str(iseries_dt, "device_type", device_type_memory);
tmp[0] = 0;
tmp[1] = phys_mem_size;
dt_prop_u64_list(iseries_dt, "reg", tmp, 2);
dt_end_node(iseries_dt);
/* /chosen */
dt_start_node(iseries_dt, "chosen");
dt_prop_str(iseries_dt, "bootargs", cmd_line);
dt_initrd(iseries_dt);
dt_end_node(iseries_dt);
dt_cpus(iseries_dt);
dt_vdevices(iseries_dt);
dt_pci_devices(iseries_dt);
dt_end_node(iseries_dt);
dt_finish(iseries_dt);
return iseries_dt;
}