1
linux/arch/x86/kernel/head.c
Yinghai Lu 72d7c3b33c x86: Use memblock to replace early_res
1. replace find_e820_area with memblock_find_in_range
2. replace reserve_early with memblock_x86_reserve_range
3. replace free_early with memblock_x86_free_range.
4. NO_BOOTMEM will switch to use memblock too.
5. use _e820, _early wrap in the patch, in following patch, will
   replace them all
6. because memblock_x86_free_range support partial free, we can remove some special care
7. Need to make sure that memblock_find_in_range() is called after memblock_x86_fill()
   so adjust some calling later in setup.c::setup_arch()
   -- corruption_check and mptable_update

-v2: Move reserve_brk() early
    Before fill_memblock_area, to avoid overlap between brk and memblock_find_in_range()
    that could happen We have more then 128 RAM entry in E820 tables, and
    memblock_x86_fill() could use memblock_find_in_range() to find a new place for
    memblock.memory.region array.
    and We don't need to use extend_brk() after fill_memblock_area()
    So move reserve_brk() early before fill_memblock_area().
-v3: Move find_smp_config early
    To make sure memblock_find_in_range not find wrong place, if BIOS doesn't put mptable
    in right place.
-v4: Treat RESERVED_KERN as RAM in memblock.memory. and they are already in
    memblock.reserved already..
    use __NOT_KEEP_MEMBLOCK to make sure memblock related code could be freed later.
-v5: Generic version __memblock_find_in_range() is going from high to low, and for 32bit
    active_region for 32bit does include high pages
    need to replace the limit with memblock.default_alloc_limit, aka get_max_mapped()
-v6: Use current_limit instead
-v7: check with MEMBLOCK_ERROR instead of -1ULL or -1L
-v8: Set memblock_can_resize early to handle EFI with more RAM entries
-v9: update after kmemleak changes in mainline

Suggested-by: David S. Miller <davem@davemloft.net>
Suggested-by: Benjamin Herrenschmidt <benh@kernel.crashing.org>
Suggested-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Yinghai Lu <yinghai@kernel.org>
Signed-off-by: H. Peter Anvin <hpa@zytor.com>
2010-08-27 11:12:29 -07:00

57 lines
1.8 KiB
C

#include <linux/kernel.h>
#include <linux/init.h>
#include <linux/memblock.h>
#include <asm/setup.h>
#include <asm/bios_ebda.h>
#define BIOS_LOWMEM_KILOBYTES 0x413
/*
* The BIOS places the EBDA/XBDA at the top of conventional
* memory, and usually decreases the reported amount of
* conventional memory (int 0x12) too. This also contains a
* workaround for Dell systems that neglect to reserve EBDA.
* The same workaround also avoids a problem with the AMD768MPX
* chipset: reserve a page before VGA to prevent PCI prefetch
* into it (errata #56). Usually the page is reserved anyways,
* unless you have no PS/2 mouse plugged in.
*/
void __init reserve_ebda_region(void)
{
unsigned int lowmem, ebda_addr;
/* To determine the position of the EBDA and the */
/* end of conventional memory, we need to look at */
/* the BIOS data area. In a paravirtual environment */
/* that area is absent. We'll just have to assume */
/* that the paravirt case can handle memory setup */
/* correctly, without our help. */
if (paravirt_enabled())
return;
/* end of low (conventional) memory */
lowmem = *(unsigned short *)__va(BIOS_LOWMEM_KILOBYTES);
lowmem <<= 10;
/* start of EBDA area */
ebda_addr = get_bios_ebda();
/* Fixup: bios puts an EBDA in the top 64K segment */
/* of conventional memory, but does not adjust lowmem. */
if ((lowmem - ebda_addr) <= 0x10000)
lowmem = ebda_addr;
/* Fixup: bios does not report an EBDA at all. */
/* Some old Dells seem to need 4k anyhow (bugzilla 2990) */
if ((ebda_addr == 0) && (lowmem >= 0x9f000))
lowmem = 0x9f000;
/* Paranoia: should never happen, but... */
if ((lowmem == 0) || (lowmem >= 0x100000))
lowmem = 0x9f000;
/* reserve all memory between lowmem and the 1MB mark */
memblock_x86_reserve_range(lowmem, 0x100000, "* BIOS reserved");
}