1
linux/arch/sparc/kernel/smp_32.c
Sam Ravnborg 87fa05aeb3 sparc: Use generic idle loop
Add generic cpu_idle support

sparc32:
- replace call to cpu_idle() with cpu_startup_entry()
- add arch_cpu_idle()

sparc64:
- smp_callin() now include cpu_startup_entry() call so we can
  skip calling cpu_idle from assembler
- add arch_cpu_idle() and arch_cpu_idle_dead()

Signed-off-by: Sam Ravnborg <sam@ravnborg.org>
Reviewed-by: "Srivatsa S. Bhat" <srivatsa.bhat@linux.vnet.ibm.com>
Cc: torvalds@linux-foundation.org
Cc: rusty@rustcorp.com.au
Cc: paulmck@linux.vnet.ibm.com
Cc: peterz@infradead.org
Cc: magnus.damm@gmail.com
Acked-by: David Miller <davem@davemloft.net>
Link: http://lkml.kernel.org/r/20130411193850.GA2330@merkur.ravnborg.org
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
2013-04-13 21:36:27 +02:00

404 lines
7.8 KiB
C

/* smp.c: Sparc SMP support.
*
* Copyright (C) 1996 David S. Miller (davem@caip.rutgers.edu)
* Copyright (C) 1998 Jakub Jelinek (jj@sunsite.mff.cuni.cz)
* Copyright (C) 2004 Keith M Wesolowski (wesolows@foobazco.org)
*/
#include <asm/head.h>
#include <linux/kernel.h>
#include <linux/sched.h>
#include <linux/threads.h>
#include <linux/smp.h>
#include <linux/interrupt.h>
#include <linux/kernel_stat.h>
#include <linux/init.h>
#include <linux/spinlock.h>
#include <linux/mm.h>
#include <linux/fs.h>
#include <linux/seq_file.h>
#include <linux/cache.h>
#include <linux/delay.h>
#include <linux/cpu.h>
#include <asm/ptrace.h>
#include <linux/atomic.h>
#include <asm/irq.h>
#include <asm/page.h>
#include <asm/pgalloc.h>
#include <asm/pgtable.h>
#include <asm/oplib.h>
#include <asm/cacheflush.h>
#include <asm/tlbflush.h>
#include <asm/cpudata.h>
#include <asm/timer.h>
#include <asm/leon.h>
#include "kernel.h"
#include "irq.h"
volatile unsigned long cpu_callin_map[NR_CPUS] __cpuinitdata = {0,};
cpumask_t smp_commenced_mask = CPU_MASK_NONE;
const struct sparc32_ipi_ops *sparc32_ipi_ops;
/* The only guaranteed locking primitive available on all Sparc
* processors is 'ldstub [%reg + immediate], %dest_reg' which atomically
* places the current byte at the effective address into dest_reg and
* places 0xff there afterwards. Pretty lame locking primitive
* compared to the Alpha and the Intel no? Most Sparcs have 'swap'
* instruction which is much better...
*/
void __cpuinit smp_store_cpu_info(int id)
{
int cpu_node;
int mid;
cpu_data(id).udelay_val = loops_per_jiffy;
cpu_find_by_mid(id, &cpu_node);
cpu_data(id).clock_tick = prom_getintdefault(cpu_node,
"clock-frequency", 0);
cpu_data(id).prom_node = cpu_node;
mid = cpu_get_hwmid(cpu_node);
if (mid < 0) {
printk(KERN_NOTICE "No MID found for CPU%d at node 0x%08d", id, cpu_node);
mid = 0;
}
cpu_data(id).mid = mid;
}
void __init smp_cpus_done(unsigned int max_cpus)
{
extern void smp4m_smp_done(void);
extern void smp4d_smp_done(void);
unsigned long bogosum = 0;
int cpu, num = 0;
for_each_online_cpu(cpu) {
num++;
bogosum += cpu_data(cpu).udelay_val;
}
printk("Total of %d processors activated (%lu.%02lu BogoMIPS).\n",
num, bogosum/(500000/HZ),
(bogosum/(5000/HZ))%100);
switch(sparc_cpu_model) {
case sun4m:
smp4m_smp_done();
break;
case sun4d:
smp4d_smp_done();
break;
case sparc_leon:
leon_smp_done();
break;
case sun4e:
printk("SUN4E\n");
BUG();
break;
case sun4u:
printk("SUN4U\n");
BUG();
break;
default:
printk("UNKNOWN!\n");
BUG();
break;
}
}
void cpu_panic(void)
{
printk("CPU[%d]: Returns from cpu_idle!\n", smp_processor_id());
panic("SMP bolixed\n");
}
struct linux_prom_registers smp_penguin_ctable __cpuinitdata = { 0 };
void smp_send_reschedule(int cpu)
{
/*
* CPU model dependent way of implementing IPI generation targeting
* a single CPU. The trap handler needs only to do trap entry/return
* to call schedule.
*/
sparc32_ipi_ops->resched(cpu);
}
void smp_send_stop(void)
{
}
void arch_send_call_function_single_ipi(int cpu)
{
/* trigger one IPI single call on one CPU */
sparc32_ipi_ops->single(cpu);
}
void arch_send_call_function_ipi_mask(const struct cpumask *mask)
{
int cpu;
/* trigger IPI mask call on each CPU */
for_each_cpu(cpu, mask)
sparc32_ipi_ops->mask_one(cpu);
}
void smp_resched_interrupt(void)
{
irq_enter();
scheduler_ipi();
local_cpu_data().irq_resched_count++;
irq_exit();
/* re-schedule routine called by interrupt return code. */
}
void smp_call_function_single_interrupt(void)
{
irq_enter();
generic_smp_call_function_single_interrupt();
local_cpu_data().irq_call_count++;
irq_exit();
}
void smp_call_function_interrupt(void)
{
irq_enter();
generic_smp_call_function_interrupt();
local_cpu_data().irq_call_count++;
irq_exit();
}
int setup_profiling_timer(unsigned int multiplier)
{
return -EINVAL;
}
void __init smp_prepare_cpus(unsigned int max_cpus)
{
extern void __init smp4m_boot_cpus(void);
extern void __init smp4d_boot_cpus(void);
int i, cpuid, extra;
printk("Entering SMP Mode...\n");
extra = 0;
for (i = 0; !cpu_find_by_instance(i, NULL, &cpuid); i++) {
if (cpuid >= NR_CPUS)
extra++;
}
/* i = number of cpus */
if (extra && max_cpus > i - extra)
printk("Warning: NR_CPUS is too low to start all cpus\n");
smp_store_cpu_info(boot_cpu_id);
switch(sparc_cpu_model) {
case sun4m:
smp4m_boot_cpus();
break;
case sun4d:
smp4d_boot_cpus();
break;
case sparc_leon:
leon_boot_cpus();
break;
case sun4e:
printk("SUN4E\n");
BUG();
break;
case sun4u:
printk("SUN4U\n");
BUG();
break;
default:
printk("UNKNOWN!\n");
BUG();
break;
}
}
/* Set this up early so that things like the scheduler can init
* properly. We use the same cpu mask for both the present and
* possible cpu map.
*/
void __init smp_setup_cpu_possible_map(void)
{
int instance, mid;
instance = 0;
while (!cpu_find_by_instance(instance, NULL, &mid)) {
if (mid < NR_CPUS) {
set_cpu_possible(mid, true);
set_cpu_present(mid, true);
}
instance++;
}
}
void __init smp_prepare_boot_cpu(void)
{
int cpuid = hard_smp_processor_id();
if (cpuid >= NR_CPUS) {
prom_printf("Serious problem, boot cpu id >= NR_CPUS\n");
prom_halt();
}
if (cpuid != 0)
printk("boot cpu id != 0, this could work but is untested\n");
current_thread_info()->cpu = cpuid;
set_cpu_online(cpuid, true);
set_cpu_possible(cpuid, true);
}
int __cpuinit __cpu_up(unsigned int cpu, struct task_struct *tidle)
{
extern int __cpuinit smp4m_boot_one_cpu(int, struct task_struct *);
extern int __cpuinit smp4d_boot_one_cpu(int, struct task_struct *);
int ret=0;
switch(sparc_cpu_model) {
case sun4m:
ret = smp4m_boot_one_cpu(cpu, tidle);
break;
case sun4d:
ret = smp4d_boot_one_cpu(cpu, tidle);
break;
case sparc_leon:
ret = leon_boot_one_cpu(cpu, tidle);
break;
case sun4e:
printk("SUN4E\n");
BUG();
break;
case sun4u:
printk("SUN4U\n");
BUG();
break;
default:
printk("UNKNOWN!\n");
BUG();
break;
}
if (!ret) {
cpumask_set_cpu(cpu, &smp_commenced_mask);
while (!cpu_online(cpu))
mb();
}
return ret;
}
void __cpuinit arch_cpu_pre_starting(void *arg)
{
local_ops->cache_all();
local_ops->tlb_all();
switch(sparc_cpu_model) {
case sun4m:
sun4m_cpu_pre_starting(arg);
break;
case sun4d:
sun4d_cpu_pre_starting(arg);
break;
case sparc_leon:
leon_cpu_pre_starting(arg);
break;
default:
BUG();
}
}
void __cpuinit arch_cpu_pre_online(void *arg)
{
unsigned int cpuid = hard_smp_processor_id();
register_percpu_ce(cpuid);
calibrate_delay();
smp_store_cpu_info(cpuid);
local_ops->cache_all();
local_ops->tlb_all();
switch(sparc_cpu_model) {
case sun4m:
sun4m_cpu_pre_online(arg);
break;
case sun4d:
sun4d_cpu_pre_online(arg);
break;
case sparc_leon:
leon_cpu_pre_online(arg);
break;
default:
BUG();
}
}
void __cpuinit sparc_start_secondary(void *arg)
{
unsigned int cpu;
/*
* SMP booting is extremely fragile in some architectures. So run
* the cpu initialization code first before anything else.
*/
arch_cpu_pre_starting(arg);
preempt_disable();
cpu = smp_processor_id();
/* Invoke the CPU_STARTING notifier callbacks */
notify_cpu_starting(cpu);
arch_cpu_pre_online(arg);
/* Set the CPU in the cpu_online_mask */
set_cpu_online(cpu, true);
/* Enable local interrupts now */
local_irq_enable();
wmb();
cpu_startup_entry(CPUHP_ONLINE);
/* We should never reach here! */
BUG();
}
void __cpuinit smp_callin(void)
{
sparc_start_secondary(NULL);
}
void smp_bogo(struct seq_file *m)
{
int i;
for_each_online_cpu(i) {
seq_printf(m,
"Cpu%dBogo\t: %lu.%02lu\n",
i,
cpu_data(i).udelay_val/(500000/HZ),
(cpu_data(i).udelay_val/(5000/HZ))%100);
}
}
void smp_info(struct seq_file *m)
{
int i;
seq_printf(m, "State:\n");
for_each_online_cpu(i)
seq_printf(m, "CPU%d\t\t: online\n", i);
}