1
linux/drivers/media/dvb/frontends/stv0297.c
Matthias Schwarzott 084e24acc9 V4L/DVB (12440): Use kzalloc for frontend states to have struct dvb_frontend properly
This patch changes most frontend drivers to allocate their state structure via
kzalloc and not kmalloc. This is done to properly initialize the
embedded "struct dvb_frontend frontend" field, that they all have.

The visible effect of this struct being uninitalized is, that the member "id"
that is used to set the name of kernel thread is totally random.

Some board drivers (for example cx88-dvb) set this "id" via
videobuf_dvb_alloc_frontend but most do not.

So I at least get random id values for saa7134, flexcop and ttpci based cards.
It looks like this in dmesg:
DVB: registering adapter 1 frontend -10551321 (ST STV0299 DVB-S)

The related kernel thread then also gets a strange name
like "kdvb-ad-1-fe--1".

Cc: Michael Krufky <mkrufky@linuxtv.org>
Cc: Steven Toth <stoth@linuxtv.org>
Cc: Timothy Lee <timothy.lee@siriushk.com>
Cc: Igor M. Liplianin <liplianin@me.by>
Signed-off-by: Matthias Schwarzott <zzam@gentoo.org>
Acked-by: Andreas Oberritter <obi@linuxtv.org>
Signed-off-by: Douglas Schilling Landgraf <dougsland@redhat.com>
Signed-off-by: Mauro Carvalho Chehab <mchehab@redhat.com>
2009-08-13 20:39:14 -03:00

724 lines
17 KiB
C

/*
Driver for STV0297 demodulator
Copyright (C) 2004 Andrew de Quincey <adq_dvb@lidskialf.net>
Copyright (C) 2003-2004 Dennis Noermann <dennis.noermann@noernet.de>
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program; if not, write to the Free Software
Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
*/
#include <linux/init.h>
#include <linux/kernel.h>
#include <linux/module.h>
#include <linux/string.h>
#include <linux/delay.h>
#include <linux/jiffies.h>
#include <linux/slab.h>
#include "dvb_frontend.h"
#include "stv0297.h"
struct stv0297_state {
struct i2c_adapter *i2c;
const struct stv0297_config *config;
struct dvb_frontend frontend;
unsigned long last_ber;
unsigned long base_freq;
};
#if 1
#define dprintk(x...) printk(x)
#else
#define dprintk(x...)
#endif
#define STV0297_CLOCK_KHZ 28900
static int stv0297_writereg(struct stv0297_state *state, u8 reg, u8 data)
{
int ret;
u8 buf[] = { reg, data };
struct i2c_msg msg = {.addr = state->config->demod_address,.flags = 0,.buf = buf,.len = 2 };
ret = i2c_transfer(state->i2c, &msg, 1);
if (ret != 1)
dprintk("%s: writereg error (reg == 0x%02x, val == 0x%02x, "
"ret == %i)\n", __func__, reg, data, ret);
return (ret != 1) ? -1 : 0;
}
static int stv0297_readreg(struct stv0297_state *state, u8 reg)
{
int ret;
u8 b0[] = { reg };
u8 b1[] = { 0 };
struct i2c_msg msg[] = { {.addr = state->config->demod_address,.flags = 0,.buf = b0,.len = 1},
{.addr = state->config->demod_address,.flags = I2C_M_RD,.buf = b1,.len = 1}
};
// this device needs a STOP between the register and data
if (state->config->stop_during_read) {
if ((ret = i2c_transfer(state->i2c, &msg[0], 1)) != 1) {
dprintk("%s: readreg error (reg == 0x%02x, ret == %i)\n", __func__, reg, ret);
return -1;
}
if ((ret = i2c_transfer(state->i2c, &msg[1], 1)) != 1) {
dprintk("%s: readreg error (reg == 0x%02x, ret == %i)\n", __func__, reg, ret);
return -1;
}
} else {
if ((ret = i2c_transfer(state->i2c, msg, 2)) != 2) {
dprintk("%s: readreg error (reg == 0x%02x, ret == %i)\n", __func__, reg, ret);
return -1;
}
}
return b1[0];
}
static int stv0297_writereg_mask(struct stv0297_state *state, u8 reg, u8 mask, u8 data)
{
int val;
val = stv0297_readreg(state, reg);
val &= ~mask;
val |= (data & mask);
stv0297_writereg(state, reg, val);
return 0;
}
static int stv0297_readregs(struct stv0297_state *state, u8 reg1, u8 * b, u8 len)
{
int ret;
struct i2c_msg msg[] = { {.addr = state->config->demod_address,.flags = 0,.buf =
&reg1,.len = 1},
{.addr = state->config->demod_address,.flags = I2C_M_RD,.buf = b,.len = len}
};
// this device needs a STOP between the register and data
if (state->config->stop_during_read) {
if ((ret = i2c_transfer(state->i2c, &msg[0], 1)) != 1) {
dprintk("%s: readreg error (reg == 0x%02x, ret == %i)\n", __func__, reg1, ret);
return -1;
}
if ((ret = i2c_transfer(state->i2c, &msg[1], 1)) != 1) {
dprintk("%s: readreg error (reg == 0x%02x, ret == %i)\n", __func__, reg1, ret);
return -1;
}
} else {
if ((ret = i2c_transfer(state->i2c, msg, 2)) != 2) {
dprintk("%s: readreg error (reg == 0x%02x, ret == %i)\n", __func__, reg1, ret);
return -1;
}
}
return 0;
}
static u32 stv0297_get_symbolrate(struct stv0297_state *state)
{
u64 tmp;
tmp = stv0297_readreg(state, 0x55);
tmp |= stv0297_readreg(state, 0x56) << 8;
tmp |= stv0297_readreg(state, 0x57) << 16;
tmp |= stv0297_readreg(state, 0x58) << 24;
tmp *= STV0297_CLOCK_KHZ;
tmp >>= 32;
return (u32) tmp;
}
static void stv0297_set_symbolrate(struct stv0297_state *state, u32 srate)
{
long tmp;
tmp = 131072L * srate; /* 131072 = 2^17 */
tmp = tmp / (STV0297_CLOCK_KHZ / 4); /* 1/4 = 2^-2 */
tmp = tmp * 8192L; /* 8192 = 2^13 */
stv0297_writereg(state, 0x55, (unsigned char) (tmp & 0xFF));
stv0297_writereg(state, 0x56, (unsigned char) (tmp >> 8));
stv0297_writereg(state, 0x57, (unsigned char) (tmp >> 16));
stv0297_writereg(state, 0x58, (unsigned char) (tmp >> 24));
}
static void stv0297_set_sweeprate(struct stv0297_state *state, short fshift, long symrate)
{
long tmp;
tmp = (long) fshift *262144L; /* 262144 = 2*18 */
tmp /= symrate;
tmp *= 1024; /* 1024 = 2*10 */
// adjust
if (tmp >= 0) {
tmp += 500000;
} else {
tmp -= 500000;
}
tmp /= 1000000;
stv0297_writereg(state, 0x60, tmp & 0xFF);
stv0297_writereg_mask(state, 0x69, 0xF0, (tmp >> 4) & 0xf0);
}
static void stv0297_set_carrieroffset(struct stv0297_state *state, long offset)
{
long tmp;
/* symrate is hardcoded to 10000 */
tmp = offset * 26844L; /* (2**28)/10000 */
if (tmp < 0)
tmp += 0x10000000;
tmp &= 0x0FFFFFFF;
stv0297_writereg(state, 0x66, (unsigned char) (tmp & 0xFF));
stv0297_writereg(state, 0x67, (unsigned char) (tmp >> 8));
stv0297_writereg(state, 0x68, (unsigned char) (tmp >> 16));
stv0297_writereg_mask(state, 0x69, 0x0F, (tmp >> 24) & 0x0f);
}
/*
static long stv0297_get_carrieroffset(struct stv0297_state *state)
{
s64 tmp;
stv0297_writereg(state, 0x6B, 0x00);
tmp = stv0297_readreg(state, 0x66);
tmp |= (stv0297_readreg(state, 0x67) << 8);
tmp |= (stv0297_readreg(state, 0x68) << 16);
tmp |= (stv0297_readreg(state, 0x69) & 0x0F) << 24;
tmp *= stv0297_get_symbolrate(state);
tmp >>= 28;
return (s32) tmp;
}
*/
static void stv0297_set_initialdemodfreq(struct stv0297_state *state, long freq)
{
s32 tmp;
if (freq > 10000)
freq -= STV0297_CLOCK_KHZ;
tmp = (STV0297_CLOCK_KHZ * 1000) / (1 << 16);
tmp = (freq * 1000) / tmp;
if (tmp > 0xffff)
tmp = 0xffff;
stv0297_writereg_mask(state, 0x25, 0x80, 0x80);
stv0297_writereg(state, 0x21, tmp >> 8);
stv0297_writereg(state, 0x20, tmp);
}
static int stv0297_set_qam(struct stv0297_state *state, fe_modulation_t modulation)
{
int val = 0;
switch (modulation) {
case QAM_16:
val = 0;
break;
case QAM_32:
val = 1;
break;
case QAM_64:
val = 4;
break;
case QAM_128:
val = 2;
break;
case QAM_256:
val = 3;
break;
default:
return -EINVAL;
}
stv0297_writereg_mask(state, 0x00, 0x70, val << 4);
return 0;
}
static int stv0297_set_inversion(struct stv0297_state *state, fe_spectral_inversion_t inversion)
{
int val = 0;
switch (inversion) {
case INVERSION_OFF:
val = 0;
break;
case INVERSION_ON:
val = 1;
break;
default:
return -EINVAL;
}
stv0297_writereg_mask(state, 0x83, 0x08, val << 3);
return 0;
}
static int stv0297_i2c_gate_ctrl(struct dvb_frontend *fe, int enable)
{
struct stv0297_state *state = fe->demodulator_priv;
if (enable) {
stv0297_writereg(state, 0x87, 0x78);
stv0297_writereg(state, 0x86, 0xc8);
}
return 0;
}
static int stv0297_init(struct dvb_frontend *fe)
{
struct stv0297_state *state = fe->demodulator_priv;
int i;
/* load init table */
for (i=0; !(state->config->inittab[i] == 0xff && state->config->inittab[i+1] == 0xff); i+=2)
stv0297_writereg(state, state->config->inittab[i], state->config->inittab[i+1]);
msleep(200);
state->last_ber = 0;
return 0;
}
static int stv0297_sleep(struct dvb_frontend *fe)
{
struct stv0297_state *state = fe->demodulator_priv;
stv0297_writereg_mask(state, 0x80, 1, 1);
return 0;
}
static int stv0297_read_status(struct dvb_frontend *fe, fe_status_t * status)
{
struct stv0297_state *state = fe->demodulator_priv;
u8 sync = stv0297_readreg(state, 0xDF);
*status = 0;
if (sync & 0x80)
*status |=
FE_HAS_SYNC | FE_HAS_SIGNAL | FE_HAS_CARRIER | FE_HAS_VITERBI | FE_HAS_LOCK;
return 0;
}
static int stv0297_read_ber(struct dvb_frontend *fe, u32 * ber)
{
struct stv0297_state *state = fe->demodulator_priv;
u8 BER[3];
stv0297_readregs(state, 0xA0, BER, 3);
if (!(BER[0] & 0x80)) {
state->last_ber = BER[2] << 8 | BER[1];
stv0297_writereg_mask(state, 0xA0, 0x80, 0x80);
}
*ber = state->last_ber;
return 0;
}
static int stv0297_read_signal_strength(struct dvb_frontend *fe, u16 * strength)
{
struct stv0297_state *state = fe->demodulator_priv;
u8 STRENGTH[3];
u16 tmp;
stv0297_readregs(state, 0x41, STRENGTH, 3);
tmp = (STRENGTH[1] & 0x03) << 8 | STRENGTH[0];
if (STRENGTH[2] & 0x20) {
if (tmp < 0x200)
tmp = 0;
else
tmp = tmp - 0x200;
} else {
if (tmp > 0x1ff)
tmp = 0;
else
tmp = 0x1ff - tmp;
}
*strength = (tmp << 7) | (tmp >> 2);
return 0;
}
static int stv0297_read_snr(struct dvb_frontend *fe, u16 * snr)
{
struct stv0297_state *state = fe->demodulator_priv;
u8 SNR[2];
stv0297_readregs(state, 0x07, SNR, 2);
*snr = SNR[1] << 8 | SNR[0];
return 0;
}
static int stv0297_read_ucblocks(struct dvb_frontend *fe, u32 * ucblocks)
{
struct stv0297_state *state = fe->demodulator_priv;
stv0297_writereg_mask(state, 0xDF, 0x03, 0x03); /* freeze the counters */
*ucblocks = (stv0297_readreg(state, 0xD5) << 8)
| stv0297_readreg(state, 0xD4);
stv0297_writereg_mask(state, 0xDF, 0x03, 0x02); /* clear the counters */
stv0297_writereg_mask(state, 0xDF, 0x03, 0x01); /* re-enable the counters */
return 0;
}
static int stv0297_set_frontend(struct dvb_frontend *fe, struct dvb_frontend_parameters *p)
{
struct stv0297_state *state = fe->demodulator_priv;
int u_threshold;
int initial_u;
int blind_u;
int delay;
int sweeprate;
int carrieroffset;
unsigned long starttime;
unsigned long timeout;
fe_spectral_inversion_t inversion;
switch (p->u.qam.modulation) {
case QAM_16:
case QAM_32:
case QAM_64:
delay = 100;
sweeprate = 1000;
break;
case QAM_128:
case QAM_256:
delay = 200;
sweeprate = 500;
break;
default:
return -EINVAL;
}
// determine inversion dependant parameters
inversion = p->inversion;
if (state->config->invert)
inversion = (inversion == INVERSION_ON) ? INVERSION_OFF : INVERSION_ON;
carrieroffset = -330;
switch (inversion) {
case INVERSION_OFF:
break;
case INVERSION_ON:
sweeprate = -sweeprate;
carrieroffset = -carrieroffset;
break;
default:
return -EINVAL;
}
stv0297_init(fe);
if (fe->ops.tuner_ops.set_params) {
fe->ops.tuner_ops.set_params(fe, p);
if (fe->ops.i2c_gate_ctrl) fe->ops.i2c_gate_ctrl(fe, 0);
}
/* clear software interrupts */
stv0297_writereg(state, 0x82, 0x0);
/* set initial demodulation frequency */
stv0297_set_initialdemodfreq(state, 7250);
/* setup AGC */
stv0297_writereg_mask(state, 0x43, 0x10, 0x00);
stv0297_writereg(state, 0x41, 0x00);
stv0297_writereg_mask(state, 0x42, 0x03, 0x01);
stv0297_writereg_mask(state, 0x36, 0x60, 0x00);
stv0297_writereg_mask(state, 0x36, 0x18, 0x00);
stv0297_writereg_mask(state, 0x71, 0x80, 0x80);
stv0297_writereg(state, 0x72, 0x00);
stv0297_writereg(state, 0x73, 0x00);
stv0297_writereg_mask(state, 0x74, 0x0F, 0x00);
stv0297_writereg_mask(state, 0x43, 0x08, 0x00);
stv0297_writereg_mask(state, 0x71, 0x80, 0x00);
/* setup STL */
stv0297_writereg_mask(state, 0x5a, 0x20, 0x20);
stv0297_writereg_mask(state, 0x5b, 0x02, 0x02);
stv0297_writereg_mask(state, 0x5b, 0x02, 0x00);
stv0297_writereg_mask(state, 0x5b, 0x01, 0x00);
stv0297_writereg_mask(state, 0x5a, 0x40, 0x40);
/* disable frequency sweep */
stv0297_writereg_mask(state, 0x6a, 0x01, 0x00);
/* reset deinterleaver */
stv0297_writereg_mask(state, 0x81, 0x01, 0x01);
stv0297_writereg_mask(state, 0x81, 0x01, 0x00);
/* ??? */
stv0297_writereg_mask(state, 0x83, 0x20, 0x20);
stv0297_writereg_mask(state, 0x83, 0x20, 0x00);
/* reset equaliser */
u_threshold = stv0297_readreg(state, 0x00) & 0xf;
initial_u = stv0297_readreg(state, 0x01) >> 4;
blind_u = stv0297_readreg(state, 0x01) & 0xf;
stv0297_writereg_mask(state, 0x84, 0x01, 0x01);
stv0297_writereg_mask(state, 0x84, 0x01, 0x00);
stv0297_writereg_mask(state, 0x00, 0x0f, u_threshold);
stv0297_writereg_mask(state, 0x01, 0xf0, initial_u << 4);
stv0297_writereg_mask(state, 0x01, 0x0f, blind_u);
/* data comes from internal A/D */
stv0297_writereg_mask(state, 0x87, 0x80, 0x00);
/* clear phase registers */
stv0297_writereg(state, 0x63, 0x00);
stv0297_writereg(state, 0x64, 0x00);
stv0297_writereg(state, 0x65, 0x00);
stv0297_writereg(state, 0x66, 0x00);
stv0297_writereg(state, 0x67, 0x00);
stv0297_writereg(state, 0x68, 0x00);
stv0297_writereg_mask(state, 0x69, 0x0f, 0x00);
/* set parameters */
stv0297_set_qam(state, p->u.qam.modulation);
stv0297_set_symbolrate(state, p->u.qam.symbol_rate / 1000);
stv0297_set_sweeprate(state, sweeprate, p->u.qam.symbol_rate / 1000);
stv0297_set_carrieroffset(state, carrieroffset);
stv0297_set_inversion(state, inversion);
/* kick off lock */
/* Disable corner detection for higher QAMs */
if (p->u.qam.modulation == QAM_128 ||
p->u.qam.modulation == QAM_256)
stv0297_writereg_mask(state, 0x88, 0x08, 0x00);
else
stv0297_writereg_mask(state, 0x88, 0x08, 0x08);
stv0297_writereg_mask(state, 0x5a, 0x20, 0x00);
stv0297_writereg_mask(state, 0x6a, 0x01, 0x01);
stv0297_writereg_mask(state, 0x43, 0x40, 0x40);
stv0297_writereg_mask(state, 0x5b, 0x30, 0x00);
stv0297_writereg_mask(state, 0x03, 0x0c, 0x0c);
stv0297_writereg_mask(state, 0x03, 0x03, 0x03);
stv0297_writereg_mask(state, 0x43, 0x10, 0x10);
/* wait for WGAGC lock */
starttime = jiffies;
timeout = jiffies + msecs_to_jiffies(2000);
while (time_before(jiffies, timeout)) {
msleep(10);
if (stv0297_readreg(state, 0x43) & 0x08)
break;
}
if (time_after(jiffies, timeout)) {
goto timeout;
}
msleep(20);
/* wait for equaliser partial convergence */
timeout = jiffies + msecs_to_jiffies(500);
while (time_before(jiffies, timeout)) {
msleep(10);
if (stv0297_readreg(state, 0x82) & 0x04) {
break;
}
}
if (time_after(jiffies, timeout)) {
goto timeout;
}
/* wait for equaliser full convergence */
timeout = jiffies + msecs_to_jiffies(delay);
while (time_before(jiffies, timeout)) {
msleep(10);
if (stv0297_readreg(state, 0x82) & 0x08) {
break;
}
}
if (time_after(jiffies, timeout)) {
goto timeout;
}
/* disable sweep */
stv0297_writereg_mask(state, 0x6a, 1, 0);
stv0297_writereg_mask(state, 0x88, 8, 0);
/* wait for main lock */
timeout = jiffies + msecs_to_jiffies(20);
while (time_before(jiffies, timeout)) {
msleep(10);
if (stv0297_readreg(state, 0xDF) & 0x80) {
break;
}
}
if (time_after(jiffies, timeout)) {
goto timeout;
}
msleep(100);
/* is it still locked after that delay? */
if (!(stv0297_readreg(state, 0xDF) & 0x80)) {
goto timeout;
}
/* success!! */
stv0297_writereg_mask(state, 0x5a, 0x40, 0x00);
state->base_freq = p->frequency;
return 0;
timeout:
stv0297_writereg_mask(state, 0x6a, 0x01, 0x00);
return 0;
}
static int stv0297_get_frontend(struct dvb_frontend *fe, struct dvb_frontend_parameters *p)
{
struct stv0297_state *state = fe->demodulator_priv;
int reg_00, reg_83;
reg_00 = stv0297_readreg(state, 0x00);
reg_83 = stv0297_readreg(state, 0x83);
p->frequency = state->base_freq;
p->inversion = (reg_83 & 0x08) ? INVERSION_ON : INVERSION_OFF;
if (state->config->invert)
p->inversion = (p->inversion == INVERSION_ON) ? INVERSION_OFF : INVERSION_ON;
p->u.qam.symbol_rate = stv0297_get_symbolrate(state) * 1000;
p->u.qam.fec_inner = FEC_NONE;
switch ((reg_00 >> 4) & 0x7) {
case 0:
p->u.qam.modulation = QAM_16;
break;
case 1:
p->u.qam.modulation = QAM_32;
break;
case 2:
p->u.qam.modulation = QAM_128;
break;
case 3:
p->u.qam.modulation = QAM_256;
break;
case 4:
p->u.qam.modulation = QAM_64;
break;
}
return 0;
}
static void stv0297_release(struct dvb_frontend *fe)
{
struct stv0297_state *state = fe->demodulator_priv;
kfree(state);
}
static struct dvb_frontend_ops stv0297_ops;
struct dvb_frontend *stv0297_attach(const struct stv0297_config *config,
struct i2c_adapter *i2c)
{
struct stv0297_state *state = NULL;
/* allocate memory for the internal state */
state = kzalloc(sizeof(struct stv0297_state), GFP_KERNEL);
if (state == NULL)
goto error;
/* setup the state */
state->config = config;
state->i2c = i2c;
state->last_ber = 0;
state->base_freq = 0;
/* check if the demod is there */
if ((stv0297_readreg(state, 0x80) & 0x70) != 0x20)
goto error;
/* create dvb_frontend */
memcpy(&state->frontend.ops, &stv0297_ops, sizeof(struct dvb_frontend_ops));
state->frontend.demodulator_priv = state;
return &state->frontend;
error:
kfree(state);
return NULL;
}
static struct dvb_frontend_ops stv0297_ops = {
.info = {
.name = "ST STV0297 DVB-C",
.type = FE_QAM,
.frequency_min = 47000000,
.frequency_max = 862000000,
.frequency_stepsize = 62500,
.symbol_rate_min = 870000,
.symbol_rate_max = 11700000,
.caps = FE_CAN_QAM_16 | FE_CAN_QAM_32 | FE_CAN_QAM_64 |
FE_CAN_QAM_128 | FE_CAN_QAM_256 | FE_CAN_FEC_AUTO},
.release = stv0297_release,
.init = stv0297_init,
.sleep = stv0297_sleep,
.i2c_gate_ctrl = stv0297_i2c_gate_ctrl,
.set_frontend = stv0297_set_frontend,
.get_frontend = stv0297_get_frontend,
.read_status = stv0297_read_status,
.read_ber = stv0297_read_ber,
.read_signal_strength = stv0297_read_signal_strength,
.read_snr = stv0297_read_snr,
.read_ucblocks = stv0297_read_ucblocks,
};
MODULE_DESCRIPTION("ST STV0297 DVB-C Demodulator driver");
MODULE_AUTHOR("Dennis Noermann and Andrew de Quincey");
MODULE_LICENSE("GPL");
EXPORT_SYMBOL(stv0297_attach);