1
linux/fs/jffs2/file.c
Nick Piggin 2a754b51aa [JFFS2] Fix return value from jffs2_write_end()
jffs2_write_end() is sometimes passing back a "written" length greater 
than the length we passed into it, leading to a BUG at mm/filemap.c:1749 
when used with unionfs.

It happens because we actually write more than was requested, to reduce 
log fragmentation. These "longer" writes are fine, but they shouldn't 
get propagated back to the vm/vfs.

Signed-off-by: Nick Piggin <npiggin@suse.de>
Signed-off-by: David Woodhouse <dwmw2@infradead.org>
2007-10-22 10:24:44 +01:00

322 lines
9.1 KiB
C

/*
* JFFS2 -- Journalling Flash File System, Version 2.
*
* Copyright © 2001-2007 Red Hat, Inc.
*
* Created by David Woodhouse <dwmw2@infradead.org>
*
* For licensing information, see the file 'LICENCE' in this directory.
*
*/
#include <linux/kernel.h>
#include <linux/slab.h>
#include <linux/fs.h>
#include <linux/time.h>
#include <linux/pagemap.h>
#include <linux/highmem.h>
#include <linux/crc32.h>
#include <linux/jffs2.h>
#include "nodelist.h"
static int jffs2_write_end(struct file *filp, struct address_space *mapping,
loff_t pos, unsigned len, unsigned copied,
struct page *pg, void *fsdata);
static int jffs2_write_begin(struct file *filp, struct address_space *mapping,
loff_t pos, unsigned len, unsigned flags,
struct page **pagep, void **fsdata);
static int jffs2_readpage (struct file *filp, struct page *pg);
int jffs2_fsync(struct file *filp, struct dentry *dentry, int datasync)
{
struct inode *inode = dentry->d_inode;
struct jffs2_sb_info *c = JFFS2_SB_INFO(inode->i_sb);
/* Trigger GC to flush any pending writes for this inode */
jffs2_flush_wbuf_gc(c, inode->i_ino);
return 0;
}
const struct file_operations jffs2_file_operations =
{
.llseek = generic_file_llseek,
.open = generic_file_open,
.read = do_sync_read,
.aio_read = generic_file_aio_read,
.write = do_sync_write,
.aio_write = generic_file_aio_write,
.ioctl = jffs2_ioctl,
.mmap = generic_file_readonly_mmap,
.fsync = jffs2_fsync,
.splice_read = generic_file_splice_read,
};
/* jffs2_file_inode_operations */
const struct inode_operations jffs2_file_inode_operations =
{
.permission = jffs2_permission,
.setattr = jffs2_setattr,
.setxattr = jffs2_setxattr,
.getxattr = jffs2_getxattr,
.listxattr = jffs2_listxattr,
.removexattr = jffs2_removexattr
};
const struct address_space_operations jffs2_file_address_operations =
{
.readpage = jffs2_readpage,
.write_begin = jffs2_write_begin,
.write_end = jffs2_write_end,
};
static int jffs2_do_readpage_nolock (struct inode *inode, struct page *pg)
{
struct jffs2_inode_info *f = JFFS2_INODE_INFO(inode);
struct jffs2_sb_info *c = JFFS2_SB_INFO(inode->i_sb);
unsigned char *pg_buf;
int ret;
D2(printk(KERN_DEBUG "jffs2_do_readpage_nolock(): ino #%lu, page at offset 0x%lx\n", inode->i_ino, pg->index << PAGE_CACHE_SHIFT));
BUG_ON(!PageLocked(pg));
pg_buf = kmap(pg);
/* FIXME: Can kmap fail? */
ret = jffs2_read_inode_range(c, f, pg_buf, pg->index << PAGE_CACHE_SHIFT, PAGE_CACHE_SIZE);
if (ret) {
ClearPageUptodate(pg);
SetPageError(pg);
} else {
SetPageUptodate(pg);
ClearPageError(pg);
}
flush_dcache_page(pg);
kunmap(pg);
D2(printk(KERN_DEBUG "readpage finished\n"));
return 0;
}
int jffs2_do_readpage_unlock(struct inode *inode, struct page *pg)
{
int ret = jffs2_do_readpage_nolock(inode, pg);
unlock_page(pg);
return ret;
}
static int jffs2_readpage (struct file *filp, struct page *pg)
{
struct jffs2_inode_info *f = JFFS2_INODE_INFO(pg->mapping->host);
int ret;
down(&f->sem);
ret = jffs2_do_readpage_unlock(pg->mapping->host, pg);
up(&f->sem);
return ret;
}
static int jffs2_write_begin(struct file *filp, struct address_space *mapping,
loff_t pos, unsigned len, unsigned flags,
struct page **pagep, void **fsdata)
{
struct page *pg;
struct inode *inode = mapping->host;
struct jffs2_inode_info *f = JFFS2_INODE_INFO(inode);
pgoff_t index = pos >> PAGE_CACHE_SHIFT;
uint32_t pageofs = pos & (PAGE_CACHE_SIZE - 1);
int ret = 0;
pg = __grab_cache_page(mapping, index);
if (!pg)
return -ENOMEM;
*pagep = pg;
D1(printk(KERN_DEBUG "jffs2_write_begin()\n"));
if (pageofs > inode->i_size) {
/* Make new hole frag from old EOF to new page */
struct jffs2_sb_info *c = JFFS2_SB_INFO(inode->i_sb);
struct jffs2_raw_inode ri;
struct jffs2_full_dnode *fn;
uint32_t alloc_len;
D1(printk(KERN_DEBUG "Writing new hole frag 0x%x-0x%x between current EOF and new page\n",
(unsigned int)inode->i_size, pageofs));
ret = jffs2_reserve_space(c, sizeof(ri), &alloc_len,
ALLOC_NORMAL, JFFS2_SUMMARY_INODE_SIZE);
if (ret)
goto out_page;
down(&f->sem);
memset(&ri, 0, sizeof(ri));
ri.magic = cpu_to_je16(JFFS2_MAGIC_BITMASK);
ri.nodetype = cpu_to_je16(JFFS2_NODETYPE_INODE);
ri.totlen = cpu_to_je32(sizeof(ri));
ri.hdr_crc = cpu_to_je32(crc32(0, &ri, sizeof(struct jffs2_unknown_node)-4));
ri.ino = cpu_to_je32(f->inocache->ino);
ri.version = cpu_to_je32(++f->highest_version);
ri.mode = cpu_to_jemode(inode->i_mode);
ri.uid = cpu_to_je16(inode->i_uid);
ri.gid = cpu_to_je16(inode->i_gid);
ri.isize = cpu_to_je32(max((uint32_t)inode->i_size, pageofs));
ri.atime = ri.ctime = ri.mtime = cpu_to_je32(get_seconds());
ri.offset = cpu_to_je32(inode->i_size);
ri.dsize = cpu_to_je32(pageofs - inode->i_size);
ri.csize = cpu_to_je32(0);
ri.compr = JFFS2_COMPR_ZERO;
ri.node_crc = cpu_to_je32(crc32(0, &ri, sizeof(ri)-8));
ri.data_crc = cpu_to_je32(0);
fn = jffs2_write_dnode(c, f, &ri, NULL, 0, ALLOC_NORMAL);
if (IS_ERR(fn)) {
ret = PTR_ERR(fn);
jffs2_complete_reservation(c);
up(&f->sem);
goto out_page;
}
ret = jffs2_add_full_dnode_to_inode(c, f, fn);
if (f->metadata) {
jffs2_mark_node_obsolete(c, f->metadata->raw);
jffs2_free_full_dnode(f->metadata);
f->metadata = NULL;
}
if (ret) {
D1(printk(KERN_DEBUG "Eep. add_full_dnode_to_inode() failed in write_begin, returned %d\n", ret));
jffs2_mark_node_obsolete(c, fn->raw);
jffs2_free_full_dnode(fn);
jffs2_complete_reservation(c);
up(&f->sem);
goto out_page;
}
jffs2_complete_reservation(c);
inode->i_size = pageofs;
up(&f->sem);
}
/*
* Read in the page if it wasn't already present. Cannot optimize away
* the whole page write case until jffs2_write_end can handle the
* case of a short-copy.
*/
if (!PageUptodate(pg)) {
down(&f->sem);
ret = jffs2_do_readpage_nolock(inode, pg);
up(&f->sem);
if (ret)
goto out_page;
}
D1(printk(KERN_DEBUG "end write_begin(). pg->flags %lx\n", pg->flags));
return ret;
out_page:
unlock_page(pg);
page_cache_release(pg);
return ret;
}
static int jffs2_write_end(struct file *filp, struct address_space *mapping,
loff_t pos, unsigned len, unsigned copied,
struct page *pg, void *fsdata)
{
/* Actually commit the write from the page cache page we're looking at.
* For now, we write the full page out each time. It sucks, but it's simple
*/
struct inode *inode = mapping->host;
struct jffs2_inode_info *f = JFFS2_INODE_INFO(inode);
struct jffs2_sb_info *c = JFFS2_SB_INFO(inode->i_sb);
struct jffs2_raw_inode *ri;
unsigned start = pos & (PAGE_CACHE_SIZE - 1);
unsigned end = start + copied;
unsigned aligned_start = start & ~3;
int ret = 0;
uint32_t writtenlen = 0;
D1(printk(KERN_DEBUG "jffs2_write_end(): ino #%lu, page at 0x%lx, range %d-%d, flags %lx\n",
inode->i_ino, pg->index << PAGE_CACHE_SHIFT, start, end, pg->flags));
/* We need to avoid deadlock with page_cache_read() in
jffs2_garbage_collect_pass(). So the page must be
up to date to prevent page_cache_read() from trying
to re-lock it. */
BUG_ON(!PageUptodate(pg));
if (end == PAGE_CACHE_SIZE) {
/* When writing out the end of a page, write out the
_whole_ page. This helps to reduce the number of
nodes in files which have many short writes, like
syslog files. */
aligned_start = 0;
}
ri = jffs2_alloc_raw_inode();
if (!ri) {
D1(printk(KERN_DEBUG "jffs2_write_end(): Allocation of raw inode failed\n"));
unlock_page(pg);
page_cache_release(pg);
return -ENOMEM;
}
/* Set the fields that the generic jffs2_write_inode_range() code can't find */
ri->ino = cpu_to_je32(inode->i_ino);
ri->mode = cpu_to_jemode(inode->i_mode);
ri->uid = cpu_to_je16(inode->i_uid);
ri->gid = cpu_to_je16(inode->i_gid);
ri->isize = cpu_to_je32((uint32_t)inode->i_size);
ri->atime = ri->ctime = ri->mtime = cpu_to_je32(get_seconds());
/* In 2.4, it was already kmapped by generic_file_write(). Doesn't
hurt to do it again. The alternative is ifdefs, which are ugly. */
kmap(pg);
ret = jffs2_write_inode_range(c, f, ri, page_address(pg) + aligned_start,
(pg->index << PAGE_CACHE_SHIFT) + aligned_start,
end - aligned_start, &writtenlen);
kunmap(pg);
if (ret) {
/* There was an error writing. */
SetPageError(pg);
}
/* Adjust writtenlen for the padding we did, so we don't confuse our caller */
writtenlen -= min(writtenlen, (start - aligned_start));
if (writtenlen) {
if (inode->i_size < pos + writtenlen) {
inode->i_size = pos + writtenlen;
inode->i_blocks = (inode->i_size + 511) >> 9;
inode->i_ctime = inode->i_mtime = ITIME(je32_to_cpu(ri->ctime));
}
}
jffs2_free_raw_inode(ri);
if (start+writtenlen < end) {
/* generic_file_write has written more to the page cache than we've
actually written to the medium. Mark the page !Uptodate so that
it gets reread */
D1(printk(KERN_DEBUG "jffs2_write_end(): Not all bytes written. Marking page !uptodate\n"));
SetPageError(pg);
ClearPageUptodate(pg);
}
D1(printk(KERN_DEBUG "jffs2_write_end() returning %d\n",
writtenlen > 0 ? writtenlen : ret));
unlock_page(pg);
page_cache_release(pg);
return writtenlen > 0 ? writtenlen : ret;
}