1
linux/arch/x86/include/asm/spinlock.h
Arun Sharma 60063497a9 atomic: use <linux/atomic.h>
This allows us to move duplicated code in <asm/atomic.h>
(atomic_inc_not_zero() for now) to <linux/atomic.h>

Signed-off-by: Arun Sharma <asharma@fb.com>
Reviewed-by: Eric Dumazet <eric.dumazet@gmail.com>
Cc: Ingo Molnar <mingo@elte.hu>
Cc: David Miller <davem@davemloft.net>
Cc: Eric Dumazet <eric.dumazet@gmail.com>
Acked-by: Mike Frysinger <vapier@gentoo.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2011-07-26 16:49:47 -07:00

317 lines
7.8 KiB
C

#ifndef _ASM_X86_SPINLOCK_H
#define _ASM_X86_SPINLOCK_H
#include <linux/atomic.h>
#include <asm/page.h>
#include <asm/processor.h>
#include <linux/compiler.h>
#include <asm/paravirt.h>
/*
* Your basic SMP spinlocks, allowing only a single CPU anywhere
*
* Simple spin lock operations. There are two variants, one clears IRQ's
* on the local processor, one does not.
*
* These are fair FIFO ticket locks, which are currently limited to 256
* CPUs.
*
* (the type definitions are in asm/spinlock_types.h)
*/
#ifdef CONFIG_X86_32
# define LOCK_PTR_REG "a"
# define REG_PTR_MODE "k"
#else
# define LOCK_PTR_REG "D"
# define REG_PTR_MODE "q"
#endif
#if defined(CONFIG_X86_32) && \
(defined(CONFIG_X86_OOSTORE) || defined(CONFIG_X86_PPRO_FENCE))
/*
* On PPro SMP or if we are using OOSTORE, we use a locked operation to unlock
* (PPro errata 66, 92)
*/
# define UNLOCK_LOCK_PREFIX LOCK_PREFIX
#else
# define UNLOCK_LOCK_PREFIX
#endif
/*
* Ticket locks are conceptually two parts, one indicating the current head of
* the queue, and the other indicating the current tail. The lock is acquired
* by atomically noting the tail and incrementing it by one (thus adding
* ourself to the queue and noting our position), then waiting until the head
* becomes equal to the the initial value of the tail.
*
* We use an xadd covering *both* parts of the lock, to increment the tail and
* also load the position of the head, which takes care of memory ordering
* issues and should be optimal for the uncontended case. Note the tail must be
* in the high part, because a wide xadd increment of the low part would carry
* up and contaminate the high part.
*
* With fewer than 2^8 possible CPUs, we can use x86's partial registers to
* save some instructions and make the code more elegant. There really isn't
* much between them in performance though, especially as locks are out of line.
*/
#if (NR_CPUS < 256)
#define TICKET_SHIFT 8
static __always_inline void __ticket_spin_lock(arch_spinlock_t *lock)
{
short inc = 0x0100;
asm volatile (
LOCK_PREFIX "xaddw %w0, %1\n"
"1:\t"
"cmpb %h0, %b0\n\t"
"je 2f\n\t"
"rep ; nop\n\t"
"movb %1, %b0\n\t"
/* don't need lfence here, because loads are in-order */
"jmp 1b\n"
"2:"
: "+Q" (inc), "+m" (lock->slock)
:
: "memory", "cc");
}
static __always_inline int __ticket_spin_trylock(arch_spinlock_t *lock)
{
int tmp, new;
asm volatile("movzwl %2, %0\n\t"
"cmpb %h0,%b0\n\t"
"leal 0x100(%" REG_PTR_MODE "0), %1\n\t"
"jne 1f\n\t"
LOCK_PREFIX "cmpxchgw %w1,%2\n\t"
"1:"
"sete %b1\n\t"
"movzbl %b1,%0\n\t"
: "=&a" (tmp), "=&q" (new), "+m" (lock->slock)
:
: "memory", "cc");
return tmp;
}
static __always_inline void __ticket_spin_unlock(arch_spinlock_t *lock)
{
asm volatile(UNLOCK_LOCK_PREFIX "incb %0"
: "+m" (lock->slock)
:
: "memory", "cc");
}
#else
#define TICKET_SHIFT 16
static __always_inline void __ticket_spin_lock(arch_spinlock_t *lock)
{
int inc = 0x00010000;
int tmp;
asm volatile(LOCK_PREFIX "xaddl %0, %1\n"
"movzwl %w0, %2\n\t"
"shrl $16, %0\n\t"
"1:\t"
"cmpl %0, %2\n\t"
"je 2f\n\t"
"rep ; nop\n\t"
"movzwl %1, %2\n\t"
/* don't need lfence here, because loads are in-order */
"jmp 1b\n"
"2:"
: "+r" (inc), "+m" (lock->slock), "=&r" (tmp)
:
: "memory", "cc");
}
static __always_inline int __ticket_spin_trylock(arch_spinlock_t *lock)
{
int tmp;
int new;
asm volatile("movl %2,%0\n\t"
"movl %0,%1\n\t"
"roll $16, %0\n\t"
"cmpl %0,%1\n\t"
"leal 0x00010000(%" REG_PTR_MODE "0), %1\n\t"
"jne 1f\n\t"
LOCK_PREFIX "cmpxchgl %1,%2\n\t"
"1:"
"sete %b1\n\t"
"movzbl %b1,%0\n\t"
: "=&a" (tmp), "=&q" (new), "+m" (lock->slock)
:
: "memory", "cc");
return tmp;
}
static __always_inline void __ticket_spin_unlock(arch_spinlock_t *lock)
{
asm volatile(UNLOCK_LOCK_PREFIX "incw %0"
: "+m" (lock->slock)
:
: "memory", "cc");
}
#endif
static inline int __ticket_spin_is_locked(arch_spinlock_t *lock)
{
int tmp = ACCESS_ONCE(lock->slock);
return !!(((tmp >> TICKET_SHIFT) ^ tmp) & ((1 << TICKET_SHIFT) - 1));
}
static inline int __ticket_spin_is_contended(arch_spinlock_t *lock)
{
int tmp = ACCESS_ONCE(lock->slock);
return (((tmp >> TICKET_SHIFT) - tmp) & ((1 << TICKET_SHIFT) - 1)) > 1;
}
#ifndef CONFIG_PARAVIRT_SPINLOCKS
static inline int arch_spin_is_locked(arch_spinlock_t *lock)
{
return __ticket_spin_is_locked(lock);
}
static inline int arch_spin_is_contended(arch_spinlock_t *lock)
{
return __ticket_spin_is_contended(lock);
}
#define arch_spin_is_contended arch_spin_is_contended
static __always_inline void arch_spin_lock(arch_spinlock_t *lock)
{
__ticket_spin_lock(lock);
}
static __always_inline int arch_spin_trylock(arch_spinlock_t *lock)
{
return __ticket_spin_trylock(lock);
}
static __always_inline void arch_spin_unlock(arch_spinlock_t *lock)
{
__ticket_spin_unlock(lock);
}
static __always_inline void arch_spin_lock_flags(arch_spinlock_t *lock,
unsigned long flags)
{
arch_spin_lock(lock);
}
#endif /* CONFIG_PARAVIRT_SPINLOCKS */
static inline void arch_spin_unlock_wait(arch_spinlock_t *lock)
{
while (arch_spin_is_locked(lock))
cpu_relax();
}
/*
* Read-write spinlocks, allowing multiple readers
* but only one writer.
*
* NOTE! it is quite common to have readers in interrupts
* but no interrupt writers. For those circumstances we
* can "mix" irq-safe locks - any writer needs to get a
* irq-safe write-lock, but readers can get non-irqsafe
* read-locks.
*
* On x86, we implement read-write locks as a 32-bit counter
* with the high bit (sign) being the "contended" bit.
*/
/**
* read_can_lock - would read_trylock() succeed?
* @lock: the rwlock in question.
*/
static inline int arch_read_can_lock(arch_rwlock_t *lock)
{
return lock->lock > 0;
}
/**
* write_can_lock - would write_trylock() succeed?
* @lock: the rwlock in question.
*/
static inline int arch_write_can_lock(arch_rwlock_t *lock)
{
return lock->write == WRITE_LOCK_CMP;
}
static inline void arch_read_lock(arch_rwlock_t *rw)
{
asm volatile(LOCK_PREFIX READ_LOCK_SIZE(dec) " (%0)\n\t"
"jns 1f\n"
"call __read_lock_failed\n\t"
"1:\n"
::LOCK_PTR_REG (rw) : "memory");
}
static inline void arch_write_lock(arch_rwlock_t *rw)
{
asm volatile(LOCK_PREFIX WRITE_LOCK_SUB(%1) "(%0)\n\t"
"jz 1f\n"
"call __write_lock_failed\n\t"
"1:\n"
::LOCK_PTR_REG (&rw->write), "i" (RW_LOCK_BIAS)
: "memory");
}
static inline int arch_read_trylock(arch_rwlock_t *lock)
{
READ_LOCK_ATOMIC(t) *count = (READ_LOCK_ATOMIC(t) *)lock;
if (READ_LOCK_ATOMIC(dec_return)(count) >= 0)
return 1;
READ_LOCK_ATOMIC(inc)(count);
return 0;
}
static inline int arch_write_trylock(arch_rwlock_t *lock)
{
atomic_t *count = (atomic_t *)&lock->write;
if (atomic_sub_and_test(WRITE_LOCK_CMP, count))
return 1;
atomic_add(WRITE_LOCK_CMP, count);
return 0;
}
static inline void arch_read_unlock(arch_rwlock_t *rw)
{
asm volatile(LOCK_PREFIX READ_LOCK_SIZE(inc) " %0"
:"+m" (rw->lock) : : "memory");
}
static inline void arch_write_unlock(arch_rwlock_t *rw)
{
asm volatile(LOCK_PREFIX WRITE_LOCK_ADD(%1) "%0"
: "+m" (rw->write) : "i" (RW_LOCK_BIAS) : "memory");
}
#define arch_read_lock_flags(lock, flags) arch_read_lock(lock)
#define arch_write_lock_flags(lock, flags) arch_write_lock(lock)
#undef READ_LOCK_SIZE
#undef READ_LOCK_ATOMIC
#undef WRITE_LOCK_ADD
#undef WRITE_LOCK_SUB
#undef WRITE_LOCK_CMP
#define arch_spin_relax(lock) cpu_relax()
#define arch_read_relax(lock) cpu_relax()
#define arch_write_relax(lock) cpu_relax()
/* The {read|write|spin}_lock() on x86 are full memory barriers. */
static inline void smp_mb__after_lock(void) { }
#define ARCH_HAS_SMP_MB_AFTER_LOCK
#endif /* _ASM_X86_SPINLOCK_H */