1
linux/drivers/net/macmace.c
Tejun Heo 5a0e3ad6af include cleanup: Update gfp.h and slab.h includes to prepare for breaking implicit slab.h inclusion from percpu.h
percpu.h is included by sched.h and module.h and thus ends up being
included when building most .c files.  percpu.h includes slab.h which
in turn includes gfp.h making everything defined by the two files
universally available and complicating inclusion dependencies.

percpu.h -> slab.h dependency is about to be removed.  Prepare for
this change by updating users of gfp and slab facilities include those
headers directly instead of assuming availability.  As this conversion
needs to touch large number of source files, the following script is
used as the basis of conversion.

  http://userweb.kernel.org/~tj/misc/slabh-sweep.py

The script does the followings.

* Scan files for gfp and slab usages and update includes such that
  only the necessary includes are there.  ie. if only gfp is used,
  gfp.h, if slab is used, slab.h.

* When the script inserts a new include, it looks at the include
  blocks and try to put the new include such that its order conforms
  to its surrounding.  It's put in the include block which contains
  core kernel includes, in the same order that the rest are ordered -
  alphabetical, Christmas tree, rev-Xmas-tree or at the end if there
  doesn't seem to be any matching order.

* If the script can't find a place to put a new include (mostly
  because the file doesn't have fitting include block), it prints out
  an error message indicating which .h file needs to be added to the
  file.

The conversion was done in the following steps.

1. The initial automatic conversion of all .c files updated slightly
   over 4000 files, deleting around 700 includes and adding ~480 gfp.h
   and ~3000 slab.h inclusions.  The script emitted errors for ~400
   files.

2. Each error was manually checked.  Some didn't need the inclusion,
   some needed manual addition while adding it to implementation .h or
   embedding .c file was more appropriate for others.  This step added
   inclusions to around 150 files.

3. The script was run again and the output was compared to the edits
   from #2 to make sure no file was left behind.

4. Several build tests were done and a couple of problems were fixed.
   e.g. lib/decompress_*.c used malloc/free() wrappers around slab
   APIs requiring slab.h to be added manually.

5. The script was run on all .h files but without automatically
   editing them as sprinkling gfp.h and slab.h inclusions around .h
   files could easily lead to inclusion dependency hell.  Most gfp.h
   inclusion directives were ignored as stuff from gfp.h was usually
   wildly available and often used in preprocessor macros.  Each
   slab.h inclusion directive was examined and added manually as
   necessary.

6. percpu.h was updated not to include slab.h.

7. Build test were done on the following configurations and failures
   were fixed.  CONFIG_GCOV_KERNEL was turned off for all tests (as my
   distributed build env didn't work with gcov compiles) and a few
   more options had to be turned off depending on archs to make things
   build (like ipr on powerpc/64 which failed due to missing writeq).

   * x86 and x86_64 UP and SMP allmodconfig and a custom test config.
   * powerpc and powerpc64 SMP allmodconfig
   * sparc and sparc64 SMP allmodconfig
   * ia64 SMP allmodconfig
   * s390 SMP allmodconfig
   * alpha SMP allmodconfig
   * um on x86_64 SMP allmodconfig

8. percpu.h modifications were reverted so that it could be applied as
   a separate patch and serve as bisection point.

Given the fact that I had only a couple of failures from tests on step
6, I'm fairly confident about the coverage of this conversion patch.
If there is a breakage, it's likely to be something in one of the arch
headers which should be easily discoverable easily on most builds of
the specific arch.

Signed-off-by: Tejun Heo <tj@kernel.org>
Guess-its-ok-by: Christoph Lameter <cl@linux-foundation.org>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: Lee Schermerhorn <Lee.Schermerhorn@hp.com>
2010-03-30 22:02:32 +09:00

801 lines
18 KiB
C

/*
* Driver for the Macintosh 68K onboard MACE controller with PSC
* driven DMA. The MACE driver code is derived from mace.c. The
* Mac68k theory of operation is courtesy of the MacBSD wizards.
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License
* as published by the Free Software Foundation; either version
* 2 of the License, or (at your option) any later version.
*
* Copyright (C) 1996 Paul Mackerras.
* Copyright (C) 1998 Alan Cox <alan@lxorguk.ukuu.org.uk>
*
* Modified heavily by Joshua M. Thompson based on Dave Huang's NetBSD driver
*
* Copyright (C) 2007 Finn Thain
*
* Converted to DMA API, converted to unified driver model,
* sync'd some routines with mace.c and fixed various bugs.
*/
#include <linux/kernel.h>
#include <linux/module.h>
#include <linux/netdevice.h>
#include <linux/etherdevice.h>
#include <linux/delay.h>
#include <linux/string.h>
#include <linux/crc32.h>
#include <linux/bitrev.h>
#include <linux/dma-mapping.h>
#include <linux/platform_device.h>
#include <linux/gfp.h>
#include <asm/io.h>
#include <asm/irq.h>
#include <asm/macintosh.h>
#include <asm/macints.h>
#include <asm/mac_psc.h>
#include <asm/page.h>
#include "mace.h"
static char mac_mace_string[] = "macmace";
#define N_TX_BUFF_ORDER 0
#define N_TX_RING (1 << N_TX_BUFF_ORDER)
#define N_RX_BUFF_ORDER 3
#define N_RX_RING (1 << N_RX_BUFF_ORDER)
#define TX_TIMEOUT HZ
#define MACE_BUFF_SIZE 0x800
/* Chip rev needs workaround on HW & multicast addr change */
#define BROKEN_ADDRCHG_REV 0x0941
/* The MACE is simply wired down on a Mac68K box */
#define MACE_BASE (void *)(0x50F1C000)
#define MACE_PROM (void *)(0x50F08001)
struct mace_data {
volatile struct mace *mace;
unsigned char *tx_ring;
dma_addr_t tx_ring_phys;
unsigned char *rx_ring;
dma_addr_t rx_ring_phys;
int dma_intr;
int rx_slot, rx_tail;
int tx_slot, tx_sloti, tx_count;
int chipid;
struct device *device;
};
struct mace_frame {
u8 rcvcnt;
u8 pad1;
u8 rcvsts;
u8 pad2;
u8 rntpc;
u8 pad3;
u8 rcvcc;
u8 pad4;
u32 pad5;
u32 pad6;
u8 data[1];
/* And frame continues.. */
};
#define PRIV_BYTES sizeof(struct mace_data)
static int mace_open(struct net_device *dev);
static int mace_close(struct net_device *dev);
static int mace_xmit_start(struct sk_buff *skb, struct net_device *dev);
static void mace_set_multicast(struct net_device *dev);
static int mace_set_address(struct net_device *dev, void *addr);
static void mace_reset(struct net_device *dev);
static irqreturn_t mace_interrupt(int irq, void *dev_id);
static irqreturn_t mace_dma_intr(int irq, void *dev_id);
static void mace_tx_timeout(struct net_device *dev);
static void __mace_set_address(struct net_device *dev, void *addr);
/*
* Load a receive DMA channel with a base address and ring length
*/
static void mace_load_rxdma_base(struct net_device *dev, int set)
{
struct mace_data *mp = netdev_priv(dev);
psc_write_word(PSC_ENETRD_CMD + set, 0x0100);
psc_write_long(PSC_ENETRD_ADDR + set, (u32) mp->rx_ring_phys);
psc_write_long(PSC_ENETRD_LEN + set, N_RX_RING);
psc_write_word(PSC_ENETRD_CMD + set, 0x9800);
mp->rx_tail = 0;
}
/*
* Reset the receive DMA subsystem
*/
static void mace_rxdma_reset(struct net_device *dev)
{
struct mace_data *mp = netdev_priv(dev);
volatile struct mace *mace = mp->mace;
u8 maccc = mace->maccc;
mace->maccc = maccc & ~ENRCV;
psc_write_word(PSC_ENETRD_CTL, 0x8800);
mace_load_rxdma_base(dev, 0x00);
psc_write_word(PSC_ENETRD_CTL, 0x0400);
psc_write_word(PSC_ENETRD_CTL, 0x8800);
mace_load_rxdma_base(dev, 0x10);
psc_write_word(PSC_ENETRD_CTL, 0x0400);
mace->maccc = maccc;
mp->rx_slot = 0;
psc_write_word(PSC_ENETRD_CMD + PSC_SET0, 0x9800);
psc_write_word(PSC_ENETRD_CMD + PSC_SET1, 0x9800);
}
/*
* Reset the transmit DMA subsystem
*/
static void mace_txdma_reset(struct net_device *dev)
{
struct mace_data *mp = netdev_priv(dev);
volatile struct mace *mace = mp->mace;
u8 maccc;
psc_write_word(PSC_ENETWR_CTL, 0x8800);
maccc = mace->maccc;
mace->maccc = maccc & ~ENXMT;
mp->tx_slot = mp->tx_sloti = 0;
mp->tx_count = N_TX_RING;
psc_write_word(PSC_ENETWR_CTL, 0x0400);
mace->maccc = maccc;
}
/*
* Disable DMA
*/
static void mace_dma_off(struct net_device *dev)
{
psc_write_word(PSC_ENETRD_CTL, 0x8800);
psc_write_word(PSC_ENETRD_CTL, 0x1000);
psc_write_word(PSC_ENETRD_CMD + PSC_SET0, 0x1100);
psc_write_word(PSC_ENETRD_CMD + PSC_SET1, 0x1100);
psc_write_word(PSC_ENETWR_CTL, 0x8800);
psc_write_word(PSC_ENETWR_CTL, 0x1000);
psc_write_word(PSC_ENETWR_CMD + PSC_SET0, 0x1100);
psc_write_word(PSC_ENETWR_CMD + PSC_SET1, 0x1100);
}
static const struct net_device_ops mace_netdev_ops = {
.ndo_open = mace_open,
.ndo_stop = mace_close,
.ndo_start_xmit = mace_xmit_start,
.ndo_tx_timeout = mace_tx_timeout,
.ndo_set_multicast_list = mace_set_multicast,
.ndo_set_mac_address = mace_set_address,
.ndo_change_mtu = eth_change_mtu,
.ndo_validate_addr = eth_validate_addr,
};
/*
* Not really much of a probe. The hardware table tells us if this
* model of Macintrash has a MACE (AV macintoshes)
*/
static int __devinit mace_probe(struct platform_device *pdev)
{
int j;
struct mace_data *mp;
unsigned char *addr;
struct net_device *dev;
unsigned char checksum = 0;
static int found = 0;
int err;
if (found || macintosh_config->ether_type != MAC_ETHER_MACE)
return -ENODEV;
found = 1; /* prevent 'finding' one on every device probe */
dev = alloc_etherdev(PRIV_BYTES);
if (!dev)
return -ENOMEM;
mp = netdev_priv(dev);
mp->device = &pdev->dev;
SET_NETDEV_DEV(dev, &pdev->dev);
dev->base_addr = (u32)MACE_BASE;
mp->mace = (volatile struct mace *) MACE_BASE;
dev->irq = IRQ_MAC_MACE;
mp->dma_intr = IRQ_MAC_MACE_DMA;
mp->chipid = mp->mace->chipid_hi << 8 | mp->mace->chipid_lo;
/*
* The PROM contains 8 bytes which total 0xFF when XOR'd
* together. Due to the usual peculiar apple brain damage
* the bytes are spaced out in a strange boundary and the
* bits are reversed.
*/
addr = (void *)MACE_PROM;
for (j = 0; j < 6; ++j) {
u8 v = bitrev8(addr[j<<4]);
checksum ^= v;
dev->dev_addr[j] = v;
}
for (; j < 8; ++j) {
checksum ^= bitrev8(addr[j<<4]);
}
if (checksum != 0xFF) {
free_netdev(dev);
return -ENODEV;
}
dev->netdev_ops = &mace_netdev_ops;
dev->watchdog_timeo = TX_TIMEOUT;
printk(KERN_INFO "%s: 68K MACE, hardware address %pM\n",
dev->name, dev->dev_addr);
err = register_netdev(dev);
if (!err)
return 0;
free_netdev(dev);
return err;
}
/*
* Reset the chip.
*/
static void mace_reset(struct net_device *dev)
{
struct mace_data *mp = netdev_priv(dev);
volatile struct mace *mb = mp->mace;
int i;
/* soft-reset the chip */
i = 200;
while (--i) {
mb->biucc = SWRST;
if (mb->biucc & SWRST) {
udelay(10);
continue;
}
break;
}
if (!i) {
printk(KERN_ERR "macmace: cannot reset chip!\n");
return;
}
mb->maccc = 0; /* turn off tx, rx */
mb->imr = 0xFF; /* disable all intrs for now */
i = mb->ir;
mb->biucc = XMTSP_64;
mb->utr = RTRD;
mb->fifocc = XMTFW_8 | RCVFW_64 | XMTFWU | RCVFWU;
mb->xmtfc = AUTO_PAD_XMIT; /* auto-pad short frames */
mb->rcvfc = 0;
/* load up the hardware address */
__mace_set_address(dev, dev->dev_addr);
/* clear the multicast filter */
if (mp->chipid == BROKEN_ADDRCHG_REV)
mb->iac = LOGADDR;
else {
mb->iac = ADDRCHG | LOGADDR;
while ((mb->iac & ADDRCHG) != 0)
;
}
for (i = 0; i < 8; ++i)
mb->ladrf = 0;
/* done changing address */
if (mp->chipid != BROKEN_ADDRCHG_REV)
mb->iac = 0;
mb->plscc = PORTSEL_AUI;
}
/*
* Load the address on a mace controller.
*/
static void __mace_set_address(struct net_device *dev, void *addr)
{
struct mace_data *mp = netdev_priv(dev);
volatile struct mace *mb = mp->mace;
unsigned char *p = addr;
int i;
/* load up the hardware address */
if (mp->chipid == BROKEN_ADDRCHG_REV)
mb->iac = PHYADDR;
else {
mb->iac = ADDRCHG | PHYADDR;
while ((mb->iac & ADDRCHG) != 0)
;
}
for (i = 0; i < 6; ++i)
mb->padr = dev->dev_addr[i] = p[i];
if (mp->chipid != BROKEN_ADDRCHG_REV)
mb->iac = 0;
}
static int mace_set_address(struct net_device *dev, void *addr)
{
struct mace_data *mp = netdev_priv(dev);
volatile struct mace *mb = mp->mace;
unsigned long flags;
u8 maccc;
local_irq_save(flags);
maccc = mb->maccc;
__mace_set_address(dev, addr);
mb->maccc = maccc;
local_irq_restore(flags);
return 0;
}
/*
* Open the Macintosh MACE. Most of this is playing with the DMA
* engine. The ethernet chip is quite friendly.
*/
static int mace_open(struct net_device *dev)
{
struct mace_data *mp = netdev_priv(dev);
volatile struct mace *mb = mp->mace;
/* reset the chip */
mace_reset(dev);
if (request_irq(dev->irq, mace_interrupt, 0, dev->name, dev)) {
printk(KERN_ERR "%s: can't get irq %d\n", dev->name, dev->irq);
return -EAGAIN;
}
if (request_irq(mp->dma_intr, mace_dma_intr, 0, dev->name, dev)) {
printk(KERN_ERR "%s: can't get irq %d\n", dev->name, mp->dma_intr);
free_irq(dev->irq, dev);
return -EAGAIN;
}
/* Allocate the DMA ring buffers */
mp->tx_ring = dma_alloc_coherent(mp->device,
N_TX_RING * MACE_BUFF_SIZE,
&mp->tx_ring_phys, GFP_KERNEL);
if (mp->tx_ring == NULL) {
printk(KERN_ERR "%s: unable to allocate DMA tx buffers\n", dev->name);
goto out1;
}
mp->rx_ring = dma_alloc_coherent(mp->device,
N_RX_RING * MACE_BUFF_SIZE,
&mp->rx_ring_phys, GFP_KERNEL);
if (mp->rx_ring == NULL) {
printk(KERN_ERR "%s: unable to allocate DMA rx buffers\n", dev->name);
goto out2;
}
mace_dma_off(dev);
/* Not sure what these do */
psc_write_word(PSC_ENETWR_CTL, 0x9000);
psc_write_word(PSC_ENETRD_CTL, 0x9000);
psc_write_word(PSC_ENETWR_CTL, 0x0400);
psc_write_word(PSC_ENETRD_CTL, 0x0400);
mace_rxdma_reset(dev);
mace_txdma_reset(dev);
/* turn it on! */
mb->maccc = ENXMT | ENRCV;
/* enable all interrupts except receive interrupts */
mb->imr = RCVINT;
return 0;
out2:
dma_free_coherent(mp->device, N_TX_RING * MACE_BUFF_SIZE,
mp->tx_ring, mp->tx_ring_phys);
out1:
free_irq(dev->irq, dev);
free_irq(mp->dma_intr, dev);
return -ENOMEM;
}
/*
* Shut down the mace and its interrupt channel
*/
static int mace_close(struct net_device *dev)
{
struct mace_data *mp = netdev_priv(dev);
volatile struct mace *mb = mp->mace;
mb->maccc = 0; /* disable rx and tx */
mb->imr = 0xFF; /* disable all irqs */
mace_dma_off(dev); /* disable rx and tx dma */
return 0;
}
/*
* Transmit a frame
*/
static int mace_xmit_start(struct sk_buff *skb, struct net_device *dev)
{
struct mace_data *mp = netdev_priv(dev);
unsigned long flags;
/* Stop the queue since there's only the one buffer */
local_irq_save(flags);
netif_stop_queue(dev);
if (!mp->tx_count) {
printk(KERN_ERR "macmace: tx queue running but no free buffers.\n");
local_irq_restore(flags);
return NETDEV_TX_BUSY;
}
mp->tx_count--;
local_irq_restore(flags);
dev->stats.tx_packets++;
dev->stats.tx_bytes += skb->len;
/* We need to copy into our xmit buffer to take care of alignment and caching issues */
skb_copy_from_linear_data(skb, mp->tx_ring, skb->len);
/* load the Tx DMA and fire it off */
psc_write_long(PSC_ENETWR_ADDR + mp->tx_slot, (u32) mp->tx_ring_phys);
psc_write_long(PSC_ENETWR_LEN + mp->tx_slot, skb->len);
psc_write_word(PSC_ENETWR_CMD + mp->tx_slot, 0x9800);
mp->tx_slot ^= 0x10;
dev_kfree_skb(skb);
dev->trans_start = jiffies;
return NETDEV_TX_OK;
}
static void mace_set_multicast(struct net_device *dev)
{
struct mace_data *mp = netdev_priv(dev);
volatile struct mace *mb = mp->mace;
int i;
u32 crc;
u8 maccc;
unsigned long flags;
local_irq_save(flags);
maccc = mb->maccc;
mb->maccc &= ~PROM;
if (dev->flags & IFF_PROMISC) {
mb->maccc |= PROM;
} else {
unsigned char multicast_filter[8];
struct dev_mc_list *dmi;
if (dev->flags & IFF_ALLMULTI) {
for (i = 0; i < 8; i++) {
multicast_filter[i] = 0xFF;
}
} else {
for (i = 0; i < 8; i++)
multicast_filter[i] = 0;
netdev_for_each_mc_addr(dmi, dev) {
crc = ether_crc_le(6, dmi->dmi_addr);
/* bit number in multicast_filter */
i = crc >> 26;
multicast_filter[i >> 3] |= 1 << (i & 7);
}
}
if (mp->chipid == BROKEN_ADDRCHG_REV)
mb->iac = LOGADDR;
else {
mb->iac = ADDRCHG | LOGADDR;
while ((mb->iac & ADDRCHG) != 0)
;
}
for (i = 0; i < 8; ++i)
mb->ladrf = multicast_filter[i];
if (mp->chipid != BROKEN_ADDRCHG_REV)
mb->iac = 0;
}
mb->maccc = maccc;
local_irq_restore(flags);
}
static void mace_handle_misc_intrs(struct net_device *dev, int intr)
{
struct mace_data *mp = netdev_priv(dev);
volatile struct mace *mb = mp->mace;
static int mace_babbles, mace_jabbers;
if (intr & MPCO)
dev->stats.rx_missed_errors += 256;
dev->stats.rx_missed_errors += mb->mpc; /* reading clears it */
if (intr & RNTPCO)
dev->stats.rx_length_errors += 256;
dev->stats.rx_length_errors += mb->rntpc; /* reading clears it */
if (intr & CERR)
++dev->stats.tx_heartbeat_errors;
if (intr & BABBLE)
if (mace_babbles++ < 4)
printk(KERN_DEBUG "macmace: babbling transmitter\n");
if (intr & JABBER)
if (mace_jabbers++ < 4)
printk(KERN_DEBUG "macmace: jabbering transceiver\n");
}
static irqreturn_t mace_interrupt(int irq, void *dev_id)
{
struct net_device *dev = (struct net_device *) dev_id;
struct mace_data *mp = netdev_priv(dev);
volatile struct mace *mb = mp->mace;
int intr, fs;
unsigned long flags;
/* don't want the dma interrupt handler to fire */
local_irq_save(flags);
intr = mb->ir; /* read interrupt register */
mace_handle_misc_intrs(dev, intr);
if (intr & XMTINT) {
fs = mb->xmtfs;
if ((fs & XMTSV) == 0) {
printk(KERN_ERR "macmace: xmtfs not valid! (fs=%x)\n", fs);
mace_reset(dev);
/*
* XXX mace likes to hang the machine after a xmtfs error.
* This is hard to reproduce, reseting *may* help
*/
}
/* dma should have finished */
if (!mp->tx_count) {
printk(KERN_DEBUG "macmace: tx ring ran out? (fs=%x)\n", fs);
}
/* Update stats */
if (fs & (UFLO|LCOL|LCAR|RTRY)) {
++dev->stats.tx_errors;
if (fs & LCAR)
++dev->stats.tx_carrier_errors;
else if (fs & (UFLO|LCOL|RTRY)) {
++dev->stats.tx_aborted_errors;
if (mb->xmtfs & UFLO) {
printk(KERN_ERR "%s: DMA underrun.\n", dev->name);
dev->stats.tx_fifo_errors++;
mace_txdma_reset(dev);
}
}
}
}
if (mp->tx_count)
netif_wake_queue(dev);
local_irq_restore(flags);
return IRQ_HANDLED;
}
static void mace_tx_timeout(struct net_device *dev)
{
struct mace_data *mp = netdev_priv(dev);
volatile struct mace *mb = mp->mace;
unsigned long flags;
local_irq_save(flags);
/* turn off both tx and rx and reset the chip */
mb->maccc = 0;
printk(KERN_ERR "macmace: transmit timeout - resetting\n");
mace_txdma_reset(dev);
mace_reset(dev);
/* restart rx dma */
mace_rxdma_reset(dev);
mp->tx_count = N_TX_RING;
netif_wake_queue(dev);
/* turn it on! */
mb->maccc = ENXMT | ENRCV;
/* enable all interrupts except receive interrupts */
mb->imr = RCVINT;
local_irq_restore(flags);
}
/*
* Handle a newly arrived frame
*/
static void mace_dma_rx_frame(struct net_device *dev, struct mace_frame *mf)
{
struct sk_buff *skb;
unsigned int frame_status = mf->rcvsts;
if (frame_status & (RS_OFLO | RS_CLSN | RS_FRAMERR | RS_FCSERR)) {
dev->stats.rx_errors++;
if (frame_status & RS_OFLO) {
printk(KERN_DEBUG "%s: fifo overflow.\n", dev->name);
dev->stats.rx_fifo_errors++;
}
if (frame_status & RS_CLSN)
dev->stats.collisions++;
if (frame_status & RS_FRAMERR)
dev->stats.rx_frame_errors++;
if (frame_status & RS_FCSERR)
dev->stats.rx_crc_errors++;
} else {
unsigned int frame_length = mf->rcvcnt + ((frame_status & 0x0F) << 8 );
skb = dev_alloc_skb(frame_length + 2);
if (!skb) {
dev->stats.rx_dropped++;
return;
}
skb_reserve(skb, 2);
memcpy(skb_put(skb, frame_length), mf->data, frame_length);
skb->protocol = eth_type_trans(skb, dev);
netif_rx(skb);
dev->stats.rx_packets++;
dev->stats.rx_bytes += frame_length;
}
}
/*
* The PSC has passed us a DMA interrupt event.
*/
static irqreturn_t mace_dma_intr(int irq, void *dev_id)
{
struct net_device *dev = (struct net_device *) dev_id;
struct mace_data *mp = netdev_priv(dev);
int left, head;
u16 status;
u32 baka;
/* Not sure what this does */
while ((baka = psc_read_long(PSC_MYSTERY)) != psc_read_long(PSC_MYSTERY));
if (!(baka & 0x60000000)) return IRQ_NONE;
/*
* Process the read queue
*/
status = psc_read_word(PSC_ENETRD_CTL);
if (status & 0x2000) {
mace_rxdma_reset(dev);
} else if (status & 0x0100) {
psc_write_word(PSC_ENETRD_CMD + mp->rx_slot, 0x1100);
left = psc_read_long(PSC_ENETRD_LEN + mp->rx_slot);
head = N_RX_RING - left;
/* Loop through the ring buffer and process new packages */
while (mp->rx_tail < head) {
mace_dma_rx_frame(dev, (struct mace_frame*) (mp->rx_ring
+ (mp->rx_tail * MACE_BUFF_SIZE)));
mp->rx_tail++;
}
/* If we're out of buffers in this ring then switch to */
/* the other set, otherwise just reactivate this one. */
if (!left) {
mace_load_rxdma_base(dev, mp->rx_slot);
mp->rx_slot ^= 0x10;
} else {
psc_write_word(PSC_ENETRD_CMD + mp->rx_slot, 0x9800);
}
}
/*
* Process the write queue
*/
status = psc_read_word(PSC_ENETWR_CTL);
if (status & 0x2000) {
mace_txdma_reset(dev);
} else if (status & 0x0100) {
psc_write_word(PSC_ENETWR_CMD + mp->tx_sloti, 0x0100);
mp->tx_sloti ^= 0x10;
mp->tx_count++;
}
return IRQ_HANDLED;
}
MODULE_LICENSE("GPL");
MODULE_DESCRIPTION("Macintosh MACE ethernet driver");
MODULE_ALIAS("platform:macmace");
static int __devexit mac_mace_device_remove (struct platform_device *pdev)
{
struct net_device *dev = platform_get_drvdata(pdev);
struct mace_data *mp = netdev_priv(dev);
unregister_netdev(dev);
free_irq(dev->irq, dev);
free_irq(IRQ_MAC_MACE_DMA, dev);
dma_free_coherent(mp->device, N_RX_RING * MACE_BUFF_SIZE,
mp->rx_ring, mp->rx_ring_phys);
dma_free_coherent(mp->device, N_TX_RING * MACE_BUFF_SIZE,
mp->tx_ring, mp->tx_ring_phys);
free_netdev(dev);
return 0;
}
static struct platform_driver mac_mace_driver = {
.probe = mace_probe,
.remove = __devexit_p(mac_mace_device_remove),
.driver = {
.name = mac_mace_string,
.owner = THIS_MODULE,
},
};
static int __init mac_mace_init_module(void)
{
if (!MACH_IS_MAC)
return -ENODEV;
return platform_driver_register(&mac_mace_driver);
}
static void __exit mac_mace_cleanup_module(void)
{
platform_driver_unregister(&mac_mace_driver);
}
module_init(mac_mace_init_module);
module_exit(mac_mace_cleanup_module);