1
linux/drivers/spi/spi-bcm63xx.c
Florian Fainelli d76ea24ac4 spi/bcm63xx: fix clock configuration selection
We are currently using an inferior or equal operator for comparing
the transfer frequency with the clock frequency table. Because of
this, we always end up selecting 20Mhz as a frequency, due to the
inequality transfer hz <= 20 Mhz being always true. Fix this by
reversing the inequality, which is how the comparison should be done.

Signed-off-by: Florian Fainelli <florian@openwrt.org>
Signed-off-by: Mark Brown <broonie@opensource.wolfsonmicro.com>
2012-07-23 14:14:11 +01:00

508 lines
12 KiB
C

/*
* Broadcom BCM63xx SPI controller support
*
* Copyright (C) 2009-2012 Florian Fainelli <florian@openwrt.org>
* Copyright (C) 2010 Tanguy Bouzeloc <tanguy.bouzeloc@efixo.com>
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License
* as published by the Free Software Foundation; either version 2
* of the License, or (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the
* Free Software Foundation, Inc., 51 Franklin Street, Fifth Floor,
*/
#include <linux/kernel.h>
#include <linux/init.h>
#include <linux/clk.h>
#include <linux/io.h>
#include <linux/module.h>
#include <linux/platform_device.h>
#include <linux/delay.h>
#include <linux/interrupt.h>
#include <linux/spi/spi.h>
#include <linux/completion.h>
#include <linux/err.h>
#include <linux/workqueue.h>
#include <linux/pm_runtime.h>
#include <bcm63xx_dev_spi.h>
#define PFX KBUILD_MODNAME
#define DRV_VER "0.1.2"
struct bcm63xx_spi {
struct completion done;
void __iomem *regs;
int irq;
/* Platform data */
u32 speed_hz;
unsigned fifo_size;
/* Data buffers */
const unsigned char *tx_ptr;
unsigned char *rx_ptr;
/* data iomem */
u8 __iomem *tx_io;
const u8 __iomem *rx_io;
int remaining_bytes;
struct clk *clk;
struct platform_device *pdev;
};
static inline u8 bcm_spi_readb(struct bcm63xx_spi *bs,
unsigned int offset)
{
return bcm_readb(bs->regs + bcm63xx_spireg(offset));
}
static inline u16 bcm_spi_readw(struct bcm63xx_spi *bs,
unsigned int offset)
{
return bcm_readw(bs->regs + bcm63xx_spireg(offset));
}
static inline void bcm_spi_writeb(struct bcm63xx_spi *bs,
u8 value, unsigned int offset)
{
bcm_writeb(value, bs->regs + bcm63xx_spireg(offset));
}
static inline void bcm_spi_writew(struct bcm63xx_spi *bs,
u16 value, unsigned int offset)
{
bcm_writew(value, bs->regs + bcm63xx_spireg(offset));
}
static const unsigned bcm63xx_spi_freq_table[SPI_CLK_MASK][2] = {
{ 20000000, SPI_CLK_20MHZ },
{ 12500000, SPI_CLK_12_50MHZ },
{ 6250000, SPI_CLK_6_250MHZ },
{ 3125000, SPI_CLK_3_125MHZ },
{ 1563000, SPI_CLK_1_563MHZ },
{ 781000, SPI_CLK_0_781MHZ },
{ 391000, SPI_CLK_0_391MHZ }
};
static int bcm63xx_spi_check_transfer(struct spi_device *spi,
struct spi_transfer *t)
{
u8 bits_per_word;
bits_per_word = (t) ? t->bits_per_word : spi->bits_per_word;
if (bits_per_word != 8) {
dev_err(&spi->dev, "%s, unsupported bits_per_word=%d\n",
__func__, bits_per_word);
return -EINVAL;
}
if (spi->chip_select > spi->master->num_chipselect) {
dev_err(&spi->dev, "%s, unsupported slave %d\n",
__func__, spi->chip_select);
return -EINVAL;
}
return 0;
}
static void bcm63xx_spi_setup_transfer(struct spi_device *spi,
struct spi_transfer *t)
{
struct bcm63xx_spi *bs = spi_master_get_devdata(spi->master);
u32 hz;
u8 clk_cfg, reg;
int i;
hz = (t) ? t->speed_hz : spi->max_speed_hz;
/* Find the closest clock configuration */
for (i = 0; i < SPI_CLK_MASK; i++) {
if (hz >= bcm63xx_spi_freq_table[i][0]) {
clk_cfg = bcm63xx_spi_freq_table[i][1];
break;
}
}
/* No matching configuration found, default to lowest */
if (i == SPI_CLK_MASK)
clk_cfg = SPI_CLK_0_391MHZ;
/* clear existing clock configuration bits of the register */
reg = bcm_spi_readb(bs, SPI_CLK_CFG);
reg &= ~SPI_CLK_MASK;
reg |= clk_cfg;
bcm_spi_writeb(bs, reg, SPI_CLK_CFG);
dev_dbg(&spi->dev, "Setting clock register to %02x (hz %d)\n",
clk_cfg, hz);
}
/* the spi->mode bits understood by this driver: */
#define MODEBITS (SPI_CPOL | SPI_CPHA)
static int bcm63xx_spi_setup(struct spi_device *spi)
{
struct bcm63xx_spi *bs;
int ret;
bs = spi_master_get_devdata(spi->master);
if (!spi->bits_per_word)
spi->bits_per_word = 8;
if (spi->mode & ~MODEBITS) {
dev_err(&spi->dev, "%s, unsupported mode bits %x\n",
__func__, spi->mode & ~MODEBITS);
return -EINVAL;
}
ret = bcm63xx_spi_check_transfer(spi, NULL);
if (ret < 0) {
dev_err(&spi->dev, "setup: unsupported mode bits %x\n",
spi->mode & ~MODEBITS);
return ret;
}
dev_dbg(&spi->dev, "%s, mode %d, %u bits/w, %u nsec/bit\n",
__func__, spi->mode & MODEBITS, spi->bits_per_word, 0);
return 0;
}
/* Fill the TX FIFO with as many bytes as possible */
static void bcm63xx_spi_fill_tx_fifo(struct bcm63xx_spi *bs)
{
u8 size;
/* Fill the Tx FIFO with as many bytes as possible */
size = bs->remaining_bytes < bs->fifo_size ? bs->remaining_bytes :
bs->fifo_size;
memcpy_toio(bs->tx_io, bs->tx_ptr, size);
bs->remaining_bytes -= size;
}
static unsigned int bcm63xx_txrx_bufs(struct spi_device *spi,
struct spi_transfer *t)
{
struct bcm63xx_spi *bs = spi_master_get_devdata(spi->master);
u16 msg_ctl;
u16 cmd;
/* Disable the CMD_DONE interrupt */
bcm_spi_writeb(bs, 0, SPI_INT_MASK);
dev_dbg(&spi->dev, "txrx: tx %p, rx %p, len %d\n",
t->tx_buf, t->rx_buf, t->len);
/* Transmitter is inhibited */
bs->tx_ptr = t->tx_buf;
bs->rx_ptr = t->rx_buf;
if (t->tx_buf) {
bs->remaining_bytes = t->len;
bcm63xx_spi_fill_tx_fifo(bs);
}
init_completion(&bs->done);
/* Fill in the Message control register */
msg_ctl = (t->len << SPI_BYTE_CNT_SHIFT);
if (t->rx_buf && t->tx_buf)
msg_ctl |= (SPI_FD_RW << SPI_MSG_TYPE_SHIFT);
else if (t->rx_buf)
msg_ctl |= (SPI_HD_R << SPI_MSG_TYPE_SHIFT);
else if (t->tx_buf)
msg_ctl |= (SPI_HD_W << SPI_MSG_TYPE_SHIFT);
bcm_spi_writew(bs, msg_ctl, SPI_MSG_CTL);
/* Issue the transfer */
cmd = SPI_CMD_START_IMMEDIATE;
cmd |= (0 << SPI_CMD_PREPEND_BYTE_CNT_SHIFT);
cmd |= (spi->chip_select << SPI_CMD_DEVICE_ID_SHIFT);
bcm_spi_writew(bs, cmd, SPI_CMD);
/* Enable the CMD_DONE interrupt */
bcm_spi_writeb(bs, SPI_INTR_CMD_DONE, SPI_INT_MASK);
return t->len - bs->remaining_bytes;
}
static int bcm63xx_spi_prepare_transfer(struct spi_master *master)
{
struct bcm63xx_spi *bs = spi_master_get_devdata(master);
pm_runtime_get_sync(&bs->pdev->dev);
return 0;
}
static int bcm63xx_spi_unprepare_transfer(struct spi_master *master)
{
struct bcm63xx_spi *bs = spi_master_get_devdata(master);
pm_runtime_put(&bs->pdev->dev);
return 0;
}
static int bcm63xx_spi_transfer_one(struct spi_master *master,
struct spi_message *m)
{
struct bcm63xx_spi *bs = spi_master_get_devdata(master);
struct spi_transfer *t;
struct spi_device *spi = m->spi;
int status = 0;
unsigned int timeout = 0;
list_for_each_entry(t, &m->transfers, transfer_list) {
unsigned int len = t->len;
u8 rx_tail;
status = bcm63xx_spi_check_transfer(spi, t);
if (status < 0)
goto exit;
/* configure adapter for a new transfer */
bcm63xx_spi_setup_transfer(spi, t);
while (len) {
/* send the data */
len -= bcm63xx_txrx_bufs(spi, t);
timeout = wait_for_completion_timeout(&bs->done, HZ);
if (!timeout) {
status = -ETIMEDOUT;
goto exit;
}
/* read out all data */
rx_tail = bcm_spi_readb(bs, SPI_RX_TAIL);
/* Read out all the data */
if (rx_tail)
memcpy_fromio(bs->rx_ptr, bs->rx_io, rx_tail);
}
m->actual_length += t->len;
}
exit:
m->status = status;
spi_finalize_current_message(master);
return 0;
}
/* This driver supports single master mode only. Hence
* CMD_DONE is the only interrupt we care about
*/
static irqreturn_t bcm63xx_spi_interrupt(int irq, void *dev_id)
{
struct spi_master *master = (struct spi_master *)dev_id;
struct bcm63xx_spi *bs = spi_master_get_devdata(master);
u8 intr;
/* Read interupts and clear them immediately */
intr = bcm_spi_readb(bs, SPI_INT_STATUS);
bcm_spi_writeb(bs, SPI_INTR_CLEAR_ALL, SPI_INT_STATUS);
bcm_spi_writeb(bs, 0, SPI_INT_MASK);
/* A transfer completed */
if (intr & SPI_INTR_CMD_DONE)
complete(&bs->done);
return IRQ_HANDLED;
}
static int __devinit bcm63xx_spi_probe(struct platform_device *pdev)
{
struct resource *r;
struct device *dev = &pdev->dev;
struct bcm63xx_spi_pdata *pdata = pdev->dev.platform_data;
int irq;
struct spi_master *master;
struct clk *clk;
struct bcm63xx_spi *bs;
int ret;
r = platform_get_resource(pdev, IORESOURCE_MEM, 0);
if (!r) {
dev_err(dev, "no iomem\n");
ret = -ENXIO;
goto out;
}
irq = platform_get_irq(pdev, 0);
if (irq < 0) {
dev_err(dev, "no irq\n");
ret = -ENXIO;
goto out;
}
clk = clk_get(dev, "spi");
if (IS_ERR(clk)) {
dev_err(dev, "no clock for device\n");
ret = PTR_ERR(clk);
goto out;
}
master = spi_alloc_master(dev, sizeof(*bs));
if (!master) {
dev_err(dev, "out of memory\n");
ret = -ENOMEM;
goto out_clk;
}
bs = spi_master_get_devdata(master);
platform_set_drvdata(pdev, master);
bs->pdev = pdev;
if (!devm_request_mem_region(&pdev->dev, r->start,
resource_size(r), PFX)) {
dev_err(dev, "iomem request failed\n");
ret = -ENXIO;
goto out_err;
}
bs->regs = devm_ioremap_nocache(&pdev->dev, r->start,
resource_size(r));
if (!bs->regs) {
dev_err(dev, "unable to ioremap regs\n");
ret = -ENOMEM;
goto out_err;
}
bs->irq = irq;
bs->clk = clk;
bs->fifo_size = pdata->fifo_size;
ret = devm_request_irq(&pdev->dev, irq, bcm63xx_spi_interrupt, 0,
pdev->name, master);
if (ret) {
dev_err(dev, "unable to request irq\n");
goto out_err;
}
master->bus_num = pdata->bus_num;
master->num_chipselect = pdata->num_chipselect;
master->setup = bcm63xx_spi_setup;
master->prepare_transfer_hardware = bcm63xx_spi_prepare_transfer;
master->unprepare_transfer_hardware = bcm63xx_spi_unprepare_transfer;
master->transfer_one_message = bcm63xx_spi_transfer_one;
master->mode_bits = MODEBITS;
bs->speed_hz = pdata->speed_hz;
bs->tx_io = (u8 *)(bs->regs + bcm63xx_spireg(SPI_MSG_DATA));
bs->rx_io = (const u8 *)(bs->regs + bcm63xx_spireg(SPI_RX_DATA));
/* Initialize hardware */
clk_enable(bs->clk);
bcm_spi_writeb(bs, SPI_INTR_CLEAR_ALL, SPI_INT_STATUS);
/* register and we are done */
ret = spi_register_master(master);
if (ret) {
dev_err(dev, "spi register failed\n");
goto out_clk_disable;
}
dev_info(dev, "at 0x%08x (irq %d, FIFOs size %d) v%s\n",
r->start, irq, bs->fifo_size, DRV_VER);
return 0;
out_clk_disable:
clk_disable(clk);
out_err:
platform_set_drvdata(pdev, NULL);
spi_master_put(master);
out_clk:
clk_put(clk);
out:
return ret;
}
static int __devexit bcm63xx_spi_remove(struct platform_device *pdev)
{
struct spi_master *master = platform_get_drvdata(pdev);
struct bcm63xx_spi *bs = spi_master_get_devdata(master);
spi_unregister_master(master);
/* reset spi block */
bcm_spi_writeb(bs, 0, SPI_INT_MASK);
/* HW shutdown */
clk_disable(bs->clk);
clk_put(bs->clk);
platform_set_drvdata(pdev, 0);
return 0;
}
#ifdef CONFIG_PM
static int bcm63xx_spi_suspend(struct device *dev)
{
struct spi_master *master =
platform_get_drvdata(to_platform_device(dev));
struct bcm63xx_spi *bs = spi_master_get_devdata(master);
clk_disable(bs->clk);
return 0;
}
static int bcm63xx_spi_resume(struct device *dev)
{
struct spi_master *master =
platform_get_drvdata(to_platform_device(dev));
struct bcm63xx_spi *bs = spi_master_get_devdata(master);
clk_enable(bs->clk);
return 0;
}
static const struct dev_pm_ops bcm63xx_spi_pm_ops = {
.suspend = bcm63xx_spi_suspend,
.resume = bcm63xx_spi_resume,
};
#define BCM63XX_SPI_PM_OPS (&bcm63xx_spi_pm_ops)
#else
#define BCM63XX_SPI_PM_OPS NULL
#endif
static struct platform_driver bcm63xx_spi_driver = {
.driver = {
.name = "bcm63xx-spi",
.owner = THIS_MODULE,
.pm = BCM63XX_SPI_PM_OPS,
},
.probe = bcm63xx_spi_probe,
.remove = __devexit_p(bcm63xx_spi_remove),
};
module_platform_driver(bcm63xx_spi_driver);
MODULE_ALIAS("platform:bcm63xx_spi");
MODULE_AUTHOR("Florian Fainelli <florian@openwrt.org>");
MODULE_AUTHOR("Tanguy Bouzeloc <tanguy.bouzeloc@efixo.com>");
MODULE_DESCRIPTION("Broadcom BCM63xx SPI Controller driver");
MODULE_LICENSE("GPL");