1
linux/net/802/hippi.c
Tim Schmielau cd354f1ae7 [PATCH] remove many unneeded #includes of sched.h
After Al Viro (finally) succeeded in removing the sched.h #include in module.h
recently, it makes sense again to remove other superfluous sched.h includes.
There are quite a lot of files which include it but don't actually need
anything defined in there.  Presumably these includes were once needed for
macros that used to live in sched.h, but moved to other header files in the
course of cleaning it up.

To ease the pain, this time I did not fiddle with any header files and only
removed #includes from .c-files, which tend to cause less trouble.

Compile tested against 2.6.20-rc2 and 2.6.20-rc2-mm2 (with offsets) on alpha,
arm, i386, ia64, mips, powerpc, and x86_64 with allnoconfig, defconfig,
allmodconfig, and allyesconfig as well as a few randconfigs on x86_64 and all
configs in arch/arm/configs on arm.  I also checked that no new warnings were
introduced by the patch (actually, some warnings are removed that were emitted
by unnecessarily included header files).

Signed-off-by: Tim Schmielau <tim@physik3.uni-rostock.de>
Acked-by: Russell King <rmk+kernel@arm.linux.org.uk>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2007-02-14 08:09:54 -08:00

235 lines
6.0 KiB
C

/*
* INET An implementation of the TCP/IP protocol suite for the LINUX
* operating system. INET is implemented using the BSD Socket
* interface as the means of communication with the user level.
*
* HIPPI-type device handling.
*
* Version: @(#)hippi.c 1.0.0 05/29/97
*
* Authors: Ross Biro
* Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
* Mark Evans, <evansmp@uhura.aston.ac.uk>
* Florian La Roche, <rzsfl@rz.uni-sb.de>
* Alan Cox, <gw4pts@gw4pts.ampr.org>
* Jes Sorensen, <Jes.Sorensen@cern.ch>
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License
* as published by the Free Software Foundation; either version
* 2 of the License, or (at your option) any later version.
*/
#include <linux/module.h>
#include <linux/types.h>
#include <linux/kernel.h>
#include <linux/string.h>
#include <linux/mm.h>
#include <linux/socket.h>
#include <linux/in.h>
#include <linux/inet.h>
#include <linux/netdevice.h>
#include <linux/hippidevice.h>
#include <linux/skbuff.h>
#include <linux/errno.h>
#include <net/arp.h>
#include <net/sock.h>
#include <asm/uaccess.h>
#include <asm/system.h>
/*
* Create the HIPPI MAC header for an arbitrary protocol layer
*
* saddr=NULL means use device source address
* daddr=NULL means leave destination address (eg unresolved arp)
*/
static int hippi_header(struct sk_buff *skb, struct net_device *dev,
unsigned short type, void *daddr, void *saddr,
unsigned len)
{
struct hippi_hdr *hip = (struct hippi_hdr *)skb_push(skb, HIPPI_HLEN);
struct hippi_cb *hcb = (struct hippi_cb *) skb->cb;
if (!len){
len = skb->len - HIPPI_HLEN;
printk("hippi_header(): length not supplied\n");
}
/*
* Due to the stupidity of the little endian byte-order we
* have to set the fp field this way.
*/
hip->fp.fixed = __constant_htonl(0x04800018);
hip->fp.d2_size = htonl(len + 8);
hip->le.fc = 0;
hip->le.double_wide = 0; /* only HIPPI 800 for the time being */
hip->le.message_type = 0; /* Data PDU */
hip->le.dest_addr_type = 2; /* 12 bit SC address */
hip->le.src_addr_type = 2; /* 12 bit SC address */
memcpy(hip->le.src_switch_addr, dev->dev_addr + 3, 3);
memset(&hip->le.reserved, 0, 16);
hip->snap.dsap = HIPPI_EXTENDED_SAP;
hip->snap.ssap = HIPPI_EXTENDED_SAP;
hip->snap.ctrl = HIPPI_UI_CMD;
hip->snap.oui[0] = 0x00;
hip->snap.oui[1] = 0x00;
hip->snap.oui[2] = 0x00;
hip->snap.ethertype = htons(type);
if (daddr)
{
memcpy(hip->le.dest_switch_addr, daddr + 3, 3);
memcpy(&hcb->ifield, daddr + 2, 4);
return HIPPI_HLEN;
}
hcb->ifield = 0;
return -((int)HIPPI_HLEN);
}
/*
* Rebuild the HIPPI MAC header. This is called after an ARP has
* completed on this sk_buff. We now let ARP fill in the other fields.
*/
static int hippi_rebuild_header(struct sk_buff *skb)
{
struct hippi_hdr *hip = (struct hippi_hdr *)skb->data;
/*
* Only IP is currently supported
*/
if(hip->snap.ethertype != __constant_htons(ETH_P_IP))
{
printk(KERN_DEBUG "%s: unable to resolve type %X addresses.\n",skb->dev->name,ntohs(hip->snap.ethertype));
return 0;
}
/*
* We don't support dynamic ARP on HIPPI, but we use the ARP
* static ARP tables to hold the I-FIELDs.
*/
return arp_find(hip->le.daddr, skb);
}
/*
* Determine the packet's protocol ID.
*/
__be16 hippi_type_trans(struct sk_buff *skb, struct net_device *dev)
{
struct hippi_hdr *hip;
hip = (struct hippi_hdr *) skb->data;
/*
* This is actually wrong ... question is if we really should
* set the raw address here.
*/
skb->mac.raw = skb->data;
skb_pull(skb, HIPPI_HLEN);
/*
* No fancy promisc stuff here now.
*/
return hip->snap.ethertype;
}
EXPORT_SYMBOL(hippi_type_trans);
static int hippi_change_mtu(struct net_device *dev, int new_mtu)
{
/*
* HIPPI's got these nice large MTUs.
*/
if ((new_mtu < 68) || (new_mtu > 65280))
return -EINVAL;
dev->mtu = new_mtu;
return(0);
}
/*
* For HIPPI we will actually use the lower 4 bytes of the hardware
* address as the I-FIELD rather than the actual hardware address.
*/
static int hippi_mac_addr(struct net_device *dev, void *p)
{
struct sockaddr *addr = p;
if (netif_running(dev))
return -EBUSY;
memcpy(dev->dev_addr, addr->sa_data, dev->addr_len);
return 0;
}
static int hippi_neigh_setup_dev(struct net_device *dev, struct neigh_parms *p)
{
/* Never send broadcast/multicast ARP messages */
p->mcast_probes = 0;
/* In IPv6 unicast probes are valid even on NBMA,
* because they are encapsulated in normal IPv6 protocol.
* Should be a generic flag.
*/
if (p->tbl->family != AF_INET6)
p->ucast_probes = 0;
return 0;
}
static void hippi_setup(struct net_device *dev)
{
dev->set_multicast_list = NULL;
dev->change_mtu = hippi_change_mtu;
dev->hard_header = hippi_header;
dev->rebuild_header = hippi_rebuild_header;
dev->set_mac_address = hippi_mac_addr;
dev->hard_header_parse = NULL;
dev->hard_header_cache = NULL;
dev->header_cache_update = NULL;
dev->neigh_setup = hippi_neigh_setup_dev;
/*
* We don't support HIPPI `ARP' for the time being, and probably
* never will unless someone else implements it. However we
* still need a fake ARPHRD to make ifconfig and friends play ball.
*/
dev->type = ARPHRD_HIPPI;
dev->hard_header_len = HIPPI_HLEN;
dev->mtu = 65280;
dev->addr_len = HIPPI_ALEN;
dev->tx_queue_len = 25 /* 5 */;
memset(dev->broadcast, 0xFF, HIPPI_ALEN);
/*
* HIPPI doesn't support broadcast+multicast and we only use
* static ARP tables. ARP is disabled by hippi_neigh_setup_dev.
*/
dev->flags = 0;
}
/**
* alloc_hippi_dev - Register HIPPI device
* @sizeof_priv: Size of additional driver-private structure to be allocated
* for this HIPPI device
*
* Fill in the fields of the device structure with HIPPI-generic values.
*
* Constructs a new net device, complete with a private data area of
* size @sizeof_priv. A 32-byte (not bit) alignment is enforced for
* this private data area.
*/
struct net_device *alloc_hippi_dev(int sizeof_priv)
{
return alloc_netdev(sizeof_priv, "hip%d", hippi_setup);
}
EXPORT_SYMBOL(alloc_hippi_dev);