1
linux/drivers/scsi/megaraid/megaraid_sas.c
Sumant Patro 0e98936c92 [SCSI] megaraid_sas: zcr with fix
The patch adds support for a ZCR controller (Device ID : 0x413).

It also has a critical bug fix :

Disable controller interrupt before firing INIT cmd to FW.  Interrupt
is enabled after required initialization is over. This is done to
ensure that driver is ready to handle interrupts when it is generated
by the controller.

Signed-off-by: Sumant Patro <Sumant.Patro@lsil.com>
Signed-off-by: James Bottomley <James.Bottomley@SteelEye.com>
2006-06-26 09:29:07 -05:00

2886 lines
70 KiB
C

/*
*
* Linux MegaRAID driver for SAS based RAID controllers
*
* Copyright (c) 2003-2005 LSI Logic Corporation.
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License
* as published by the Free Software Foundation; either version
* 2 of the License, or (at your option) any later version.
*
* FILE : megaraid_sas.c
* Version : v00.00.03.01
*
* Authors:
* Sreenivas Bagalkote <Sreenivas.Bagalkote@lsil.com>
* Sumant Patro <Sumant.Patro@lsil.com>
*
* List of supported controllers
*
* OEM Product Name VID DID SSVID SSID
* --- ------------ --- --- ---- ----
*/
#include <linux/kernel.h>
#include <linux/types.h>
#include <linux/pci.h>
#include <linux/list.h>
#include <linux/moduleparam.h>
#include <linux/module.h>
#include <linux/spinlock.h>
#include <linux/interrupt.h>
#include <linux/delay.h>
#include <linux/uio.h>
#include <asm/uaccess.h>
#include <linux/fs.h>
#include <linux/compat.h>
#include <linux/mutex.h>
#include <scsi/scsi.h>
#include <scsi/scsi_cmnd.h>
#include <scsi/scsi_device.h>
#include <scsi/scsi_host.h>
#include "megaraid_sas.h"
MODULE_LICENSE("GPL");
MODULE_VERSION(MEGASAS_VERSION);
MODULE_AUTHOR("sreenivas.bagalkote@lsil.com");
MODULE_DESCRIPTION("LSI Logic MegaRAID SAS Driver");
/*
* PCI ID table for all supported controllers
*/
static struct pci_device_id megasas_pci_table[] = {
{
PCI_VENDOR_ID_LSI_LOGIC,
PCI_DEVICE_ID_LSI_SAS1064R, /* xscale IOP */
PCI_ANY_ID,
PCI_ANY_ID,
},
{
PCI_VENDOR_ID_LSI_LOGIC,
PCI_DEVICE_ID_LSI_SAS1078R, /* ppc IOP */
PCI_ANY_ID,
PCI_ANY_ID,
},
{
PCI_VENDOR_ID_LSI_LOGIC,
PCI_DEVICE_ID_LSI_VERDE_ZCR, /* xscale IOP, vega */
PCI_ANY_ID,
PCI_ANY_ID,
},
{
PCI_VENDOR_ID_DELL,
PCI_DEVICE_ID_DELL_PERC5, /* xscale IOP */
PCI_ANY_ID,
PCI_ANY_ID,
},
{0} /* Terminating entry */
};
MODULE_DEVICE_TABLE(pci, megasas_pci_table);
static int megasas_mgmt_majorno;
static struct megasas_mgmt_info megasas_mgmt_info;
static struct fasync_struct *megasas_async_queue;
static DEFINE_MUTEX(megasas_async_queue_mutex);
/**
* megasas_get_cmd - Get a command from the free pool
* @instance: Adapter soft state
*
* Returns a free command from the pool
*/
static struct megasas_cmd *megasas_get_cmd(struct megasas_instance
*instance)
{
unsigned long flags;
struct megasas_cmd *cmd = NULL;
spin_lock_irqsave(&instance->cmd_pool_lock, flags);
if (!list_empty(&instance->cmd_pool)) {
cmd = list_entry((&instance->cmd_pool)->next,
struct megasas_cmd, list);
list_del_init(&cmd->list);
} else {
printk(KERN_ERR "megasas: Command pool empty!\n");
}
spin_unlock_irqrestore(&instance->cmd_pool_lock, flags);
return cmd;
}
/**
* megasas_return_cmd - Return a cmd to free command pool
* @instance: Adapter soft state
* @cmd: Command packet to be returned to free command pool
*/
static inline void
megasas_return_cmd(struct megasas_instance *instance, struct megasas_cmd *cmd)
{
unsigned long flags;
spin_lock_irqsave(&instance->cmd_pool_lock, flags);
cmd->scmd = NULL;
list_add_tail(&cmd->list, &instance->cmd_pool);
spin_unlock_irqrestore(&instance->cmd_pool_lock, flags);
}
/**
* The following functions are defined for xscale
* (deviceid : 1064R, PERC5) controllers
*/
/**
* megasas_enable_intr_xscale - Enables interrupts
* @regs: MFI register set
*/
static inline void
megasas_enable_intr_xscale(struct megasas_register_set __iomem * regs)
{
writel(1, &(regs)->outbound_intr_mask);
/* Dummy readl to force pci flush */
readl(&regs->outbound_intr_mask);
}
/**
* megasas_read_fw_status_reg_xscale - returns the current FW status value
* @regs: MFI register set
*/
static u32
megasas_read_fw_status_reg_xscale(struct megasas_register_set __iomem * regs)
{
return readl(&(regs)->outbound_msg_0);
}
/**
* megasas_clear_interrupt_xscale - Check & clear interrupt
* @regs: MFI register set
*/
static int
megasas_clear_intr_xscale(struct megasas_register_set __iomem * regs)
{
u32 status;
/*
* Check if it is our interrupt
*/
status = readl(&regs->outbound_intr_status);
if (!(status & MFI_OB_INTR_STATUS_MASK)) {
return 1;
}
/*
* Clear the interrupt by writing back the same value
*/
writel(status, &regs->outbound_intr_status);
return 0;
}
/**
* megasas_fire_cmd_xscale - Sends command to the FW
* @frame_phys_addr : Physical address of cmd
* @frame_count : Number of frames for the command
* @regs : MFI register set
*/
static inline void
megasas_fire_cmd_xscale(dma_addr_t frame_phys_addr,u32 frame_count, struct megasas_register_set __iomem *regs)
{
writel((frame_phys_addr >> 3)|(frame_count),
&(regs)->inbound_queue_port);
}
static struct megasas_instance_template megasas_instance_template_xscale = {
.fire_cmd = megasas_fire_cmd_xscale,
.enable_intr = megasas_enable_intr_xscale,
.clear_intr = megasas_clear_intr_xscale,
.read_fw_status_reg = megasas_read_fw_status_reg_xscale,
};
/**
* This is the end of set of functions & definitions specific
* to xscale (deviceid : 1064R, PERC5) controllers
*/
/**
* The following functions are defined for ppc (deviceid : 0x60)
* controllers
*/
/**
* megasas_enable_intr_ppc - Enables interrupts
* @regs: MFI register set
*/
static inline void
megasas_enable_intr_ppc(struct megasas_register_set __iomem * regs)
{
writel(0xFFFFFFFF, &(regs)->outbound_doorbell_clear);
writel(~0x80000004, &(regs)->outbound_intr_mask);
/* Dummy readl to force pci flush */
readl(&regs->outbound_intr_mask);
}
/**
* megasas_read_fw_status_reg_ppc - returns the current FW status value
* @regs: MFI register set
*/
static u32
megasas_read_fw_status_reg_ppc(struct megasas_register_set __iomem * regs)
{
return readl(&(regs)->outbound_scratch_pad);
}
/**
* megasas_clear_interrupt_ppc - Check & clear interrupt
* @regs: MFI register set
*/
static int
megasas_clear_intr_ppc(struct megasas_register_set __iomem * regs)
{
u32 status;
/*
* Check if it is our interrupt
*/
status = readl(&regs->outbound_intr_status);
if (!(status & MFI_REPLY_1078_MESSAGE_INTERRUPT)) {
return 1;
}
/*
* Clear the interrupt by writing back the same value
*/
writel(status, &regs->outbound_doorbell_clear);
return 0;
}
/**
* megasas_fire_cmd_ppc - Sends command to the FW
* @frame_phys_addr : Physical address of cmd
* @frame_count : Number of frames for the command
* @regs : MFI register set
*/
static inline void
megasas_fire_cmd_ppc(dma_addr_t frame_phys_addr, u32 frame_count, struct megasas_register_set __iomem *regs)
{
writel((frame_phys_addr | (frame_count<<1))|1,
&(regs)->inbound_queue_port);
}
static struct megasas_instance_template megasas_instance_template_ppc = {
.fire_cmd = megasas_fire_cmd_ppc,
.enable_intr = megasas_enable_intr_ppc,
.clear_intr = megasas_clear_intr_ppc,
.read_fw_status_reg = megasas_read_fw_status_reg_ppc,
};
/**
* This is the end of set of functions & definitions
* specific to ppc (deviceid : 0x60) controllers
*/
/**
* megasas_disable_intr - Disables interrupts
* @regs: MFI register set
*/
static inline void
megasas_disable_intr(struct megasas_instance *instance)
{
u32 mask = 0x1f;
struct megasas_register_set __iomem *regs = instance->reg_set;
if(instance->pdev->device == PCI_DEVICE_ID_LSI_SAS1078R)
mask = 0xffffffff;
writel(mask, &regs->outbound_intr_mask);
/* Dummy readl to force pci flush */
readl(&regs->outbound_intr_mask);
}
/**
* megasas_issue_polled - Issues a polling command
* @instance: Adapter soft state
* @cmd: Command packet to be issued
*
* For polling, MFI requires the cmd_status to be set to 0xFF before posting.
*/
static int
megasas_issue_polled(struct megasas_instance *instance, struct megasas_cmd *cmd)
{
int i;
u32 msecs = MFI_POLL_TIMEOUT_SECS * 1000;
struct megasas_header *frame_hdr = &cmd->frame->hdr;
frame_hdr->cmd_status = 0xFF;
frame_hdr->flags |= MFI_FRAME_DONT_POST_IN_REPLY_QUEUE;
/*
* Issue the frame using inbound queue port
*/
instance->instancet->fire_cmd(cmd->frame_phys_addr ,0,instance->reg_set);
/*
* Wait for cmd_status to change
*/
for (i = 0; (i < msecs) && (frame_hdr->cmd_status == 0xff); i++) {
rmb();
msleep(1);
}
if (frame_hdr->cmd_status == 0xff)
return -ETIME;
return 0;
}
/**
* megasas_issue_blocked_cmd - Synchronous wrapper around regular FW cmds
* @instance: Adapter soft state
* @cmd: Command to be issued
*
* This function waits on an event for the command to be returned from ISR.
* Used to issue ioctl commands.
*/
static int
megasas_issue_blocked_cmd(struct megasas_instance *instance,
struct megasas_cmd *cmd)
{
cmd->cmd_status = ENODATA;
instance->instancet->fire_cmd(cmd->frame_phys_addr ,0,instance->reg_set);
wait_event(instance->int_cmd_wait_q, (cmd->cmd_status != ENODATA));
return 0;
}
/**
* megasas_issue_blocked_abort_cmd - Aborts previously issued cmd
* @instance: Adapter soft state
* @cmd_to_abort: Previously issued cmd to be aborted
*
* MFI firmware can abort previously issued AEN comamnd (automatic event
* notification). The megasas_issue_blocked_abort_cmd() issues such abort
* cmd and blocks till it is completed.
*/
static int
megasas_issue_blocked_abort_cmd(struct megasas_instance *instance,
struct megasas_cmd *cmd_to_abort)
{
struct megasas_cmd *cmd;
struct megasas_abort_frame *abort_fr;
cmd = megasas_get_cmd(instance);
if (!cmd)
return -1;
abort_fr = &cmd->frame->abort;
/*
* Prepare and issue the abort frame
*/
abort_fr->cmd = MFI_CMD_ABORT;
abort_fr->cmd_status = 0xFF;
abort_fr->flags = 0;
abort_fr->abort_context = cmd_to_abort->index;
abort_fr->abort_mfi_phys_addr_lo = cmd_to_abort->frame_phys_addr;
abort_fr->abort_mfi_phys_addr_hi = 0;
cmd->sync_cmd = 1;
cmd->cmd_status = 0xFF;
instance->instancet->fire_cmd(cmd->frame_phys_addr ,0,instance->reg_set);
/*
* Wait for this cmd to complete
*/
wait_event(instance->abort_cmd_wait_q, (cmd->cmd_status != 0xFF));
megasas_return_cmd(instance, cmd);
return 0;
}
/**
* megasas_make_sgl32 - Prepares 32-bit SGL
* @instance: Adapter soft state
* @scp: SCSI command from the mid-layer
* @mfi_sgl: SGL to be filled in
*
* If successful, this function returns the number of SG elements. Otherwise,
* it returnes -1.
*/
static int
megasas_make_sgl32(struct megasas_instance *instance, struct scsi_cmnd *scp,
union megasas_sgl *mfi_sgl)
{
int i;
int sge_count;
struct scatterlist *os_sgl;
/*
* Return 0 if there is no data transfer
*/
if (!scp->request_buffer || !scp->request_bufflen)
return 0;
if (!scp->use_sg) {
mfi_sgl->sge32[0].phys_addr = pci_map_single(instance->pdev,
scp->
request_buffer,
scp->
request_bufflen,
scp->
sc_data_direction);
mfi_sgl->sge32[0].length = scp->request_bufflen;
return 1;
}
os_sgl = (struct scatterlist *)scp->request_buffer;
sge_count = pci_map_sg(instance->pdev, os_sgl, scp->use_sg,
scp->sc_data_direction);
for (i = 0; i < sge_count; i++, os_sgl++) {
mfi_sgl->sge32[i].length = sg_dma_len(os_sgl);
mfi_sgl->sge32[i].phys_addr = sg_dma_address(os_sgl);
}
return sge_count;
}
/**
* megasas_make_sgl64 - Prepares 64-bit SGL
* @instance: Adapter soft state
* @scp: SCSI command from the mid-layer
* @mfi_sgl: SGL to be filled in
*
* If successful, this function returns the number of SG elements. Otherwise,
* it returnes -1.
*/
static int
megasas_make_sgl64(struct megasas_instance *instance, struct scsi_cmnd *scp,
union megasas_sgl *mfi_sgl)
{
int i;
int sge_count;
struct scatterlist *os_sgl;
/*
* Return 0 if there is no data transfer
*/
if (!scp->request_buffer || !scp->request_bufflen)
return 0;
if (!scp->use_sg) {
mfi_sgl->sge64[0].phys_addr = pci_map_single(instance->pdev,
scp->
request_buffer,
scp->
request_bufflen,
scp->
sc_data_direction);
mfi_sgl->sge64[0].length = scp->request_bufflen;
return 1;
}
os_sgl = (struct scatterlist *)scp->request_buffer;
sge_count = pci_map_sg(instance->pdev, os_sgl, scp->use_sg,
scp->sc_data_direction);
for (i = 0; i < sge_count; i++, os_sgl++) {
mfi_sgl->sge64[i].length = sg_dma_len(os_sgl);
mfi_sgl->sge64[i].phys_addr = sg_dma_address(os_sgl);
}
return sge_count;
}
/**
* megasas_build_dcdb - Prepares a direct cdb (DCDB) command
* @instance: Adapter soft state
* @scp: SCSI command
* @cmd: Command to be prepared in
*
* This function prepares CDB commands. These are typcially pass-through
* commands to the devices.
*/
static int
megasas_build_dcdb(struct megasas_instance *instance, struct scsi_cmnd *scp,
struct megasas_cmd *cmd)
{
u32 sge_sz;
int sge_bytes;
u32 is_logical;
u32 device_id;
u16 flags = 0;
struct megasas_pthru_frame *pthru;
is_logical = MEGASAS_IS_LOGICAL(scp);
device_id = MEGASAS_DEV_INDEX(instance, scp);
pthru = (struct megasas_pthru_frame *)cmd->frame;
if (scp->sc_data_direction == PCI_DMA_TODEVICE)
flags = MFI_FRAME_DIR_WRITE;
else if (scp->sc_data_direction == PCI_DMA_FROMDEVICE)
flags = MFI_FRAME_DIR_READ;
else if (scp->sc_data_direction == PCI_DMA_NONE)
flags = MFI_FRAME_DIR_NONE;
/*
* Prepare the DCDB frame
*/
pthru->cmd = (is_logical) ? MFI_CMD_LD_SCSI_IO : MFI_CMD_PD_SCSI_IO;
pthru->cmd_status = 0x0;
pthru->scsi_status = 0x0;
pthru->target_id = device_id;
pthru->lun = scp->device->lun;
pthru->cdb_len = scp->cmd_len;
pthru->timeout = 0;
pthru->flags = flags;
pthru->data_xfer_len = scp->request_bufflen;
memcpy(pthru->cdb, scp->cmnd, scp->cmd_len);
/*
* Construct SGL
*/
sge_sz = (IS_DMA64) ? sizeof(struct megasas_sge64) :
sizeof(struct megasas_sge32);
if (IS_DMA64) {
pthru->flags |= MFI_FRAME_SGL64;
pthru->sge_count = megasas_make_sgl64(instance, scp,
&pthru->sgl);
} else
pthru->sge_count = megasas_make_sgl32(instance, scp,
&pthru->sgl);
/*
* Sense info specific
*/
pthru->sense_len = SCSI_SENSE_BUFFERSIZE;
pthru->sense_buf_phys_addr_hi = 0;
pthru->sense_buf_phys_addr_lo = cmd->sense_phys_addr;
sge_bytes = sge_sz * pthru->sge_count;
/*
* Compute the total number of frames this command consumes. FW uses
* this number to pull sufficient number of frames from host memory.
*/
cmd->frame_count = (sge_bytes / MEGAMFI_FRAME_SIZE) +
((sge_bytes % MEGAMFI_FRAME_SIZE) ? 1 : 0) + 1;
if (cmd->frame_count > 7)
cmd->frame_count = 8;
return cmd->frame_count;
}
/**
* megasas_build_ldio - Prepares IOs to logical devices
* @instance: Adapter soft state
* @scp: SCSI command
* @cmd: Command to to be prepared
*
* Frames (and accompanying SGLs) for regular SCSI IOs use this function.
*/
static int
megasas_build_ldio(struct megasas_instance *instance, struct scsi_cmnd *scp,
struct megasas_cmd *cmd)
{
u32 sge_sz;
int sge_bytes;
u32 device_id;
u8 sc = scp->cmnd[0];
u16 flags = 0;
struct megasas_io_frame *ldio;
device_id = MEGASAS_DEV_INDEX(instance, scp);
ldio = (struct megasas_io_frame *)cmd->frame;
if (scp->sc_data_direction == PCI_DMA_TODEVICE)
flags = MFI_FRAME_DIR_WRITE;
else if (scp->sc_data_direction == PCI_DMA_FROMDEVICE)
flags = MFI_FRAME_DIR_READ;
/*
* Preare the Logical IO frame: 2nd bit is zero for all read cmds
*/
ldio->cmd = (sc & 0x02) ? MFI_CMD_LD_WRITE : MFI_CMD_LD_READ;
ldio->cmd_status = 0x0;
ldio->scsi_status = 0x0;
ldio->target_id = device_id;
ldio->timeout = 0;
ldio->reserved_0 = 0;
ldio->pad_0 = 0;
ldio->flags = flags;
ldio->start_lba_hi = 0;
ldio->access_byte = (scp->cmd_len != 6) ? scp->cmnd[1] : 0;
/*
* 6-byte READ(0x08) or WRITE(0x0A) cdb
*/
if (scp->cmd_len == 6) {
ldio->lba_count = (u32) scp->cmnd[4];
ldio->start_lba_lo = ((u32) scp->cmnd[1] << 16) |
((u32) scp->cmnd[2] << 8) | (u32) scp->cmnd[3];
ldio->start_lba_lo &= 0x1FFFFF;
}
/*
* 10-byte READ(0x28) or WRITE(0x2A) cdb
*/
else if (scp->cmd_len == 10) {
ldio->lba_count = (u32) scp->cmnd[8] |
((u32) scp->cmnd[7] << 8);
ldio->start_lba_lo = ((u32) scp->cmnd[2] << 24) |
((u32) scp->cmnd[3] << 16) |
((u32) scp->cmnd[4] << 8) | (u32) scp->cmnd[5];
}
/*
* 12-byte READ(0xA8) or WRITE(0xAA) cdb
*/
else if (scp->cmd_len == 12) {
ldio->lba_count = ((u32) scp->cmnd[6] << 24) |
((u32) scp->cmnd[7] << 16) |
((u32) scp->cmnd[8] << 8) | (u32) scp->cmnd[9];
ldio->start_lba_lo = ((u32) scp->cmnd[2] << 24) |
((u32) scp->cmnd[3] << 16) |
((u32) scp->cmnd[4] << 8) | (u32) scp->cmnd[5];
}
/*
* 16-byte READ(0x88) or WRITE(0x8A) cdb
*/
else if (scp->cmd_len == 16) {
ldio->lba_count = ((u32) scp->cmnd[10] << 24) |
((u32) scp->cmnd[11] << 16) |
((u32) scp->cmnd[12] << 8) | (u32) scp->cmnd[13];
ldio->start_lba_lo = ((u32) scp->cmnd[6] << 24) |
((u32) scp->cmnd[7] << 16) |
((u32) scp->cmnd[8] << 8) | (u32) scp->cmnd[9];
ldio->start_lba_hi = ((u32) scp->cmnd[2] << 24) |
((u32) scp->cmnd[3] << 16) |
((u32) scp->cmnd[4] << 8) | (u32) scp->cmnd[5];
}
/*
* Construct SGL
*/
sge_sz = (IS_DMA64) ? sizeof(struct megasas_sge64) :
sizeof(struct megasas_sge32);
if (IS_DMA64) {
ldio->flags |= MFI_FRAME_SGL64;
ldio->sge_count = megasas_make_sgl64(instance, scp, &ldio->sgl);
} else
ldio->sge_count = megasas_make_sgl32(instance, scp, &ldio->sgl);
/*
* Sense info specific
*/
ldio->sense_len = SCSI_SENSE_BUFFERSIZE;
ldio->sense_buf_phys_addr_hi = 0;
ldio->sense_buf_phys_addr_lo = cmd->sense_phys_addr;
sge_bytes = sge_sz * ldio->sge_count;
cmd->frame_count = (sge_bytes / MEGAMFI_FRAME_SIZE) +
((sge_bytes % MEGAMFI_FRAME_SIZE) ? 1 : 0) + 1;
if (cmd->frame_count > 7)
cmd->frame_count = 8;
return cmd->frame_count;
}
/**
* megasas_is_ldio - Checks if the cmd is for logical drive
* @scmd: SCSI command
*
* Called by megasas_queue_command to find out if the command to be queued
* is a logical drive command
*/
static inline int megasas_is_ldio(struct scsi_cmnd *cmd)
{
if (!MEGASAS_IS_LOGICAL(cmd))
return 0;
switch (cmd->cmnd[0]) {
case READ_10:
case WRITE_10:
case READ_12:
case WRITE_12:
case READ_6:
case WRITE_6:
case READ_16:
case WRITE_16:
return 1;
default:
return 0;
}
}
/**
* megasas_queue_command - Queue entry point
* @scmd: SCSI command to be queued
* @done: Callback entry point
*/
static int
megasas_queue_command(struct scsi_cmnd *scmd, void (*done) (struct scsi_cmnd *))
{
u32 frame_count;
struct megasas_cmd *cmd;
struct megasas_instance *instance;
instance = (struct megasas_instance *)
scmd->device->host->hostdata;
scmd->scsi_done = done;
scmd->result = 0;
if (MEGASAS_IS_LOGICAL(scmd) &&
(scmd->device->id >= MEGASAS_MAX_LD || scmd->device->lun)) {
scmd->result = DID_BAD_TARGET << 16;
goto out_done;
}
cmd = megasas_get_cmd(instance);
if (!cmd)
return SCSI_MLQUEUE_HOST_BUSY;
/*
* Logical drive command
*/
if (megasas_is_ldio(scmd))
frame_count = megasas_build_ldio(instance, scmd, cmd);
else
frame_count = megasas_build_dcdb(instance, scmd, cmd);
if (!frame_count)
goto out_return_cmd;
cmd->scmd = scmd;
/*
* Issue the command to the FW
*/
atomic_inc(&instance->fw_outstanding);
instance->instancet->fire_cmd(cmd->frame_phys_addr ,cmd->frame_count-1,instance->reg_set);
return 0;
out_return_cmd:
megasas_return_cmd(instance, cmd);
out_done:
done(scmd);
return 0;
}
static int megasas_slave_configure(struct scsi_device *sdev)
{
/*
* Don't export physical disk devices to the disk driver.
*
* FIXME: Currently we don't export them to the midlayer at all.
* That will be fixed once LSI engineers have audited the
* firmware for possible issues.
*/
if (sdev->channel < MEGASAS_MAX_PD_CHANNELS && sdev->type == TYPE_DISK)
return -ENXIO;
/*
* The RAID firmware may require extended timeouts.
*/
if (sdev->channel >= MEGASAS_MAX_PD_CHANNELS)
sdev->timeout = 90 * HZ;
return 0;
}
/**
* megasas_wait_for_outstanding - Wait for all outstanding cmds
* @instance: Adapter soft state
*
* This function waits for upto MEGASAS_RESET_WAIT_TIME seconds for FW to
* complete all its outstanding commands. Returns error if one or more IOs
* are pending after this time period. It also marks the controller dead.
*/
static int megasas_wait_for_outstanding(struct megasas_instance *instance)
{
int i;
u32 wait_time = MEGASAS_RESET_WAIT_TIME;
for (i = 0; i < wait_time; i++) {
int outstanding = atomic_read(&instance->fw_outstanding);
if (!outstanding)
break;
if (!(i % MEGASAS_RESET_NOTICE_INTERVAL)) {
printk(KERN_NOTICE "megasas: [%2d]waiting for %d "
"commands to complete\n",i,outstanding);
}
msleep(1000);
}
if (atomic_read(&instance->fw_outstanding)) {
instance->hw_crit_error = 1;
return FAILED;
}
return SUCCESS;
}
/**
* megasas_generic_reset - Generic reset routine
* @scmd: Mid-layer SCSI command
*
* This routine implements a generic reset handler for device, bus and host
* reset requests. Device, bus and host specific reset handlers can use this
* function after they do their specific tasks.
*/
static int megasas_generic_reset(struct scsi_cmnd *scmd)
{
int ret_val;
struct megasas_instance *instance;
instance = (struct megasas_instance *)scmd->device->host->hostdata;
scmd_printk(KERN_NOTICE, scmd, "megasas: RESET -%ld cmd=%x\n",
scmd->serial_number, scmd->cmnd[0]);
if (instance->hw_crit_error) {
printk(KERN_ERR "megasas: cannot recover from previous reset "
"failures\n");
return FAILED;
}
ret_val = megasas_wait_for_outstanding(instance);
if (ret_val == SUCCESS)
printk(KERN_NOTICE "megasas: reset successful \n");
else
printk(KERN_ERR "megasas: failed to do reset\n");
return ret_val;
}
/**
* megasas_reset_device - Device reset handler entry point
*/
static int megasas_reset_device(struct scsi_cmnd *scmd)
{
int ret;
/*
* First wait for all commands to complete
*/
ret = megasas_generic_reset(scmd);
return ret;
}
/**
* megasas_reset_bus_host - Bus & host reset handler entry point
*/
static int megasas_reset_bus_host(struct scsi_cmnd *scmd)
{
int ret;
/*
* First wait for all commands to complete
*/
ret = megasas_generic_reset(scmd);
return ret;
}
/**
* megasas_service_aen - Processes an event notification
* @instance: Adapter soft state
* @cmd: AEN command completed by the ISR
*
* For AEN, driver sends a command down to FW that is held by the FW till an
* event occurs. When an event of interest occurs, FW completes the command
* that it was previously holding.
*
* This routines sends SIGIO signal to processes that have registered with the
* driver for AEN.
*/
static void
megasas_service_aen(struct megasas_instance *instance, struct megasas_cmd *cmd)
{
/*
* Don't signal app if it is just an aborted previously registered aen
*/
if (!cmd->abort_aen)
kill_fasync(&megasas_async_queue, SIGIO, POLL_IN);
else
cmd->abort_aen = 0;
instance->aen_cmd = NULL;
megasas_return_cmd(instance, cmd);
}
/*
* Scsi host template for megaraid_sas driver
*/
static struct scsi_host_template megasas_template = {
.module = THIS_MODULE,
.name = "LSI Logic SAS based MegaRAID driver",
.proc_name = "megaraid_sas",
.slave_configure = megasas_slave_configure,
.queuecommand = megasas_queue_command,
.eh_device_reset_handler = megasas_reset_device,
.eh_bus_reset_handler = megasas_reset_bus_host,
.eh_host_reset_handler = megasas_reset_bus_host,
.use_clustering = ENABLE_CLUSTERING,
};
/**
* megasas_complete_int_cmd - Completes an internal command
* @instance: Adapter soft state
* @cmd: Command to be completed
*
* The megasas_issue_blocked_cmd() function waits for a command to complete
* after it issues a command. This function wakes up that waiting routine by
* calling wake_up() on the wait queue.
*/
static void
megasas_complete_int_cmd(struct megasas_instance *instance,
struct megasas_cmd *cmd)
{
cmd->cmd_status = cmd->frame->io.cmd_status;
if (cmd->cmd_status == ENODATA) {
cmd->cmd_status = 0;
}
wake_up(&instance->int_cmd_wait_q);
}
/**
* megasas_complete_abort - Completes aborting a command
* @instance: Adapter soft state
* @cmd: Cmd that was issued to abort another cmd
*
* The megasas_issue_blocked_abort_cmd() function waits on abort_cmd_wait_q
* after it issues an abort on a previously issued command. This function
* wakes up all functions waiting on the same wait queue.
*/
static void
megasas_complete_abort(struct megasas_instance *instance,
struct megasas_cmd *cmd)
{
if (cmd->sync_cmd) {
cmd->sync_cmd = 0;
cmd->cmd_status = 0;
wake_up(&instance->abort_cmd_wait_q);
}
return;
}
/**
* megasas_unmap_sgbuf - Unmap SG buffers
* @instance: Adapter soft state
* @cmd: Completed command
*/
static void
megasas_unmap_sgbuf(struct megasas_instance *instance, struct megasas_cmd *cmd)
{
dma_addr_t buf_h;
u8 opcode;
if (cmd->scmd->use_sg) {
pci_unmap_sg(instance->pdev, cmd->scmd->request_buffer,
cmd->scmd->use_sg, cmd->scmd->sc_data_direction);
return;
}
if (!cmd->scmd->request_bufflen)
return;
opcode = cmd->frame->hdr.cmd;
if ((opcode == MFI_CMD_LD_READ) || (opcode == MFI_CMD_LD_WRITE)) {
if (IS_DMA64)
buf_h = cmd->frame->io.sgl.sge64[0].phys_addr;
else
buf_h = cmd->frame->io.sgl.sge32[0].phys_addr;
} else {
if (IS_DMA64)
buf_h = cmd->frame->pthru.sgl.sge64[0].phys_addr;
else
buf_h = cmd->frame->pthru.sgl.sge32[0].phys_addr;
}
pci_unmap_single(instance->pdev, buf_h, cmd->scmd->request_bufflen,
cmd->scmd->sc_data_direction);
return;
}
/**
* megasas_complete_cmd - Completes a command
* @instance: Adapter soft state
* @cmd: Command to be completed
* @alt_status: If non-zero, use this value as status to
* SCSI mid-layer instead of the value returned
* by the FW. This should be used if caller wants
* an alternate status (as in the case of aborted
* commands)
*/
static void
megasas_complete_cmd(struct megasas_instance *instance, struct megasas_cmd *cmd,
u8 alt_status)
{
int exception = 0;
struct megasas_header *hdr = &cmd->frame->hdr;
if (cmd->scmd) {
cmd->scmd->SCp.ptr = (char *)0;
}
switch (hdr->cmd) {
case MFI_CMD_PD_SCSI_IO:
case MFI_CMD_LD_SCSI_IO:
/*
* MFI_CMD_PD_SCSI_IO and MFI_CMD_LD_SCSI_IO could have been
* issued either through an IO path or an IOCTL path. If it
* was via IOCTL, we will send it to internal completion.
*/
if (cmd->sync_cmd) {
cmd->sync_cmd = 0;
megasas_complete_int_cmd(instance, cmd);
break;
}
case MFI_CMD_LD_READ:
case MFI_CMD_LD_WRITE:
if (alt_status) {
cmd->scmd->result = alt_status << 16;
exception = 1;
}
if (exception) {
atomic_dec(&instance->fw_outstanding);
megasas_unmap_sgbuf(instance, cmd);
cmd->scmd->scsi_done(cmd->scmd);
megasas_return_cmd(instance, cmd);
break;
}
switch (hdr->cmd_status) {
case MFI_STAT_OK:
cmd->scmd->result = DID_OK << 16;
break;
case MFI_STAT_SCSI_IO_FAILED:
case MFI_STAT_LD_INIT_IN_PROGRESS:
cmd->scmd->result =
(DID_ERROR << 16) | hdr->scsi_status;
break;
case MFI_STAT_SCSI_DONE_WITH_ERROR:
cmd->scmd->result = (DID_OK << 16) | hdr->scsi_status;
if (hdr->scsi_status == SAM_STAT_CHECK_CONDITION) {
memset(cmd->scmd->sense_buffer, 0,
SCSI_SENSE_BUFFERSIZE);
memcpy(cmd->scmd->sense_buffer, cmd->sense,
hdr->sense_len);
cmd->scmd->result |= DRIVER_SENSE << 24;
}
break;
case MFI_STAT_LD_OFFLINE:
case MFI_STAT_DEVICE_NOT_FOUND:
cmd->scmd->result = DID_BAD_TARGET << 16;
break;
default:
printk(KERN_DEBUG "megasas: MFI FW status %#x\n",
hdr->cmd_status);
cmd->scmd->result = DID_ERROR << 16;
break;
}
atomic_dec(&instance->fw_outstanding);
megasas_unmap_sgbuf(instance, cmd);
cmd->scmd->scsi_done(cmd->scmd);
megasas_return_cmd(instance, cmd);
break;
case MFI_CMD_SMP:
case MFI_CMD_STP:
case MFI_CMD_DCMD:
/*
* See if got an event notification
*/
if (cmd->frame->dcmd.opcode == MR_DCMD_CTRL_EVENT_WAIT)
megasas_service_aen(instance, cmd);
else
megasas_complete_int_cmd(instance, cmd);
break;
case MFI_CMD_ABORT:
/*
* Cmd issued to abort another cmd returned
*/
megasas_complete_abort(instance, cmd);
break;
default:
printk("megasas: Unknown command completed! [0x%X]\n",
hdr->cmd);
break;
}
}
/**
* megasas_deplete_reply_queue - Processes all completed commands
* @instance: Adapter soft state
* @alt_status: Alternate status to be returned to
* SCSI mid-layer instead of the status
* returned by the FW
*/
static int
megasas_deplete_reply_queue(struct megasas_instance *instance, u8 alt_status)
{
u32 producer;
u32 consumer;
u32 context;
struct megasas_cmd *cmd;
/*
* Check if it is our interrupt
* Clear the interrupt
*/
if(instance->instancet->clear_intr(instance->reg_set))
return IRQ_NONE;
producer = *instance->producer;
consumer = *instance->consumer;
while (consumer != producer) {
context = instance->reply_queue[consumer];
cmd = instance->cmd_list[context];
megasas_complete_cmd(instance, cmd, alt_status);
consumer++;
if (consumer == (instance->max_fw_cmds + 1)) {
consumer = 0;
}
}
*instance->consumer = producer;
return IRQ_HANDLED;
}
/**
* megasas_isr - isr entry point
*/
static irqreturn_t megasas_isr(int irq, void *devp, struct pt_regs *regs)
{
return megasas_deplete_reply_queue((struct megasas_instance *)devp,
DID_OK);
}
/**
* megasas_transition_to_ready - Move the FW to READY state
* @instance: Adapter soft state
*
* During the initialization, FW passes can potentially be in any one of
* several possible states. If the FW in operational, waiting-for-handshake
* states, driver must take steps to bring it to ready state. Otherwise, it
* has to wait for the ready state.
*/
static int
megasas_transition_to_ready(struct megasas_instance* instance)
{
int i;
u8 max_wait;
u32 fw_state;
u32 cur_state;
fw_state = instance->instancet->read_fw_status_reg(instance->reg_set) & MFI_STATE_MASK;
while (fw_state != MFI_STATE_READY) {
printk(KERN_INFO "megasas: Waiting for FW to come to ready"
" state\n");
switch (fw_state) {
case MFI_STATE_FAULT:
printk(KERN_DEBUG "megasas: FW in FAULT state!!\n");
return -ENODEV;
case MFI_STATE_WAIT_HANDSHAKE:
/*
* Set the CLR bit in inbound doorbell
*/
writel(MFI_INIT_CLEAR_HANDSHAKE,
&instance->reg_set->inbound_doorbell);
max_wait = 2;
cur_state = MFI_STATE_WAIT_HANDSHAKE;
break;
case MFI_STATE_OPERATIONAL:
/*
* Bring it to READY state; assuming max wait 2 secs
*/
megasas_disable_intr(instance);
writel(MFI_INIT_READY, &instance->reg_set->inbound_doorbell);
max_wait = 10;
cur_state = MFI_STATE_OPERATIONAL;
break;
case MFI_STATE_UNDEFINED:
/*
* This state should not last for more than 2 seconds
*/
max_wait = 2;
cur_state = MFI_STATE_UNDEFINED;
break;
case MFI_STATE_BB_INIT:
max_wait = 2;
cur_state = MFI_STATE_BB_INIT;
break;
case MFI_STATE_FW_INIT:
max_wait = 20;
cur_state = MFI_STATE_FW_INIT;
break;
case MFI_STATE_FW_INIT_2:
max_wait = 20;
cur_state = MFI_STATE_FW_INIT_2;
break;
case MFI_STATE_DEVICE_SCAN:
max_wait = 20;
cur_state = MFI_STATE_DEVICE_SCAN;
break;
case MFI_STATE_FLUSH_CACHE:
max_wait = 20;
cur_state = MFI_STATE_FLUSH_CACHE;
break;
default:
printk(KERN_DEBUG "megasas: Unknown state 0x%x\n",
fw_state);
return -ENODEV;
}
/*
* The cur_state should not last for more than max_wait secs
*/
for (i = 0; i < (max_wait * 1000); i++) {
fw_state = instance->instancet->read_fw_status_reg(instance->reg_set) &
MFI_STATE_MASK ;
if (fw_state == cur_state) {
msleep(1);
} else
break;
}
/*
* Return error if fw_state hasn't changed after max_wait
*/
if (fw_state == cur_state) {
printk(KERN_DEBUG "FW state [%d] hasn't changed "
"in %d secs\n", fw_state, max_wait);
return -ENODEV;
}
};
return 0;
}
/**
* megasas_teardown_frame_pool - Destroy the cmd frame DMA pool
* @instance: Adapter soft state
*/
static void megasas_teardown_frame_pool(struct megasas_instance *instance)
{
int i;
u32 max_cmd = instance->max_fw_cmds;
struct megasas_cmd *cmd;
if (!instance->frame_dma_pool)
return;
/*
* Return all frames to pool
*/
for (i = 0; i < max_cmd; i++) {
cmd = instance->cmd_list[i];
if (cmd->frame)
pci_pool_free(instance->frame_dma_pool, cmd->frame,
cmd->frame_phys_addr);
if (cmd->sense)
pci_pool_free(instance->sense_dma_pool, cmd->frame,
cmd->sense_phys_addr);
}
/*
* Now destroy the pool itself
*/
pci_pool_destroy(instance->frame_dma_pool);
pci_pool_destroy(instance->sense_dma_pool);
instance->frame_dma_pool = NULL;
instance->sense_dma_pool = NULL;
}
/**
* megasas_create_frame_pool - Creates DMA pool for cmd frames
* @instance: Adapter soft state
*
* Each command packet has an embedded DMA memory buffer that is used for
* filling MFI frame and the SG list that immediately follows the frame. This
* function creates those DMA memory buffers for each command packet by using
* PCI pool facility.
*/
static int megasas_create_frame_pool(struct megasas_instance *instance)
{
int i;
u32 max_cmd;
u32 sge_sz;
u32 sgl_sz;
u32 total_sz;
u32 frame_count;
struct megasas_cmd *cmd;
max_cmd = instance->max_fw_cmds;
/*
* Size of our frame is 64 bytes for MFI frame, followed by max SG
* elements and finally SCSI_SENSE_BUFFERSIZE bytes for sense buffer
*/
sge_sz = (IS_DMA64) ? sizeof(struct megasas_sge64) :
sizeof(struct megasas_sge32);
/*
* Calculated the number of 64byte frames required for SGL
*/
sgl_sz = sge_sz * instance->max_num_sge;
frame_count = (sgl_sz + MEGAMFI_FRAME_SIZE - 1) / MEGAMFI_FRAME_SIZE;
/*
* We need one extra frame for the MFI command
*/
frame_count++;
total_sz = MEGAMFI_FRAME_SIZE * frame_count;
/*
* Use DMA pool facility provided by PCI layer
*/
instance->frame_dma_pool = pci_pool_create("megasas frame pool",
instance->pdev, total_sz, 64,
0);
if (!instance->frame_dma_pool) {
printk(KERN_DEBUG "megasas: failed to setup frame pool\n");
return -ENOMEM;
}
instance->sense_dma_pool = pci_pool_create("megasas sense pool",
instance->pdev, 128, 4, 0);
if (!instance->sense_dma_pool) {
printk(KERN_DEBUG "megasas: failed to setup sense pool\n");
pci_pool_destroy(instance->frame_dma_pool);
instance->frame_dma_pool = NULL;
return -ENOMEM;
}
/*
* Allocate and attach a frame to each of the commands in cmd_list.
* By making cmd->index as the context instead of the &cmd, we can
* always use 32bit context regardless of the architecture
*/
for (i = 0; i < max_cmd; i++) {
cmd = instance->cmd_list[i];
cmd->frame = pci_pool_alloc(instance->frame_dma_pool,
GFP_KERNEL, &cmd->frame_phys_addr);
cmd->sense = pci_pool_alloc(instance->sense_dma_pool,
GFP_KERNEL, &cmd->sense_phys_addr);
/*
* megasas_teardown_frame_pool() takes care of freeing
* whatever has been allocated
*/
if (!cmd->frame || !cmd->sense) {
printk(KERN_DEBUG "megasas: pci_pool_alloc failed \n");
megasas_teardown_frame_pool(instance);
return -ENOMEM;
}
cmd->frame->io.context = cmd->index;
}
return 0;
}
/**
* megasas_free_cmds - Free all the cmds in the free cmd pool
* @instance: Adapter soft state
*/
static void megasas_free_cmds(struct megasas_instance *instance)
{
int i;
/* First free the MFI frame pool */
megasas_teardown_frame_pool(instance);
/* Free all the commands in the cmd_list */
for (i = 0; i < instance->max_fw_cmds; i++)
kfree(instance->cmd_list[i]);
/* Free the cmd_list buffer itself */
kfree(instance->cmd_list);
instance->cmd_list = NULL;
INIT_LIST_HEAD(&instance->cmd_pool);
}
/**
* megasas_alloc_cmds - Allocates the command packets
* @instance: Adapter soft state
*
* Each command that is issued to the FW, whether IO commands from the OS or
* internal commands like IOCTLs, are wrapped in local data structure called
* megasas_cmd. The frame embedded in this megasas_cmd is actually issued to
* the FW.
*
* Each frame has a 32-bit field called context (tag). This context is used
* to get back the megasas_cmd from the frame when a frame gets completed in
* the ISR. Typically the address of the megasas_cmd itself would be used as
* the context. But we wanted to keep the differences between 32 and 64 bit
* systems to the mininum. We always use 32 bit integers for the context. In
* this driver, the 32 bit values are the indices into an array cmd_list.
* This array is used only to look up the megasas_cmd given the context. The
* free commands themselves are maintained in a linked list called cmd_pool.
*/
static int megasas_alloc_cmds(struct megasas_instance *instance)
{
int i;
int j;
u32 max_cmd;
struct megasas_cmd *cmd;
max_cmd = instance->max_fw_cmds;
/*
* instance->cmd_list is an array of struct megasas_cmd pointers.
* Allocate the dynamic array first and then allocate individual
* commands.
*/
instance->cmd_list = kmalloc(sizeof(struct megasas_cmd *) * max_cmd,
GFP_KERNEL);
if (!instance->cmd_list) {
printk(KERN_DEBUG "megasas: out of memory\n");
return -ENOMEM;
}
memset(instance->cmd_list, 0, sizeof(struct megasas_cmd *) * max_cmd);
for (i = 0; i < max_cmd; i++) {
instance->cmd_list[i] = kmalloc(sizeof(struct megasas_cmd),
GFP_KERNEL);
if (!instance->cmd_list[i]) {
for (j = 0; j < i; j++)
kfree(instance->cmd_list[j]);
kfree(instance->cmd_list);
instance->cmd_list = NULL;
return -ENOMEM;
}
}
/*
* Add all the commands to command pool (instance->cmd_pool)
*/
for (i = 0; i < max_cmd; i++) {
cmd = instance->cmd_list[i];
memset(cmd, 0, sizeof(struct megasas_cmd));
cmd->index = i;
cmd->instance = instance;
list_add_tail(&cmd->list, &instance->cmd_pool);
}
/*
* Create a frame pool and assign one frame to each cmd
*/
if (megasas_create_frame_pool(instance)) {
printk(KERN_DEBUG "megasas: Error creating frame DMA pool\n");
megasas_free_cmds(instance);
}
return 0;
}
/**
* megasas_get_controller_info - Returns FW's controller structure
* @instance: Adapter soft state
* @ctrl_info: Controller information structure
*
* Issues an internal command (DCMD) to get the FW's controller structure.
* This information is mainly used to find out the maximum IO transfer per
* command supported by the FW.
*/
static int
megasas_get_ctrl_info(struct megasas_instance *instance,
struct megasas_ctrl_info *ctrl_info)
{
int ret = 0;
struct megasas_cmd *cmd;
struct megasas_dcmd_frame *dcmd;
struct megasas_ctrl_info *ci;
dma_addr_t ci_h = 0;
cmd = megasas_get_cmd(instance);
if (!cmd) {
printk(KERN_DEBUG "megasas: Failed to get a free cmd\n");
return -ENOMEM;
}
dcmd = &cmd->frame->dcmd;
ci = pci_alloc_consistent(instance->pdev,
sizeof(struct megasas_ctrl_info), &ci_h);
if (!ci) {
printk(KERN_DEBUG "Failed to alloc mem for ctrl info\n");
megasas_return_cmd(instance, cmd);
return -ENOMEM;
}
memset(ci, 0, sizeof(*ci));
memset(dcmd->mbox.b, 0, MFI_MBOX_SIZE);
dcmd->cmd = MFI_CMD_DCMD;
dcmd->cmd_status = 0xFF;
dcmd->sge_count = 1;
dcmd->flags = MFI_FRAME_DIR_READ;
dcmd->timeout = 0;
dcmd->data_xfer_len = sizeof(struct megasas_ctrl_info);
dcmd->opcode = MR_DCMD_CTRL_GET_INFO;
dcmd->sgl.sge32[0].phys_addr = ci_h;
dcmd->sgl.sge32[0].length = sizeof(struct megasas_ctrl_info);
if (!megasas_issue_polled(instance, cmd)) {
ret = 0;
memcpy(ctrl_info, ci, sizeof(struct megasas_ctrl_info));
} else {
ret = -1;
}
pci_free_consistent(instance->pdev, sizeof(struct megasas_ctrl_info),
ci, ci_h);
megasas_return_cmd(instance, cmd);
return ret;
}
/**
* megasas_init_mfi - Initializes the FW
* @instance: Adapter soft state
*
* This is the main function for initializing MFI firmware.
*/
static int megasas_init_mfi(struct megasas_instance *instance)
{
u32 context_sz;
u32 reply_q_sz;
u32 max_sectors_1;
u32 max_sectors_2;
struct megasas_register_set __iomem *reg_set;
struct megasas_cmd *cmd;
struct megasas_ctrl_info *ctrl_info;
struct megasas_init_frame *init_frame;
struct megasas_init_queue_info *initq_info;
dma_addr_t init_frame_h;
dma_addr_t initq_info_h;
/*
* Map the message registers
*/
instance->base_addr = pci_resource_start(instance->pdev, 0);
if (pci_request_regions(instance->pdev, "megasas: LSI Logic")) {
printk(KERN_DEBUG "megasas: IO memory region busy!\n");
return -EBUSY;
}
instance->reg_set = ioremap_nocache(instance->base_addr, 8192);
if (!instance->reg_set) {
printk(KERN_DEBUG "megasas: Failed to map IO mem\n");
goto fail_ioremap;
}
reg_set = instance->reg_set;
switch(instance->pdev->device)
{
case PCI_DEVICE_ID_LSI_SAS1078R:
instance->instancet = &megasas_instance_template_ppc;
break;
case PCI_DEVICE_ID_LSI_SAS1064R:
case PCI_DEVICE_ID_DELL_PERC5:
default:
instance->instancet = &megasas_instance_template_xscale;
break;
}
/*
* We expect the FW state to be READY
*/
if (megasas_transition_to_ready(instance))
goto fail_ready_state;
/*
* Get various operational parameters from status register
*/
instance->max_fw_cmds = instance->instancet->read_fw_status_reg(reg_set) & 0x00FFFF;
instance->max_num_sge = (instance->instancet->read_fw_status_reg(reg_set) & 0xFF0000) >>
0x10;
/*
* Create a pool of commands
*/
if (megasas_alloc_cmds(instance))
goto fail_alloc_cmds;
/*
* Allocate memory for reply queue. Length of reply queue should
* be _one_ more than the maximum commands handled by the firmware.
*
* Note: When FW completes commands, it places corresponding contex
* values in this circular reply queue. This circular queue is a fairly
* typical producer-consumer queue. FW is the producer (of completed
* commands) and the driver is the consumer.
*/
context_sz = sizeof(u32);
reply_q_sz = context_sz * (instance->max_fw_cmds + 1);
instance->reply_queue = pci_alloc_consistent(instance->pdev,
reply_q_sz,
&instance->reply_queue_h);
if (!instance->reply_queue) {
printk(KERN_DEBUG "megasas: Out of DMA mem for reply queue\n");
goto fail_reply_queue;
}
/*
* Prepare a init frame. Note the init frame points to queue info
* structure. Each frame has SGL allocated after first 64 bytes. For
* this frame - since we don't need any SGL - we use SGL's space as
* queue info structure
*
* We will not get a NULL command below. We just created the pool.
*/
cmd = megasas_get_cmd(instance);
init_frame = (struct megasas_init_frame *)cmd->frame;
initq_info = (struct megasas_init_queue_info *)
((unsigned long)init_frame + 64);
init_frame_h = cmd->frame_phys_addr;
initq_info_h = init_frame_h + 64;
memset(init_frame, 0, MEGAMFI_FRAME_SIZE);
memset(initq_info, 0, sizeof(struct megasas_init_queue_info));
initq_info->reply_queue_entries = instance->max_fw_cmds + 1;
initq_info->reply_queue_start_phys_addr_lo = instance->reply_queue_h;
initq_info->producer_index_phys_addr_lo = instance->producer_h;
initq_info->consumer_index_phys_addr_lo = instance->consumer_h;
init_frame->cmd = MFI_CMD_INIT;
init_frame->cmd_status = 0xFF;
init_frame->queue_info_new_phys_addr_lo = initq_info_h;
init_frame->data_xfer_len = sizeof(struct megasas_init_queue_info);
/*
* disable the intr before firing the init frame to FW
*/
megasas_disable_intr(instance);
/*
* Issue the init frame in polled mode
*/
if (megasas_issue_polled(instance, cmd)) {
printk(KERN_DEBUG "megasas: Failed to init firmware\n");
goto fail_fw_init;
}
megasas_return_cmd(instance, cmd);
ctrl_info = kmalloc(sizeof(struct megasas_ctrl_info), GFP_KERNEL);
/*
* Compute the max allowed sectors per IO: The controller info has two
* limits on max sectors. Driver should use the minimum of these two.
*
* 1 << stripe_sz_ops.min = max sectors per strip
*
* Note that older firmwares ( < FW ver 30) didn't report information
* to calculate max_sectors_1. So the number ended up as zero always.
*/
if (ctrl_info && !megasas_get_ctrl_info(instance, ctrl_info)) {
max_sectors_1 = (1 << ctrl_info->stripe_sz_ops.min) *
ctrl_info->max_strips_per_io;
max_sectors_2 = ctrl_info->max_request_size;
instance->max_sectors_per_req = (max_sectors_1 < max_sectors_2)
? max_sectors_1 : max_sectors_2;
} else
instance->max_sectors_per_req = instance->max_num_sge *
PAGE_SIZE / 512;
kfree(ctrl_info);
return 0;
fail_fw_init:
megasas_return_cmd(instance, cmd);
pci_free_consistent(instance->pdev, reply_q_sz,
instance->reply_queue, instance->reply_queue_h);
fail_reply_queue:
megasas_free_cmds(instance);
fail_alloc_cmds:
fail_ready_state:
iounmap(instance->reg_set);
fail_ioremap:
pci_release_regions(instance->pdev);
return -EINVAL;
}
/**
* megasas_release_mfi - Reverses the FW initialization
* @intance: Adapter soft state
*/
static void megasas_release_mfi(struct megasas_instance *instance)
{
u32 reply_q_sz = sizeof(u32) * (instance->max_fw_cmds + 1);
pci_free_consistent(instance->pdev, reply_q_sz,
instance->reply_queue, instance->reply_queue_h);
megasas_free_cmds(instance);
iounmap(instance->reg_set);
pci_release_regions(instance->pdev);
}
/**
* megasas_get_seq_num - Gets latest event sequence numbers
* @instance: Adapter soft state
* @eli: FW event log sequence numbers information
*
* FW maintains a log of all events in a non-volatile area. Upper layers would
* usually find out the latest sequence number of the events, the seq number at
* the boot etc. They would "read" all the events below the latest seq number
* by issuing a direct fw cmd (DCMD). For the future events (beyond latest seq
* number), they would subsribe to AEN (asynchronous event notification) and
* wait for the events to happen.
*/
static int
megasas_get_seq_num(struct megasas_instance *instance,
struct megasas_evt_log_info *eli)
{
struct megasas_cmd *cmd;
struct megasas_dcmd_frame *dcmd;
struct megasas_evt_log_info *el_info;
dma_addr_t el_info_h = 0;
cmd = megasas_get_cmd(instance);
if (!cmd) {
return -ENOMEM;
}
dcmd = &cmd->frame->dcmd;
el_info = pci_alloc_consistent(instance->pdev,
sizeof(struct megasas_evt_log_info),
&el_info_h);
if (!el_info) {
megasas_return_cmd(instance, cmd);
return -ENOMEM;
}
memset(el_info, 0, sizeof(*el_info));
memset(dcmd->mbox.b, 0, MFI_MBOX_SIZE);
dcmd->cmd = MFI_CMD_DCMD;
dcmd->cmd_status = 0x0;
dcmd->sge_count = 1;
dcmd->flags = MFI_FRAME_DIR_READ;
dcmd->timeout = 0;
dcmd->data_xfer_len = sizeof(struct megasas_evt_log_info);
dcmd->opcode = MR_DCMD_CTRL_EVENT_GET_INFO;
dcmd->sgl.sge32[0].phys_addr = el_info_h;
dcmd->sgl.sge32[0].length = sizeof(struct megasas_evt_log_info);
megasas_issue_blocked_cmd(instance, cmd);
/*
* Copy the data back into callers buffer
*/
memcpy(eli, el_info, sizeof(struct megasas_evt_log_info));
pci_free_consistent(instance->pdev, sizeof(struct megasas_evt_log_info),
el_info, el_info_h);
megasas_return_cmd(instance, cmd);
return 0;
}
/**
* megasas_register_aen - Registers for asynchronous event notification
* @instance: Adapter soft state
* @seq_num: The starting sequence number
* @class_locale: Class of the event
*
* This function subscribes for AEN for events beyond the @seq_num. It requests
* to be notified if and only if the event is of type @class_locale
*/
static int
megasas_register_aen(struct megasas_instance *instance, u32 seq_num,
u32 class_locale_word)
{
int ret_val;
struct megasas_cmd *cmd;
struct megasas_dcmd_frame *dcmd;
union megasas_evt_class_locale curr_aen;
union megasas_evt_class_locale prev_aen;
/*
* If there an AEN pending already (aen_cmd), check if the
* class_locale of that pending AEN is inclusive of the new
* AEN request we currently have. If it is, then we don't have
* to do anything. In other words, whichever events the current
* AEN request is subscribing to, have already been subscribed
* to.
*
* If the old_cmd is _not_ inclusive, then we have to abort
* that command, form a class_locale that is superset of both
* old and current and re-issue to the FW
*/
curr_aen.word = class_locale_word;
if (instance->aen_cmd) {
prev_aen.word = instance->aen_cmd->frame->dcmd.mbox.w[1];
/*
* A class whose enum value is smaller is inclusive of all
* higher values. If a PROGRESS (= -1) was previously
* registered, then a new registration requests for higher
* classes need not be sent to FW. They are automatically
* included.
*
* Locale numbers don't have such hierarchy. They are bitmap
* values
*/
if ((prev_aen.members.class <= curr_aen.members.class) &&
!((prev_aen.members.locale & curr_aen.members.locale) ^
curr_aen.members.locale)) {
/*
* Previously issued event registration includes
* current request. Nothing to do.
*/
return 0;
} else {
curr_aen.members.locale |= prev_aen.members.locale;
if (prev_aen.members.class < curr_aen.members.class)
curr_aen.members.class = prev_aen.members.class;
instance->aen_cmd->abort_aen = 1;
ret_val = megasas_issue_blocked_abort_cmd(instance,
instance->
aen_cmd);
if (ret_val) {
printk(KERN_DEBUG "megasas: Failed to abort "
"previous AEN command\n");
return ret_val;
}
}
}
cmd = megasas_get_cmd(instance);
if (!cmd)
return -ENOMEM;
dcmd = &cmd->frame->dcmd;
memset(instance->evt_detail, 0, sizeof(struct megasas_evt_detail));
/*
* Prepare DCMD for aen registration
*/
memset(dcmd->mbox.b, 0, MFI_MBOX_SIZE);
dcmd->cmd = MFI_CMD_DCMD;
dcmd->cmd_status = 0x0;
dcmd->sge_count = 1;
dcmd->flags = MFI_FRAME_DIR_READ;
dcmd->timeout = 0;
dcmd->data_xfer_len = sizeof(struct megasas_evt_detail);
dcmd->opcode = MR_DCMD_CTRL_EVENT_WAIT;
dcmd->mbox.w[0] = seq_num;
dcmd->mbox.w[1] = curr_aen.word;
dcmd->sgl.sge32[0].phys_addr = (u32) instance->evt_detail_h;
dcmd->sgl.sge32[0].length = sizeof(struct megasas_evt_detail);
/*
* Store reference to the cmd used to register for AEN. When an
* application wants us to register for AEN, we have to abort this
* cmd and re-register with a new EVENT LOCALE supplied by that app
*/
instance->aen_cmd = cmd;
/*
* Issue the aen registration frame
*/
instance->instancet->fire_cmd(cmd->frame_phys_addr ,0,instance->reg_set);
return 0;
}
/**
* megasas_start_aen - Subscribes to AEN during driver load time
* @instance: Adapter soft state
*/
static int megasas_start_aen(struct megasas_instance *instance)
{
struct megasas_evt_log_info eli;
union megasas_evt_class_locale class_locale;
/*
* Get the latest sequence number from FW
*/
memset(&eli, 0, sizeof(eli));
if (megasas_get_seq_num(instance, &eli))
return -1;
/*
* Register AEN with FW for latest sequence number plus 1
*/
class_locale.members.reserved = 0;
class_locale.members.locale = MR_EVT_LOCALE_ALL;
class_locale.members.class = MR_EVT_CLASS_DEBUG;
return megasas_register_aen(instance, eli.newest_seq_num + 1,
class_locale.word);
}
/**
* megasas_io_attach - Attaches this driver to SCSI mid-layer
* @instance: Adapter soft state
*/
static int megasas_io_attach(struct megasas_instance *instance)
{
struct Scsi_Host *host = instance->host;
/*
* Export parameters required by SCSI mid-layer
*/
host->irq = instance->pdev->irq;
host->unique_id = instance->unique_id;
host->can_queue = instance->max_fw_cmds - MEGASAS_INT_CMDS;
host->this_id = instance->init_id;
host->sg_tablesize = instance->max_num_sge;
host->max_sectors = instance->max_sectors_per_req;
host->cmd_per_lun = 128;
host->max_channel = MEGASAS_MAX_CHANNELS - 1;
host->max_id = MEGASAS_MAX_DEV_PER_CHANNEL;
host->max_lun = MEGASAS_MAX_LUN;
host->max_cmd_len = 16;
/*
* Notify the mid-layer about the new controller
*/
if (scsi_add_host(host, &instance->pdev->dev)) {
printk(KERN_DEBUG "megasas: scsi_add_host failed\n");
return -ENODEV;
}
/*
* Trigger SCSI to scan our drives
*/
scsi_scan_host(host);
return 0;
}
/**
* megasas_probe_one - PCI hotplug entry point
* @pdev: PCI device structure
* @id: PCI ids of supported hotplugged adapter
*/
static int __devinit
megasas_probe_one(struct pci_dev *pdev, const struct pci_device_id *id)
{
int rval;
struct Scsi_Host *host;
struct megasas_instance *instance;
/*
* Announce PCI information
*/
printk(KERN_INFO "megasas: %#4.04x:%#4.04x:%#4.04x:%#4.04x: ",
pdev->vendor, pdev->device, pdev->subsystem_vendor,
pdev->subsystem_device);
printk("bus %d:slot %d:func %d\n",
pdev->bus->number, PCI_SLOT(pdev->devfn), PCI_FUNC(pdev->devfn));
/*
* PCI prepping: enable device set bus mastering and dma mask
*/
rval = pci_enable_device(pdev);
if (rval) {
return rval;
}
pci_set_master(pdev);
/*
* All our contollers are capable of performing 64-bit DMA
*/
if (IS_DMA64) {
if (pci_set_dma_mask(pdev, DMA_64BIT_MASK) != 0) {
if (pci_set_dma_mask(pdev, DMA_32BIT_MASK) != 0)
goto fail_set_dma_mask;
}
} else {
if (pci_set_dma_mask(pdev, DMA_32BIT_MASK) != 0)
goto fail_set_dma_mask;
}
host = scsi_host_alloc(&megasas_template,
sizeof(struct megasas_instance));
if (!host) {
printk(KERN_DEBUG "megasas: scsi_host_alloc failed\n");
goto fail_alloc_instance;
}
instance = (struct megasas_instance *)host->hostdata;
memset(instance, 0, sizeof(*instance));
instance->producer = pci_alloc_consistent(pdev, sizeof(u32),
&instance->producer_h);
instance->consumer = pci_alloc_consistent(pdev, sizeof(u32),
&instance->consumer_h);
if (!instance->producer || !instance->consumer) {
printk(KERN_DEBUG "megasas: Failed to allocate memory for "
"producer, consumer\n");
goto fail_alloc_dma_buf;
}
*instance->producer = 0;
*instance->consumer = 0;
instance->evt_detail = pci_alloc_consistent(pdev,
sizeof(struct
megasas_evt_detail),
&instance->evt_detail_h);
if (!instance->evt_detail) {
printk(KERN_DEBUG "megasas: Failed to allocate memory for "
"event detail structure\n");
goto fail_alloc_dma_buf;
}
/*
* Initialize locks and queues
*/
INIT_LIST_HEAD(&instance->cmd_pool);
atomic_set(&instance->fw_outstanding,0);
init_waitqueue_head(&instance->int_cmd_wait_q);
init_waitqueue_head(&instance->abort_cmd_wait_q);
spin_lock_init(&instance->cmd_pool_lock);
sema_init(&instance->aen_mutex, 1);
sema_init(&instance->ioctl_sem, MEGASAS_INT_CMDS);
/*
* Initialize PCI related and misc parameters
*/
instance->pdev = pdev;
instance->host = host;
instance->unique_id = pdev->bus->number << 8 | pdev->devfn;
instance->init_id = MEGASAS_DEFAULT_INIT_ID;
/*
* Initialize MFI Firmware
*/
if (megasas_init_mfi(instance))
goto fail_init_mfi;
/*
* Register IRQ
*/
if (request_irq(pdev->irq, megasas_isr, SA_SHIRQ, "megasas", instance)) {
printk(KERN_DEBUG "megasas: Failed to register IRQ\n");
goto fail_irq;
}
instance->instancet->enable_intr(instance->reg_set);
/*
* Store instance in PCI softstate
*/
pci_set_drvdata(pdev, instance);
/*
* Add this controller to megasas_mgmt_info structure so that it
* can be exported to management applications
*/
megasas_mgmt_info.count++;
megasas_mgmt_info.instance[megasas_mgmt_info.max_index] = instance;
megasas_mgmt_info.max_index++;
/*
* Initiate AEN (Asynchronous Event Notification)
*/
if (megasas_start_aen(instance)) {
printk(KERN_DEBUG "megasas: start aen failed\n");
goto fail_start_aen;
}
/*
* Register with SCSI mid-layer
*/
if (megasas_io_attach(instance))
goto fail_io_attach;
return 0;
fail_start_aen:
fail_io_attach:
megasas_mgmt_info.count--;
megasas_mgmt_info.instance[megasas_mgmt_info.max_index] = NULL;
megasas_mgmt_info.max_index--;
pci_set_drvdata(pdev, NULL);
megasas_disable_intr(instance);
free_irq(instance->pdev->irq, instance);
megasas_release_mfi(instance);
fail_irq:
fail_init_mfi:
fail_alloc_dma_buf:
if (instance->evt_detail)
pci_free_consistent(pdev, sizeof(struct megasas_evt_detail),
instance->evt_detail,
instance->evt_detail_h);
if (instance->producer)
pci_free_consistent(pdev, sizeof(u32), instance->producer,
instance->producer_h);
if (instance->consumer)
pci_free_consistent(pdev, sizeof(u32), instance->consumer,
instance->consumer_h);
scsi_host_put(host);
fail_alloc_instance:
fail_set_dma_mask:
pci_disable_device(pdev);
return -ENODEV;
}
/**
* megasas_flush_cache - Requests FW to flush all its caches
* @instance: Adapter soft state
*/
static void megasas_flush_cache(struct megasas_instance *instance)
{
struct megasas_cmd *cmd;
struct megasas_dcmd_frame *dcmd;
cmd = megasas_get_cmd(instance);
if (!cmd)
return;
dcmd = &cmd->frame->dcmd;
memset(dcmd->mbox.b, 0, MFI_MBOX_SIZE);
dcmd->cmd = MFI_CMD_DCMD;
dcmd->cmd_status = 0x0;
dcmd->sge_count = 0;
dcmd->flags = MFI_FRAME_DIR_NONE;
dcmd->timeout = 0;
dcmd->data_xfer_len = 0;
dcmd->opcode = MR_DCMD_CTRL_CACHE_FLUSH;
dcmd->mbox.b[0] = MR_FLUSH_CTRL_CACHE | MR_FLUSH_DISK_CACHE;
megasas_issue_blocked_cmd(instance, cmd);
megasas_return_cmd(instance, cmd);
return;
}
/**
* megasas_shutdown_controller - Instructs FW to shutdown the controller
* @instance: Adapter soft state
*/
static void megasas_shutdown_controller(struct megasas_instance *instance)
{
struct megasas_cmd *cmd;
struct megasas_dcmd_frame *dcmd;
cmd = megasas_get_cmd(instance);
if (!cmd)
return;
if (instance->aen_cmd)
megasas_issue_blocked_abort_cmd(instance, instance->aen_cmd);
dcmd = &cmd->frame->dcmd;
memset(dcmd->mbox.b, 0, MFI_MBOX_SIZE);
dcmd->cmd = MFI_CMD_DCMD;
dcmd->cmd_status = 0x0;
dcmd->sge_count = 0;
dcmd->flags = MFI_FRAME_DIR_NONE;
dcmd->timeout = 0;
dcmd->data_xfer_len = 0;
dcmd->opcode = MR_DCMD_CTRL_SHUTDOWN;
megasas_issue_blocked_cmd(instance, cmd);
megasas_return_cmd(instance, cmd);
return;
}
/**
* megasas_detach_one - PCI hot"un"plug entry point
* @pdev: PCI device structure
*/
static void megasas_detach_one(struct pci_dev *pdev)
{
int i;
struct Scsi_Host *host;
struct megasas_instance *instance;
instance = pci_get_drvdata(pdev);
host = instance->host;
scsi_remove_host(instance->host);
megasas_flush_cache(instance);
megasas_shutdown_controller(instance);
/*
* Take the instance off the instance array. Note that we will not
* decrement the max_index. We let this array be sparse array
*/
for (i = 0; i < megasas_mgmt_info.max_index; i++) {
if (megasas_mgmt_info.instance[i] == instance) {
megasas_mgmt_info.count--;
megasas_mgmt_info.instance[i] = NULL;
break;
}
}
pci_set_drvdata(instance->pdev, NULL);
megasas_disable_intr(instance);
free_irq(instance->pdev->irq, instance);
megasas_release_mfi(instance);
pci_free_consistent(pdev, sizeof(struct megasas_evt_detail),
instance->evt_detail, instance->evt_detail_h);
pci_free_consistent(pdev, sizeof(u32), instance->producer,
instance->producer_h);
pci_free_consistent(pdev, sizeof(u32), instance->consumer,
instance->consumer_h);
scsi_host_put(host);
pci_set_drvdata(pdev, NULL);
pci_disable_device(pdev);
return;
}
/**
* megasas_shutdown - Shutdown entry point
* @device: Generic device structure
*/
static void megasas_shutdown(struct pci_dev *pdev)
{
struct megasas_instance *instance = pci_get_drvdata(pdev);
megasas_flush_cache(instance);
}
/**
* megasas_mgmt_open - char node "open" entry point
*/
static int megasas_mgmt_open(struct inode *inode, struct file *filep)
{
/*
* Allow only those users with admin rights
*/
if (!capable(CAP_SYS_ADMIN))
return -EACCES;
return 0;
}
/**
* megasas_mgmt_release - char node "release" entry point
*/
static int megasas_mgmt_release(struct inode *inode, struct file *filep)
{
filep->private_data = NULL;
fasync_helper(-1, filep, 0, &megasas_async_queue);
return 0;
}
/**
* megasas_mgmt_fasync - Async notifier registration from applications
*
* This function adds the calling process to a driver global queue. When an
* event occurs, SIGIO will be sent to all processes in this queue.
*/
static int megasas_mgmt_fasync(int fd, struct file *filep, int mode)
{
int rc;
mutex_lock(&megasas_async_queue_mutex);
rc = fasync_helper(fd, filep, mode, &megasas_async_queue);
mutex_unlock(&megasas_async_queue_mutex);
if (rc >= 0) {
/* For sanity check when we get ioctl */
filep->private_data = filep;
return 0;
}
printk(KERN_DEBUG "megasas: fasync_helper failed [%d]\n", rc);
return rc;
}
/**
* megasas_mgmt_fw_ioctl - Issues management ioctls to FW
* @instance: Adapter soft state
* @argp: User's ioctl packet
*/
static int
megasas_mgmt_fw_ioctl(struct megasas_instance *instance,
struct megasas_iocpacket __user * user_ioc,
struct megasas_iocpacket *ioc)
{
struct megasas_sge32 *kern_sge32;
struct megasas_cmd *cmd;
void *kbuff_arr[MAX_IOCTL_SGE];
dma_addr_t buf_handle = 0;
int error = 0, i;
void *sense = NULL;
dma_addr_t sense_handle;
u32 *sense_ptr;
memset(kbuff_arr, 0, sizeof(kbuff_arr));
if (ioc->sge_count > MAX_IOCTL_SGE) {
printk(KERN_DEBUG "megasas: SGE count [%d] > max limit [%d]\n",
ioc->sge_count, MAX_IOCTL_SGE);
return -EINVAL;
}
cmd = megasas_get_cmd(instance);
if (!cmd) {
printk(KERN_DEBUG "megasas: Failed to get a cmd packet\n");
return -ENOMEM;
}
/*
* User's IOCTL packet has 2 frames (maximum). Copy those two
* frames into our cmd's frames. cmd->frame's context will get
* overwritten when we copy from user's frames. So set that value
* alone separately
*/
memcpy(cmd->frame, ioc->frame.raw, 2 * MEGAMFI_FRAME_SIZE);
cmd->frame->hdr.context = cmd->index;
/*
* The management interface between applications and the fw uses
* MFI frames. E.g, RAID configuration changes, LD property changes
* etc are accomplishes through different kinds of MFI frames. The
* driver needs to care only about substituting user buffers with
* kernel buffers in SGLs. The location of SGL is embedded in the
* struct iocpacket itself.
*/
kern_sge32 = (struct megasas_sge32 *)
((unsigned long)cmd->frame + ioc->sgl_off);
/*
* For each user buffer, create a mirror buffer and copy in
*/
for (i = 0; i < ioc->sge_count; i++) {
kbuff_arr[i] = pci_alloc_consistent(instance->pdev,
ioc->sgl[i].iov_len,
&buf_handle);
if (!kbuff_arr[i]) {
printk(KERN_DEBUG "megasas: Failed to alloc "
"kernel SGL buffer for IOCTL \n");
error = -ENOMEM;
goto out;
}
/*
* We don't change the dma_coherent_mask, so
* pci_alloc_consistent only returns 32bit addresses
*/
kern_sge32[i].phys_addr = (u32) buf_handle;
kern_sge32[i].length = ioc->sgl[i].iov_len;
/*
* We created a kernel buffer corresponding to the
* user buffer. Now copy in from the user buffer
*/
if (copy_from_user(kbuff_arr[i], ioc->sgl[i].iov_base,
(u32) (ioc->sgl[i].iov_len))) {
error = -EFAULT;
goto out;
}
}
if (ioc->sense_len) {
sense = pci_alloc_consistent(instance->pdev, ioc->sense_len,
&sense_handle);
if (!sense) {
error = -ENOMEM;
goto out;
}
sense_ptr =
(u32 *) ((unsigned long)cmd->frame + ioc->sense_off);
*sense_ptr = sense_handle;
}
/*
* Set the sync_cmd flag so that the ISR knows not to complete this
* cmd to the SCSI mid-layer
*/
cmd->sync_cmd = 1;
megasas_issue_blocked_cmd(instance, cmd);
cmd->sync_cmd = 0;
/*
* copy out the kernel buffers to user buffers
*/
for (i = 0; i < ioc->sge_count; i++) {
if (copy_to_user(ioc->sgl[i].iov_base, kbuff_arr[i],
ioc->sgl[i].iov_len)) {
error = -EFAULT;
goto out;
}
}
/*
* copy out the sense
*/
if (ioc->sense_len) {
/*
* sense_ptr points to the location that has the user
* sense buffer address
*/
sense_ptr = (u32 *) ((unsigned long)ioc->frame.raw +
ioc->sense_off);
if (copy_to_user((void __user *)((unsigned long)(*sense_ptr)),
sense, ioc->sense_len)) {
error = -EFAULT;
goto out;
}
}
/*
* copy the status codes returned by the fw
*/
if (copy_to_user(&user_ioc->frame.hdr.cmd_status,
&cmd->frame->hdr.cmd_status, sizeof(u8))) {
printk(KERN_DEBUG "megasas: Error copying out cmd_status\n");
error = -EFAULT;
}
out:
if (sense) {
pci_free_consistent(instance->pdev, ioc->sense_len,
sense, sense_handle);
}
for (i = 0; i < ioc->sge_count && kbuff_arr[i]; i++) {
pci_free_consistent(instance->pdev,
kern_sge32[i].length,
kbuff_arr[i], kern_sge32[i].phys_addr);
}
megasas_return_cmd(instance, cmd);
return error;
}
static struct megasas_instance *megasas_lookup_instance(u16 host_no)
{
int i;
for (i = 0; i < megasas_mgmt_info.max_index; i++) {
if ((megasas_mgmt_info.instance[i]) &&
(megasas_mgmt_info.instance[i]->host->host_no == host_no))
return megasas_mgmt_info.instance[i];
}
return NULL;
}
static int megasas_mgmt_ioctl_fw(struct file *file, unsigned long arg)
{
struct megasas_iocpacket __user *user_ioc =
(struct megasas_iocpacket __user *)arg;
struct megasas_iocpacket *ioc;
struct megasas_instance *instance;
int error;
ioc = kmalloc(sizeof(*ioc), GFP_KERNEL);
if (!ioc)
return -ENOMEM;
if (copy_from_user(ioc, user_ioc, sizeof(*ioc))) {
error = -EFAULT;
goto out_kfree_ioc;
}
instance = megasas_lookup_instance(ioc->host_no);
if (!instance) {
error = -ENODEV;
goto out_kfree_ioc;
}
/*
* We will allow only MEGASAS_INT_CMDS number of parallel ioctl cmds
*/
if (down_interruptible(&instance->ioctl_sem)) {
error = -ERESTARTSYS;
goto out_kfree_ioc;
}
error = megasas_mgmt_fw_ioctl(instance, user_ioc, ioc);
up(&instance->ioctl_sem);
out_kfree_ioc:
kfree(ioc);
return error;
}
static int megasas_mgmt_ioctl_aen(struct file *file, unsigned long arg)
{
struct megasas_instance *instance;
struct megasas_aen aen;
int error;
if (file->private_data != file) {
printk(KERN_DEBUG "megasas: fasync_helper was not "
"called first\n");
return -EINVAL;
}
if (copy_from_user(&aen, (void __user *)arg, sizeof(aen)))
return -EFAULT;
instance = megasas_lookup_instance(aen.host_no);
if (!instance)
return -ENODEV;
down(&instance->aen_mutex);
error = megasas_register_aen(instance, aen.seq_num,
aen.class_locale_word);
up(&instance->aen_mutex);
return error;
}
/**
* megasas_mgmt_ioctl - char node ioctl entry point
*/
static long
megasas_mgmt_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
{
switch (cmd) {
case MEGASAS_IOC_FIRMWARE:
return megasas_mgmt_ioctl_fw(file, arg);
case MEGASAS_IOC_GET_AEN:
return megasas_mgmt_ioctl_aen(file, arg);
}
return -ENOTTY;
}
#ifdef CONFIG_COMPAT
static int megasas_mgmt_compat_ioctl_fw(struct file *file, unsigned long arg)
{
struct compat_megasas_iocpacket __user *cioc =
(struct compat_megasas_iocpacket __user *)arg;
struct megasas_iocpacket __user *ioc =
compat_alloc_user_space(sizeof(struct megasas_iocpacket));
int i;
int error = 0;
clear_user(ioc, sizeof(*ioc));
if (copy_in_user(&ioc->host_no, &cioc->host_no, sizeof(u16)) ||
copy_in_user(&ioc->sgl_off, &cioc->sgl_off, sizeof(u32)) ||
copy_in_user(&ioc->sense_off, &cioc->sense_off, sizeof(u32)) ||
copy_in_user(&ioc->sense_len, &cioc->sense_len, sizeof(u32)) ||
copy_in_user(ioc->frame.raw, cioc->frame.raw, 128) ||
copy_in_user(&ioc->sge_count, &cioc->sge_count, sizeof(u32)))
return -EFAULT;
for (i = 0; i < MAX_IOCTL_SGE; i++) {
compat_uptr_t ptr;
if (get_user(ptr, &cioc->sgl[i].iov_base) ||
put_user(compat_ptr(ptr), &ioc->sgl[i].iov_base) ||
copy_in_user(&ioc->sgl[i].iov_len,
&cioc->sgl[i].iov_len, sizeof(compat_size_t)))
return -EFAULT;
}
error = megasas_mgmt_ioctl_fw(file, (unsigned long)ioc);
if (copy_in_user(&cioc->frame.hdr.cmd_status,
&ioc->frame.hdr.cmd_status, sizeof(u8))) {
printk(KERN_DEBUG "megasas: error copy_in_user cmd_status\n");
return -EFAULT;
}
return error;
}
static long
megasas_mgmt_compat_ioctl(struct file *file, unsigned int cmd,
unsigned long arg)
{
switch (cmd) {
case MEGASAS_IOC_FIRMWARE32:
return megasas_mgmt_compat_ioctl_fw(file, arg);
case MEGASAS_IOC_GET_AEN:
return megasas_mgmt_ioctl_aen(file, arg);
}
return -ENOTTY;
}
#endif
/*
* File operations structure for management interface
*/
static struct file_operations megasas_mgmt_fops = {
.owner = THIS_MODULE,
.open = megasas_mgmt_open,
.release = megasas_mgmt_release,
.fasync = megasas_mgmt_fasync,
.unlocked_ioctl = megasas_mgmt_ioctl,
#ifdef CONFIG_COMPAT
.compat_ioctl = megasas_mgmt_compat_ioctl,
#endif
};
/*
* PCI hotplug support registration structure
*/
static struct pci_driver megasas_pci_driver = {
.name = "megaraid_sas",
.id_table = megasas_pci_table,
.probe = megasas_probe_one,
.remove = __devexit_p(megasas_detach_one),
.shutdown = megasas_shutdown,
};
/*
* Sysfs driver attributes
*/
static ssize_t megasas_sysfs_show_version(struct device_driver *dd, char *buf)
{
return snprintf(buf, strlen(MEGASAS_VERSION) + 2, "%s\n",
MEGASAS_VERSION);
}
static DRIVER_ATTR(version, S_IRUGO, megasas_sysfs_show_version, NULL);
static ssize_t
megasas_sysfs_show_release_date(struct device_driver *dd, char *buf)
{
return snprintf(buf, strlen(MEGASAS_RELDATE) + 2, "%s\n",
MEGASAS_RELDATE);
}
static DRIVER_ATTR(release_date, S_IRUGO, megasas_sysfs_show_release_date,
NULL);
/**
* megasas_init - Driver load entry point
*/
static int __init megasas_init(void)
{
int rval;
/*
* Announce driver version and other information
*/
printk(KERN_INFO "megasas: %s %s\n", MEGASAS_VERSION,
MEGASAS_EXT_VERSION);
memset(&megasas_mgmt_info, 0, sizeof(megasas_mgmt_info));
/*
* Register character device node
*/
rval = register_chrdev(0, "megaraid_sas_ioctl", &megasas_mgmt_fops);
if (rval < 0) {
printk(KERN_DEBUG "megasas: failed to open device node\n");
return rval;
}
megasas_mgmt_majorno = rval;
/*
* Register ourselves as PCI hotplug module
*/
rval = pci_module_init(&megasas_pci_driver);
if (rval) {
printk(KERN_DEBUG "megasas: PCI hotplug regisration failed \n");
unregister_chrdev(megasas_mgmt_majorno, "megaraid_sas_ioctl");
}
driver_create_file(&megasas_pci_driver.driver, &driver_attr_version);
driver_create_file(&megasas_pci_driver.driver,
&driver_attr_release_date);
return rval;
}
/**
* megasas_exit - Driver unload entry point
*/
static void __exit megasas_exit(void)
{
driver_remove_file(&megasas_pci_driver.driver, &driver_attr_version);
driver_remove_file(&megasas_pci_driver.driver,
&driver_attr_release_date);
pci_unregister_driver(&megasas_pci_driver);
unregister_chrdev(megasas_mgmt_majorno, "megaraid_sas_ioctl");
}
module_init(megasas_init);
module_exit(megasas_exit);