1
linux/arch/ppc/8260_io/fcc_enet.c
Jean Delvare 6473d160b4 PCI: Cleanup the includes of <linux/pci.h>
I noticed that many source files include <linux/pci.h> while they do
not appear to need it. Here is an attempt to clean it all up.

In order to find all possibly affected files, I searched for all
files including <linux/pci.h> but without any other occurence of "pci"
or "PCI". I removed the include statement from all of these, then I
compiled an allmodconfig kernel on both i386 and x86_64 and fixed the
false positives manually.

My tests covered 66% of the affected files, so there could be false
positives remaining. Untested files are:

arch/alpha/kernel/err_common.c
arch/alpha/kernel/err_ev6.c
arch/alpha/kernel/err_ev7.c
arch/ia64/sn/kernel/huberror.c
arch/ia64/sn/kernel/xpnet.c
arch/m68knommu/kernel/dma.c
arch/mips/lib/iomap.c
arch/powerpc/platforms/pseries/ras.c
arch/ppc/8260_io/enet.c
arch/ppc/8260_io/fcc_enet.c
arch/ppc/8xx_io/enet.c
arch/ppc/syslib/ppc4xx_sgdma.c
arch/sh64/mach-cayman/iomap.c
arch/xtensa/kernel/xtensa_ksyms.c
arch/xtensa/platform-iss/setup.c
drivers/i2c/busses/i2c-at91.c
drivers/i2c/busses/i2c-mpc.c
drivers/media/video/saa711x.c
drivers/misc/hdpuftrs/hdpu_cpustate.c
drivers/misc/hdpuftrs/hdpu_nexus.c
drivers/net/au1000_eth.c
drivers/net/fec_8xx/fec_main.c
drivers/net/fec_8xx/fec_mii.c
drivers/net/fs_enet/fs_enet-main.c
drivers/net/fs_enet/mac-fcc.c
drivers/net/fs_enet/mac-fec.c
drivers/net/fs_enet/mac-scc.c
drivers/net/fs_enet/mii-bitbang.c
drivers/net/fs_enet/mii-fec.c
drivers/net/ibm_emac/ibm_emac_core.c
drivers/net/lasi_82596.c
drivers/parisc/hppb.c
drivers/sbus/sbus.c
drivers/video/g364fb.c
drivers/video/platinumfb.c
drivers/video/stifb.c
drivers/video/valkyriefb.c
include/asm-arm/arch-ixp4xx/dma.h
sound/oss/au1550_ac97.c

I would welcome test reports for these files. I am fine with removing
the untested files from the patch if the general opinion is that these
changes aren't safe. The tested part would still be nice to have.

Note that this patch depends on another header fixup patch I submitted
to LKML yesterday:
  [PATCH] scatterlist.h needs types.h
  http://lkml.org/lkml/2007/3/01/141

Signed-off-by: Jean Delvare <khali@linux-fr.org>
Cc: Badari Pulavarty <pbadari@us.ibm.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@suse.de>
2007-05-02 19:02:35 -07:00

2397 lines
65 KiB
C

/*
* Fast Ethernet Controller (FCC) driver for Motorola MPC8260.
* Copyright (c) 2000 MontaVista Software, Inc. Dan Malek (dmalek@jlc.net)
*
* This version of the driver is a combination of the 8xx fec and
* 8260 SCC Ethernet drivers. This version has some additional
* configuration options, which should probably be moved out of
* here. This driver currently works for the EST SBC8260,
* SBS Diablo/BCM, Embedded Planet RPX6, TQM8260, and others.
*
* Right now, I am very watseful with the buffers. I allocate memory
* pages and then divide them into 2K frame buffers. This way I know I
* have buffers large enough to hold one frame within one buffer descriptor.
* Once I get this working, I will use 64 or 128 byte CPM buffers, which
* will be much more memory efficient and will easily handle lots of
* small packets. Since this is a cache coherent processor and CPM,
* I could also preallocate SKB's and use them directly on the interface.
*
* 2004-12 Leo Li (leoli@freescale.com)
* - Rework the FCC clock configuration part, make it easier to configure.
*
*/
#include <linux/kernel.h>
#include <linux/sched.h>
#include <linux/string.h>
#include <linux/ptrace.h>
#include <linux/errno.h>
#include <linux/ioport.h>
#include <linux/slab.h>
#include <linux/interrupt.h>
#include <linux/init.h>
#include <linux/delay.h>
#include <linux/netdevice.h>
#include <linux/etherdevice.h>
#include <linux/skbuff.h>
#include <linux/spinlock.h>
#include <linux/mii.h>
#include <linux/workqueue.h>
#include <linux/bitops.h>
#include <asm/immap_cpm2.h>
#include <asm/pgtable.h>
#include <asm/mpc8260.h>
#include <asm/irq.h>
#include <asm/uaccess.h>
#include <asm/signal.h>
/* We can't use the PHY interrupt if we aren't using MDIO. */
#if !defined(CONFIG_USE_MDIO)
#undef PHY_INTERRUPT
#endif
/* If we have a PHY interrupt, we will advertise both full-duplex and half-
* duplex capabilities. If we don't have a PHY interrupt, then we will only
* advertise half-duplex capabilities.
*/
#define MII_ADVERTISE_HALF (ADVERTISE_100HALF | ADVERTISE_10HALF | \
ADVERTISE_CSMA)
#define MII_ADVERTISE_ALL (ADVERTISE_100FULL | ADVERTISE_10FULL | \
MII_ADVERTISE_HALF)
#ifdef PHY_INTERRUPT
#define MII_ADVERTISE_DEFAULT MII_ADVERTISE_ALL
#else
#define MII_ADVERTISE_DEFAULT MII_ADVERTISE_HALF
#endif
#include <asm/cpm2.h>
/* The transmitter timeout
*/
#define TX_TIMEOUT (2*HZ)
#ifdef CONFIG_USE_MDIO
/* Forward declarations of some structures to support different PHYs */
typedef struct {
uint mii_data;
void (*funct)(uint mii_reg, struct net_device *dev);
} phy_cmd_t;
typedef struct {
uint id;
char *name;
const phy_cmd_t *config;
const phy_cmd_t *startup;
const phy_cmd_t *ack_int;
const phy_cmd_t *shutdown;
} phy_info_t;
/* values for phy_status */
#define PHY_CONF_ANE 0x0001 /* 1 auto-negotiation enabled */
#define PHY_CONF_LOOP 0x0002 /* 1 loopback mode enabled */
#define PHY_CONF_SPMASK 0x00f0 /* mask for speed */
#define PHY_CONF_10HDX 0x0010 /* 10 Mbit half duplex supported */
#define PHY_CONF_10FDX 0x0020 /* 10 Mbit full duplex supported */
#define PHY_CONF_100HDX 0x0040 /* 100 Mbit half duplex supported */
#define PHY_CONF_100FDX 0x0080 /* 100 Mbit full duplex supported */
#define PHY_STAT_LINK 0x0100 /* 1 up - 0 down */
#define PHY_STAT_FAULT 0x0200 /* 1 remote fault */
#define PHY_STAT_ANC 0x0400 /* 1 auto-negotiation complete */
#define PHY_STAT_SPMASK 0xf000 /* mask for speed */
#define PHY_STAT_10HDX 0x1000 /* 10 Mbit half duplex selected */
#define PHY_STAT_10FDX 0x2000 /* 10 Mbit full duplex selected */
#define PHY_STAT_100HDX 0x4000 /* 100 Mbit half duplex selected */
#define PHY_STAT_100FDX 0x8000 /* 100 Mbit full duplex selected */
#endif /* CONFIG_USE_MDIO */
/* The number of Tx and Rx buffers. These are allocated from the page
* pool. The code may assume these are power of two, so it is best
* to keep them that size.
* We don't need to allocate pages for the transmitter. We just use
* the skbuffer directly.
*/
#define FCC_ENET_RX_PAGES 16
#define FCC_ENET_RX_FRSIZE 2048
#define FCC_ENET_RX_FRPPG (PAGE_SIZE / FCC_ENET_RX_FRSIZE)
#define RX_RING_SIZE (FCC_ENET_RX_FRPPG * FCC_ENET_RX_PAGES)
#define TX_RING_SIZE 16 /* Must be power of two */
#define TX_RING_MOD_MASK 15 /* for this to work */
/* The FCC stores dest/src/type, data, and checksum for receive packets.
* size includes support for VLAN
*/
#define PKT_MAXBUF_SIZE 1522
#define PKT_MINBUF_SIZE 64
/* Maximum input DMA size. Must be a should(?) be a multiple of 4.
* size includes support for VLAN
*/
#define PKT_MAXDMA_SIZE 1524
/* Maximum input buffer size. Must be a multiple of 32.
*/
#define PKT_MAXBLR_SIZE 1536
static int fcc_enet_open(struct net_device *dev);
static int fcc_enet_start_xmit(struct sk_buff *skb, struct net_device *dev);
static int fcc_enet_rx(struct net_device *dev);
static irqreturn_t fcc_enet_interrupt(int irq, void *dev_id);
static int fcc_enet_close(struct net_device *dev);
static struct net_device_stats *fcc_enet_get_stats(struct net_device *dev);
/* static void set_multicast_list(struct net_device *dev); */
static void fcc_restart(struct net_device *dev, int duplex);
static void fcc_stop(struct net_device *dev);
static int fcc_enet_set_mac_address(struct net_device *dev, void *addr);
/* These will be configurable for the FCC choice.
* Multiple ports can be configured. There is little choice among the
* I/O pins to the PHY, except the clocks. We will need some board
* dependent clock selection.
* Why in the hell did I put these inside #ifdef's? I dunno, maybe to
* help show what pins are used for each device.
*/
/* Since the CLK setting changes greatly from board to board, I changed
* it to a easy way. You just need to specify which CLK number to use.
* Note that only limited choices can be make on each port.
*/
/* FCC1 Clock Source Configuration. There are board specific.
Can only choose from CLK9-12 */
#ifdef CONFIG_SBC82xx
#define F1_RXCLK 9
#define F1_TXCLK 10
#elif defined(CONFIG_ADS8272)
#define F1_RXCLK 11
#define F1_TXCLK 10
#else
#define F1_RXCLK 12
#define F1_TXCLK 11
#endif
/* FCC2 Clock Source Configuration. There are board specific.
Can only choose from CLK13-16 */
#ifdef CONFIG_ADS8272
#define F2_RXCLK 15
#define F2_TXCLK 16
#else
#define F2_RXCLK 13
#define F2_TXCLK 14
#endif
/* FCC3 Clock Source Configuration. There are board specific.
Can only choose from CLK13-16 */
#define F3_RXCLK 15
#define F3_TXCLK 16
/* Automatically generates register configurations */
#define PC_CLK(x) ((uint)(1<<(x-1))) /* FCC CLK I/O ports */
#define CMXFCR_RF1CS(x) ((uint)((x-5)<<27)) /* FCC1 Receive Clock Source */
#define CMXFCR_TF1CS(x) ((uint)((x-5)<<24)) /* FCC1 Transmit Clock Source */
#define CMXFCR_RF2CS(x) ((uint)((x-9)<<19)) /* FCC2 Receive Clock Source */
#define CMXFCR_TF2CS(x) ((uint)((x-9)<<16)) /* FCC2 Transmit Clock Source */
#define CMXFCR_RF3CS(x) ((uint)((x-9)<<11)) /* FCC3 Receive Clock Source */
#define CMXFCR_TF3CS(x) ((uint)((x-9)<<8)) /* FCC3 Transmit Clock Source */
#define PC_F1RXCLK PC_CLK(F1_RXCLK)
#define PC_F1TXCLK PC_CLK(F1_TXCLK)
#define CMX1_CLK_ROUTE (CMXFCR_RF1CS(F1_RXCLK) | CMXFCR_TF1CS(F1_TXCLK))
#define CMX1_CLK_MASK ((uint)0xff000000)
#define PC_F2RXCLK PC_CLK(F2_RXCLK)
#define PC_F2TXCLK PC_CLK(F2_TXCLK)
#define CMX2_CLK_ROUTE (CMXFCR_RF2CS(F2_RXCLK) | CMXFCR_TF2CS(F2_TXCLK))
#define CMX2_CLK_MASK ((uint)0x00ff0000)
#define PC_F3RXCLK PC_CLK(F3_RXCLK)
#define PC_F3TXCLK PC_CLK(F3_TXCLK)
#define CMX3_CLK_ROUTE (CMXFCR_RF3CS(F3_RXCLK) | CMXFCR_TF3CS(F3_TXCLK))
#define CMX3_CLK_MASK ((uint)0x0000ff00)
/* I/O Pin assignment for FCC1. I don't yet know the best way to do this,
* but there is little variation among the choices.
*/
#define PA1_COL ((uint)0x00000001)
#define PA1_CRS ((uint)0x00000002)
#define PA1_TXER ((uint)0x00000004)
#define PA1_TXEN ((uint)0x00000008)
#define PA1_RXDV ((uint)0x00000010)
#define PA1_RXER ((uint)0x00000020)
#define PA1_TXDAT ((uint)0x00003c00)
#define PA1_RXDAT ((uint)0x0003c000)
#define PA1_PSORA_BOUT (PA1_RXDAT | PA1_TXDAT)
#define PA1_PSORA_BIN (PA1_COL | PA1_CRS | PA1_TXER | PA1_TXEN | \
PA1_RXDV | PA1_RXER)
#define PA1_DIRA_BOUT (PA1_RXDAT | PA1_CRS | PA1_COL | PA1_RXER | PA1_RXDV)
#define PA1_DIRA_BIN (PA1_TXDAT | PA1_TXEN | PA1_TXER)
/* I/O Pin assignment for FCC2. I don't yet know the best way to do this,
* but there is little variation among the choices.
*/
#define PB2_TXER ((uint)0x00000001)
#define PB2_RXDV ((uint)0x00000002)
#define PB2_TXEN ((uint)0x00000004)
#define PB2_RXER ((uint)0x00000008)
#define PB2_COL ((uint)0x00000010)
#define PB2_CRS ((uint)0x00000020)
#define PB2_TXDAT ((uint)0x000003c0)
#define PB2_RXDAT ((uint)0x00003c00)
#define PB2_PSORB_BOUT (PB2_RXDAT | PB2_TXDAT | PB2_CRS | PB2_COL | \
PB2_RXER | PB2_RXDV | PB2_TXER)
#define PB2_PSORB_BIN (PB2_TXEN)
#define PB2_DIRB_BOUT (PB2_RXDAT | PB2_CRS | PB2_COL | PB2_RXER | PB2_RXDV)
#define PB2_DIRB_BIN (PB2_TXDAT | PB2_TXEN | PB2_TXER)
/* I/O Pin assignment for FCC3. I don't yet know the best way to do this,
* but there is little variation among the choices.
*/
#define PB3_RXDV ((uint)0x00004000)
#define PB3_RXER ((uint)0x00008000)
#define PB3_TXER ((uint)0x00010000)
#define PB3_TXEN ((uint)0x00020000)
#define PB3_COL ((uint)0x00040000)
#define PB3_CRS ((uint)0x00080000)
#ifndef CONFIG_RPX8260
#define PB3_TXDAT ((uint)0x0f000000)
#define PC3_TXDAT ((uint)0x00000000)
#else
#define PB3_TXDAT ((uint)0x0f000000)
#define PC3_TXDAT 0
#endif
#define PB3_RXDAT ((uint)0x00f00000)
#define PB3_PSORB_BOUT (PB3_RXDAT | PB3_TXDAT | PB3_CRS | PB3_COL | \
PB3_RXER | PB3_RXDV | PB3_TXER | PB3_TXEN)
#define PB3_PSORB_BIN (0)
#define PB3_DIRB_BOUT (PB3_RXDAT | PB3_CRS | PB3_COL | PB3_RXER | PB3_RXDV)
#define PB3_DIRB_BIN (PB3_TXDAT | PB3_TXEN | PB3_TXER)
#define PC3_PSORC_BOUT (PC3_TXDAT)
#define PC3_PSORC_BIN (0)
#define PC3_DIRC_BOUT (0)
#define PC3_DIRC_BIN (PC3_TXDAT)
/* MII status/control serial interface.
*/
#if defined(CONFIG_RPX8260)
/* The EP8260 doesn't use Port C for MDIO */
#define PC_MDIO ((uint)0x00000000)
#define PC_MDCK ((uint)0x00000000)
#elif defined(CONFIG_TQM8260)
/* TQM8260 has MDIO and MDCK on PC30 and PC31 respectively */
#define PC_MDIO ((uint)0x00000002)
#define PC_MDCK ((uint)0x00000001)
#elif defined(CONFIG_ADS8272)
#define PC_MDIO ((uint)0x00002000)
#define PC_MDCK ((uint)0x00001000)
#elif defined(CONFIG_EST8260) || defined(CONFIG_ADS8260) || defined(CONFIG_PQ2FADS)
#define PC_MDIO ((uint)0x00400000)
#define PC_MDCK ((uint)0x00200000)
#else
#define PC_MDIO ((uint)0x00000004)
#define PC_MDCK ((uint)0x00000020)
#endif
#if defined(CONFIG_USE_MDIO) && (!defined(PC_MDIO) || !defined(PC_MDCK))
#error "Must define PC_MDIO and PC_MDCK if using MDIO"
#endif
/* PHY addresses */
/* default to dynamic config of phy addresses */
#define FCC1_PHY_ADDR 0
#ifdef CONFIG_PQ2FADS
#define FCC2_PHY_ADDR 0
#else
#define FCC2_PHY_ADDR 2
#endif
#define FCC3_PHY_ADDR 3
/* A table of information for supporting FCCs. This does two things.
* First, we know how many FCCs we have and they are always externally
* numbered from zero. Second, it holds control register and I/O
* information that could be different among board designs.
*/
typedef struct fcc_info {
uint fc_fccnum;
uint fc_phyaddr;
uint fc_cpmblock;
uint fc_cpmpage;
uint fc_proff;
uint fc_interrupt;
uint fc_trxclocks;
uint fc_clockroute;
uint fc_clockmask;
uint fc_mdio;
uint fc_mdck;
} fcc_info_t;
static fcc_info_t fcc_ports[] = {
#ifdef CONFIG_FCC1_ENET
{ 0, FCC1_PHY_ADDR, CPM_CR_FCC1_SBLOCK, CPM_CR_FCC1_PAGE, PROFF_FCC1, SIU_INT_FCC1,
(PC_F1RXCLK | PC_F1TXCLK), CMX1_CLK_ROUTE, CMX1_CLK_MASK,
PC_MDIO, PC_MDCK },
#endif
#ifdef CONFIG_FCC2_ENET
{ 1, FCC2_PHY_ADDR, CPM_CR_FCC2_SBLOCK, CPM_CR_FCC2_PAGE, PROFF_FCC2, SIU_INT_FCC2,
(PC_F2RXCLK | PC_F2TXCLK), CMX2_CLK_ROUTE, CMX2_CLK_MASK,
PC_MDIO, PC_MDCK },
#endif
#ifdef CONFIG_FCC3_ENET
{ 2, FCC3_PHY_ADDR, CPM_CR_FCC3_SBLOCK, CPM_CR_FCC3_PAGE, PROFF_FCC3, SIU_INT_FCC3,
(PC_F3RXCLK | PC_F3TXCLK), CMX3_CLK_ROUTE, CMX3_CLK_MASK,
PC_MDIO, PC_MDCK },
#endif
};
/* The FCC buffer descriptors track the ring buffers. The rx_bd_base and
* tx_bd_base always point to the base of the buffer descriptors. The
* cur_rx and cur_tx point to the currently available buffer.
* The dirty_tx tracks the current buffer that is being sent by the
* controller. The cur_tx and dirty_tx are equal under both completely
* empty and completely full conditions. The empty/ready indicator in
* the buffer descriptor determines the actual condition.
*/
struct fcc_enet_private {
/* The saved address of a sent-in-place packet/buffer, for skfree(). */
struct sk_buff* tx_skbuff[TX_RING_SIZE];
ushort skb_cur;
ushort skb_dirty;
/* CPM dual port RAM relative addresses.
*/
cbd_t *rx_bd_base; /* Address of Rx and Tx buffers. */
cbd_t *tx_bd_base;
cbd_t *cur_rx, *cur_tx; /* The next free ring entry */
cbd_t *dirty_tx; /* The ring entries to be free()ed. */
volatile fcc_t *fccp;
volatile fcc_enet_t *ep;
struct net_device_stats stats;
uint tx_free;
spinlock_t lock;
#ifdef CONFIG_USE_MDIO
uint phy_id;
uint phy_id_done;
uint phy_status;
phy_info_t *phy;
struct work_struct phy_relink;
struct work_struct phy_display_config;
struct net_device *dev;
uint sequence_done;
uint phy_addr;
#endif /* CONFIG_USE_MDIO */
int link;
int old_link;
int full_duplex;
fcc_info_t *fip;
};
static void init_fcc_shutdown(fcc_info_t *fip, struct fcc_enet_private *cep,
volatile cpm2_map_t *immap);
static void init_fcc_startup(fcc_info_t *fip, struct net_device *dev);
static void init_fcc_ioports(fcc_info_t *fip, volatile iop_cpm2_t *io,
volatile cpm2_map_t *immap);
static void init_fcc_param(fcc_info_t *fip, struct net_device *dev,
volatile cpm2_map_t *immap);
#ifdef CONFIG_USE_MDIO
static int mii_queue(struct net_device *dev, int request, void (*func)(uint, struct net_device *));
static uint mii_send_receive(fcc_info_t *fip, uint cmd);
static void mii_do_cmd(struct net_device *dev, const phy_cmd_t *c);
/* Make MII read/write commands for the FCC.
*/
#define mk_mii_read(REG) (0x60020000 | (((REG) & 0x1f) << 18))
#define mk_mii_write(REG, VAL) (0x50020000 | (((REG) & 0x1f) << 18) | \
((VAL) & 0xffff))
#define mk_mii_end 0
#endif /* CONFIG_USE_MDIO */
static int
fcc_enet_start_xmit(struct sk_buff *skb, struct net_device *dev)
{
struct fcc_enet_private *cep = (struct fcc_enet_private *)dev->priv;
volatile cbd_t *bdp;
/* Fill in a Tx ring entry */
bdp = cep->cur_tx;
#ifndef final_version
if (!cep->tx_free || (bdp->cbd_sc & BD_ENET_TX_READY)) {
/* Ooops. All transmit buffers are full. Bail out.
* This should not happen, since the tx queue should be stopped.
*/
printk("%s: tx queue full!.\n", dev->name);
return 1;
}
#endif
/* Clear all of the status flags. */
bdp->cbd_sc &= ~BD_ENET_TX_STATS;
/* If the frame is short, tell CPM to pad it. */
if (skb->len <= ETH_ZLEN)
bdp->cbd_sc |= BD_ENET_TX_PAD;
else
bdp->cbd_sc &= ~BD_ENET_TX_PAD;
/* Set buffer length and buffer pointer. */
bdp->cbd_datlen = skb->len;
bdp->cbd_bufaddr = __pa(skb->data);
spin_lock_irq(&cep->lock);
/* Save skb pointer. */
cep->tx_skbuff[cep->skb_cur] = skb;
cep->stats.tx_bytes += skb->len;
cep->skb_cur = (cep->skb_cur+1) & TX_RING_MOD_MASK;
/* Send it on its way. Tell CPM its ready, interrupt when done,
* its the last BD of the frame, and to put the CRC on the end.
*/
bdp->cbd_sc |= (BD_ENET_TX_READY | BD_ENET_TX_INTR | BD_ENET_TX_LAST | BD_ENET_TX_TC);
#if 0
/* Errata says don't do this. */
cep->fccp->fcc_ftodr = 0x8000;
#endif
dev->trans_start = jiffies;
/* If this was the last BD in the ring, start at the beginning again. */
if (bdp->cbd_sc & BD_ENET_TX_WRAP)
bdp = cep->tx_bd_base;
else
bdp++;
if (!--cep->tx_free)
netif_stop_queue(dev);
cep->cur_tx = (cbd_t *)bdp;
spin_unlock_irq(&cep->lock);
return 0;
}
static void
fcc_enet_timeout(struct net_device *dev)
{
struct fcc_enet_private *cep = (struct fcc_enet_private *)dev->priv;
printk("%s: transmit timed out.\n", dev->name);
cep->stats.tx_errors++;
#ifndef final_version
{
int i;
cbd_t *bdp;
printk(" Ring data dump: cur_tx %p tx_free %d cur_rx %p.\n",
cep->cur_tx, cep->tx_free,
cep->cur_rx);
bdp = cep->tx_bd_base;
printk(" Tx @base %p :\n", bdp);
for (i = 0 ; i < TX_RING_SIZE; i++, bdp++)
printk("%04x %04x %08x\n",
bdp->cbd_sc,
bdp->cbd_datlen,
bdp->cbd_bufaddr);
bdp = cep->rx_bd_base;
printk(" Rx @base %p :\n", bdp);
for (i = 0 ; i < RX_RING_SIZE; i++, bdp++)
printk("%04x %04x %08x\n",
bdp->cbd_sc,
bdp->cbd_datlen,
bdp->cbd_bufaddr);
}
#endif
if (cep->tx_free)
netif_wake_queue(dev);
}
/* The interrupt handler. */
static irqreturn_t
fcc_enet_interrupt(int irq, void * dev_id)
{
struct net_device *dev = dev_id;
volatile struct fcc_enet_private *cep;
volatile cbd_t *bdp;
ushort int_events;
int must_restart;
cep = (struct fcc_enet_private *)dev->priv;
/* Get the interrupt events that caused us to be here.
*/
int_events = cep->fccp->fcc_fcce;
cep->fccp->fcc_fcce = (int_events & cep->fccp->fcc_fccm);
must_restart = 0;
#ifdef PHY_INTERRUPT
/* We have to be careful here to make sure that we aren't
* interrupted by a PHY interrupt.
*/
disable_irq_nosync(PHY_INTERRUPT);
#endif
/* Handle receive event in its own function.
*/
if (int_events & FCC_ENET_RXF)
fcc_enet_rx(dev_id);
/* Check for a transmit error. The manual is a little unclear
* about this, so the debug code until I get it figured out. It
* appears that if TXE is set, then TXB is not set. However,
* if carrier sense is lost during frame transmission, the TXE
* bit is set, "and continues the buffer transmission normally."
* I don't know if "normally" implies TXB is set when the buffer
* descriptor is closed.....trial and error :-).
*/
/* Transmit OK, or non-fatal error. Update the buffer descriptors.
*/
if (int_events & (FCC_ENET_TXE | FCC_ENET_TXB)) {
spin_lock(&cep->lock);
bdp = cep->dirty_tx;
while ((bdp->cbd_sc&BD_ENET_TX_READY)==0) {
if (cep->tx_free == TX_RING_SIZE)
break;
if (bdp->cbd_sc & BD_ENET_TX_HB) /* No heartbeat */
cep->stats.tx_heartbeat_errors++;
if (bdp->cbd_sc & BD_ENET_TX_LC) /* Late collision */
cep->stats.tx_window_errors++;
if (bdp->cbd_sc & BD_ENET_TX_RL) /* Retrans limit */
cep->stats.tx_aborted_errors++;
if (bdp->cbd_sc & BD_ENET_TX_UN) /* Underrun */
cep->stats.tx_fifo_errors++;
if (bdp->cbd_sc & BD_ENET_TX_CSL) /* Carrier lost */
cep->stats.tx_carrier_errors++;
/* No heartbeat or Lost carrier are not really bad errors.
* The others require a restart transmit command.
*/
if (bdp->cbd_sc &
(BD_ENET_TX_LC | BD_ENET_TX_RL | BD_ENET_TX_UN)) {
must_restart = 1;
cep->stats.tx_errors++;
}
cep->stats.tx_packets++;
/* Deferred means some collisions occurred during transmit,
* but we eventually sent the packet OK.
*/
if (bdp->cbd_sc & BD_ENET_TX_DEF)
cep->stats.collisions++;
/* Free the sk buffer associated with this last transmit. */
dev_kfree_skb_irq(cep->tx_skbuff[cep->skb_dirty]);
cep->tx_skbuff[cep->skb_dirty] = NULL;
cep->skb_dirty = (cep->skb_dirty + 1) & TX_RING_MOD_MASK;
/* Update pointer to next buffer descriptor to be transmitted. */
if (bdp->cbd_sc & BD_ENET_TX_WRAP)
bdp = cep->tx_bd_base;
else
bdp++;
/* I don't know if we can be held off from processing these
* interrupts for more than one frame time. I really hope
* not. In such a case, we would now want to check the
* currently available BD (cur_tx) and determine if any
* buffers between the dirty_tx and cur_tx have also been
* sent. We would want to process anything in between that
* does not have BD_ENET_TX_READY set.
*/
/* Since we have freed up a buffer, the ring is no longer
* full.
*/
if (!cep->tx_free++) {
if (netif_queue_stopped(dev)) {
netif_wake_queue(dev);
}
}
cep->dirty_tx = (cbd_t *)bdp;
}
if (must_restart) {
volatile cpm_cpm2_t *cp;
/* Some transmit errors cause the transmitter to shut
* down. We now issue a restart transmit. Since the
* errors close the BD and update the pointers, the restart
* _should_ pick up without having to reset any of our
* pointers either. Also, To workaround 8260 device erratum
* CPM37, we must disable and then re-enable the transmitter
* following a Late Collision, Underrun, or Retry Limit error.
*/
cep->fccp->fcc_gfmr &= ~FCC_GFMR_ENT;
udelay(10); /* wait a few microseconds just on principle */
cep->fccp->fcc_gfmr |= FCC_GFMR_ENT;
cp = cpmp;
cp->cp_cpcr =
mk_cr_cmd(cep->fip->fc_cpmpage, cep->fip->fc_cpmblock,
0x0c, CPM_CR_RESTART_TX) | CPM_CR_FLG;
while (cp->cp_cpcr & CPM_CR_FLG);
}
spin_unlock(&cep->lock);
}
/* Check for receive busy, i.e. packets coming but no place to
* put them.
*/
if (int_events & FCC_ENET_BSY) {
cep->fccp->fcc_fcce = FCC_ENET_BSY;
cep->stats.rx_dropped++;
}
#ifdef PHY_INTERRUPT
enable_irq(PHY_INTERRUPT);
#endif
return IRQ_HANDLED;
}
/* During a receive, the cur_rx points to the current incoming buffer.
* When we update through the ring, if the next incoming buffer has
* not been given to the system, we just set the empty indicator,
* effectively tossing the packet.
*/
static int
fcc_enet_rx(struct net_device *dev)
{
struct fcc_enet_private *cep;
volatile cbd_t *bdp;
struct sk_buff *skb;
ushort pkt_len;
cep = (struct fcc_enet_private *)dev->priv;
/* First, grab all of the stats for the incoming packet.
* These get messed up if we get called due to a busy condition.
*/
bdp = cep->cur_rx;
for (;;) {
if (bdp->cbd_sc & BD_ENET_RX_EMPTY)
break;
#ifndef final_version
/* Since we have allocated space to hold a complete frame, both
* the first and last indicators should be set.
*/
if ((bdp->cbd_sc & (BD_ENET_RX_FIRST | BD_ENET_RX_LAST)) !=
(BD_ENET_RX_FIRST | BD_ENET_RX_LAST))
printk("CPM ENET: rcv is not first+last\n");
#endif
/* Frame too long or too short. */
if (bdp->cbd_sc & (BD_ENET_RX_LG | BD_ENET_RX_SH))
cep->stats.rx_length_errors++;
if (bdp->cbd_sc & BD_ENET_RX_NO) /* Frame alignment */
cep->stats.rx_frame_errors++;
if (bdp->cbd_sc & BD_ENET_RX_CR) /* CRC Error */
cep->stats.rx_crc_errors++;
if (bdp->cbd_sc & BD_ENET_RX_OV) /* FIFO overrun */
cep->stats.rx_crc_errors++;
if (bdp->cbd_sc & BD_ENET_RX_CL) /* Late Collision */
cep->stats.rx_frame_errors++;
if (!(bdp->cbd_sc &
(BD_ENET_RX_LG | BD_ENET_RX_SH | BD_ENET_RX_NO | BD_ENET_RX_CR
| BD_ENET_RX_OV | BD_ENET_RX_CL)))
{
/* Process the incoming frame. */
cep->stats.rx_packets++;
/* Remove the FCS from the packet length. */
pkt_len = bdp->cbd_datlen - 4;
cep->stats.rx_bytes += pkt_len;
/* This does 16 byte alignment, much more than we need. */
skb = dev_alloc_skb(pkt_len);
if (skb == NULL) {
printk("%s: Memory squeeze, dropping packet.\n", dev->name);
cep->stats.rx_dropped++;
}
else {
skb_put(skb,pkt_len); /* Make room */
eth_copy_and_sum(skb,
(unsigned char *)__va(bdp->cbd_bufaddr),
pkt_len, 0);
skb->protocol=eth_type_trans(skb,dev);
netif_rx(skb);
}
}
/* Clear the status flags for this buffer. */
bdp->cbd_sc &= ~BD_ENET_RX_STATS;
/* Mark the buffer empty. */
bdp->cbd_sc |= BD_ENET_RX_EMPTY;
/* Update BD pointer to next entry. */
if (bdp->cbd_sc & BD_ENET_RX_WRAP)
bdp = cep->rx_bd_base;
else
bdp++;
}
cep->cur_rx = (cbd_t *)bdp;
return 0;
}
static int
fcc_enet_close(struct net_device *dev)
{
#ifdef CONFIG_USE_MDIO
struct fcc_enet_private *fep = dev->priv;
#endif
netif_stop_queue(dev);
fcc_stop(dev);
#ifdef CONFIG_USE_MDIO
if (fep->phy)
mii_do_cmd(dev, fep->phy->shutdown);
#endif
return 0;
}
static struct net_device_stats *fcc_enet_get_stats(struct net_device *dev)
{
struct fcc_enet_private *cep = (struct fcc_enet_private *)dev->priv;
return &cep->stats;
}
#ifdef CONFIG_USE_MDIO
/* NOTE: Most of the following comes from the FEC driver for 860. The
* overall structure of MII code has been retained (as it's proved stable
* and well-tested), but actual transfer requests are processed "at once"
* instead of being queued (there's no interrupt-driven MII transfer
* mechanism, one has to toggle the data/clock bits manually).
*/
static int
mii_queue(struct net_device *dev, int regval, void (*func)(uint, struct net_device *))
{
struct fcc_enet_private *fep;
int retval, tmp;
/* Add PHY address to register command. */
fep = dev->priv;
regval |= fep->phy_addr << 23;
retval = 0;
tmp = mii_send_receive(fep->fip, regval);
if (func)
func(tmp, dev);
return retval;
}
static void mii_do_cmd(struct net_device *dev, const phy_cmd_t *c)
{
int k;
if(!c)
return;
for(k = 0; (c+k)->mii_data != mk_mii_end; k++)
mii_queue(dev, (c+k)->mii_data, (c+k)->funct);
}
static void mii_parse_sr(uint mii_reg, struct net_device *dev)
{
volatile struct fcc_enet_private *fep = dev->priv;
uint s = fep->phy_status;
s &= ~(PHY_STAT_LINK | PHY_STAT_FAULT | PHY_STAT_ANC);
if (mii_reg & BMSR_LSTATUS)
s |= PHY_STAT_LINK;
if (mii_reg & BMSR_RFAULT)
s |= PHY_STAT_FAULT;
if (mii_reg & BMSR_ANEGCOMPLETE)
s |= PHY_STAT_ANC;
fep->phy_status = s;
}
static void mii_parse_cr(uint mii_reg, struct net_device *dev)
{
volatile struct fcc_enet_private *fep = dev->priv;
uint s = fep->phy_status;
s &= ~(PHY_CONF_ANE | PHY_CONF_LOOP);
if (mii_reg & BMCR_ANENABLE)
s |= PHY_CONF_ANE;
if (mii_reg & BMCR_LOOPBACK)
s |= PHY_CONF_LOOP;
fep->phy_status = s;
}
static void mii_parse_anar(uint mii_reg, struct net_device *dev)
{
volatile struct fcc_enet_private *fep = dev->priv;
uint s = fep->phy_status;
s &= ~(PHY_CONF_SPMASK);
if (mii_reg & ADVERTISE_10HALF)
s |= PHY_CONF_10HDX;
if (mii_reg & ADVERTISE_10FULL)
s |= PHY_CONF_10FDX;
if (mii_reg & ADVERTISE_100HALF)
s |= PHY_CONF_100HDX;
if (mii_reg & ADVERTISE_100FULL)
s |= PHY_CONF_100FDX;
fep->phy_status = s;
}
/* ------------------------------------------------------------------------- */
/* Generic PHY support. Should work for all PHYs, but does not support link
* change interrupts.
*/
#ifdef CONFIG_FCC_GENERIC_PHY
static phy_info_t phy_info_generic = {
0x00000000, /* 0-->match any PHY */
"GENERIC",
(const phy_cmd_t []) { /* config */
/* advertise only half-duplex capabilities */
{ mk_mii_write(MII_ADVERTISE, MII_ADVERTISE_HALF),
mii_parse_anar },
/* enable auto-negotiation */
{ mk_mii_write(MII_BMCR, BMCR_ANENABLE), mii_parse_cr },
{ mk_mii_end, }
},
(const phy_cmd_t []) { /* startup */
/* restart auto-negotiation */
{ mk_mii_write(MII_BMCR, BMCR_ANENABLE | BMCR_ANRESTART),
NULL },
{ mk_mii_end, }
},
(const phy_cmd_t []) { /* ack_int */
/* We don't actually use the ack_int table with a generic
* PHY, but putting a reference to mii_parse_sr here keeps
* us from getting a compiler warning about unused static
* functions in the case where we only compile in generic
* PHY support.
*/
{ mk_mii_read(MII_BMSR), mii_parse_sr },
{ mk_mii_end, }
},
(const phy_cmd_t []) { /* shutdown */
{ mk_mii_end, }
},
};
#endif /* ifdef CONFIG_FCC_GENERIC_PHY */
/* ------------------------------------------------------------------------- */
/* The Level one LXT970 is used by many boards */
#ifdef CONFIG_FCC_LXT970
#define MII_LXT970_MIRROR 16 /* Mirror register */
#define MII_LXT970_IER 17 /* Interrupt Enable Register */
#define MII_LXT970_ISR 18 /* Interrupt Status Register */
#define MII_LXT970_CONFIG 19 /* Configuration Register */
#define MII_LXT970_CSR 20 /* Chip Status Register */
static void mii_parse_lxt970_csr(uint mii_reg, struct net_device *dev)
{
volatile struct fcc_enet_private *fep = dev->priv;
uint s = fep->phy_status;
s &= ~(PHY_STAT_SPMASK);
if (mii_reg & 0x0800) {
if (mii_reg & 0x1000)
s |= PHY_STAT_100FDX;
else
s |= PHY_STAT_100HDX;
} else {
if (mii_reg & 0x1000)
s |= PHY_STAT_10FDX;
else
s |= PHY_STAT_10HDX;
}
fep->phy_status = s;
}
static phy_info_t phy_info_lxt970 = {
0x07810000,
"LXT970",
(const phy_cmd_t []) { /* config */
#if 0
// { mk_mii_write(MII_ADVERTISE, 0x0021), NULL },
/* Set default operation of 100-TX....for some reason
* some of these bits are set on power up, which is wrong.
*/
{ mk_mii_write(MII_LXT970_CONFIG, 0), NULL },
#endif
{ mk_mii_read(MII_BMCR), mii_parse_cr },
{ mk_mii_read(MII_ADVERTISE), mii_parse_anar },
{ mk_mii_end, }
},
(const phy_cmd_t []) { /* startup - enable interrupts */
{ mk_mii_write(MII_LXT970_IER, 0x0002), NULL },
{ mk_mii_write(MII_BMCR, 0x1200), NULL }, /* autonegotiate */
{ mk_mii_end, }
},
(const phy_cmd_t []) { /* ack_int */
/* read SR and ISR to acknowledge */
{ mk_mii_read(MII_BMSR), mii_parse_sr },
{ mk_mii_read(MII_LXT970_ISR), NULL },
/* find out the current status */
{ mk_mii_read(MII_LXT970_CSR), mii_parse_lxt970_csr },
{ mk_mii_end, }
},
(const phy_cmd_t []) { /* shutdown - disable interrupts */
{ mk_mii_write(MII_LXT970_IER, 0x0000), NULL },
{ mk_mii_end, }
},
};
#endif /* CONFIG_FEC_LXT970 */
/* ------------------------------------------------------------------------- */
/* The Level one LXT971 is used on some of my custom boards */
#ifdef CONFIG_FCC_LXT971
/* register definitions for the 971 */
#define MII_LXT971_PCR 16 /* Port Control Register */
#define MII_LXT971_SR2 17 /* Status Register 2 */
#define MII_LXT971_IER 18 /* Interrupt Enable Register */
#define MII_LXT971_ISR 19 /* Interrupt Status Register */
#define MII_LXT971_LCR 20 /* LED Control Register */
#define MII_LXT971_TCR 30 /* Transmit Control Register */
/*
* I had some nice ideas of running the MDIO faster...
* The 971 should support 8MHz and I tried it, but things acted really
* weird, so 2.5 MHz ought to be enough for anyone...
*/
static void mii_parse_lxt971_sr2(uint mii_reg, struct net_device *dev)
{
volatile struct fcc_enet_private *fep = dev->priv;
uint s = fep->phy_status;
s &= ~(PHY_STAT_SPMASK);
if (mii_reg & 0x4000) {
if (mii_reg & 0x0200)
s |= PHY_STAT_100FDX;
else
s |= PHY_STAT_100HDX;
} else {
if (mii_reg & 0x0200)
s |= PHY_STAT_10FDX;
else
s |= PHY_STAT_10HDX;
}
if (mii_reg & 0x0008)
s |= PHY_STAT_FAULT;
fep->phy_status = s;
}
static phy_info_t phy_info_lxt971 = {
0x0001378e,
"LXT971",
(const phy_cmd_t []) { /* config */
/* configure link capabilities to advertise */
{ mk_mii_write(MII_ADVERTISE, MII_ADVERTISE_DEFAULT),
mii_parse_anar },
/* enable auto-negotiation */
{ mk_mii_write(MII_BMCR, BMCR_ANENABLE), mii_parse_cr },
{ mk_mii_end, }
},
(const phy_cmd_t []) { /* startup - enable interrupts */
{ mk_mii_write(MII_LXT971_IER, 0x00f2), NULL },
/* restart auto-negotiation */
{ mk_mii_write(MII_BMCR, BMCR_ANENABLE | BMCR_ANRESTART),
NULL },
{ mk_mii_end, }
},
(const phy_cmd_t []) { /* ack_int */
/* find out the current status */
{ mk_mii_read(MII_BMSR), NULL },
{ mk_mii_read(MII_BMSR), mii_parse_sr },
{ mk_mii_read(MII_LXT971_SR2), mii_parse_lxt971_sr2 },
/* we only need to read ISR to acknowledge */
{ mk_mii_read(MII_LXT971_ISR), NULL },
{ mk_mii_end, }
},
(const phy_cmd_t []) { /* shutdown - disable interrupts */
{ mk_mii_write(MII_LXT971_IER, 0x0000), NULL },
{ mk_mii_end, }
},
};
#endif /* CONFIG_FCC_LXT971 */
/* ------------------------------------------------------------------------- */
/* The Quality Semiconductor QS6612 is used on the RPX CLLF */
#ifdef CONFIG_FCC_QS6612
/* register definitions */
#define MII_QS6612_MCR 17 /* Mode Control Register */
#define MII_QS6612_FTR 27 /* Factory Test Register */
#define MII_QS6612_MCO 28 /* Misc. Control Register */
#define MII_QS6612_ISR 29 /* Interrupt Source Register */
#define MII_QS6612_IMR 30 /* Interrupt Mask Register */
#define MII_QS6612_PCR 31 /* 100BaseTx PHY Control Reg. */
static void mii_parse_qs6612_pcr(uint mii_reg, struct net_device *dev)
{
volatile struct fcc_enet_private *fep = dev->priv;
uint s = fep->phy_status;
s &= ~(PHY_STAT_SPMASK);
switch((mii_reg >> 2) & 7) {
case 1: s |= PHY_STAT_10HDX; break;
case 2: s |= PHY_STAT_100HDX; break;
case 5: s |= PHY_STAT_10FDX; break;
case 6: s |= PHY_STAT_100FDX; break;
}
fep->phy_status = s;
}
static phy_info_t phy_info_qs6612 = {
0x00181440,
"QS6612",
(const phy_cmd_t []) { /* config */
// { mk_mii_write(MII_ADVERTISE, 0x061), NULL }, /* 10 Mbps */
/* The PHY powers up isolated on the RPX,
* so send a command to allow operation.
*/
{ mk_mii_write(MII_QS6612_PCR, 0x0dc0), NULL },
/* parse cr and anar to get some info */
{ mk_mii_read(MII_BMCR), mii_parse_cr },
{ mk_mii_read(MII_ADVERTISE), mii_parse_anar },
{ mk_mii_end, }
},
(const phy_cmd_t []) { /* startup - enable interrupts */
{ mk_mii_write(MII_QS6612_IMR, 0x003a), NULL },
{ mk_mii_write(MII_BMCR, 0x1200), NULL }, /* autonegotiate */
{ mk_mii_end, }
},
(const phy_cmd_t []) { /* ack_int */
/* we need to read ISR, SR and ANER to acknowledge */
{ mk_mii_read(MII_QS6612_ISR), NULL },
{ mk_mii_read(MII_BMSR), mii_parse_sr },
{ mk_mii_read(MII_EXPANSION), NULL },
/* read pcr to get info */
{ mk_mii_read(MII_QS6612_PCR), mii_parse_qs6612_pcr },
{ mk_mii_end, }
},
(const phy_cmd_t []) { /* shutdown - disable interrupts */
{ mk_mii_write(MII_QS6612_IMR, 0x0000), NULL },
{ mk_mii_end, }
},
};
#endif /* CONFIG_FEC_QS6612 */
/* ------------------------------------------------------------------------- */
/* The Davicom DM9131 is used on the HYMOD board */
#ifdef CONFIG_FCC_DM9131
/* register definitions */
#define MII_DM9131_ACR 16 /* Aux. Config Register */
#define MII_DM9131_ACSR 17 /* Aux. Config/Status Register */
#define MII_DM9131_10TCSR 18 /* 10BaseT Config/Status Reg. */
#define MII_DM9131_INTR 21 /* Interrupt Register */
#define MII_DM9131_RECR 22 /* Receive Error Counter Reg. */
#define MII_DM9131_DISCR 23 /* Disconnect Counter Register */
static void mii_parse_dm9131_acsr(uint mii_reg, struct net_device *dev)
{
volatile struct fcc_enet_private *fep = dev->priv;
uint s = fep->phy_status;
s &= ~(PHY_STAT_SPMASK);
switch ((mii_reg >> 12) & 0xf) {
case 1: s |= PHY_STAT_10HDX; break;
case 2: s |= PHY_STAT_10FDX; break;
case 4: s |= PHY_STAT_100HDX; break;
case 8: s |= PHY_STAT_100FDX; break;
}
fep->phy_status = s;
}
static phy_info_t phy_info_dm9131 = {
0x00181b80,
"DM9131",
(const phy_cmd_t []) { /* config */
/* parse cr and anar to get some info */
{ mk_mii_read(MII_BMCR), mii_parse_cr },
{ mk_mii_read(MII_ADVERTISE), mii_parse_anar },
{ mk_mii_end, }
},
(const phy_cmd_t []) { /* startup - enable interrupts */
{ mk_mii_write(MII_DM9131_INTR, 0x0002), NULL },
{ mk_mii_write(MII_BMCR, 0x1200), NULL }, /* autonegotiate */
{ mk_mii_end, }
},
(const phy_cmd_t []) { /* ack_int */
/* we need to read INTR, SR and ANER to acknowledge */
{ mk_mii_read(MII_DM9131_INTR), NULL },
{ mk_mii_read(MII_BMSR), mii_parse_sr },
{ mk_mii_read(MII_EXPANSION), NULL },
/* read acsr to get info */
{ mk_mii_read(MII_DM9131_ACSR), mii_parse_dm9131_acsr },
{ mk_mii_end, }
},
(const phy_cmd_t []) { /* shutdown - disable interrupts */
{ mk_mii_write(MII_DM9131_INTR, 0x0f00), NULL },
{ mk_mii_end, }
},
};
#endif /* CONFIG_FEC_DM9131 */
#ifdef CONFIG_FCC_DM9161
/* ------------------------------------------------------------------------- */
/* DM9161 Control register values */
#define MIIM_DM9161_CR_STOP 0x0400
#define MIIM_DM9161_CR_RSTAN 0x1200
#define MIIM_DM9161_SCR 0x10
#define MIIM_DM9161_SCR_INIT 0x0610
/* DM9161 Specified Configuration and Status Register */
#define MIIM_DM9161_SCSR 0x11
#define MIIM_DM9161_SCSR_100F 0x8000
#define MIIM_DM9161_SCSR_100H 0x4000
#define MIIM_DM9161_SCSR_10F 0x2000
#define MIIM_DM9161_SCSR_10H 0x1000
/* DM9161 10BT register */
#define MIIM_DM9161_10BTCSR 0x12
#define MIIM_DM9161_10BTCSR_INIT 0x7800
/* DM9161 Interrupt Register */
#define MIIM_DM9161_INTR 0x15
#define MIIM_DM9161_INTR_PEND 0x8000
#define MIIM_DM9161_INTR_DPLX_MASK 0x0800
#define MIIM_DM9161_INTR_SPD_MASK 0x0400
#define MIIM_DM9161_INTR_LINK_MASK 0x0200
#define MIIM_DM9161_INTR_MASK 0x0100
#define MIIM_DM9161_INTR_DPLX_CHANGE 0x0010
#define MIIM_DM9161_INTR_SPD_CHANGE 0x0008
#define MIIM_DM9161_INTR_LINK_CHANGE 0x0004
#define MIIM_DM9161_INTR_INIT 0x0000
#define MIIM_DM9161_INTR_STOP \
(MIIM_DM9161_INTR_DPLX_MASK | MIIM_DM9161_INTR_SPD_MASK \
| MIIM_DM9161_INTR_LINK_MASK | MIIM_DM9161_INTR_MASK)
static void mii_parse_dm9161_sr(uint mii_reg, struct net_device * dev)
{
volatile struct fcc_enet_private *fep = dev->priv;
uint regstat, timeout=0xffff;
while(!(mii_reg & 0x0020) && timeout--)
{
regstat=mk_mii_read(MII_BMSR);
regstat |= fep->phy_addr <<23;
mii_reg = mii_send_receive(fep->fip,regstat);
}
mii_parse_sr(mii_reg, dev);
}
static void mii_parse_dm9161_scsr(uint mii_reg, struct net_device * dev)
{
volatile struct fcc_enet_private *fep = dev->priv;
uint s = fep->phy_status;
s &= ~(PHY_STAT_SPMASK);
switch((mii_reg >>12) & 0xf) {
case 1:
{
s |= PHY_STAT_10HDX;
printk("10BaseT Half Duplex\n");
break;
}
case 2:
{
s |= PHY_STAT_10FDX;
printk("10BaseT Full Duplex\n");
break;
}
case 4:
{
s |= PHY_STAT_100HDX;
printk("100BaseT Half Duplex\n");
break;
}
case 8:
{
s |= PHY_STAT_100FDX;
printk("100BaseT Full Duplex\n");
break;
}
}
fep->phy_status = s;
}
static void mii_dm9161_wait(uint mii_reg, struct net_device *dev)
{
int timeout = HZ;
/* Davicom takes a bit to come up after a reset,
* so wait here for a bit */
schedule_timeout_uninterruptible(timeout);
}
static phy_info_t phy_info_dm9161 = {
0x00181b88,
"Davicom DM9161E",
(const phy_cmd_t[]) { /* config */
{ mk_mii_write(MII_BMCR, MIIM_DM9161_CR_STOP), NULL},
/* Do not bypass the scrambler/descrambler */
{ mk_mii_write(MIIM_DM9161_SCR, MIIM_DM9161_SCR_INIT), NULL},
/* Configure 10BTCSR register */
{ mk_mii_write(MIIM_DM9161_10BTCSR, MIIM_DM9161_10BTCSR_INIT),NULL},
/* Configure some basic stuff */
{ mk_mii_write(MII_BMCR, 0x1000), NULL},
{ mk_mii_read(MII_BMCR), mii_parse_cr },
{ mk_mii_read(MII_ADVERTISE), mii_parse_anar },
{ mk_mii_end,}
},
(const phy_cmd_t[]) { /* startup */
/* Restart Auto Negotiation */
{ mk_mii_write(MII_BMCR, MIIM_DM9161_CR_RSTAN), NULL},
/* Status is read once to clear old link state */
{ mk_mii_read(MII_BMSR), mii_dm9161_wait},
/* Auto-negotiate */
{ mk_mii_read(MII_BMSR), mii_parse_dm9161_sr},
/* Read the status */
{ mk_mii_read(MIIM_DM9161_SCSR), mii_parse_dm9161_scsr},
/* Clear any pending interrupts */
{ mk_mii_read(MIIM_DM9161_INTR), NULL},
/* Enable Interrupts */
{ mk_mii_write(MIIM_DM9161_INTR, MIIM_DM9161_INTR_INIT), NULL},
{ mk_mii_end,}
},
(const phy_cmd_t[]) { /* ack_int */
{ mk_mii_read(MIIM_DM9161_INTR), NULL},
#if 0
{ mk_mii_read(MII_BMSR), NULL},
{ mk_mii_read(MII_BMSR), mii_parse_dm9161_sr},
{ mk_mii_read(MIIM_DM9161_SCSR), mii_parse_dm9161_scsr},
#endif
{ mk_mii_end,}
},
(const phy_cmd_t[]) { /* shutdown */
{ mk_mii_read(MIIM_DM9161_INTR),NULL},
{ mk_mii_write(MIIM_DM9161_INTR, MIIM_DM9161_INTR_STOP), NULL},
{ mk_mii_end,}
},
};
#endif /* CONFIG_FCC_DM9161 */
static phy_info_t *phy_info[] = {
#ifdef CONFIG_FCC_LXT970
&phy_info_lxt970,
#endif /* CONFIG_FEC_LXT970 */
#ifdef CONFIG_FCC_LXT971
&phy_info_lxt971,
#endif /* CONFIG_FEC_LXT971 */
#ifdef CONFIG_FCC_QS6612
&phy_info_qs6612,
#endif /* CONFIG_FEC_QS6612 */
#ifdef CONFIG_FCC_DM9131
&phy_info_dm9131,
#endif /* CONFIG_FEC_DM9131 */
#ifdef CONFIG_FCC_DM9161
&phy_info_dm9161,
#endif /* CONFIG_FCC_DM9161 */
#ifdef CONFIG_FCC_GENERIC_PHY
/* Generic PHY support. This must be the last PHY in the table.
* It will be used to support any PHY that doesn't match a previous
* entry in the table.
*/
&phy_info_generic,
#endif /* CONFIG_FCC_GENERIC_PHY */
NULL
};
static void mii_display_status(struct work_struct *work)
{
volatile struct fcc_enet_private *fep =
container_of(work, struct fcc_enet_private, phy_relink);
struct net_device *dev = fep->dev;
uint s = fep->phy_status;
if (!fep->link && !fep->old_link) {
/* Link is still down - don't print anything */
return;
}
printk("%s: status: ", dev->name);
if (!fep->link) {
printk("link down");
} else {
printk("link up");
switch(s & PHY_STAT_SPMASK) {
case PHY_STAT_100FDX: printk(", 100 Mbps Full Duplex"); break;
case PHY_STAT_100HDX: printk(", 100 Mbps Half Duplex"); break;
case PHY_STAT_10FDX: printk(", 10 Mbps Full Duplex"); break;
case PHY_STAT_10HDX: printk(", 10 Mbps Half Duplex"); break;
default:
printk(", Unknown speed/duplex");
}
if (s & PHY_STAT_ANC)
printk(", auto-negotiation complete");
}
if (s & PHY_STAT_FAULT)
printk(", remote fault");
printk(".\n");
}
static void mii_display_config(struct work_struct *work)
{
volatile struct fcc_enet_private *fep =
container_of(work, struct fcc_enet_private,
phy_display_config);
struct net_device *dev = fep->dev;
uint s = fep->phy_status;
printk("%s: config: auto-negotiation ", dev->name);
if (s & PHY_CONF_ANE)
printk("on");
else
printk("off");
if (s & PHY_CONF_100FDX)
printk(", 100FDX");
if (s & PHY_CONF_100HDX)
printk(", 100HDX");
if (s & PHY_CONF_10FDX)
printk(", 10FDX");
if (s & PHY_CONF_10HDX)
printk(", 10HDX");
if (!(s & PHY_CONF_SPMASK))
printk(", No speed/duplex selected?");
if (s & PHY_CONF_LOOP)
printk(", loopback enabled");
printk(".\n");
fep->sequence_done = 1;
}
static void mii_relink(struct net_device *dev)
{
struct fcc_enet_private *fep = dev->priv;
int duplex = 0;
fep->old_link = fep->link;
fep->link = (fep->phy_status & PHY_STAT_LINK) ? 1 : 0;
#ifdef MDIO_DEBUG
printk(" mii_relink: link=%d\n", fep->link);
#endif
if (fep->link) {
if (fep->phy_status
& (PHY_STAT_100FDX | PHY_STAT_10FDX))
duplex = 1;
fcc_restart(dev, duplex);
#ifdef MDIO_DEBUG
printk(" mii_relink: duplex=%d\n", duplex);
#endif
}
}
static void mii_queue_relink(uint mii_reg, struct net_device *dev)
{
struct fcc_enet_private *fep = dev->priv;
mii_relink(dev);
schedule_work(&fep->phy_relink);
}
static void mii_queue_config(uint mii_reg, struct net_device *dev)
{
struct fcc_enet_private *fep = dev->priv;
schedule_work(&fep->phy_display_config);
}
phy_cmd_t phy_cmd_relink[] = { { mk_mii_read(MII_BMCR), mii_queue_relink },
{ mk_mii_end, } };
phy_cmd_t phy_cmd_config[] = { { mk_mii_read(MII_BMCR), mii_queue_config },
{ mk_mii_end, } };
/* Read remainder of PHY ID.
*/
static void
mii_discover_phy3(uint mii_reg, struct net_device *dev)
{
struct fcc_enet_private *fep;
int i;
fep = dev->priv;
printk("mii_reg: %08x\n", mii_reg);
fep->phy_id |= (mii_reg & 0xffff);
for(i = 0; phy_info[i]; i++)
if((phy_info[i]->id == (fep->phy_id >> 4)) || !phy_info[i]->id)
break;
if(!phy_info[i])
panic("%s: PHY id 0x%08x is not supported!\n",
dev->name, fep->phy_id);
fep->phy = phy_info[i];
fep->phy_id_done = 1;
printk("%s: Phy @ 0x%x, type %s (0x%08x)\n",
dev->name, fep->phy_addr, fep->phy->name, fep->phy_id);
}
/* Scan all of the MII PHY addresses looking for someone to respond
* with a valid ID. This usually happens quickly.
*/
static void
mii_discover_phy(uint mii_reg, struct net_device *dev)
{
struct fcc_enet_private *fep;
uint phytype;
fep = dev->priv;
if ((phytype = (mii_reg & 0xffff)) != 0xffff) {
/* Got first part of ID, now get remainder. */
fep->phy_id = phytype << 16;
mii_queue(dev, mk_mii_read(MII_PHYSID2), mii_discover_phy3);
} else {
fep->phy_addr++;
if (fep->phy_addr < 32) {
mii_queue(dev, mk_mii_read(MII_PHYSID1),
mii_discover_phy);
} else {
printk("fec: No PHY device found.\n");
}
}
}
#endif /* CONFIG_USE_MDIO */
#ifdef PHY_INTERRUPT
/* This interrupt occurs when the PHY detects a link change. */
static irqreturn_t
mii_link_interrupt(int irq, void * dev_id)
{
struct net_device *dev = dev_id;
struct fcc_enet_private *fep = dev->priv;
fcc_info_t *fip = fep->fip;
if (fep->phy) {
/* We don't want to be interrupted by an FCC
* interrupt here.
*/
disable_irq_nosync(fip->fc_interrupt);
mii_do_cmd(dev, fep->phy->ack_int);
/* restart and display status */
mii_do_cmd(dev, phy_cmd_relink);
enable_irq(fip->fc_interrupt);
}
return IRQ_HANDLED;
}
#endif /* ifdef PHY_INTERRUPT */
#if 0 /* This should be fixed someday */
/* Set or clear the multicast filter for this adaptor.
* Skeleton taken from sunlance driver.
* The CPM Ethernet implementation allows Multicast as well as individual
* MAC address filtering. Some of the drivers check to make sure it is
* a group multicast address, and discard those that are not. I guess I
* will do the same for now, but just remove the test if you want
* individual filtering as well (do the upper net layers want or support
* this kind of feature?).
*/
static void
set_multicast_list(struct net_device *dev)
{
struct fcc_enet_private *cep;
struct dev_mc_list *dmi;
u_char *mcptr, *tdptr;
volatile fcc_enet_t *ep;
int i, j;
cep = (struct fcc_enet_private *)dev->priv;
return;
/* Get pointer to FCC area in parameter RAM.
*/
ep = (fcc_enet_t *)dev->base_addr;
if (dev->flags&IFF_PROMISC) {
/* Log any net taps. */
printk("%s: Promiscuous mode enabled.\n", dev->name);
cep->fccp->fcc_fpsmr |= FCC_PSMR_PRO;
} else {
cep->fccp->fcc_fpsmr &= ~FCC_PSMR_PRO;
if (dev->flags & IFF_ALLMULTI) {
/* Catch all multicast addresses, so set the
* filter to all 1's.
*/
ep->fen_gaddrh = 0xffffffff;
ep->fen_gaddrl = 0xffffffff;
}
else {
/* Clear filter and add the addresses in the list.
*/
ep->fen_gaddrh = 0;
ep->fen_gaddrl = 0;
dmi = dev->mc_list;
for (i=0; i<dev->mc_count; i++, dmi = dmi->next) {
/* Only support group multicast for now.
*/
if (!(dmi->dmi_addr[0] & 1))
continue;
/* The address in dmi_addr is LSB first,
* and taddr is MSB first. We have to
* copy bytes MSB first from dmi_addr.
*/
mcptr = (u_char *)dmi->dmi_addr + 5;
tdptr = (u_char *)&ep->fen_taddrh;
for (j=0; j<6; j++)
*tdptr++ = *mcptr--;
/* Ask CPM to run CRC and set bit in
* filter mask.
*/
cpmp->cp_cpcr = mk_cr_cmd(cep->fip->fc_cpmpage,
cep->fip->fc_cpmblock, 0x0c,
CPM_CR_SET_GADDR) | CPM_CR_FLG;
udelay(10);
while (cpmp->cp_cpcr & CPM_CR_FLG);
}
}
}
}
#endif /* if 0 */
/* Set the individual MAC address.
*/
int fcc_enet_set_mac_address(struct net_device *dev, void *p)
{
struct sockaddr *addr= (struct sockaddr *) p;
struct fcc_enet_private *cep;
volatile fcc_enet_t *ep;
unsigned char *eap;
int i;
cep = (struct fcc_enet_private *)(dev->priv);
ep = cep->ep;
if (netif_running(dev))
return -EBUSY;
memcpy(dev->dev_addr, addr->sa_data, dev->addr_len);
eap = (unsigned char *) &(ep->fen_paddrh);
for (i=5; i>=0; i--)
*eap++ = addr->sa_data[i];
return 0;
}
/* Initialize the CPM Ethernet on FCC.
*/
static int __init fec_enet_init(void)
{
struct net_device *dev;
struct fcc_enet_private *cep;
fcc_info_t *fip;
int i, np, err;
volatile cpm2_map_t *immap;
volatile iop_cpm2_t *io;
immap = (cpm2_map_t *)CPM_MAP_ADDR; /* and to internal registers */
io = &immap->im_ioport;
np = sizeof(fcc_ports) / sizeof(fcc_info_t);
fip = fcc_ports;
while (np-- > 0) {
/* Create an Ethernet device instance.
*/
dev = alloc_etherdev(sizeof(*cep));
if (!dev)
return -ENOMEM;
cep = dev->priv;
spin_lock_init(&cep->lock);
cep->fip = fip;
init_fcc_shutdown(fip, cep, immap);
init_fcc_ioports(fip, io, immap);
init_fcc_param(fip, dev, immap);
dev->base_addr = (unsigned long)(cep->ep);
/* The CPM Ethernet specific entries in the device
* structure.
*/
dev->open = fcc_enet_open;
dev->hard_start_xmit = fcc_enet_start_xmit;
dev->tx_timeout = fcc_enet_timeout;
dev->watchdog_timeo = TX_TIMEOUT;
dev->stop = fcc_enet_close;
dev->get_stats = fcc_enet_get_stats;
/* dev->set_multicast_list = set_multicast_list; */
dev->set_mac_address = fcc_enet_set_mac_address;
init_fcc_startup(fip, dev);
err = register_netdev(dev);
if (err) {
free_netdev(dev);
return err;
}
printk("%s: FCC ENET Version 0.3, ", dev->name);
for (i=0; i<5; i++)
printk("%02x:", dev->dev_addr[i]);
printk("%02x\n", dev->dev_addr[5]);
#ifdef CONFIG_USE_MDIO
/* Queue up command to detect the PHY and initialize the
* remainder of the interface.
*/
cep->phy_id_done = 0;
cep->phy_addr = fip->fc_phyaddr;
mii_queue(dev, mk_mii_read(MII_PHYSID1), mii_discover_phy);
INIT_WORK(&cep->phy_relink, mii_display_status);
INIT_WORK(&cep->phy_display_config, mii_display_config);
cep->dev = dev;
#endif /* CONFIG_USE_MDIO */
fip++;
}
return 0;
}
module_init(fec_enet_init);
/* Make sure the device is shut down during initialization.
*/
static void __init
init_fcc_shutdown(fcc_info_t *fip, struct fcc_enet_private *cep,
volatile cpm2_map_t *immap)
{
volatile fcc_enet_t *ep;
volatile fcc_t *fccp;
/* Get pointer to FCC area in parameter RAM.
*/
ep = (fcc_enet_t *)(&immap->im_dprambase[fip->fc_proff]);
/* And another to the FCC register area.
*/
fccp = (volatile fcc_t *)(&immap->im_fcc[fip->fc_fccnum]);
cep->fccp = fccp; /* Keep the pointers handy */
cep->ep = ep;
/* Disable receive and transmit in case someone left it running.
*/
fccp->fcc_gfmr &= ~(FCC_GFMR_ENR | FCC_GFMR_ENT);
}
/* Initialize the I/O pins for the FCC Ethernet.
*/
static void __init
init_fcc_ioports(fcc_info_t *fip, volatile iop_cpm2_t *io,
volatile cpm2_map_t *immap)
{
/* FCC1 pins are on port A/C. FCC2/3 are port B/C.
*/
if (fip->fc_proff == PROFF_FCC1) {
/* Configure port A and C pins for FCC1 Ethernet.
*/
io->iop_pdira &= ~PA1_DIRA_BOUT;
io->iop_pdira |= PA1_DIRA_BIN;
io->iop_psora &= ~PA1_PSORA_BOUT;
io->iop_psora |= PA1_PSORA_BIN;
io->iop_ppara |= (PA1_DIRA_BOUT | PA1_DIRA_BIN);
}
if (fip->fc_proff == PROFF_FCC2) {
/* Configure port B and C pins for FCC Ethernet.
*/
io->iop_pdirb &= ~PB2_DIRB_BOUT;
io->iop_pdirb |= PB2_DIRB_BIN;
io->iop_psorb &= ~PB2_PSORB_BOUT;
io->iop_psorb |= PB2_PSORB_BIN;
io->iop_pparb |= (PB2_DIRB_BOUT | PB2_DIRB_BIN);
}
if (fip->fc_proff == PROFF_FCC3) {
/* Configure port B and C pins for FCC Ethernet.
*/
io->iop_pdirb &= ~PB3_DIRB_BOUT;
io->iop_pdirb |= PB3_DIRB_BIN;
io->iop_psorb &= ~PB3_PSORB_BOUT;
io->iop_psorb |= PB3_PSORB_BIN;
io->iop_pparb |= (PB3_DIRB_BOUT | PB3_DIRB_BIN);
io->iop_pdirc &= ~PC3_DIRC_BOUT;
io->iop_pdirc |= PC3_DIRC_BIN;
io->iop_psorc &= ~PC3_PSORC_BOUT;
io->iop_psorc |= PC3_PSORC_BIN;
io->iop_pparc |= (PC3_DIRC_BOUT | PC3_DIRC_BIN);
}
/* Port C has clocks......
*/
io->iop_psorc &= ~(fip->fc_trxclocks);
io->iop_pdirc &= ~(fip->fc_trxclocks);
io->iop_pparc |= fip->fc_trxclocks;
#ifdef CONFIG_USE_MDIO
/* ....and the MII serial clock/data.
*/
io->iop_pdatc |= (fip->fc_mdio | fip->fc_mdck);
io->iop_podrc &= ~(fip->fc_mdio | fip->fc_mdck);
io->iop_pdirc |= (fip->fc_mdio | fip->fc_mdck);
io->iop_pparc &= ~(fip->fc_mdio | fip->fc_mdck);
#endif /* CONFIG_USE_MDIO */
/* Configure Serial Interface clock routing.
* First, clear all FCC bits to zero,
* then set the ones we want.
*/
immap->im_cpmux.cmx_fcr &= ~(fip->fc_clockmask);
immap->im_cpmux.cmx_fcr |= fip->fc_clockroute;
}
static void __init
init_fcc_param(fcc_info_t *fip, struct net_device *dev,
volatile cpm2_map_t *immap)
{
unsigned char *eap;
unsigned long mem_addr;
bd_t *bd;
int i, j;
struct fcc_enet_private *cep;
volatile fcc_enet_t *ep;
volatile cbd_t *bdp;
volatile cpm_cpm2_t *cp;
cep = (struct fcc_enet_private *)(dev->priv);
ep = cep->ep;
cp = cpmp;
bd = (bd_t *)__res;
/* Zero the whole thing.....I must have missed some individually.
* It works when I do this.
*/
memset((char *)ep, 0, sizeof(fcc_enet_t));
/* Allocate space for the buffer descriptors from regular memory.
* Initialize base addresses for the buffer descriptors.
*/
cep->rx_bd_base = kmalloc(sizeof(cbd_t) * RX_RING_SIZE,
GFP_KERNEL | GFP_DMA);
ep->fen_genfcc.fcc_rbase = __pa(cep->rx_bd_base);
cep->tx_bd_base = kmalloc(sizeof(cbd_t) * TX_RING_SIZE,
GFP_KERNEL | GFP_DMA);
ep->fen_genfcc.fcc_tbase = __pa(cep->tx_bd_base);
cep->dirty_tx = cep->cur_tx = cep->tx_bd_base;
cep->cur_rx = cep->rx_bd_base;
ep->fen_genfcc.fcc_rstate = (CPMFCR_GBL | CPMFCR_EB) << 24;
ep->fen_genfcc.fcc_tstate = (CPMFCR_GBL | CPMFCR_EB) << 24;
/* Set maximum bytes per receive buffer.
* It must be a multiple of 32.
*/
ep->fen_genfcc.fcc_mrblr = PKT_MAXBLR_SIZE;
/* Allocate space in the reserved FCC area of DPRAM for the
* internal buffers. No one uses this space (yet), so we
* can do this. Later, we will add resource management for
* this area.
*/
mem_addr = CPM_FCC_SPECIAL_BASE + (fip->fc_fccnum * 128);
ep->fen_genfcc.fcc_riptr = mem_addr;
ep->fen_genfcc.fcc_tiptr = mem_addr+32;
ep->fen_padptr = mem_addr+64;
memset((char *)(&(immap->im_dprambase[(mem_addr+64)])), 0x88, 32);
ep->fen_genfcc.fcc_rbptr = 0;
ep->fen_genfcc.fcc_tbptr = 0;
ep->fen_genfcc.fcc_rcrc = 0;
ep->fen_genfcc.fcc_tcrc = 0;
ep->fen_genfcc.fcc_res1 = 0;
ep->fen_genfcc.fcc_res2 = 0;
ep->fen_camptr = 0; /* CAM isn't used in this driver */
/* Set CRC preset and mask.
*/
ep->fen_cmask = 0xdebb20e3;
ep->fen_cpres = 0xffffffff;
ep->fen_crcec = 0; /* CRC Error counter */
ep->fen_alec = 0; /* alignment error counter */
ep->fen_disfc = 0; /* discard frame counter */
ep->fen_retlim = 15; /* Retry limit threshold */
ep->fen_pper = 0; /* Normal persistence */
/* Clear hash filter tables.
*/
ep->fen_gaddrh = 0;
ep->fen_gaddrl = 0;
ep->fen_iaddrh = 0;
ep->fen_iaddrl = 0;
/* Clear the Out-of-sequence TxBD.
*/
ep->fen_tfcstat = 0;
ep->fen_tfclen = 0;
ep->fen_tfcptr = 0;
ep->fen_mflr = PKT_MAXBUF_SIZE; /* maximum frame length register */
ep->fen_minflr = PKT_MINBUF_SIZE; /* minimum frame length register */
/* Set Ethernet station address.
*
* This is supplied in the board information structure, so we
* copy that into the controller.
* So, far we have only been given one Ethernet address. We make
* it unique by setting a few bits in the upper byte of the
* non-static part of the address.
*/
eap = (unsigned char *)&(ep->fen_paddrh);
for (i=5; i>=0; i--) {
/*
* The EP8260 only uses FCC3, so we can safely give it the real
* MAC address.
*/
#ifdef CONFIG_SBC82xx
if (i == 5) {
/* bd->bi_enetaddr holds the SCC0 address; the FCC
devices count up from there */
dev->dev_addr[i] = bd->bi_enetaddr[i] & ~3;
dev->dev_addr[i] += 1 + fip->fc_fccnum;
*eap++ = dev->dev_addr[i];
}
#else
#ifndef CONFIG_RPX8260
if (i == 3) {
dev->dev_addr[i] = bd->bi_enetaddr[i];
dev->dev_addr[i] |= (1 << (7 - fip->fc_fccnum));
*eap++ = dev->dev_addr[i];
} else
#endif
{
*eap++ = dev->dev_addr[i] = bd->bi_enetaddr[i];
}
#endif
}
ep->fen_taddrh = 0;
ep->fen_taddrm = 0;
ep->fen_taddrl = 0;
ep->fen_maxd1 = PKT_MAXDMA_SIZE; /* maximum DMA1 length */
ep->fen_maxd2 = PKT_MAXDMA_SIZE; /* maximum DMA2 length */
/* Clear stat counters, in case we ever enable RMON.
*/
ep->fen_octc = 0;
ep->fen_colc = 0;
ep->fen_broc = 0;
ep->fen_mulc = 0;
ep->fen_uspc = 0;
ep->fen_frgc = 0;
ep->fen_ospc = 0;
ep->fen_jbrc = 0;
ep->fen_p64c = 0;
ep->fen_p65c = 0;
ep->fen_p128c = 0;
ep->fen_p256c = 0;
ep->fen_p512c = 0;
ep->fen_p1024c = 0;
ep->fen_rfthr = 0; /* Suggested by manual */
ep->fen_rfcnt = 0;
ep->fen_cftype = 0;
/* Now allocate the host memory pages and initialize the
* buffer descriptors.
*/
bdp = cep->tx_bd_base;
for (i=0; i<TX_RING_SIZE; i++) {
/* Initialize the BD for every fragment in the page.
*/
bdp->cbd_sc = 0;
bdp->cbd_datlen = 0;
bdp->cbd_bufaddr = 0;
bdp++;
}
/* Set the last buffer to wrap.
*/
bdp--;
bdp->cbd_sc |= BD_SC_WRAP;
bdp = cep->rx_bd_base;
for (i=0; i<FCC_ENET_RX_PAGES; i++) {
/* Allocate a page.
*/
mem_addr = __get_free_page(GFP_KERNEL);
/* Initialize the BD for every fragment in the page.
*/
for (j=0; j<FCC_ENET_RX_FRPPG; j++) {
bdp->cbd_sc = BD_ENET_RX_EMPTY | BD_ENET_RX_INTR;
bdp->cbd_datlen = 0;
bdp->cbd_bufaddr = __pa(mem_addr);
mem_addr += FCC_ENET_RX_FRSIZE;
bdp++;
}
}
/* Set the last buffer to wrap.
*/
bdp--;
bdp->cbd_sc |= BD_SC_WRAP;
/* Let's re-initialize the channel now. We have to do it later
* than the manual describes because we have just now finished
* the BD initialization.
*/
cp->cp_cpcr = mk_cr_cmd(fip->fc_cpmpage, fip->fc_cpmblock, 0x0c,
CPM_CR_INIT_TRX) | CPM_CR_FLG;
while (cp->cp_cpcr & CPM_CR_FLG);
cep->skb_cur = cep->skb_dirty = 0;
}
/* Let 'er rip.
*/
static void __init
init_fcc_startup(fcc_info_t *fip, struct net_device *dev)
{
volatile fcc_t *fccp;
struct fcc_enet_private *cep;
cep = (struct fcc_enet_private *)(dev->priv);
fccp = cep->fccp;
#ifdef CONFIG_RPX8260
#ifdef PHY_INTERRUPT
/* Route PHY interrupt to IRQ. The following code only works for
* IRQ1 - IRQ7. It does not work for Port C interrupts.
*/
*((volatile u_char *) (RPX_CSR_ADDR + 13)) &= ~BCSR13_FETH_IRQMASK;
*((volatile u_char *) (RPX_CSR_ADDR + 13)) |=
((PHY_INTERRUPT - SIU_INT_IRQ1 + 1) << 4);
#endif
/* Initialize MDIO pins. */
*((volatile u_char *) (RPX_CSR_ADDR + 4)) &= ~BCSR4_MII_MDC;
*((volatile u_char *) (RPX_CSR_ADDR + 4)) |=
BCSR4_MII_READ | BCSR4_MII_MDIO;
/* Enable external LXT971 PHY. */
*((volatile u_char *) (RPX_CSR_ADDR + 4)) |= BCSR4_EN_PHY;
udelay(1000);
*((volatile u_char *) (RPX_CSR_ADDR+ 4)) |= BCSR4_EN_MII;
udelay(1000);
#endif /* ifdef CONFIG_RPX8260 */
fccp->fcc_fcce = 0xffff; /* Clear any pending events */
/* Leave FCC interrupts masked for now. Will be unmasked by
* fcc_restart().
*/
fccp->fcc_fccm = 0;
/* Install our interrupt handler.
*/
if (request_irq(fip->fc_interrupt, fcc_enet_interrupt, 0, "fenet",
dev) < 0)
printk("Can't get FCC IRQ %d\n", fip->fc_interrupt);
#ifdef PHY_INTERRUPT
#ifdef CONFIG_ADS8272
if (request_irq(PHY_INTERRUPT, mii_link_interrupt, IRQF_SHARED,
"mii", dev) < 0)
printk(KERN_CRIT "Can't get MII IRQ %d\n", PHY_INTERRUPT);
#else
/* Make IRQn edge triggered. This does not work if PHY_INTERRUPT is
* on Port C.
*/
((volatile cpm2_map_t *) CPM_MAP_ADDR)->im_intctl.ic_siexr |=
(1 << (14 - (PHY_INTERRUPT - SIU_INT_IRQ1)));
if (request_irq(PHY_INTERRUPT, mii_link_interrupt, 0,
"mii", dev) < 0)
printk(KERN_CRIT "Can't get MII IRQ %d\n", PHY_INTERRUPT);
#endif
#endif /* PHY_INTERRUPT */
/* Set GFMR to enable Ethernet operating mode.
*/
fccp->fcc_gfmr = (FCC_GFMR_TCI | FCC_GFMR_MODE_ENET);
/* Set sync/delimiters.
*/
fccp->fcc_fdsr = 0xd555;
/* Set protocol specific processing mode for Ethernet.
* This has to be adjusted for Full Duplex operation after we can
* determine how to detect that.
*/
fccp->fcc_fpsmr = FCC_PSMR_ENCRC;
#ifdef CONFIG_PQ2ADS
/* Enable the PHY. */
*(volatile uint *)(BCSR_ADDR + 4) &= ~BCSR1_FETHIEN;
*(volatile uint *)(BCSR_ADDR + 4) |= BCSR1_FETH_RST;
#endif
#if defined(CONFIG_PQ2ADS) || defined(CONFIG_PQ2FADS)
/* Enable the 2nd PHY. */
*(volatile uint *)(BCSR_ADDR + 12) &= ~BCSR3_FETHIEN2;
*(volatile uint *)(BCSR_ADDR + 12) |= BCSR3_FETH2_RST;
#endif
#if defined(CONFIG_USE_MDIO) || defined(CONFIG_TQM8260)
/* start in full duplex mode, and negotiate speed
*/
fcc_restart (dev, 1);
#else
/* start in half duplex mode
*/
fcc_restart (dev, 0);
#endif
}
#ifdef CONFIG_USE_MDIO
/* MII command/status interface.
* I'm not going to describe all of the details. You can find the
* protocol definition in many other places, including the data sheet
* of most PHY parts.
* I wonder what "they" were thinking (maybe weren't) when they leave
* the I2C in the CPM but I have to toggle these bits......
*/
#ifdef CONFIG_RPX8260
/* The EP8260 has the MDIO pins in a BCSR instead of on Port C
* like most other boards.
*/
#define MDIO_ADDR ((volatile u_char *)(RPX_CSR_ADDR + 4))
#define MAKE_MDIO_OUTPUT *MDIO_ADDR &= ~BCSR4_MII_READ
#define MAKE_MDIO_INPUT *MDIO_ADDR |= BCSR4_MII_READ | BCSR4_MII_MDIO
#define OUT_MDIO(bit) \
if (bit) \
*MDIO_ADDR |= BCSR4_MII_MDIO; \
else \
*MDIO_ADDR &= ~BCSR4_MII_MDIO;
#define IN_MDIO (*MDIO_ADDR & BCSR4_MII_MDIO)
#define OUT_MDC(bit) \
if (bit) \
*MDIO_ADDR |= BCSR4_MII_MDC; \
else \
*MDIO_ADDR &= ~BCSR4_MII_MDC;
#else /* ifdef CONFIG_RPX8260 */
/* This is for the usual case where the MDIO pins are on Port C.
*/
#define MDIO_ADDR (((volatile cpm2_map_t *)CPM_MAP_ADDR)->im_ioport)
#define MAKE_MDIO_OUTPUT MDIO_ADDR.iop_pdirc |= fip->fc_mdio
#define MAKE_MDIO_INPUT MDIO_ADDR.iop_pdirc &= ~fip->fc_mdio
#define OUT_MDIO(bit) \
if (bit) \
MDIO_ADDR.iop_pdatc |= fip->fc_mdio; \
else \
MDIO_ADDR.iop_pdatc &= ~fip->fc_mdio;
#define IN_MDIO ((MDIO_ADDR.iop_pdatc) & fip->fc_mdio)
#define OUT_MDC(bit) \
if (bit) \
MDIO_ADDR.iop_pdatc |= fip->fc_mdck; \
else \
MDIO_ADDR.iop_pdatc &= ~fip->fc_mdck;
#endif /* ifdef CONFIG_RPX8260 */
static uint
mii_send_receive(fcc_info_t *fip, uint cmd)
{
uint retval;
int read_op, i, off;
const int us = 1;
read_op = ((cmd & 0xf0000000) == 0x60000000);
/* Write preamble
*/
OUT_MDIO(1);
MAKE_MDIO_OUTPUT;
OUT_MDIO(1);
for (i = 0; i < 32; i++)
{
udelay(us);
OUT_MDC(1);
udelay(us);
OUT_MDC(0);
}
/* Write data
*/
for (i = 0, off = 31; i < (read_op ? 14 : 32); i++, --off)
{
OUT_MDIO((cmd >> off) & 0x00000001);
udelay(us);
OUT_MDC(1);
udelay(us);
OUT_MDC(0);
}
retval = cmd;
if (read_op)
{
retval >>= 16;
MAKE_MDIO_INPUT;
udelay(us);
OUT_MDC(1);
udelay(us);
OUT_MDC(0);
for (i = 0; i < 16; i++)
{
udelay(us);
OUT_MDC(1);
udelay(us);
retval <<= 1;
if (IN_MDIO)
retval++;
OUT_MDC(0);
}
}
MAKE_MDIO_INPUT;
udelay(us);
OUT_MDC(1);
udelay(us);
OUT_MDC(0);
return retval;
}
#endif /* CONFIG_USE_MDIO */
static void
fcc_stop(struct net_device *dev)
{
struct fcc_enet_private *fep= (struct fcc_enet_private *)(dev->priv);
volatile fcc_t *fccp = fep->fccp;
fcc_info_t *fip = fep->fip;
volatile fcc_enet_t *ep = fep->ep;
volatile cpm_cpm2_t *cp = cpmp;
volatile cbd_t *bdp;
int i;
if ((fccp->fcc_gfmr & (FCC_GFMR_ENR | FCC_GFMR_ENT)) == 0)
return; /* already down */
fccp->fcc_fccm = 0;
/* issue the graceful stop tx command */
while (cp->cp_cpcr & CPM_CR_FLG);
cp->cp_cpcr = mk_cr_cmd(fip->fc_cpmpage, fip->fc_cpmblock,
0x0c, CPM_CR_GRA_STOP_TX) | CPM_CR_FLG;
while (cp->cp_cpcr & CPM_CR_FLG);
/* Disable transmit/receive */
fccp->fcc_gfmr &= ~(FCC_GFMR_ENR | FCC_GFMR_ENT);
/* issue the restart tx command */
fccp->fcc_fcce = FCC_ENET_GRA;
while (cp->cp_cpcr & CPM_CR_FLG);
cp->cp_cpcr = mk_cr_cmd(fip->fc_cpmpage, fip->fc_cpmblock,
0x0c, CPM_CR_RESTART_TX) | CPM_CR_FLG;
while (cp->cp_cpcr & CPM_CR_FLG);
/* free tx buffers */
fep->skb_cur = fep->skb_dirty = 0;
for (i=0; i<=TX_RING_MOD_MASK; i++) {
if (fep->tx_skbuff[i] != NULL) {
dev_kfree_skb(fep->tx_skbuff[i]);
fep->tx_skbuff[i] = NULL;
}
}
fep->dirty_tx = fep->cur_tx = fep->tx_bd_base;
fep->tx_free = TX_RING_SIZE;
ep->fen_genfcc.fcc_tbptr = ep->fen_genfcc.fcc_tbase;
/* Initialize the tx buffer descriptors. */
bdp = fep->tx_bd_base;
for (i=0; i<TX_RING_SIZE; i++) {
bdp->cbd_sc = 0;
bdp->cbd_datlen = 0;
bdp->cbd_bufaddr = 0;
bdp++;
}
/* Set the last buffer to wrap. */
bdp--;
bdp->cbd_sc |= BD_SC_WRAP;
}
static void
fcc_restart(struct net_device *dev, int duplex)
{
struct fcc_enet_private *fep = (struct fcc_enet_private *)(dev->priv);
volatile fcc_t *fccp = fep->fccp;
/* stop any transmissions in progress */
fcc_stop(dev);
if (duplex)
fccp->fcc_fpsmr |= FCC_PSMR_FDE | FCC_PSMR_LPB;
else
fccp->fcc_fpsmr &= ~(FCC_PSMR_FDE | FCC_PSMR_LPB);
/* Enable interrupts for transmit error, complete frame
* received, and any transmit buffer we have also set the
* interrupt flag.
*/
fccp->fcc_fccm = (FCC_ENET_TXE | FCC_ENET_RXF | FCC_ENET_TXB);
/* Enable transmit/receive */
fccp->fcc_gfmr |= FCC_GFMR_ENR | FCC_GFMR_ENT;
}
static int
fcc_enet_open(struct net_device *dev)
{
struct fcc_enet_private *fep = dev->priv;
#ifdef CONFIG_USE_MDIO
fep->sequence_done = 0;
fep->link = 0;
if (fep->phy) {
fcc_restart(dev, 0); /* always start in half-duplex */
mii_do_cmd(dev, fep->phy->ack_int);
mii_do_cmd(dev, fep->phy->config);
mii_do_cmd(dev, phy_cmd_config); /* display configuration */
while(!fep->sequence_done)
schedule();
mii_do_cmd(dev, fep->phy->startup);
netif_start_queue(dev);
return 0; /* Success */
}
return -ENODEV; /* No PHY we understand */
#else
fep->link = 1;
fcc_restart(dev, 0); /* always start in half-duplex */
netif_start_queue(dev);
return 0; /* Always succeed */
#endif /* CONFIG_USE_MDIO */
}