1
linux/kernel/cgroup/cgroup-internal.h
David Finkel c6f53ed8f2 mm, memcg: cg2 memory{.swap,}.peak write handlers
Patch series "mm, memcg: cg2 memory{.swap,}.peak write handlers", v7.


This patch (of 2):

Other mechanisms for querying the peak memory usage of either a process or
v1 memory cgroup allow for resetting the high watermark.  Restore parity
with those mechanisms, but with a less racy API.

For example:
 - Any write to memory.max_usage_in_bytes in a cgroup v1 mount resets
   the high watermark.
 - writing "5" to the clear_refs pseudo-file in a processes's proc
   directory resets the peak RSS.

This change is an evolution of a previous patch, which mostly copied the
cgroup v1 behavior, however, there were concerns about races/ownership
issues with a global reset, so instead this change makes the reset
filedescriptor-local.

Writing any non-empty string to the memory.peak and memory.swap.peak
pseudo-files reset the high watermark to the current usage for subsequent
reads through that same FD.

Notably, following Johannes's suggestion, this implementation moves the
O(FDs that have written) behavior onto the FD write(2) path.  Instead, on
the page-allocation path, we simply add one additional watermark to
conditionally bump per-hierarchy level in the page-counter.

Additionally, this takes Longman's suggestion of nesting the
page-charging-path checks for the two watermarks to reduce the number of
common-case comparisons.

This behavior is particularly useful for work scheduling systems that need
to track memory usage of worker processes/cgroups per-work-item.  Since
memory can't be squeezed like CPU can (the OOM-killer has opinions), these
systems need to track the peak memory usage to compute system/container
fullness when binpacking workitems.

Most notably, Vimeo's use-case involves a system that's doing global
binpacking across many Kubernetes pods/containers, and while we can use
PSI for some local decisions about overload, we strive to avoid packing
workloads too tightly in the first place.  To facilitate this, we track
the peak memory usage.  However, since we run with long-lived workers (to
amortize startup costs) we need a way to track the high watermark while a
work-item is executing.  Polling runs the risk of missing short spikes
that last for timescales below the polling interval, and peak memory
tracking at the cgroup level is otherwise perfect for this use-case.

As this data is used to ensure that binpacked work ends up with sufficient
headroom, this use-case mostly avoids the inaccuracies surrounding
reclaimable memory.

Link: https://lkml.kernel.org/r/20240730231304.761942-1-davidf@vimeo.com
Link: https://lkml.kernel.org/r/20240729143743.34236-1-davidf@vimeo.com
Link: https://lkml.kernel.org/r/20240729143743.34236-2-davidf@vimeo.com
Signed-off-by: David Finkel <davidf@vimeo.com>
Suggested-by: Johannes Weiner <hannes@cmpxchg.org>
Suggested-by: Waiman Long <longman@redhat.com>
Acked-by: Johannes Weiner <hannes@cmpxchg.org>
Reviewed-by: Michal Koutný <mkoutny@suse.com>
Acked-by: Tejun Heo <tj@kernel.org>
Reviewed-by: Roman Gushchin <roman.gushchin@linux.dev>
Cc: Jonathan Corbet <corbet@lwn.net>
Cc: Michal Hocko <mhocko@kernel.org>
Cc: Muchun Song <muchun.song@linux.dev>
Cc: Shakeel Butt <shakeel.butt@linux.dev>
Cc: Shuah Khan <shuah@kernel.org>
Cc: Zefan Li <lizefan.x@bytedance.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2024-09-01 20:25:53 -07:00

299 lines
8.9 KiB
C

/* SPDX-License-Identifier: GPL-2.0 */
#ifndef __CGROUP_INTERNAL_H
#define __CGROUP_INTERNAL_H
#include <linux/cgroup.h>
#include <linux/kernfs.h>
#include <linux/workqueue.h>
#include <linux/list.h>
#include <linux/refcount.h>
#include <linux/fs_parser.h>
#define TRACE_CGROUP_PATH_LEN 1024
extern spinlock_t trace_cgroup_path_lock;
extern char trace_cgroup_path[TRACE_CGROUP_PATH_LEN];
extern void __init enable_debug_cgroup(void);
/*
* cgroup_path() takes a spin lock. It is good practice not to take
* spin locks within trace point handlers, as they are mostly hidden
* from normal view. As cgroup_path() can take the kernfs_rename_lock
* spin lock, it is best to not call that function from the trace event
* handler.
*
* Note: trace_cgroup_##type##_enabled() is a static branch that will only
* be set when the trace event is enabled.
*/
#define TRACE_CGROUP_PATH(type, cgrp, ...) \
do { \
if (trace_cgroup_##type##_enabled()) { \
unsigned long flags; \
spin_lock_irqsave(&trace_cgroup_path_lock, \
flags); \
cgroup_path(cgrp, trace_cgroup_path, \
TRACE_CGROUP_PATH_LEN); \
trace_cgroup_##type(cgrp, trace_cgroup_path, \
##__VA_ARGS__); \
spin_unlock_irqrestore(&trace_cgroup_path_lock, \
flags); \
} \
} while (0)
/*
* The cgroup filesystem superblock creation/mount context.
*/
struct cgroup_fs_context {
struct kernfs_fs_context kfc;
struct cgroup_root *root;
struct cgroup_namespace *ns;
unsigned int flags; /* CGRP_ROOT_* flags */
/* cgroup1 bits */
bool cpuset_clone_children;
bool none; /* User explicitly requested empty subsystem */
bool all_ss; /* Seen 'all' option */
u16 subsys_mask; /* Selected subsystems */
char *name; /* Hierarchy name */
char *release_agent; /* Path for release notifications */
};
static inline struct cgroup_fs_context *cgroup_fc2context(struct fs_context *fc)
{
struct kernfs_fs_context *kfc = fc->fs_private;
return container_of(kfc, struct cgroup_fs_context, kfc);
}
struct cgroup_pidlist;
struct cgroup_file_ctx {
struct cgroup_namespace *ns;
struct {
void *trigger;
} psi;
struct {
bool started;
struct css_task_iter iter;
} procs;
struct {
struct cgroup_pidlist *pidlist;
} procs1;
struct cgroup_of_peak peak;
};
/*
* A cgroup can be associated with multiple css_sets as different tasks may
* belong to different cgroups on different hierarchies. In the other
* direction, a css_set is naturally associated with multiple cgroups.
* This M:N relationship is represented by the following link structure
* which exists for each association and allows traversing the associations
* from both sides.
*/
struct cgrp_cset_link {
/* the cgroup and css_set this link associates */
struct cgroup *cgrp;
struct css_set *cset;
/* list of cgrp_cset_links anchored at cgrp->cset_links */
struct list_head cset_link;
/* list of cgrp_cset_links anchored at css_set->cgrp_links */
struct list_head cgrp_link;
};
/* used to track tasks and csets during migration */
struct cgroup_taskset {
/* the src and dst cset list running through cset->mg_node */
struct list_head src_csets;
struct list_head dst_csets;
/* the number of tasks in the set */
int nr_tasks;
/* the subsys currently being processed */
int ssid;
/*
* Fields for cgroup_taskset_*() iteration.
*
* Before migration is committed, the target migration tasks are on
* ->mg_tasks of the csets on ->src_csets. After, on ->mg_tasks of
* the csets on ->dst_csets. ->csets point to either ->src_csets
* or ->dst_csets depending on whether migration is committed.
*
* ->cur_csets and ->cur_task point to the current task position
* during iteration.
*/
struct list_head *csets;
struct css_set *cur_cset;
struct task_struct *cur_task;
};
/* migration context also tracks preloading */
struct cgroup_mgctx {
/*
* Preloaded source and destination csets. Used to guarantee
* atomic success or failure on actual migration.
*/
struct list_head preloaded_src_csets;
struct list_head preloaded_dst_csets;
/* tasks and csets to migrate */
struct cgroup_taskset tset;
/* subsystems affected by migration */
u16 ss_mask;
};
#define CGROUP_TASKSET_INIT(tset) \
{ \
.src_csets = LIST_HEAD_INIT(tset.src_csets), \
.dst_csets = LIST_HEAD_INIT(tset.dst_csets), \
.csets = &tset.src_csets, \
}
#define CGROUP_MGCTX_INIT(name) \
{ \
LIST_HEAD_INIT(name.preloaded_src_csets), \
LIST_HEAD_INIT(name.preloaded_dst_csets), \
CGROUP_TASKSET_INIT(name.tset), \
}
#define DEFINE_CGROUP_MGCTX(name) \
struct cgroup_mgctx name = CGROUP_MGCTX_INIT(name)
extern struct cgroup_subsys *cgroup_subsys[];
extern struct list_head cgroup_roots;
/* iterate across the hierarchies */
#define for_each_root(root) \
list_for_each_entry_rcu((root), &cgroup_roots, root_list, \
lockdep_is_held(&cgroup_mutex))
/**
* for_each_subsys - iterate all enabled cgroup subsystems
* @ss: the iteration cursor
* @ssid: the index of @ss, CGROUP_SUBSYS_COUNT after reaching the end
*/
#define for_each_subsys(ss, ssid) \
for ((ssid) = 0; (ssid) < CGROUP_SUBSYS_COUNT && \
(((ss) = cgroup_subsys[ssid]) || true); (ssid)++)
static inline bool cgroup_is_dead(const struct cgroup *cgrp)
{
return !(cgrp->self.flags & CSS_ONLINE);
}
static inline bool notify_on_release(const struct cgroup *cgrp)
{
return test_bit(CGRP_NOTIFY_ON_RELEASE, &cgrp->flags);
}
void put_css_set_locked(struct css_set *cset);
static inline void put_css_set(struct css_set *cset)
{
unsigned long flags;
/*
* Ensure that the refcount doesn't hit zero while any readers
* can see it. Similar to atomic_dec_and_lock(), but for an
* rwlock
*/
if (refcount_dec_not_one(&cset->refcount))
return;
spin_lock_irqsave(&css_set_lock, flags);
put_css_set_locked(cset);
spin_unlock_irqrestore(&css_set_lock, flags);
}
/*
* refcounted get/put for css_set objects
*/
static inline void get_css_set(struct css_set *cset)
{
refcount_inc(&cset->refcount);
}
bool cgroup_ssid_enabled(int ssid);
bool cgroup_on_dfl(const struct cgroup *cgrp);
struct cgroup_root *cgroup_root_from_kf(struct kernfs_root *kf_root);
struct cgroup *task_cgroup_from_root(struct task_struct *task,
struct cgroup_root *root);
struct cgroup *cgroup_kn_lock_live(struct kernfs_node *kn, bool drain_offline);
void cgroup_kn_unlock(struct kernfs_node *kn);
int cgroup_path_ns_locked(struct cgroup *cgrp, char *buf, size_t buflen,
struct cgroup_namespace *ns);
void cgroup_favor_dynmods(struct cgroup_root *root, bool favor);
void cgroup_free_root(struct cgroup_root *root);
void init_cgroup_root(struct cgroup_fs_context *ctx);
int cgroup_setup_root(struct cgroup_root *root, u16 ss_mask);
int rebind_subsystems(struct cgroup_root *dst_root, u16 ss_mask);
int cgroup_do_get_tree(struct fs_context *fc);
int cgroup_migrate_vet_dst(struct cgroup *dst_cgrp);
void cgroup_migrate_finish(struct cgroup_mgctx *mgctx);
void cgroup_migrate_add_src(struct css_set *src_cset, struct cgroup *dst_cgrp,
struct cgroup_mgctx *mgctx);
int cgroup_migrate_prepare_dst(struct cgroup_mgctx *mgctx);
int cgroup_migrate(struct task_struct *leader, bool threadgroup,
struct cgroup_mgctx *mgctx);
int cgroup_attach_task(struct cgroup *dst_cgrp, struct task_struct *leader,
bool threadgroup);
void cgroup_attach_lock(bool lock_threadgroup);
void cgroup_attach_unlock(bool lock_threadgroup);
struct task_struct *cgroup_procs_write_start(char *buf, bool threadgroup,
bool *locked)
__acquires(&cgroup_threadgroup_rwsem);
void cgroup_procs_write_finish(struct task_struct *task, bool locked)
__releases(&cgroup_threadgroup_rwsem);
void cgroup_lock_and_drain_offline(struct cgroup *cgrp);
int cgroup_mkdir(struct kernfs_node *parent_kn, const char *name, umode_t mode);
int cgroup_rmdir(struct kernfs_node *kn);
int cgroup_show_path(struct seq_file *sf, struct kernfs_node *kf_node,
struct kernfs_root *kf_root);
int __cgroup_task_count(const struct cgroup *cgrp);
int cgroup_task_count(const struct cgroup *cgrp);
/*
* rstat.c
*/
int cgroup_rstat_init(struct cgroup *cgrp);
void cgroup_rstat_exit(struct cgroup *cgrp);
void cgroup_rstat_boot(void);
void cgroup_base_stat_cputime_show(struct seq_file *seq);
/*
* namespace.c
*/
extern const struct proc_ns_operations cgroupns_operations;
/*
* cgroup-v1.c
*/
extern struct cftype cgroup1_base_files[];
extern struct kernfs_syscall_ops cgroup1_kf_syscall_ops;
extern const struct fs_parameter_spec cgroup1_fs_parameters[];
int proc_cgroupstats_show(struct seq_file *m, void *v);
bool cgroup1_ssid_disabled(int ssid);
void cgroup1_pidlist_destroy_all(struct cgroup *cgrp);
void cgroup1_release_agent(struct work_struct *work);
void cgroup1_check_for_release(struct cgroup *cgrp);
int cgroup1_parse_param(struct fs_context *fc, struct fs_parameter *param);
int cgroup1_get_tree(struct fs_context *fc);
int cgroup1_reconfigure(struct fs_context *ctx);
#endif /* __CGROUP_INTERNAL_H */