ee4cdf7ba8
Improve the efficiency of buffered reads in a number of ways: (1) Overhaul the algorithm in general so that it's a lot more compact and split the read submission code between buffered and unbuffered versions. The unbuffered version can be vastly simplified. (2) Read-result collection is handed off to a work queue rather than being done in the I/O thread. Multiple subrequests can be processes simultaneously. (3) When a subrequest is collected, any folios it fully spans are collected and "spare" data on either side is donated to either the previous or the next subrequest in the sequence. Notes: (*) Readahead expansion is massively slows down fio, presumably because it causes a load of extra allocations, both folio and xarray, up front before RPC requests can be transmitted. (*) RDMA with cifs does appear to work, both with SIW and RXE. (*) PG_private_2-based reading and copy-to-cache is split out into its own file and altered to use folio_queue. Note that the copy to the cache now creates a new write transaction against the cache and adds the folios to be copied into it. This allows it to use part of the writeback I/O code. Signed-off-by: David Howells <dhowells@redhat.com> cc: Jeff Layton <jlayton@kernel.org> cc: netfs@lists.linux.dev cc: linux-fsdevel@vger.kernel.org Link: https://lore.kernel.org/r/20240814203850.2240469-20-dhowells@redhat.com/ # v2 Signed-off-by: Christian Brauner <brauner@kernel.org>
257 lines
7.8 KiB
C
257 lines
7.8 KiB
C
// SPDX-License-Identifier: GPL-2.0-only
|
|
/* Network filesystem read subrequest retrying.
|
|
*
|
|
* Copyright (C) 2024 Red Hat, Inc. All Rights Reserved.
|
|
* Written by David Howells (dhowells@redhat.com)
|
|
*/
|
|
|
|
#include <linux/fs.h>
|
|
#include <linux/slab.h>
|
|
#include "internal.h"
|
|
|
|
static void netfs_reissue_read(struct netfs_io_request *rreq,
|
|
struct netfs_io_subrequest *subreq)
|
|
{
|
|
struct iov_iter *io_iter = &subreq->io_iter;
|
|
|
|
if (iov_iter_is_folioq(io_iter)) {
|
|
subreq->curr_folioq = (struct folio_queue *)io_iter->folioq;
|
|
subreq->curr_folioq_slot = io_iter->folioq_slot;
|
|
subreq->curr_folio_order = subreq->curr_folioq->orders[subreq->curr_folioq_slot];
|
|
}
|
|
|
|
atomic_inc(&rreq->nr_outstanding);
|
|
__set_bit(NETFS_SREQ_IN_PROGRESS, &subreq->flags);
|
|
netfs_get_subrequest(subreq, netfs_sreq_trace_get_resubmit);
|
|
subreq->rreq->netfs_ops->issue_read(subreq);
|
|
}
|
|
|
|
/*
|
|
* Go through the list of failed/short reads, retrying all retryable ones. We
|
|
* need to switch failed cache reads to network downloads.
|
|
*/
|
|
static void netfs_retry_read_subrequests(struct netfs_io_request *rreq)
|
|
{
|
|
struct netfs_io_subrequest *subreq;
|
|
struct netfs_io_stream *stream0 = &rreq->io_streams[0];
|
|
LIST_HEAD(sublist);
|
|
LIST_HEAD(queue);
|
|
|
|
_enter("R=%x", rreq->debug_id);
|
|
|
|
if (list_empty(&rreq->subrequests))
|
|
return;
|
|
|
|
if (rreq->netfs_ops->retry_request)
|
|
rreq->netfs_ops->retry_request(rreq, NULL);
|
|
|
|
/* If there's no renegotiation to do, just resend each retryable subreq
|
|
* up to the first permanently failed one.
|
|
*/
|
|
if (!rreq->netfs_ops->prepare_read &&
|
|
!test_bit(NETFS_RREQ_COPY_TO_CACHE, &rreq->flags)) {
|
|
struct netfs_io_subrequest *subreq;
|
|
|
|
list_for_each_entry(subreq, &rreq->subrequests, rreq_link) {
|
|
if (test_bit(NETFS_SREQ_FAILED, &subreq->flags))
|
|
break;
|
|
if (__test_and_clear_bit(NETFS_SREQ_NEED_RETRY, &subreq->flags)) {
|
|
netfs_reset_iter(subreq);
|
|
netfs_reissue_read(rreq, subreq);
|
|
}
|
|
}
|
|
return;
|
|
}
|
|
|
|
/* Okay, we need to renegotiate all the download requests and flip any
|
|
* failed cache reads over to being download requests and negotiate
|
|
* those also. All fully successful subreqs have been removed from the
|
|
* list and any spare data from those has been donated.
|
|
*
|
|
* What we do is decant the list and rebuild it one subreq at a time so
|
|
* that we don't end up with donations jumping over a gap we're busy
|
|
* populating with smaller subrequests. In the event that the subreq
|
|
* we just launched finishes before we insert the next subreq, it'll
|
|
* fill in rreq->prev_donated instead.
|
|
|
|
* Note: Alternatively, we could split the tail subrequest right before
|
|
* we reissue it and fix up the donations under lock.
|
|
*/
|
|
list_splice_init(&rreq->subrequests, &queue);
|
|
|
|
do {
|
|
struct netfs_io_subrequest *from;
|
|
struct iov_iter source;
|
|
unsigned long long start, len;
|
|
size_t part, deferred_next_donated = 0;
|
|
bool boundary = false;
|
|
|
|
/* Go through the subreqs and find the next span of contiguous
|
|
* buffer that we then rejig (cifs, for example, needs the
|
|
* rsize renegotiating) and reissue.
|
|
*/
|
|
from = list_first_entry(&queue, struct netfs_io_subrequest, rreq_link);
|
|
list_move_tail(&from->rreq_link, &sublist);
|
|
start = from->start + from->transferred;
|
|
len = from->len - from->transferred;
|
|
|
|
_debug("from R=%08x[%x] s=%llx ctl=%zx/%zx/%zx",
|
|
rreq->debug_id, from->debug_index,
|
|
from->start, from->consumed, from->transferred, from->len);
|
|
|
|
if (test_bit(NETFS_SREQ_FAILED, &from->flags) ||
|
|
!test_bit(NETFS_SREQ_NEED_RETRY, &from->flags))
|
|
goto abandon;
|
|
|
|
deferred_next_donated = from->next_donated;
|
|
while ((subreq = list_first_entry_or_null(
|
|
&queue, struct netfs_io_subrequest, rreq_link))) {
|
|
if (subreq->start != start + len ||
|
|
subreq->transferred > 0 ||
|
|
!test_bit(NETFS_SREQ_NEED_RETRY, &subreq->flags))
|
|
break;
|
|
list_move_tail(&subreq->rreq_link, &sublist);
|
|
len += subreq->len;
|
|
deferred_next_donated = subreq->next_donated;
|
|
if (test_bit(NETFS_SREQ_BOUNDARY, &subreq->flags))
|
|
break;
|
|
}
|
|
|
|
_debug(" - range: %llx-%llx %llx", start, start + len - 1, len);
|
|
|
|
/* Determine the set of buffers we're going to use. Each
|
|
* subreq gets a subset of a single overall contiguous buffer.
|
|
*/
|
|
netfs_reset_iter(from);
|
|
source = from->io_iter;
|
|
source.count = len;
|
|
|
|
/* Work through the sublist. */
|
|
while ((subreq = list_first_entry_or_null(
|
|
&sublist, struct netfs_io_subrequest, rreq_link))) {
|
|
list_del(&subreq->rreq_link);
|
|
|
|
subreq->source = NETFS_DOWNLOAD_FROM_SERVER;
|
|
subreq->start = start - subreq->transferred;
|
|
subreq->len = len + subreq->transferred;
|
|
stream0->sreq_max_len = subreq->len;
|
|
|
|
__clear_bit(NETFS_SREQ_NEED_RETRY, &subreq->flags);
|
|
__set_bit(NETFS_SREQ_RETRYING, &subreq->flags);
|
|
|
|
spin_lock_bh(&rreq->lock);
|
|
list_add_tail(&subreq->rreq_link, &rreq->subrequests);
|
|
subreq->prev_donated += rreq->prev_donated;
|
|
rreq->prev_donated = 0;
|
|
trace_netfs_sreq(subreq, netfs_sreq_trace_retry);
|
|
spin_unlock_bh(&rreq->lock);
|
|
|
|
BUG_ON(!len);
|
|
|
|
/* Renegotiate max_len (rsize) */
|
|
if (rreq->netfs_ops->prepare_read(subreq) < 0) {
|
|
trace_netfs_sreq(subreq, netfs_sreq_trace_reprep_failed);
|
|
__set_bit(NETFS_SREQ_FAILED, &subreq->flags);
|
|
}
|
|
|
|
part = umin(len, stream0->sreq_max_len);
|
|
if (unlikely(rreq->io_streams[0].sreq_max_segs))
|
|
part = netfs_limit_iter(&source, 0, part, stream0->sreq_max_segs);
|
|
subreq->len = subreq->transferred + part;
|
|
subreq->io_iter = source;
|
|
iov_iter_truncate(&subreq->io_iter, part);
|
|
iov_iter_advance(&source, part);
|
|
len -= part;
|
|
start += part;
|
|
if (!len) {
|
|
if (boundary)
|
|
__set_bit(NETFS_SREQ_BOUNDARY, &subreq->flags);
|
|
subreq->next_donated = deferred_next_donated;
|
|
} else {
|
|
__clear_bit(NETFS_SREQ_BOUNDARY, &subreq->flags);
|
|
subreq->next_donated = 0;
|
|
}
|
|
|
|
netfs_reissue_read(rreq, subreq);
|
|
if (!len)
|
|
break;
|
|
|
|
/* If we ran out of subrequests, allocate another. */
|
|
if (list_empty(&sublist)) {
|
|
subreq = netfs_alloc_subrequest(rreq);
|
|
if (!subreq)
|
|
goto abandon;
|
|
subreq->source = NETFS_DOWNLOAD_FROM_SERVER;
|
|
subreq->start = start;
|
|
|
|
/* We get two refs, but need just one. */
|
|
netfs_put_subrequest(subreq, false, netfs_sreq_trace_new);
|
|
trace_netfs_sreq(subreq, netfs_sreq_trace_split);
|
|
list_add_tail(&subreq->rreq_link, &sublist);
|
|
}
|
|
}
|
|
|
|
/* If we managed to use fewer subreqs, we can discard the
|
|
* excess.
|
|
*/
|
|
while ((subreq = list_first_entry_or_null(
|
|
&sublist, struct netfs_io_subrequest, rreq_link))) {
|
|
trace_netfs_sreq(subreq, netfs_sreq_trace_discard);
|
|
list_del(&subreq->rreq_link);
|
|
netfs_put_subrequest(subreq, false, netfs_sreq_trace_put_done);
|
|
}
|
|
|
|
} while (!list_empty(&queue));
|
|
|
|
return;
|
|
|
|
/* If we hit ENOMEM, fail all remaining subrequests */
|
|
abandon:
|
|
list_splice_init(&sublist, &queue);
|
|
list_for_each_entry(subreq, &queue, rreq_link) {
|
|
if (!subreq->error)
|
|
subreq->error = -ENOMEM;
|
|
__clear_bit(NETFS_SREQ_FAILED, &subreq->flags);
|
|
__clear_bit(NETFS_SREQ_NEED_RETRY, &subreq->flags);
|
|
__clear_bit(NETFS_SREQ_RETRYING, &subreq->flags);
|
|
}
|
|
spin_lock_bh(&rreq->lock);
|
|
list_splice_tail_init(&queue, &rreq->subrequests);
|
|
spin_unlock_bh(&rreq->lock);
|
|
}
|
|
|
|
/*
|
|
* Retry reads.
|
|
*/
|
|
void netfs_retry_reads(struct netfs_io_request *rreq)
|
|
{
|
|
trace_netfs_rreq(rreq, netfs_rreq_trace_resubmit);
|
|
|
|
atomic_inc(&rreq->nr_outstanding);
|
|
|
|
netfs_retry_read_subrequests(rreq);
|
|
|
|
if (atomic_dec_and_test(&rreq->nr_outstanding))
|
|
netfs_rreq_terminated(rreq, false);
|
|
}
|
|
|
|
/*
|
|
* Unlock any the pages that haven't been unlocked yet due to abandoned
|
|
* subrequests.
|
|
*/
|
|
void netfs_unlock_abandoned_read_pages(struct netfs_io_request *rreq)
|
|
{
|
|
struct folio_queue *p;
|
|
|
|
for (p = rreq->buffer; p; p = p->next) {
|
|
for (int slot = 0; slot < folioq_count(p); slot++) {
|
|
struct folio *folio = folioq_folio(p, slot);
|
|
|
|
if (folio && !folioq_is_marked2(p, slot)) {
|
|
trace_netfs_folio(folio, netfs_folio_trace_abandon);
|
|
folio_unlock(folio);
|
|
}
|
|
}
|
|
}
|
|
}
|