1
linux/fs/btrfs/bio.c
Linus Torvalds 6b4926494e for-6.12-rc5-tag
-----BEGIN PGP SIGNATURE-----
 
 iQIzBAABCgAdFiEE8rQSAMVO+zA4DBdWxWXV+ddtWDsFAmck8eQACgkQxWXV+ddt
 WDu05g/6AwrnvPkivC4iVOv4Wkzrpk4gm76smx91Y9B8tSDLI1pHaS27CvJz9iWl
 vBKXPN3PQVQHwo6SPn+NjsFOSMkXlbBOVKpPU+MlZwH9Tuw66qcC+EnUCK2wEuAy
 3TN7cUGIA4r/j+SkhgIz+Irlr5pjdb1KkPIMBEVGcVFqDIuvDaTEGBqTn2i/V5aa
 dMn+gK+9rfngTOJ68t/pEFaX7SEWCvgMIcBpBB4/vs1gHm3ve2bcc1sBAdMxb1Se
 SrxgZfq+Rc5tkMn540JaWGwkb0rLzwXlurK6ygTKDKCpH0IMX+pBvDkexh9Zj0ux
 jejlRxiuDzTx3z2a7FjHDyp2sdZWMpq3sPsowpJ1Dsgi5EtSxTy4irmQuSAZY1Uj
 /uo6YwV9aTGeiNDwZeKqKc/wOuAttaMZLr14s37pro9KxndFJ/XZBxeyB+euUCOw
 B8AvAQVVIJAYQLyWINWruNKppqlgiO2RaN15RvvT2pX01d0TOx1KX1XFQku7YFxb
 M/8ZNXzJ96XtkeyHL3euo3zj7N5jWtnCvPINugUG1ADQa+bc8aX336gld1neD6fs
 QqIFIgzZG0l4N95viJilACrI6tW9zFnBqMyNFRhucKiX9aP9glOvhSfxfjcpDuQ/
 i/LIyxVLwp8M3hPNvv8tC345+1C2ug9AD0OyhWjjIYPuiOxtTWs=
 =alpB
 -----END PGP SIGNATURE-----

Merge tag 'for-6.12-rc5-tag' of git://git.kernel.org/pub/scm/linux/kernel/git/kdave/linux

Pull btrfs fixes from David Sterba:
 "A few more stability fixes. There's one patch adding export of MIPS
  cmpxchg helper, used in the error propagation fix.

   - fix error propagation from split bios to the original btrfs bio

   - fix merging of adjacent extents (normal operation, defragmentation)

   - fix potential use after free after freeing btrfs device structures"

* tag 'for-6.12-rc5-tag' of git://git.kernel.org/pub/scm/linux/kernel/git/kdave/linux:
  btrfs: fix defrag not merging contiguous extents due to merged extent maps
  btrfs: fix extent map merging not happening for adjacent extents
  btrfs: fix use-after-free of block device file in __btrfs_free_extra_devids()
  btrfs: fix error propagation of split bios
  MIPS: export __cmpxchg_small()
2024-11-01 07:31:47 -10:00

911 lines
26 KiB
C

// SPDX-License-Identifier: GPL-2.0
/*
* Copyright (C) 2007 Oracle. All rights reserved.
* Copyright (C) 2022 Christoph Hellwig.
*/
#include <linux/bio.h>
#include "bio.h"
#include "ctree.h"
#include "volumes.h"
#include "raid56.h"
#include "async-thread.h"
#include "dev-replace.h"
#include "zoned.h"
#include "file-item.h"
#include "raid-stripe-tree.h"
static struct bio_set btrfs_bioset;
static struct bio_set btrfs_clone_bioset;
static struct bio_set btrfs_repair_bioset;
static mempool_t btrfs_failed_bio_pool;
struct btrfs_failed_bio {
struct btrfs_bio *bbio;
int num_copies;
atomic_t repair_count;
};
/* Is this a data path I/O that needs storage layer checksum and repair? */
static inline bool is_data_bbio(struct btrfs_bio *bbio)
{
return bbio->inode && is_data_inode(bbio->inode);
}
static bool bbio_has_ordered_extent(struct btrfs_bio *bbio)
{
return is_data_bbio(bbio) && btrfs_op(&bbio->bio) == BTRFS_MAP_WRITE;
}
/*
* Initialize a btrfs_bio structure. This skips the embedded bio itself as it
* is already initialized by the block layer.
*/
void btrfs_bio_init(struct btrfs_bio *bbio, struct btrfs_fs_info *fs_info,
btrfs_bio_end_io_t end_io, void *private)
{
memset(bbio, 0, offsetof(struct btrfs_bio, bio));
bbio->fs_info = fs_info;
bbio->end_io = end_io;
bbio->private = private;
atomic_set(&bbio->pending_ios, 1);
WRITE_ONCE(bbio->status, BLK_STS_OK);
}
/*
* Allocate a btrfs_bio structure. The btrfs_bio is the main I/O container for
* btrfs, and is used for all I/O submitted through btrfs_submit_bbio().
*
* Just like the underlying bio_alloc_bioset it will not fail as it is backed by
* a mempool.
*/
struct btrfs_bio *btrfs_bio_alloc(unsigned int nr_vecs, blk_opf_t opf,
struct btrfs_fs_info *fs_info,
btrfs_bio_end_io_t end_io, void *private)
{
struct btrfs_bio *bbio;
struct bio *bio;
bio = bio_alloc_bioset(NULL, nr_vecs, opf, GFP_NOFS, &btrfs_bioset);
bbio = btrfs_bio(bio);
btrfs_bio_init(bbio, fs_info, end_io, private);
return bbio;
}
static struct btrfs_bio *btrfs_split_bio(struct btrfs_fs_info *fs_info,
struct btrfs_bio *orig_bbio,
u64 map_length)
{
struct btrfs_bio *bbio;
struct bio *bio;
bio = bio_split(&orig_bbio->bio, map_length >> SECTOR_SHIFT, GFP_NOFS,
&btrfs_clone_bioset);
bbio = btrfs_bio(bio);
btrfs_bio_init(bbio, fs_info, NULL, orig_bbio);
bbio->inode = orig_bbio->inode;
bbio->file_offset = orig_bbio->file_offset;
orig_bbio->file_offset += map_length;
if (bbio_has_ordered_extent(bbio)) {
refcount_inc(&orig_bbio->ordered->refs);
bbio->ordered = orig_bbio->ordered;
}
atomic_inc(&orig_bbio->pending_ios);
return bbio;
}
/* Free a bio that was never submitted to the underlying device. */
static void btrfs_cleanup_bio(struct btrfs_bio *bbio)
{
if (bbio_has_ordered_extent(bbio))
btrfs_put_ordered_extent(bbio->ordered);
bio_put(&bbio->bio);
}
static void __btrfs_bio_end_io(struct btrfs_bio *bbio)
{
if (bbio_has_ordered_extent(bbio)) {
struct btrfs_ordered_extent *ordered = bbio->ordered;
bbio->end_io(bbio);
btrfs_put_ordered_extent(ordered);
} else {
bbio->end_io(bbio);
}
}
void btrfs_bio_end_io(struct btrfs_bio *bbio, blk_status_t status)
{
bbio->bio.bi_status = status;
if (bbio->bio.bi_pool == &btrfs_clone_bioset) {
struct btrfs_bio *orig_bbio = bbio->private;
btrfs_cleanup_bio(bbio);
bbio = orig_bbio;
}
/*
* At this point, bbio always points to the original btrfs_bio. Save
* the first error in it.
*/
if (status != BLK_STS_OK)
cmpxchg(&bbio->status, BLK_STS_OK, status);
if (atomic_dec_and_test(&bbio->pending_ios)) {
/* Load split bio's error which might be set above. */
if (status == BLK_STS_OK)
bbio->bio.bi_status = READ_ONCE(bbio->status);
__btrfs_bio_end_io(bbio);
}
}
static int next_repair_mirror(struct btrfs_failed_bio *fbio, int cur_mirror)
{
if (cur_mirror == fbio->num_copies)
return cur_mirror + 1 - fbio->num_copies;
return cur_mirror + 1;
}
static int prev_repair_mirror(struct btrfs_failed_bio *fbio, int cur_mirror)
{
if (cur_mirror == 1)
return fbio->num_copies;
return cur_mirror - 1;
}
static void btrfs_repair_done(struct btrfs_failed_bio *fbio)
{
if (atomic_dec_and_test(&fbio->repair_count)) {
btrfs_bio_end_io(fbio->bbio, fbio->bbio->bio.bi_status);
mempool_free(fbio, &btrfs_failed_bio_pool);
}
}
static void btrfs_end_repair_bio(struct btrfs_bio *repair_bbio,
struct btrfs_device *dev)
{
struct btrfs_failed_bio *fbio = repair_bbio->private;
struct btrfs_inode *inode = repair_bbio->inode;
struct btrfs_fs_info *fs_info = inode->root->fs_info;
struct bio_vec *bv = bio_first_bvec_all(&repair_bbio->bio);
int mirror = repair_bbio->mirror_num;
/*
* We can only trigger this for data bio, which doesn't support larger
* folios yet.
*/
ASSERT(folio_order(page_folio(bv->bv_page)) == 0);
if (repair_bbio->bio.bi_status ||
!btrfs_data_csum_ok(repair_bbio, dev, 0, bv)) {
bio_reset(&repair_bbio->bio, NULL, REQ_OP_READ);
repair_bbio->bio.bi_iter = repair_bbio->saved_iter;
mirror = next_repair_mirror(fbio, mirror);
if (mirror == fbio->bbio->mirror_num) {
btrfs_debug(fs_info, "no mirror left");
fbio->bbio->bio.bi_status = BLK_STS_IOERR;
goto done;
}
btrfs_submit_bbio(repair_bbio, mirror);
return;
}
do {
mirror = prev_repair_mirror(fbio, mirror);
btrfs_repair_io_failure(fs_info, btrfs_ino(inode),
repair_bbio->file_offset, fs_info->sectorsize,
repair_bbio->saved_iter.bi_sector << SECTOR_SHIFT,
page_folio(bv->bv_page), bv->bv_offset, mirror);
} while (mirror != fbio->bbio->mirror_num);
done:
btrfs_repair_done(fbio);
bio_put(&repair_bbio->bio);
}
/*
* Try to kick off a repair read to the next available mirror for a bad sector.
*
* This primarily tries to recover good data to serve the actual read request,
* but also tries to write the good data back to the bad mirror(s) when a
* read succeeded to restore the redundancy.
*/
static struct btrfs_failed_bio *repair_one_sector(struct btrfs_bio *failed_bbio,
u32 bio_offset,
struct bio_vec *bv,
struct btrfs_failed_bio *fbio)
{
struct btrfs_inode *inode = failed_bbio->inode;
struct btrfs_fs_info *fs_info = inode->root->fs_info;
const u32 sectorsize = fs_info->sectorsize;
const u64 logical = (failed_bbio->saved_iter.bi_sector << SECTOR_SHIFT);
struct btrfs_bio *repair_bbio;
struct bio *repair_bio;
int num_copies;
int mirror;
btrfs_debug(fs_info, "repair read error: read error at %llu",
failed_bbio->file_offset + bio_offset);
num_copies = btrfs_num_copies(fs_info, logical, sectorsize);
if (num_copies == 1) {
btrfs_debug(fs_info, "no copy to repair from");
failed_bbio->bio.bi_status = BLK_STS_IOERR;
return fbio;
}
if (!fbio) {
fbio = mempool_alloc(&btrfs_failed_bio_pool, GFP_NOFS);
fbio->bbio = failed_bbio;
fbio->num_copies = num_copies;
atomic_set(&fbio->repair_count, 1);
}
atomic_inc(&fbio->repair_count);
repair_bio = bio_alloc_bioset(NULL, 1, REQ_OP_READ, GFP_NOFS,
&btrfs_repair_bioset);
repair_bio->bi_iter.bi_sector = failed_bbio->saved_iter.bi_sector;
__bio_add_page(repair_bio, bv->bv_page, bv->bv_len, bv->bv_offset);
repair_bbio = btrfs_bio(repair_bio);
btrfs_bio_init(repair_bbio, fs_info, NULL, fbio);
repair_bbio->inode = failed_bbio->inode;
repair_bbio->file_offset = failed_bbio->file_offset + bio_offset;
mirror = next_repair_mirror(fbio, failed_bbio->mirror_num);
btrfs_debug(fs_info, "submitting repair read to mirror %d", mirror);
btrfs_submit_bbio(repair_bbio, mirror);
return fbio;
}
static void btrfs_check_read_bio(struct btrfs_bio *bbio, struct btrfs_device *dev)
{
struct btrfs_inode *inode = bbio->inode;
struct btrfs_fs_info *fs_info = inode->root->fs_info;
u32 sectorsize = fs_info->sectorsize;
struct bvec_iter *iter = &bbio->saved_iter;
blk_status_t status = bbio->bio.bi_status;
struct btrfs_failed_bio *fbio = NULL;
u32 offset = 0;
/* Read-repair requires the inode field to be set by the submitter. */
ASSERT(inode);
/*
* Hand off repair bios to the repair code as there is no upper level
* submitter for them.
*/
if (bbio->bio.bi_pool == &btrfs_repair_bioset) {
btrfs_end_repair_bio(bbio, dev);
return;
}
/* Clear the I/O error. A failed repair will reset it. */
bbio->bio.bi_status = BLK_STS_OK;
while (iter->bi_size) {
struct bio_vec bv = bio_iter_iovec(&bbio->bio, *iter);
bv.bv_len = min(bv.bv_len, sectorsize);
if (status || !btrfs_data_csum_ok(bbio, dev, offset, &bv))
fbio = repair_one_sector(bbio, offset, &bv, fbio);
bio_advance_iter_single(&bbio->bio, iter, sectorsize);
offset += sectorsize;
}
if (bbio->csum != bbio->csum_inline)
kfree(bbio->csum);
if (fbio)
btrfs_repair_done(fbio);
else
btrfs_bio_end_io(bbio, bbio->bio.bi_status);
}
static void btrfs_log_dev_io_error(struct bio *bio, struct btrfs_device *dev)
{
if (!dev || !dev->bdev)
return;
if (bio->bi_status != BLK_STS_IOERR && bio->bi_status != BLK_STS_TARGET)
return;
if (btrfs_op(bio) == BTRFS_MAP_WRITE)
btrfs_dev_stat_inc_and_print(dev, BTRFS_DEV_STAT_WRITE_ERRS);
else if (!(bio->bi_opf & REQ_RAHEAD))
btrfs_dev_stat_inc_and_print(dev, BTRFS_DEV_STAT_READ_ERRS);
if (bio->bi_opf & REQ_PREFLUSH)
btrfs_dev_stat_inc_and_print(dev, BTRFS_DEV_STAT_FLUSH_ERRS);
}
static struct workqueue_struct *btrfs_end_io_wq(struct btrfs_fs_info *fs_info,
struct bio *bio)
{
if (bio->bi_opf & REQ_META)
return fs_info->endio_meta_workers;
return fs_info->endio_workers;
}
static void btrfs_end_bio_work(struct work_struct *work)
{
struct btrfs_bio *bbio = container_of(work, struct btrfs_bio, end_io_work);
/* Metadata reads are checked and repaired by the submitter. */
if (is_data_bbio(bbio))
btrfs_check_read_bio(bbio, bbio->bio.bi_private);
else
btrfs_bio_end_io(bbio, bbio->bio.bi_status);
}
static void btrfs_simple_end_io(struct bio *bio)
{
struct btrfs_bio *bbio = btrfs_bio(bio);
struct btrfs_device *dev = bio->bi_private;
struct btrfs_fs_info *fs_info = bbio->fs_info;
btrfs_bio_counter_dec(fs_info);
if (bio->bi_status)
btrfs_log_dev_io_error(bio, dev);
if (bio_op(bio) == REQ_OP_READ) {
INIT_WORK(&bbio->end_io_work, btrfs_end_bio_work);
queue_work(btrfs_end_io_wq(fs_info, bio), &bbio->end_io_work);
} else {
if (bio_op(bio) == REQ_OP_ZONE_APPEND && !bio->bi_status)
btrfs_record_physical_zoned(bbio);
btrfs_bio_end_io(bbio, bbio->bio.bi_status);
}
}
static void btrfs_raid56_end_io(struct bio *bio)
{
struct btrfs_io_context *bioc = bio->bi_private;
struct btrfs_bio *bbio = btrfs_bio(bio);
btrfs_bio_counter_dec(bioc->fs_info);
bbio->mirror_num = bioc->mirror_num;
if (bio_op(bio) == REQ_OP_READ && is_data_bbio(bbio))
btrfs_check_read_bio(bbio, NULL);
else
btrfs_bio_end_io(bbio, bbio->bio.bi_status);
btrfs_put_bioc(bioc);
}
static void btrfs_orig_write_end_io(struct bio *bio)
{
struct btrfs_io_stripe *stripe = bio->bi_private;
struct btrfs_io_context *bioc = stripe->bioc;
struct btrfs_bio *bbio = btrfs_bio(bio);
btrfs_bio_counter_dec(bioc->fs_info);
if (bio->bi_status) {
atomic_inc(&bioc->error);
btrfs_log_dev_io_error(bio, stripe->dev);
}
/*
* Only send an error to the higher layers if it is beyond the tolerance
* threshold.
*/
if (atomic_read(&bioc->error) > bioc->max_errors)
bio->bi_status = BLK_STS_IOERR;
else
bio->bi_status = BLK_STS_OK;
if (bio_op(bio) == REQ_OP_ZONE_APPEND && !bio->bi_status)
stripe->physical = bio->bi_iter.bi_sector << SECTOR_SHIFT;
btrfs_bio_end_io(bbio, bbio->bio.bi_status);
btrfs_put_bioc(bioc);
}
static void btrfs_clone_write_end_io(struct bio *bio)
{
struct btrfs_io_stripe *stripe = bio->bi_private;
if (bio->bi_status) {
atomic_inc(&stripe->bioc->error);
btrfs_log_dev_io_error(bio, stripe->dev);
} else if (bio_op(bio) == REQ_OP_ZONE_APPEND) {
stripe->physical = bio->bi_iter.bi_sector << SECTOR_SHIFT;
}
/* Pass on control to the original bio this one was cloned from */
bio_endio(stripe->bioc->orig_bio);
bio_put(bio);
}
static void btrfs_submit_dev_bio(struct btrfs_device *dev, struct bio *bio)
{
if (!dev || !dev->bdev ||
test_bit(BTRFS_DEV_STATE_MISSING, &dev->dev_state) ||
(btrfs_op(bio) == BTRFS_MAP_WRITE &&
!test_bit(BTRFS_DEV_STATE_WRITEABLE, &dev->dev_state))) {
bio_io_error(bio);
return;
}
bio_set_dev(bio, dev->bdev);
/*
* For zone append writing, bi_sector must point the beginning of the
* zone
*/
if (bio_op(bio) == REQ_OP_ZONE_APPEND) {
u64 physical = bio->bi_iter.bi_sector << SECTOR_SHIFT;
u64 zone_start = round_down(physical, dev->fs_info->zone_size);
ASSERT(btrfs_dev_is_sequential(dev, physical));
bio->bi_iter.bi_sector = zone_start >> SECTOR_SHIFT;
}
btrfs_debug_in_rcu(dev->fs_info,
"%s: rw %d 0x%x, sector=%llu, dev=%lu (%s id %llu), size=%u",
__func__, bio_op(bio), bio->bi_opf, bio->bi_iter.bi_sector,
(unsigned long)dev->bdev->bd_dev, btrfs_dev_name(dev),
dev->devid, bio->bi_iter.bi_size);
if (bio->bi_opf & REQ_BTRFS_CGROUP_PUNT)
blkcg_punt_bio_submit(bio);
else
submit_bio(bio);
}
static void btrfs_submit_mirrored_bio(struct btrfs_io_context *bioc, int dev_nr)
{
struct bio *orig_bio = bioc->orig_bio, *bio;
ASSERT(bio_op(orig_bio) != REQ_OP_READ);
/* Reuse the bio embedded into the btrfs_bio for the last mirror */
if (dev_nr == bioc->num_stripes - 1) {
bio = orig_bio;
bio->bi_end_io = btrfs_orig_write_end_io;
} else {
bio = bio_alloc_clone(NULL, orig_bio, GFP_NOFS, &fs_bio_set);
bio_inc_remaining(orig_bio);
bio->bi_end_io = btrfs_clone_write_end_io;
}
bio->bi_private = &bioc->stripes[dev_nr];
bio->bi_iter.bi_sector = bioc->stripes[dev_nr].physical >> SECTOR_SHIFT;
bioc->stripes[dev_nr].bioc = bioc;
bioc->size = bio->bi_iter.bi_size;
btrfs_submit_dev_bio(bioc->stripes[dev_nr].dev, bio);
}
static void btrfs_submit_bio(struct bio *bio, struct btrfs_io_context *bioc,
struct btrfs_io_stripe *smap, int mirror_num)
{
if (!bioc) {
/* Single mirror read/write fast path. */
btrfs_bio(bio)->mirror_num = mirror_num;
bio->bi_iter.bi_sector = smap->physical >> SECTOR_SHIFT;
if (bio_op(bio) != REQ_OP_READ)
btrfs_bio(bio)->orig_physical = smap->physical;
bio->bi_private = smap->dev;
bio->bi_end_io = btrfs_simple_end_io;
btrfs_submit_dev_bio(smap->dev, bio);
} else if (bioc->map_type & BTRFS_BLOCK_GROUP_RAID56_MASK) {
/* Parity RAID write or read recovery. */
bio->bi_private = bioc;
bio->bi_end_io = btrfs_raid56_end_io;
if (bio_op(bio) == REQ_OP_READ)
raid56_parity_recover(bio, bioc, mirror_num);
else
raid56_parity_write(bio, bioc);
} else {
/* Write to multiple mirrors. */
int total_devs = bioc->num_stripes;
bioc->orig_bio = bio;
for (int dev_nr = 0; dev_nr < total_devs; dev_nr++)
btrfs_submit_mirrored_bio(bioc, dev_nr);
}
}
static blk_status_t btrfs_bio_csum(struct btrfs_bio *bbio)
{
if (bbio->bio.bi_opf & REQ_META)
return btree_csum_one_bio(bbio);
return btrfs_csum_one_bio(bbio);
}
/*
* Async submit bios are used to offload expensive checksumming onto the worker
* threads.
*/
struct async_submit_bio {
struct btrfs_bio *bbio;
struct btrfs_io_context *bioc;
struct btrfs_io_stripe smap;
int mirror_num;
struct btrfs_work work;
};
/*
* In order to insert checksums into the metadata in large chunks, we wait
* until bio submission time. All the pages in the bio are checksummed and
* sums are attached onto the ordered extent record.
*
* At IO completion time the csums attached on the ordered extent record are
* inserted into the btree.
*/
static void run_one_async_start(struct btrfs_work *work)
{
struct async_submit_bio *async =
container_of(work, struct async_submit_bio, work);
blk_status_t ret;
ret = btrfs_bio_csum(async->bbio);
if (ret)
async->bbio->bio.bi_status = ret;
}
/*
* In order to insert checksums into the metadata in large chunks, we wait
* until bio submission time. All the pages in the bio are checksummed and
* sums are attached onto the ordered extent record.
*
* At IO completion time the csums attached on the ordered extent record are
* inserted into the tree.
*
* If called with @do_free == true, then it will free the work struct.
*/
static void run_one_async_done(struct btrfs_work *work, bool do_free)
{
struct async_submit_bio *async =
container_of(work, struct async_submit_bio, work);
struct bio *bio = &async->bbio->bio;
if (do_free) {
kfree(container_of(work, struct async_submit_bio, work));
return;
}
/* If an error occurred we just want to clean up the bio and move on. */
if (bio->bi_status) {
btrfs_bio_end_io(async->bbio, async->bbio->bio.bi_status);
return;
}
/*
* All of the bios that pass through here are from async helpers.
* Use REQ_BTRFS_CGROUP_PUNT to issue them from the owning cgroup's
* context. This changes nothing when cgroups aren't in use.
*/
bio->bi_opf |= REQ_BTRFS_CGROUP_PUNT;
btrfs_submit_bio(bio, async->bioc, &async->smap, async->mirror_num);
}
static bool should_async_write(struct btrfs_bio *bbio)
{
bool auto_csum_mode = true;
#ifdef CONFIG_BTRFS_DEBUG
struct btrfs_fs_devices *fs_devices = bbio->fs_info->fs_devices;
enum btrfs_offload_csum_mode csum_mode = READ_ONCE(fs_devices->offload_csum_mode);
if (csum_mode == BTRFS_OFFLOAD_CSUM_FORCE_OFF)
return false;
auto_csum_mode = (csum_mode == BTRFS_OFFLOAD_CSUM_AUTO);
#endif
/* Submit synchronously if the checksum implementation is fast. */
if (auto_csum_mode && test_bit(BTRFS_FS_CSUM_IMPL_FAST, &bbio->fs_info->flags))
return false;
/*
* Try to defer the submission to a workqueue to parallelize the
* checksum calculation unless the I/O is issued synchronously.
*/
if (op_is_sync(bbio->bio.bi_opf))
return false;
/* Zoned devices require I/O to be submitted in order. */
if ((bbio->bio.bi_opf & REQ_META) && btrfs_is_zoned(bbio->fs_info))
return false;
return true;
}
/*
* Submit bio to an async queue.
*
* Return true if the work has been successfully submitted, else false.
*/
static bool btrfs_wq_submit_bio(struct btrfs_bio *bbio,
struct btrfs_io_context *bioc,
struct btrfs_io_stripe *smap, int mirror_num)
{
struct btrfs_fs_info *fs_info = bbio->fs_info;
struct async_submit_bio *async;
async = kmalloc(sizeof(*async), GFP_NOFS);
if (!async)
return false;
async->bbio = bbio;
async->bioc = bioc;
async->smap = *smap;
async->mirror_num = mirror_num;
btrfs_init_work(&async->work, run_one_async_start, run_one_async_done);
btrfs_queue_work(fs_info->workers, &async->work);
return true;
}
static u64 btrfs_append_map_length(struct btrfs_bio *bbio, u64 map_length)
{
unsigned int nr_segs;
int sector_offset;
map_length = min(map_length, bbio->fs_info->max_zone_append_size);
sector_offset = bio_split_rw_at(&bbio->bio, &bbio->fs_info->limits,
&nr_segs, map_length);
if (sector_offset)
return sector_offset << SECTOR_SHIFT;
return map_length;
}
static bool btrfs_submit_chunk(struct btrfs_bio *bbio, int mirror_num)
{
struct btrfs_inode *inode = bbio->inode;
struct btrfs_fs_info *fs_info = bbio->fs_info;
struct bio *bio = &bbio->bio;
u64 logical = bio->bi_iter.bi_sector << SECTOR_SHIFT;
u64 length = bio->bi_iter.bi_size;
u64 map_length = length;
bool use_append = btrfs_use_zone_append(bbio);
struct btrfs_io_context *bioc = NULL;
struct btrfs_io_stripe smap;
blk_status_t ret;
int error;
if (!bbio->inode || btrfs_is_data_reloc_root(inode->root))
smap.rst_search_commit_root = true;
else
smap.rst_search_commit_root = false;
btrfs_bio_counter_inc_blocked(fs_info);
error = btrfs_map_block(fs_info, btrfs_op(bio), logical, &map_length,
&bioc, &smap, &mirror_num);
if (error) {
ret = errno_to_blk_status(error);
goto fail;
}
map_length = min(map_length, length);
if (use_append)
map_length = btrfs_append_map_length(bbio, map_length);
if (map_length < length) {
bbio = btrfs_split_bio(fs_info, bbio, map_length);
bio = &bbio->bio;
}
/*
* Save the iter for the end_io handler and preload the checksums for
* data reads.
*/
if (bio_op(bio) == REQ_OP_READ && is_data_bbio(bbio)) {
bbio->saved_iter = bio->bi_iter;
ret = btrfs_lookup_bio_sums(bbio);
if (ret)
goto fail;
}
if (btrfs_op(bio) == BTRFS_MAP_WRITE) {
if (use_append) {
bio->bi_opf &= ~REQ_OP_WRITE;
bio->bi_opf |= REQ_OP_ZONE_APPEND;
}
if (is_data_bbio(bbio) && bioc &&
btrfs_need_stripe_tree_update(bioc->fs_info, bioc->map_type)) {
/*
* No locking for the list update, as we only add to
* the list in the I/O submission path, and list
* iteration only happens in the completion path, which
* can't happen until after the last submission.
*/
btrfs_get_bioc(bioc);
list_add_tail(&bioc->rst_ordered_entry, &bbio->ordered->bioc_list);
}
/*
* Csum items for reloc roots have already been cloned at this
* point, so they are handled as part of the no-checksum case.
*/
if (inode && !(inode->flags & BTRFS_INODE_NODATASUM) &&
!test_bit(BTRFS_FS_STATE_NO_DATA_CSUMS, &fs_info->fs_state) &&
!btrfs_is_data_reloc_root(inode->root)) {
if (should_async_write(bbio) &&
btrfs_wq_submit_bio(bbio, bioc, &smap, mirror_num))
goto done;
ret = btrfs_bio_csum(bbio);
if (ret)
goto fail;
} else if (use_append ||
(btrfs_is_zoned(fs_info) && inode &&
inode->flags & BTRFS_INODE_NODATASUM)) {
ret = btrfs_alloc_dummy_sum(bbio);
if (ret)
goto fail;
}
}
btrfs_submit_bio(bio, bioc, &smap, mirror_num);
done:
return map_length == length;
fail:
btrfs_bio_counter_dec(fs_info);
/*
* We have split the original bbio, now we have to end both the current
* @bbio and remaining one, as the remaining one will never be submitted.
*/
if (map_length < length) {
struct btrfs_bio *remaining = bbio->private;
ASSERT(bbio->bio.bi_pool == &btrfs_clone_bioset);
ASSERT(remaining);
btrfs_bio_end_io(remaining, ret);
}
btrfs_bio_end_io(bbio, ret);
/* Do not submit another chunk */
return true;
}
void btrfs_submit_bbio(struct btrfs_bio *bbio, int mirror_num)
{
/* If bbio->inode is not populated, its file_offset must be 0. */
ASSERT(bbio->inode || bbio->file_offset == 0);
while (!btrfs_submit_chunk(bbio, mirror_num))
;
}
/*
* Submit a repair write.
*
* This bypasses btrfs_submit_bbio() deliberately, as that writes all copies in a
* RAID setup. Here we only want to write the one bad copy, so we do the
* mapping ourselves and submit the bio directly.
*
* The I/O is issued synchronously to block the repair read completion from
* freeing the bio.
*/
int btrfs_repair_io_failure(struct btrfs_fs_info *fs_info, u64 ino, u64 start,
u64 length, u64 logical, struct folio *folio,
unsigned int folio_offset, int mirror_num)
{
struct btrfs_io_stripe smap = { 0 };
struct bio_vec bvec;
struct bio bio;
int ret = 0;
ASSERT(!(fs_info->sb->s_flags & SB_RDONLY));
BUG_ON(!mirror_num);
if (btrfs_repair_one_zone(fs_info, logical))
return 0;
/*
* Avoid races with device replace and make sure our bioc has devices
* associated to its stripes that don't go away while we are doing the
* read repair operation.
*/
btrfs_bio_counter_inc_blocked(fs_info);
ret = btrfs_map_repair_block(fs_info, &smap, logical, length, mirror_num);
if (ret < 0)
goto out_counter_dec;
if (!smap.dev->bdev ||
!test_bit(BTRFS_DEV_STATE_WRITEABLE, &smap.dev->dev_state)) {
ret = -EIO;
goto out_counter_dec;
}
bio_init(&bio, smap.dev->bdev, &bvec, 1, REQ_OP_WRITE | REQ_SYNC);
bio.bi_iter.bi_sector = smap.physical >> SECTOR_SHIFT;
ret = bio_add_folio(&bio, folio, length, folio_offset);
ASSERT(ret);
ret = submit_bio_wait(&bio);
if (ret) {
/* try to remap that extent elsewhere? */
btrfs_dev_stat_inc_and_print(smap.dev, BTRFS_DEV_STAT_WRITE_ERRS);
goto out_bio_uninit;
}
btrfs_info_rl_in_rcu(fs_info,
"read error corrected: ino %llu off %llu (dev %s sector %llu)",
ino, start, btrfs_dev_name(smap.dev),
smap.physical >> SECTOR_SHIFT);
ret = 0;
out_bio_uninit:
bio_uninit(&bio);
out_counter_dec:
btrfs_bio_counter_dec(fs_info);
return ret;
}
/*
* Submit a btrfs_bio based repair write.
*
* If @dev_replace is true, the write would be submitted to dev-replace target.
*/
void btrfs_submit_repair_write(struct btrfs_bio *bbio, int mirror_num, bool dev_replace)
{
struct btrfs_fs_info *fs_info = bbio->fs_info;
u64 logical = bbio->bio.bi_iter.bi_sector << SECTOR_SHIFT;
u64 length = bbio->bio.bi_iter.bi_size;
struct btrfs_io_stripe smap = { 0 };
int ret;
ASSERT(fs_info);
ASSERT(mirror_num > 0);
ASSERT(btrfs_op(&bbio->bio) == BTRFS_MAP_WRITE);
ASSERT(!bbio->inode);
btrfs_bio_counter_inc_blocked(fs_info);
ret = btrfs_map_repair_block(fs_info, &smap, logical, length, mirror_num);
if (ret < 0)
goto fail;
if (dev_replace) {
ASSERT(smap.dev == fs_info->dev_replace.srcdev);
smap.dev = fs_info->dev_replace.tgtdev;
}
btrfs_submit_bio(&bbio->bio, NULL, &smap, mirror_num);
return;
fail:
btrfs_bio_counter_dec(fs_info);
btrfs_bio_end_io(bbio, errno_to_blk_status(ret));
}
int __init btrfs_bioset_init(void)
{
if (bioset_init(&btrfs_bioset, BIO_POOL_SIZE,
offsetof(struct btrfs_bio, bio),
BIOSET_NEED_BVECS))
return -ENOMEM;
if (bioset_init(&btrfs_clone_bioset, BIO_POOL_SIZE,
offsetof(struct btrfs_bio, bio), 0))
goto out_free_bioset;
if (bioset_init(&btrfs_repair_bioset, BIO_POOL_SIZE,
offsetof(struct btrfs_bio, bio),
BIOSET_NEED_BVECS))
goto out_free_clone_bioset;
if (mempool_init_kmalloc_pool(&btrfs_failed_bio_pool, BIO_POOL_SIZE,
sizeof(struct btrfs_failed_bio)))
goto out_free_repair_bioset;
return 0;
out_free_repair_bioset:
bioset_exit(&btrfs_repair_bioset);
out_free_clone_bioset:
bioset_exit(&btrfs_clone_bioset);
out_free_bioset:
bioset_exit(&btrfs_bioset);
return -ENOMEM;
}
void __cold btrfs_bioset_exit(void)
{
mempool_exit(&btrfs_failed_bio_pool);
bioset_exit(&btrfs_repair_bioset);
bioset_exit(&btrfs_clone_bioset);
bioset_exit(&btrfs_bioset);
}