1
linux/drivers/scsi/hisi_sas/hisi_sas_main.c
Bart Van Assche b97c0741c7 scsi: Expand all create*_workqueue() invocations
The workqueue maintainer wants to remove the create*_workqueue() macros
because these macros always set the WQ_MEM_RECLAIM flag and because these
only support literal workqueue names. Hence this patch that replaces the
create*_workqueue() invocations with the definition of this macro. The
WQ_MEM_RECLAIM flag has been retained because I think that flag is necessary
for workqueues created by storage drivers. This patch has been generated by
running spatch and git clang-format. spatch has been invoked as follows:

spatch --in-place --sp-file expand-create-workqueue.spatch $(git grep -lEw 'create_(freezable_|singlethread_|)workqueue' */scsi */ufs)

The contents of the expand-create-workqueue.spatch file is as follows:

@@
expression name;
@@
-create_workqueue(name)
+alloc_workqueue("%s", WQ_MEM_RECLAIM, 1, name)
@@
expression name;
@@
-create_freezable_workqueue(name)
+alloc_workqueue("%s", WQ_FREEZABLE | WQ_UNBOUND | WQ_MEM_RECLAIM, 1, name)
@@
expression name;
@@
-create_singlethread_workqueue(name)
+alloc_ordered_workqueue("%s", WQ_MEM_RECLAIM, name)

Reviewed-by: Peter Wang <peter.wang@mediatek.com>
Signed-off-by: Bart Van Assche <bvanassche@acm.org>
Link: https://lore.kernel.org/r/20240822195944.654691-2-bvanassche@acm.org
Signed-off-by: Martin K. Petersen <martin.petersen@oracle.com>
2024-08-22 21:28:55 -04:00

2646 lines
68 KiB
C

// SPDX-License-Identifier: GPL-2.0-or-later
/*
* Copyright (c) 2015 Linaro Ltd.
* Copyright (c) 2015 Hisilicon Limited.
*/
#include "hisi_sas.h"
#define DRV_NAME "hisi_sas"
#define DEV_IS_GONE(dev) \
((!dev) || (dev->dev_type == SAS_PHY_UNUSED))
static int hisi_sas_softreset_ata_disk(struct domain_device *device);
static int hisi_sas_control_phy(struct asd_sas_phy *sas_phy, enum phy_func func,
void *funcdata);
static void hisi_sas_release_task(struct hisi_hba *hisi_hba,
struct domain_device *device);
static void hisi_sas_dev_gone(struct domain_device *device);
struct hisi_sas_internal_abort_data {
bool rst_ha_timeout; /* reset the HA for timeout */
};
u8 hisi_sas_get_ata_protocol(struct host_to_dev_fis *fis, int direction)
{
switch (fis->command) {
case ATA_CMD_FPDMA_WRITE:
case ATA_CMD_FPDMA_READ:
case ATA_CMD_FPDMA_RECV:
case ATA_CMD_FPDMA_SEND:
case ATA_CMD_NCQ_NON_DATA:
return HISI_SAS_SATA_PROTOCOL_FPDMA;
case ATA_CMD_DOWNLOAD_MICRO:
case ATA_CMD_ID_ATA:
case ATA_CMD_PMP_READ:
case ATA_CMD_READ_LOG_EXT:
case ATA_CMD_PIO_READ:
case ATA_CMD_PIO_READ_EXT:
case ATA_CMD_PMP_WRITE:
case ATA_CMD_WRITE_LOG_EXT:
case ATA_CMD_PIO_WRITE:
case ATA_CMD_PIO_WRITE_EXT:
return HISI_SAS_SATA_PROTOCOL_PIO;
case ATA_CMD_DSM:
case ATA_CMD_DOWNLOAD_MICRO_DMA:
case ATA_CMD_PMP_READ_DMA:
case ATA_CMD_PMP_WRITE_DMA:
case ATA_CMD_READ:
case ATA_CMD_READ_EXT:
case ATA_CMD_READ_LOG_DMA_EXT:
case ATA_CMD_READ_STREAM_DMA_EXT:
case ATA_CMD_TRUSTED_RCV_DMA:
case ATA_CMD_TRUSTED_SND_DMA:
case ATA_CMD_WRITE:
case ATA_CMD_WRITE_EXT:
case ATA_CMD_WRITE_FUA_EXT:
case ATA_CMD_WRITE_QUEUED:
case ATA_CMD_WRITE_LOG_DMA_EXT:
case ATA_CMD_WRITE_STREAM_DMA_EXT:
case ATA_CMD_ZAC_MGMT_IN:
return HISI_SAS_SATA_PROTOCOL_DMA;
case ATA_CMD_CHK_POWER:
case ATA_CMD_DEV_RESET:
case ATA_CMD_EDD:
case ATA_CMD_FLUSH:
case ATA_CMD_FLUSH_EXT:
case ATA_CMD_VERIFY:
case ATA_CMD_VERIFY_EXT:
case ATA_CMD_SET_FEATURES:
case ATA_CMD_STANDBY:
case ATA_CMD_STANDBYNOW1:
case ATA_CMD_ZAC_MGMT_OUT:
return HISI_SAS_SATA_PROTOCOL_NONDATA;
case ATA_CMD_SET_MAX:
switch (fis->features) {
case ATA_SET_MAX_PASSWD:
case ATA_SET_MAX_LOCK:
return HISI_SAS_SATA_PROTOCOL_PIO;
case ATA_SET_MAX_PASSWD_DMA:
case ATA_SET_MAX_UNLOCK_DMA:
return HISI_SAS_SATA_PROTOCOL_DMA;
default:
return HISI_SAS_SATA_PROTOCOL_NONDATA;
}
default:
{
if (direction == DMA_NONE)
return HISI_SAS_SATA_PROTOCOL_NONDATA;
return HISI_SAS_SATA_PROTOCOL_PIO;
}
}
}
EXPORT_SYMBOL_GPL(hisi_sas_get_ata_protocol);
void hisi_sas_sata_done(struct sas_task *task,
struct hisi_sas_slot *slot)
{
struct task_status_struct *ts = &task->task_status;
struct ata_task_resp *resp = (struct ata_task_resp *)ts->buf;
struct hisi_sas_status_buffer *status_buf =
hisi_sas_status_buf_addr_mem(slot);
u8 *iu = &status_buf->iu[0];
struct dev_to_host_fis *d2h = (struct dev_to_host_fis *)iu;
resp->frame_len = sizeof(struct dev_to_host_fis);
memcpy(&resp->ending_fis[0], d2h, sizeof(struct dev_to_host_fis));
ts->buf_valid_size = sizeof(*resp);
}
EXPORT_SYMBOL_GPL(hisi_sas_sata_done);
/*
* This function assumes linkrate mask fits in 8 bits, which it
* does for all HW versions supported.
*/
u8 hisi_sas_get_prog_phy_linkrate_mask(enum sas_linkrate max)
{
u8 rate = 0;
int i;
max -= SAS_LINK_RATE_1_5_GBPS;
for (i = 0; i <= max; i++)
rate |= 1 << (i * 2);
return rate;
}
EXPORT_SYMBOL_GPL(hisi_sas_get_prog_phy_linkrate_mask);
static struct hisi_hba *dev_to_hisi_hba(struct domain_device *device)
{
return device->port->ha->lldd_ha;
}
struct hisi_sas_port *to_hisi_sas_port(struct asd_sas_port *sas_port)
{
return container_of(sas_port, struct hisi_sas_port, sas_port);
}
EXPORT_SYMBOL_GPL(to_hisi_sas_port);
void hisi_sas_stop_phys(struct hisi_hba *hisi_hba)
{
int phy_no;
for (phy_no = 0; phy_no < hisi_hba->n_phy; phy_no++)
hisi_sas_phy_enable(hisi_hba, phy_no, 0);
}
EXPORT_SYMBOL_GPL(hisi_sas_stop_phys);
static void hisi_sas_slot_index_clear(struct hisi_hba *hisi_hba, int slot_idx)
{
void *bitmap = hisi_hba->slot_index_tags;
__clear_bit(slot_idx, bitmap);
}
static void hisi_sas_slot_index_free(struct hisi_hba *hisi_hba, int slot_idx)
{
if (hisi_hba->hw->slot_index_alloc ||
slot_idx < HISI_SAS_RESERVED_IPTT) {
spin_lock(&hisi_hba->lock);
hisi_sas_slot_index_clear(hisi_hba, slot_idx);
spin_unlock(&hisi_hba->lock);
}
}
static void hisi_sas_slot_index_set(struct hisi_hba *hisi_hba, int slot_idx)
{
void *bitmap = hisi_hba->slot_index_tags;
__set_bit(slot_idx, bitmap);
}
static int hisi_sas_slot_index_alloc(struct hisi_hba *hisi_hba,
struct request *rq)
{
int index;
void *bitmap = hisi_hba->slot_index_tags;
if (rq)
return rq->tag + HISI_SAS_RESERVED_IPTT;
spin_lock(&hisi_hba->lock);
index = find_next_zero_bit(bitmap, HISI_SAS_RESERVED_IPTT,
hisi_hba->last_slot_index + 1);
if (index >= HISI_SAS_RESERVED_IPTT) {
index = find_next_zero_bit(bitmap,
HISI_SAS_RESERVED_IPTT,
0);
if (index >= HISI_SAS_RESERVED_IPTT) {
spin_unlock(&hisi_hba->lock);
return -SAS_QUEUE_FULL;
}
}
hisi_sas_slot_index_set(hisi_hba, index);
hisi_hba->last_slot_index = index;
spin_unlock(&hisi_hba->lock);
return index;
}
void hisi_sas_slot_task_free(struct hisi_hba *hisi_hba, struct sas_task *task,
struct hisi_sas_slot *slot, bool need_lock)
{
int device_id = slot->device_id;
struct hisi_sas_device *sas_dev = &hisi_hba->devices[device_id];
if (task) {
struct device *dev = hisi_hba->dev;
if (!task->lldd_task)
return;
task->lldd_task = NULL;
if (!sas_protocol_ata(task->task_proto)) {
if (slot->n_elem) {
if (task->task_proto & SAS_PROTOCOL_SSP)
dma_unmap_sg(dev, task->scatter,
task->num_scatter,
task->data_dir);
else
dma_unmap_sg(dev, &task->smp_task.smp_req,
1, DMA_TO_DEVICE);
}
if (slot->n_elem_dif) {
struct sas_ssp_task *ssp_task = &task->ssp_task;
struct scsi_cmnd *scsi_cmnd = ssp_task->cmd;
dma_unmap_sg(dev, scsi_prot_sglist(scsi_cmnd),
scsi_prot_sg_count(scsi_cmnd),
task->data_dir);
}
}
}
if (need_lock) {
spin_lock(&sas_dev->lock);
list_del_init(&slot->entry);
spin_unlock(&sas_dev->lock);
} else {
list_del_init(&slot->entry);
}
memset(slot, 0, offsetof(struct hisi_sas_slot, buf));
hisi_sas_slot_index_free(hisi_hba, slot->idx);
}
EXPORT_SYMBOL_GPL(hisi_sas_slot_task_free);
static void hisi_sas_task_prep_smp(struct hisi_hba *hisi_hba,
struct hisi_sas_slot *slot)
{
hisi_hba->hw->prep_smp(hisi_hba, slot);
}
static void hisi_sas_task_prep_ssp(struct hisi_hba *hisi_hba,
struct hisi_sas_slot *slot)
{
hisi_hba->hw->prep_ssp(hisi_hba, slot);
}
static void hisi_sas_task_prep_ata(struct hisi_hba *hisi_hba,
struct hisi_sas_slot *slot)
{
hisi_hba->hw->prep_stp(hisi_hba, slot);
}
static void hisi_sas_task_prep_abort(struct hisi_hba *hisi_hba,
struct hisi_sas_slot *slot)
{
hisi_hba->hw->prep_abort(hisi_hba, slot);
}
static void hisi_sas_dma_unmap(struct hisi_hba *hisi_hba,
struct sas_task *task, int n_elem)
{
struct device *dev = hisi_hba->dev;
if (!sas_protocol_ata(task->task_proto) && n_elem) {
if (task->num_scatter) {
dma_unmap_sg(dev, task->scatter, task->num_scatter,
task->data_dir);
} else if (task->task_proto & SAS_PROTOCOL_SMP) {
dma_unmap_sg(dev, &task->smp_task.smp_req,
1, DMA_TO_DEVICE);
}
}
}
static int hisi_sas_dma_map(struct hisi_hba *hisi_hba,
struct sas_task *task, int *n_elem)
{
struct device *dev = hisi_hba->dev;
int rc;
if (sas_protocol_ata(task->task_proto)) {
*n_elem = task->num_scatter;
} else {
unsigned int req_len;
if (task->num_scatter) {
*n_elem = dma_map_sg(dev, task->scatter,
task->num_scatter, task->data_dir);
if (!*n_elem) {
rc = -ENOMEM;
goto prep_out;
}
} else if (task->task_proto & SAS_PROTOCOL_SMP) {
*n_elem = dma_map_sg(dev, &task->smp_task.smp_req,
1, DMA_TO_DEVICE);
if (!*n_elem) {
rc = -ENOMEM;
goto prep_out;
}
req_len = sg_dma_len(&task->smp_task.smp_req);
if (req_len & 0x3) {
rc = -EINVAL;
goto err_out_dma_unmap;
}
}
}
if (*n_elem > HISI_SAS_SGE_PAGE_CNT) {
dev_err(dev, "task prep: n_elem(%d) > HISI_SAS_SGE_PAGE_CNT\n",
*n_elem);
rc = -EINVAL;
goto err_out_dma_unmap;
}
return 0;
err_out_dma_unmap:
/* It would be better to call dma_unmap_sg() here, but it's messy */
hisi_sas_dma_unmap(hisi_hba, task, *n_elem);
prep_out:
return rc;
}
static void hisi_sas_dif_dma_unmap(struct hisi_hba *hisi_hba,
struct sas_task *task, int n_elem_dif)
{
struct device *dev = hisi_hba->dev;
if (n_elem_dif) {
struct sas_ssp_task *ssp_task = &task->ssp_task;
struct scsi_cmnd *scsi_cmnd = ssp_task->cmd;
dma_unmap_sg(dev, scsi_prot_sglist(scsi_cmnd),
scsi_prot_sg_count(scsi_cmnd),
task->data_dir);
}
}
static int hisi_sas_dif_dma_map(struct hisi_hba *hisi_hba,
int *n_elem_dif, struct sas_task *task)
{
struct device *dev = hisi_hba->dev;
struct sas_ssp_task *ssp_task;
struct scsi_cmnd *scsi_cmnd;
int rc;
if (task->num_scatter) {
ssp_task = &task->ssp_task;
scsi_cmnd = ssp_task->cmd;
if (scsi_prot_sg_count(scsi_cmnd)) {
*n_elem_dif = dma_map_sg(dev,
scsi_prot_sglist(scsi_cmnd),
scsi_prot_sg_count(scsi_cmnd),
task->data_dir);
if (!*n_elem_dif)
return -ENOMEM;
if (*n_elem_dif > HISI_SAS_SGE_DIF_PAGE_CNT) {
dev_err(dev, "task prep: n_elem_dif(%d) too large\n",
*n_elem_dif);
rc = -EINVAL;
goto err_out_dif_dma_unmap;
}
}
}
return 0;
err_out_dif_dma_unmap:
dma_unmap_sg(dev, scsi_prot_sglist(scsi_cmnd),
scsi_prot_sg_count(scsi_cmnd), task->data_dir);
return rc;
}
static
void hisi_sas_task_deliver(struct hisi_hba *hisi_hba,
struct hisi_sas_slot *slot,
struct hisi_sas_dq *dq,
struct hisi_sas_device *sas_dev)
{
struct hisi_sas_cmd_hdr *cmd_hdr_base;
int dlvry_queue_slot, dlvry_queue;
struct sas_task *task = slot->task;
int wr_q_index;
spin_lock(&dq->lock);
wr_q_index = dq->wr_point;
dq->wr_point = (dq->wr_point + 1) % HISI_SAS_QUEUE_SLOTS;
list_add_tail(&slot->delivery, &dq->list);
spin_unlock(&dq->lock);
spin_lock(&sas_dev->lock);
list_add_tail(&slot->entry, &sas_dev->list);
spin_unlock(&sas_dev->lock);
dlvry_queue = dq->id;
dlvry_queue_slot = wr_q_index;
slot->device_id = sas_dev->device_id;
slot->dlvry_queue = dlvry_queue;
slot->dlvry_queue_slot = dlvry_queue_slot;
cmd_hdr_base = hisi_hba->cmd_hdr[dlvry_queue];
slot->cmd_hdr = &cmd_hdr_base[dlvry_queue_slot];
task->lldd_task = slot;
memset(slot->cmd_hdr, 0, sizeof(struct hisi_sas_cmd_hdr));
memset(hisi_sas_cmd_hdr_addr_mem(slot), 0, HISI_SAS_COMMAND_TABLE_SZ);
memset(hisi_sas_status_buf_addr_mem(slot), 0,
sizeof(struct hisi_sas_err_record));
switch (task->task_proto) {
case SAS_PROTOCOL_SMP:
hisi_sas_task_prep_smp(hisi_hba, slot);
break;
case SAS_PROTOCOL_SSP:
hisi_sas_task_prep_ssp(hisi_hba, slot);
break;
case SAS_PROTOCOL_SATA:
case SAS_PROTOCOL_STP:
case SAS_PROTOCOL_STP_ALL:
hisi_sas_task_prep_ata(hisi_hba, slot);
break;
case SAS_PROTOCOL_INTERNAL_ABORT:
hisi_sas_task_prep_abort(hisi_hba, slot);
break;
default:
return;
}
/* Make slot memories observable before marking as ready */
smp_wmb();
WRITE_ONCE(slot->ready, 1);
spin_lock(&dq->lock);
hisi_hba->hw->start_delivery(dq);
spin_unlock(&dq->lock);
}
static int hisi_sas_queue_command(struct sas_task *task, gfp_t gfp_flags)
{
int n_elem = 0, n_elem_dif = 0;
struct domain_device *device = task->dev;
struct asd_sas_port *sas_port = device->port;
struct hisi_sas_device *sas_dev = device->lldd_dev;
bool internal_abort = sas_is_internal_abort(task);
struct hisi_sas_dq *dq = NULL;
struct hisi_sas_port *port;
struct hisi_hba *hisi_hba;
struct hisi_sas_slot *slot;
struct request *rq = NULL;
struct device *dev;
int rc;
if (!sas_port) {
struct task_status_struct *ts = &task->task_status;
ts->resp = SAS_TASK_UNDELIVERED;
ts->stat = SAS_PHY_DOWN;
/*
* libsas will use dev->port, should
* not call task_done for sata
*/
if (device->dev_type != SAS_SATA_DEV && !internal_abort)
task->task_done(task);
return -ECOMM;
}
hisi_hba = dev_to_hisi_hba(device);
dev = hisi_hba->dev;
switch (task->task_proto) {
case SAS_PROTOCOL_SSP:
case SAS_PROTOCOL_SMP:
case SAS_PROTOCOL_SATA:
case SAS_PROTOCOL_STP:
case SAS_PROTOCOL_STP_ALL:
if (unlikely(test_bit(HISI_SAS_REJECT_CMD_BIT, &hisi_hba->flags))) {
if (!gfpflags_allow_blocking(gfp_flags))
return -EINVAL;
down(&hisi_hba->sem);
up(&hisi_hba->sem);
}
if (DEV_IS_GONE(sas_dev)) {
if (sas_dev)
dev_info(dev, "task prep: device %d not ready\n",
sas_dev->device_id);
else
dev_info(dev, "task prep: device %016llx not ready\n",
SAS_ADDR(device->sas_addr));
return -ECOMM;
}
port = to_hisi_sas_port(sas_port);
if (!port->port_attached) {
dev_info(dev, "task prep: %s port%d not attach device\n",
dev_is_sata(device) ? "SATA/STP" : "SAS",
device->port->id);
return -ECOMM;
}
rq = sas_task_find_rq(task);
if (rq) {
unsigned int dq_index;
u32 blk_tag;
blk_tag = blk_mq_unique_tag(rq);
dq_index = blk_mq_unique_tag_to_hwq(blk_tag);
dq = &hisi_hba->dq[dq_index];
} else {
int queue;
if (hisi_hba->iopoll_q_cnt) {
/*
* Use interrupt queue (queue 0) to deliver and complete
* internal IOs of libsas or libata when there is at least
* one iopoll queue
*/
queue = 0;
} else {
struct Scsi_Host *shost = hisi_hba->shost;
struct blk_mq_queue_map *qmap = &shost->tag_set.map[HCTX_TYPE_DEFAULT];
queue = qmap->mq_map[raw_smp_processor_id()];
}
dq = &hisi_hba->dq[queue];
}
break;
case SAS_PROTOCOL_INTERNAL_ABORT:
if (!hisi_hba->hw->prep_abort)
return TMF_RESP_FUNC_FAILED;
if (test_bit(HISI_SAS_HW_FAULT_BIT, &hisi_hba->flags))
return -EIO;
hisi_hba = dev_to_hisi_hba(device);
if (unlikely(test_bit(HISI_SAS_REJECT_CMD_BIT, &hisi_hba->flags)))
return -EINVAL;
port = to_hisi_sas_port(sas_port);
dq = &hisi_hba->dq[task->abort_task.qid];
break;
default:
dev_err(hisi_hba->dev, "task prep: unknown/unsupported proto (0x%x)\n",
task->task_proto);
return -EINVAL;
}
rc = hisi_sas_dma_map(hisi_hba, task, &n_elem);
if (rc < 0)
goto prep_out;
if (!sas_protocol_ata(task->task_proto)) {
rc = hisi_sas_dif_dma_map(hisi_hba, &n_elem_dif, task);
if (rc < 0)
goto err_out_dma_unmap;
}
if (!internal_abort && hisi_hba->hw->slot_index_alloc)
rc = hisi_hba->hw->slot_index_alloc(hisi_hba, device);
else
rc = hisi_sas_slot_index_alloc(hisi_hba, rq);
if (rc < 0)
goto err_out_dif_dma_unmap;
slot = &hisi_hba->slot_info[rc];
slot->n_elem = n_elem;
slot->n_elem_dif = n_elem_dif;
slot->task = task;
slot->port = port;
slot->tmf = task->tmf;
slot->is_internal = !!task->tmf || internal_abort;
/* protect task_prep and start_delivery sequence */
hisi_sas_task_deliver(hisi_hba, slot, dq, sas_dev);
return 0;
err_out_dif_dma_unmap:
if (!sas_protocol_ata(task->task_proto))
hisi_sas_dif_dma_unmap(hisi_hba, task, n_elem_dif);
err_out_dma_unmap:
hisi_sas_dma_unmap(hisi_hba, task, n_elem);
prep_out:
dev_err(dev, "task exec: failed[%d]!\n", rc);
return rc;
}
static void hisi_sas_bytes_dmaed(struct hisi_hba *hisi_hba, int phy_no,
gfp_t gfp_flags)
{
struct hisi_sas_phy *phy = &hisi_hba->phy[phy_no];
struct asd_sas_phy *sas_phy = &phy->sas_phy;
if (!phy->phy_attached)
return;
sas_notify_phy_event(sas_phy, PHYE_OOB_DONE, gfp_flags);
if (sas_phy->phy) {
struct sas_phy *sphy = sas_phy->phy;
sphy->negotiated_linkrate = sas_phy->linkrate;
sphy->minimum_linkrate_hw = SAS_LINK_RATE_1_5_GBPS;
sphy->maximum_linkrate_hw =
hisi_hba->hw->phy_get_max_linkrate();
if (sphy->minimum_linkrate == SAS_LINK_RATE_UNKNOWN)
sphy->minimum_linkrate = phy->minimum_linkrate;
if (sphy->maximum_linkrate == SAS_LINK_RATE_UNKNOWN)
sphy->maximum_linkrate = phy->maximum_linkrate;
}
if (phy->phy_type & PORT_TYPE_SAS) {
struct sas_identify_frame *id;
id = (struct sas_identify_frame *)phy->frame_rcvd;
id->dev_type = phy->identify.device_type;
id->initiator_bits = SAS_PROTOCOL_ALL;
id->target_bits = phy->identify.target_port_protocols;
} else if (phy->phy_type & PORT_TYPE_SATA) {
/* Nothing */
}
sas_phy->frame_rcvd_size = phy->frame_rcvd_size;
sas_notify_port_event(sas_phy, PORTE_BYTES_DMAED, gfp_flags);
}
static struct hisi_sas_device *hisi_sas_alloc_dev(struct domain_device *device)
{
struct hisi_hba *hisi_hba = dev_to_hisi_hba(device);
struct hisi_sas_device *sas_dev = NULL;
int last = hisi_hba->last_dev_id;
int first = (hisi_hba->last_dev_id + 1) % HISI_SAS_MAX_DEVICES;
int i;
spin_lock(&hisi_hba->lock);
for (i = first; i != last; i %= HISI_SAS_MAX_DEVICES) {
if (hisi_hba->devices[i].dev_type == SAS_PHY_UNUSED) {
int queue = i % hisi_hba->queue_count;
struct hisi_sas_dq *dq = &hisi_hba->dq[queue];
hisi_hba->devices[i].device_id = i;
sas_dev = &hisi_hba->devices[i];
sas_dev->dev_status = HISI_SAS_DEV_INIT;
sas_dev->dev_type = device->dev_type;
sas_dev->hisi_hba = hisi_hba;
sas_dev->sas_device = device;
sas_dev->dq = dq;
spin_lock_init(&sas_dev->lock);
INIT_LIST_HEAD(&hisi_hba->devices[i].list);
break;
}
i++;
}
hisi_hba->last_dev_id = i;
spin_unlock(&hisi_hba->lock);
return sas_dev;
}
static void hisi_sas_sync_poll_cq(struct hisi_sas_cq *cq)
{
/* make sure CQ entries being processed are processed to completion */
spin_lock(&cq->poll_lock);
spin_unlock(&cq->poll_lock);
}
static bool hisi_sas_queue_is_poll(struct hisi_sas_cq *cq)
{
struct hisi_hba *hisi_hba = cq->hisi_hba;
if (cq->id < hisi_hba->queue_count - hisi_hba->iopoll_q_cnt)
return false;
return true;
}
static void hisi_sas_sync_cq(struct hisi_sas_cq *cq)
{
if (hisi_sas_queue_is_poll(cq))
hisi_sas_sync_poll_cq(cq);
else
synchronize_irq(cq->irq_no);
}
void hisi_sas_sync_poll_cqs(struct hisi_hba *hisi_hba)
{
int i;
for (i = 0; i < hisi_hba->queue_count; i++) {
struct hisi_sas_cq *cq = &hisi_hba->cq[i];
if (hisi_sas_queue_is_poll(cq))
hisi_sas_sync_poll_cq(cq);
}
}
EXPORT_SYMBOL_GPL(hisi_sas_sync_poll_cqs);
void hisi_sas_sync_cqs(struct hisi_hba *hisi_hba)
{
int i;
for (i = 0; i < hisi_hba->queue_count; i++) {
struct hisi_sas_cq *cq = &hisi_hba->cq[i];
hisi_sas_sync_cq(cq);
}
}
EXPORT_SYMBOL_GPL(hisi_sas_sync_cqs);
static void hisi_sas_tmf_aborted(struct sas_task *task)
{
struct hisi_sas_slot *slot = task->lldd_task;
struct domain_device *device = task->dev;
struct hisi_sas_device *sas_dev = device->lldd_dev;
struct hisi_hba *hisi_hba = sas_dev->hisi_hba;
if (slot) {
struct hisi_sas_cq *cq =
&hisi_hba->cq[slot->dlvry_queue];
/*
* sync irq or poll queue to avoid free'ing task
* before using task in IO completion
*/
hisi_sas_sync_cq(cq);
slot->task = NULL;
}
}
#define HISI_SAS_DISK_RECOVER_CNT 3
static int hisi_sas_init_device(struct domain_device *device)
{
int rc = TMF_RESP_FUNC_COMPLETE;
struct scsi_lun lun;
int retry = HISI_SAS_DISK_RECOVER_CNT;
struct hisi_hba *hisi_hba = dev_to_hisi_hba(device);
switch (device->dev_type) {
case SAS_END_DEVICE:
int_to_scsilun(0, &lun);
while (retry-- > 0) {
rc = sas_abort_task_set(device, lun.scsi_lun);
if (rc == TMF_RESP_FUNC_COMPLETE) {
hisi_sas_release_task(hisi_hba, device);
break;
}
}
break;
case SAS_SATA_DEV:
case SAS_SATA_PM:
case SAS_SATA_PM_PORT:
case SAS_SATA_PENDING:
/*
* If an expander is swapped when a SATA disk is attached then
* we should issue a hard reset to clear previous affiliation
* of STP target port, see SPL (chapter 6.19.4).
*
* However we don't need to issue a hard reset here for these
* reasons:
* a. When probing the device, libsas/libata already issues a
* hard reset in sas_probe_sata() -> ata_port_probe().
* Note that in hisi_sas_debug_I_T_nexus_reset() we take care
* to issue a hard reset by checking the dev status (== INIT).
* b. When resetting the controller, this is simply unnecessary.
*/
while (retry-- > 0) {
rc = hisi_sas_softreset_ata_disk(device);
if (!rc)
break;
}
break;
default:
break;
}
return rc;
}
int hisi_sas_slave_alloc(struct scsi_device *sdev)
{
struct domain_device *ddev = sdev_to_domain_dev(sdev);
struct hisi_sas_device *sas_dev = ddev->lldd_dev;
int rc;
rc = sas_slave_alloc(sdev);
if (rc)
return rc;
rc = hisi_sas_init_device(ddev);
if (rc)
return rc;
sas_dev->dev_status = HISI_SAS_DEV_NORMAL;
return 0;
}
EXPORT_SYMBOL_GPL(hisi_sas_slave_alloc);
static int hisi_sas_dev_found(struct domain_device *device)
{
struct hisi_hba *hisi_hba = dev_to_hisi_hba(device);
struct domain_device *parent_dev = device->parent;
struct hisi_sas_device *sas_dev;
struct device *dev = hisi_hba->dev;
int rc;
if (hisi_hba->hw->alloc_dev)
sas_dev = hisi_hba->hw->alloc_dev(device);
else
sas_dev = hisi_sas_alloc_dev(device);
if (!sas_dev) {
dev_err(dev, "fail alloc dev: max support %d devices\n",
HISI_SAS_MAX_DEVICES);
return -EINVAL;
}
device->lldd_dev = sas_dev;
hisi_hba->hw->setup_itct(hisi_hba, sas_dev);
if (parent_dev && dev_is_expander(parent_dev->dev_type)) {
int phy_no;
phy_no = sas_find_attached_phy_id(&parent_dev->ex_dev, device);
if (phy_no < 0) {
dev_info(dev, "dev found: no attached "
"dev:%016llx at ex:%016llx\n",
SAS_ADDR(device->sas_addr),
SAS_ADDR(parent_dev->sas_addr));
rc = phy_no;
goto err_out;
}
}
dev_info(dev, "dev[%d:%x] found\n",
sas_dev->device_id, sas_dev->dev_type);
return 0;
err_out:
hisi_sas_dev_gone(device);
return rc;
}
int hisi_sas_device_configure(struct scsi_device *sdev,
struct queue_limits *lim)
{
struct domain_device *dev = sdev_to_domain_dev(sdev);
int ret = sas_device_configure(sdev, lim);
if (ret)
return ret;
if (!dev_is_sata(dev))
sas_change_queue_depth(sdev, 64);
return 0;
}
EXPORT_SYMBOL_GPL(hisi_sas_device_configure);
void hisi_sas_scan_start(struct Scsi_Host *shost)
{
struct hisi_hba *hisi_hba = shost_priv(shost);
hisi_hba->hw->phys_init(hisi_hba);
}
EXPORT_SYMBOL_GPL(hisi_sas_scan_start);
int hisi_sas_scan_finished(struct Scsi_Host *shost, unsigned long time)
{
struct hisi_hba *hisi_hba = shost_priv(shost);
struct sas_ha_struct *sha = &hisi_hba->sha;
/* Wait for PHY up interrupt to occur */
if (time < HZ)
return 0;
sas_drain_work(sha);
return 1;
}
EXPORT_SYMBOL_GPL(hisi_sas_scan_finished);
static void hisi_sas_phyup_work_common(struct work_struct *work,
enum hisi_sas_phy_event event)
{
struct hisi_sas_phy *phy =
container_of(work, typeof(*phy), works[event]);
struct hisi_hba *hisi_hba = phy->hisi_hba;
struct asd_sas_phy *sas_phy = &phy->sas_phy;
int phy_no = sas_phy->id;
phy->wait_phyup_cnt = 0;
if (phy->identify.target_port_protocols == SAS_PROTOCOL_SSP)
hisi_hba->hw->sl_notify_ssp(hisi_hba, phy_no);
hisi_sas_bytes_dmaed(hisi_hba, phy_no, GFP_KERNEL);
}
static void hisi_sas_phyup_work(struct work_struct *work)
{
hisi_sas_phyup_work_common(work, HISI_PHYE_PHY_UP);
}
static void hisi_sas_linkreset_work(struct work_struct *work)
{
struct hisi_sas_phy *phy =
container_of(work, typeof(*phy), works[HISI_PHYE_LINK_RESET]);
struct asd_sas_phy *sas_phy = &phy->sas_phy;
hisi_sas_control_phy(sas_phy, PHY_FUNC_LINK_RESET, NULL);
}
static void hisi_sas_phyup_pm_work(struct work_struct *work)
{
struct hisi_sas_phy *phy =
container_of(work, typeof(*phy), works[HISI_PHYE_PHY_UP_PM]);
struct hisi_hba *hisi_hba = phy->hisi_hba;
struct device *dev = hisi_hba->dev;
hisi_sas_phyup_work_common(work, HISI_PHYE_PHY_UP_PM);
pm_runtime_put_sync(dev);
}
static const work_func_t hisi_sas_phye_fns[HISI_PHYES_NUM] = {
[HISI_PHYE_PHY_UP] = hisi_sas_phyup_work,
[HISI_PHYE_LINK_RESET] = hisi_sas_linkreset_work,
[HISI_PHYE_PHY_UP_PM] = hisi_sas_phyup_pm_work,
};
bool hisi_sas_notify_phy_event(struct hisi_sas_phy *phy,
enum hisi_sas_phy_event event)
{
struct hisi_hba *hisi_hba = phy->hisi_hba;
if (WARN_ON(event >= HISI_PHYES_NUM))
return false;
return queue_work(hisi_hba->wq, &phy->works[event]);
}
EXPORT_SYMBOL_GPL(hisi_sas_notify_phy_event);
static void hisi_sas_wait_phyup_timedout(struct timer_list *t)
{
struct hisi_sas_phy *phy = from_timer(phy, t, timer);
struct hisi_hba *hisi_hba = phy->hisi_hba;
struct device *dev = hisi_hba->dev;
int phy_no = phy->sas_phy.id;
dev_warn(dev, "phy%d wait phyup timeout, issuing link reset\n", phy_no);
hisi_sas_notify_phy_event(phy, HISI_PHYE_LINK_RESET);
}
#define HISI_SAS_WAIT_PHYUP_RETRIES 10
void hisi_sas_phy_oob_ready(struct hisi_hba *hisi_hba, int phy_no)
{
struct hisi_sas_phy *phy = &hisi_hba->phy[phy_no];
struct device *dev = hisi_hba->dev;
unsigned long flags;
dev_dbg(dev, "phy%d OOB ready\n", phy_no);
spin_lock_irqsave(&phy->lock, flags);
if (phy->phy_attached) {
spin_unlock_irqrestore(&phy->lock, flags);
return;
}
if (!timer_pending(&phy->timer)) {
if (phy->wait_phyup_cnt < HISI_SAS_WAIT_PHYUP_RETRIES) {
phy->wait_phyup_cnt++;
phy->timer.expires = jiffies +
HISI_SAS_WAIT_PHYUP_TIMEOUT;
add_timer(&phy->timer);
spin_unlock_irqrestore(&phy->lock, flags);
return;
}
dev_warn(dev, "phy%d failed to come up %d times, giving up\n",
phy_no, phy->wait_phyup_cnt);
phy->wait_phyup_cnt = 0;
}
spin_unlock_irqrestore(&phy->lock, flags);
}
EXPORT_SYMBOL_GPL(hisi_sas_phy_oob_ready);
static void hisi_sas_phy_init(struct hisi_hba *hisi_hba, int phy_no)
{
struct hisi_sas_phy *phy = &hisi_hba->phy[phy_no];
struct asd_sas_phy *sas_phy = &phy->sas_phy;
int i;
phy->hisi_hba = hisi_hba;
phy->port = NULL;
phy->minimum_linkrate = SAS_LINK_RATE_1_5_GBPS;
phy->maximum_linkrate = hisi_hba->hw->phy_get_max_linkrate();
sas_phy->enabled = (phy_no < hisi_hba->n_phy) ? 1 : 0;
sas_phy->iproto = SAS_PROTOCOL_ALL;
sas_phy->tproto = 0;
sas_phy->role = PHY_ROLE_INITIATOR;
sas_phy->oob_mode = OOB_NOT_CONNECTED;
sas_phy->linkrate = SAS_LINK_RATE_UNKNOWN;
sas_phy->id = phy_no;
sas_phy->sas_addr = &hisi_hba->sas_addr[0];
sas_phy->frame_rcvd = &phy->frame_rcvd[0];
sas_phy->ha = (struct sas_ha_struct *)hisi_hba->shost->hostdata;
sas_phy->lldd_phy = phy;
for (i = 0; i < HISI_PHYES_NUM; i++)
INIT_WORK(&phy->works[i], hisi_sas_phye_fns[i]);
spin_lock_init(&phy->lock);
timer_setup(&phy->timer, hisi_sas_wait_phyup_timedout, 0);
}
/* Wrapper to ensure we track hisi_sas_phy.enable properly */
void hisi_sas_phy_enable(struct hisi_hba *hisi_hba, int phy_no, int enable)
{
struct hisi_sas_phy *phy = &hisi_hba->phy[phy_no];
struct asd_sas_phy *aphy = &phy->sas_phy;
struct sas_phy *sphy = aphy->phy;
unsigned long flags;
spin_lock_irqsave(&phy->lock, flags);
if (enable) {
/* We may have been enabled already; if so, don't touch */
if (!phy->enable)
sphy->negotiated_linkrate = SAS_LINK_RATE_UNKNOWN;
hisi_hba->hw->phy_start(hisi_hba, phy_no);
} else {
sphy->negotiated_linkrate = SAS_PHY_DISABLED;
hisi_hba->hw->phy_disable(hisi_hba, phy_no);
}
phy->enable = enable;
spin_unlock_irqrestore(&phy->lock, flags);
}
EXPORT_SYMBOL_GPL(hisi_sas_phy_enable);
static void hisi_sas_port_notify_formed(struct asd_sas_phy *sas_phy)
{
struct hisi_sas_phy *phy = sas_phy->lldd_phy;
struct asd_sas_port *sas_port = sas_phy->port;
struct hisi_sas_port *port;
if (!sas_port)
return;
port = to_hisi_sas_port(sas_port);
port->port_attached = 1;
port->id = phy->port_id;
phy->port = port;
sas_port->lldd_port = port;
}
static void hisi_sas_do_release_task(struct hisi_hba *hisi_hba, struct sas_task *task,
struct hisi_sas_slot *slot, bool need_lock)
{
if (task) {
unsigned long flags;
struct task_status_struct *ts;
ts = &task->task_status;
ts->resp = SAS_TASK_COMPLETE;
ts->stat = SAS_ABORTED_TASK;
spin_lock_irqsave(&task->task_state_lock, flags);
task->task_state_flags &= ~SAS_TASK_STATE_PENDING;
if (!slot->is_internal && task->task_proto != SAS_PROTOCOL_SMP)
task->task_state_flags |= SAS_TASK_STATE_DONE;
spin_unlock_irqrestore(&task->task_state_lock, flags);
}
hisi_sas_slot_task_free(hisi_hba, task, slot, need_lock);
}
static void hisi_sas_release_task(struct hisi_hba *hisi_hba,
struct domain_device *device)
{
struct hisi_sas_slot *slot, *slot2;
struct hisi_sas_device *sas_dev = device->lldd_dev;
spin_lock(&sas_dev->lock);
list_for_each_entry_safe(slot, slot2, &sas_dev->list, entry)
hisi_sas_do_release_task(hisi_hba, slot->task, slot, false);
spin_unlock(&sas_dev->lock);
}
void hisi_sas_release_tasks(struct hisi_hba *hisi_hba)
{
struct hisi_sas_device *sas_dev;
struct domain_device *device;
int i;
for (i = 0; i < HISI_SAS_MAX_DEVICES; i++) {
sas_dev = &hisi_hba->devices[i];
device = sas_dev->sas_device;
if ((sas_dev->dev_type == SAS_PHY_UNUSED) ||
!device)
continue;
hisi_sas_release_task(hisi_hba, device);
}
}
EXPORT_SYMBOL_GPL(hisi_sas_release_tasks);
static void hisi_sas_dereg_device(struct hisi_hba *hisi_hba,
struct domain_device *device)
{
if (hisi_hba->hw->dereg_device)
hisi_hba->hw->dereg_device(hisi_hba, device);
}
static int
hisi_sas_internal_task_abort_dev(struct hisi_sas_device *sas_dev,
bool rst_ha_timeout)
{
struct hisi_sas_internal_abort_data data = { rst_ha_timeout };
struct domain_device *device = sas_dev->sas_device;
struct hisi_hba *hisi_hba = sas_dev->hisi_hba;
int i, rc;
for (i = 0; i < hisi_hba->cq_nvecs; i++) {
struct hisi_sas_cq *cq = &hisi_hba->cq[i];
const struct cpumask *mask = cq->irq_mask;
if (mask && !cpumask_intersects(cpu_online_mask, mask))
continue;
rc = sas_execute_internal_abort_dev(device, i, &data);
if (rc)
return rc;
}
return 0;
}
static void hisi_sas_dev_gone(struct domain_device *device)
{
struct hisi_sas_device *sas_dev = device->lldd_dev;
struct hisi_hba *hisi_hba = dev_to_hisi_hba(device);
struct device *dev = hisi_hba->dev;
int ret = 0;
dev_info(dev, "dev[%d:%x] is gone\n",
sas_dev->device_id, sas_dev->dev_type);
down(&hisi_hba->sem);
if (!test_bit(HISI_SAS_RESETTING_BIT, &hisi_hba->flags)) {
hisi_sas_internal_task_abort_dev(sas_dev, true);
hisi_sas_dereg_device(hisi_hba, device);
ret = hisi_hba->hw->clear_itct(hisi_hba, sas_dev);
device->lldd_dev = NULL;
}
if (hisi_hba->hw->free_device)
hisi_hba->hw->free_device(sas_dev);
/* Don't mark it as SAS_PHY_UNUSED if failed to clear ITCT */
if (!ret)
sas_dev->dev_type = SAS_PHY_UNUSED;
sas_dev->sas_device = NULL;
up(&hisi_hba->sem);
}
static int hisi_sas_phy_set_linkrate(struct hisi_hba *hisi_hba, int phy_no,
struct sas_phy_linkrates *r)
{
struct sas_phy_linkrates _r;
struct hisi_sas_phy *phy = &hisi_hba->phy[phy_no];
struct asd_sas_phy *sas_phy = &phy->sas_phy;
enum sas_linkrate min, max;
if (r->minimum_linkrate > SAS_LINK_RATE_1_5_GBPS)
return -EINVAL;
if (r->maximum_linkrate == SAS_LINK_RATE_UNKNOWN) {
max = sas_phy->phy->maximum_linkrate;
min = r->minimum_linkrate;
} else if (r->minimum_linkrate == SAS_LINK_RATE_UNKNOWN) {
max = r->maximum_linkrate;
min = sas_phy->phy->minimum_linkrate;
} else
return -EINVAL;
_r.maximum_linkrate = max;
_r.minimum_linkrate = min;
sas_phy->phy->maximum_linkrate = max;
sas_phy->phy->minimum_linkrate = min;
hisi_sas_phy_enable(hisi_hba, phy_no, 0);
msleep(100);
hisi_hba->hw->phy_set_linkrate(hisi_hba, phy_no, &_r);
hisi_sas_phy_enable(hisi_hba, phy_no, 1);
return 0;
}
static int hisi_sas_control_phy(struct asd_sas_phy *sas_phy, enum phy_func func,
void *funcdata)
{
struct hisi_sas_phy *phy = container_of(sas_phy,
struct hisi_sas_phy, sas_phy);
struct sas_ha_struct *sas_ha = sas_phy->ha;
struct hisi_hba *hisi_hba = sas_ha->lldd_ha;
struct device *dev = hisi_hba->dev;
DECLARE_COMPLETION_ONSTACK(completion);
int phy_no = sas_phy->id;
u8 sts = phy->phy_attached;
int ret = 0;
down(&hisi_hba->sem);
phy->reset_completion = &completion;
switch (func) {
case PHY_FUNC_HARD_RESET:
hisi_hba->hw->phy_hard_reset(hisi_hba, phy_no);
break;
case PHY_FUNC_LINK_RESET:
hisi_sas_phy_enable(hisi_hba, phy_no, 0);
msleep(100);
hisi_sas_phy_enable(hisi_hba, phy_no, 1);
break;
case PHY_FUNC_DISABLE:
hisi_sas_phy_enable(hisi_hba, phy_no, 0);
goto out;
case PHY_FUNC_SET_LINK_RATE:
ret = hisi_sas_phy_set_linkrate(hisi_hba, phy_no, funcdata);
break;
case PHY_FUNC_GET_EVENTS:
if (hisi_hba->hw->get_events) {
hisi_hba->hw->get_events(hisi_hba, phy_no);
goto out;
}
fallthrough;
case PHY_FUNC_RELEASE_SPINUP_HOLD:
default:
ret = -EOPNOTSUPP;
goto out;
}
if (sts && !wait_for_completion_timeout(&completion,
HISI_SAS_WAIT_PHYUP_TIMEOUT)) {
dev_warn(dev, "phy%d wait phyup timed out for func %d\n",
phy_no, func);
if (phy->in_reset)
ret = -ETIMEDOUT;
}
out:
phy->reset_completion = NULL;
up(&hisi_hba->sem);
return ret;
}
static void hisi_sas_fill_ata_reset_cmd(struct ata_device *dev,
bool reset, int pmp, u8 *fis)
{
struct ata_taskfile tf;
ata_tf_init(dev, &tf);
if (reset)
tf.ctl |= ATA_SRST;
else
tf.ctl &= ~ATA_SRST;
tf.command = ATA_CMD_DEV_RESET;
ata_tf_to_fis(&tf, pmp, 0, fis);
}
static int hisi_sas_softreset_ata_disk(struct domain_device *device)
{
u8 fis[20] = {0};
struct ata_port *ap = device->sata_dev.ap;
struct ata_link *link;
int rc = TMF_RESP_FUNC_FAILED;
struct hisi_hba *hisi_hba = dev_to_hisi_hba(device);
struct device *dev = hisi_hba->dev;
ata_for_each_link(link, ap, EDGE) {
int pmp = sata_srst_pmp(link);
hisi_sas_fill_ata_reset_cmd(link->device, 1, pmp, fis);
rc = sas_execute_ata_cmd(device, fis, -1);
if (rc != TMF_RESP_FUNC_COMPLETE)
break;
}
if (rc == TMF_RESP_FUNC_COMPLETE) {
ata_for_each_link(link, ap, EDGE) {
int pmp = sata_srst_pmp(link);
hisi_sas_fill_ata_reset_cmd(link->device, 0, pmp, fis);
rc = sas_execute_ata_cmd(device, fis, -1);
if (rc != TMF_RESP_FUNC_COMPLETE)
dev_err(dev, "ata disk %016llx de-reset failed\n",
SAS_ADDR(device->sas_addr));
}
} else {
dev_err(dev, "ata disk %016llx reset failed\n",
SAS_ADDR(device->sas_addr));
}
if (rc == TMF_RESP_FUNC_COMPLETE)
hisi_sas_release_task(hisi_hba, device);
return rc;
}
static void hisi_sas_refresh_port_id(struct hisi_hba *hisi_hba)
{
u32 state = hisi_hba->hw->get_phys_state(hisi_hba);
int i;
for (i = 0; i < HISI_SAS_MAX_DEVICES; i++) {
struct hisi_sas_device *sas_dev = &hisi_hba->devices[i];
struct domain_device *device = sas_dev->sas_device;
struct asd_sas_port *sas_port;
struct hisi_sas_port *port;
struct hisi_sas_phy *phy = NULL;
struct asd_sas_phy *sas_phy;
if ((sas_dev->dev_type == SAS_PHY_UNUSED)
|| !device || !device->port)
continue;
sas_port = device->port;
port = to_hisi_sas_port(sas_port);
spin_lock(&sas_port->phy_list_lock);
list_for_each_entry(sas_phy, &sas_port->phy_list, port_phy_el)
if (state & BIT(sas_phy->id)) {
phy = sas_phy->lldd_phy;
break;
}
spin_unlock(&sas_port->phy_list_lock);
if (phy) {
port->id = phy->port_id;
/* Update linkrate of directly attached device. */
if (!device->parent)
device->linkrate = phy->sas_phy.linkrate;
hisi_hba->hw->setup_itct(hisi_hba, sas_dev);
} else if (!port->port_attached)
port->id = 0xff;
}
}
static void hisi_sas_rescan_topology(struct hisi_hba *hisi_hba, u32 state)
{
struct asd_sas_port *_sas_port = NULL;
int phy_no;
for (phy_no = 0; phy_no < hisi_hba->n_phy; phy_no++) {
struct hisi_sas_phy *phy = &hisi_hba->phy[phy_no];
struct asd_sas_phy *sas_phy = &phy->sas_phy;
struct asd_sas_port *sas_port = sas_phy->port;
bool do_port_check = _sas_port != sas_port;
if (!sas_phy->phy->enabled)
continue;
/* Report PHY state change to libsas */
if (state & BIT(phy_no)) {
if (do_port_check && sas_port && sas_port->port_dev) {
struct domain_device *dev = sas_port->port_dev;
_sas_port = sas_port;
if (dev_is_expander(dev->dev_type))
sas_notify_port_event(sas_phy,
PORTE_BROADCAST_RCVD,
GFP_KERNEL);
}
} else {
hisi_sas_phy_down(hisi_hba, phy_no, 0, GFP_KERNEL);
}
}
}
static void hisi_sas_reset_init_all_devices(struct hisi_hba *hisi_hba)
{
struct hisi_sas_device *sas_dev;
struct domain_device *device;
int i;
for (i = 0; i < HISI_SAS_MAX_DEVICES; i++) {
sas_dev = &hisi_hba->devices[i];
device = sas_dev->sas_device;
if ((sas_dev->dev_type == SAS_PHY_UNUSED) || !device)
continue;
hisi_sas_init_device(device);
}
}
static void hisi_sas_send_ata_reset_each_phy(struct hisi_hba *hisi_hba,
struct asd_sas_port *sas_port,
struct domain_device *device)
{
struct ata_port *ap = device->sata_dev.ap;
struct device *dev = hisi_hba->dev;
int rc = TMF_RESP_FUNC_FAILED;
struct ata_link *link;
u8 fis[20] = {0};
int i;
for (i = 0; i < hisi_hba->n_phy; i++) {
if (!(sas_port->phy_mask & BIT(i)))
continue;
ata_for_each_link(link, ap, EDGE) {
int pmp = sata_srst_pmp(link);
hisi_sas_fill_ata_reset_cmd(link->device, 1, pmp, fis);
rc = sas_execute_ata_cmd(device, fis, i);
if (rc != TMF_RESP_FUNC_COMPLETE) {
dev_err(dev, "phy%d ata reset failed rc=%d\n",
i, rc);
break;
}
}
}
}
static void hisi_sas_terminate_stp_reject(struct hisi_hba *hisi_hba)
{
struct device *dev = hisi_hba->dev;
int port_no, rc, i;
for (i = 0; i < HISI_SAS_MAX_DEVICES; i++) {
struct hisi_sas_device *sas_dev = &hisi_hba->devices[i];
struct domain_device *device = sas_dev->sas_device;
if ((sas_dev->dev_type == SAS_PHY_UNUSED) || !device)
continue;
rc = hisi_sas_internal_task_abort_dev(sas_dev, false);
if (rc < 0)
dev_err(dev, "STP reject: abort dev failed %d\n", rc);
}
for (port_no = 0; port_no < hisi_hba->n_phy; port_no++) {
struct hisi_sas_port *port = &hisi_hba->port[port_no];
struct asd_sas_port *sas_port = &port->sas_port;
struct domain_device *port_dev = sas_port->port_dev;
struct domain_device *device;
if (!port_dev || !dev_is_expander(port_dev->dev_type))
continue;
/* Try to find a SATA device */
list_for_each_entry(device, &sas_port->dev_list,
dev_list_node) {
if (dev_is_sata(device)) {
hisi_sas_send_ata_reset_each_phy(hisi_hba,
sas_port,
device);
break;
}
}
}
}
void hisi_sas_controller_reset_prepare(struct hisi_hba *hisi_hba)
{
struct Scsi_Host *shost = hisi_hba->shost;
hisi_hba->phy_state = hisi_hba->hw->get_phys_state(hisi_hba);
scsi_block_requests(shost);
hisi_hba->hw->wait_cmds_complete_timeout(hisi_hba, 100, 5000);
/*
* hisi_hba->timer is only used for v1/v2 hw, and check hw->sht
* which is also only used for v1/v2 hw to skip it for v3 hw
*/
if (hisi_hba->hw->sht)
del_timer_sync(&hisi_hba->timer);
set_bit(HISI_SAS_REJECT_CMD_BIT, &hisi_hba->flags);
}
EXPORT_SYMBOL_GPL(hisi_sas_controller_reset_prepare);
static void hisi_sas_async_init_wait_phyup(void *data, async_cookie_t cookie)
{
struct hisi_sas_phy *phy = data;
struct hisi_hba *hisi_hba = phy->hisi_hba;
struct device *dev = hisi_hba->dev;
DECLARE_COMPLETION_ONSTACK(completion);
int phy_no = phy->sas_phy.id;
phy->reset_completion = &completion;
hisi_sas_phy_enable(hisi_hba, phy_no, 1);
if (!wait_for_completion_timeout(&completion,
HISI_SAS_WAIT_PHYUP_TIMEOUT))
dev_warn(dev, "phy%d wait phyup timed out\n", phy_no);
phy->reset_completion = NULL;
}
void hisi_sas_controller_reset_done(struct hisi_hba *hisi_hba)
{
struct Scsi_Host *shost = hisi_hba->shost;
ASYNC_DOMAIN_EXCLUSIVE(async);
int phy_no;
/* Init and wait for PHYs to come up and all libsas event finished. */
for (phy_no = 0; phy_no < hisi_hba->n_phy; phy_no++) {
struct hisi_sas_phy *phy = &hisi_hba->phy[phy_no];
if (!(hisi_hba->phy_state & BIT(phy_no)))
continue;
async_schedule_domain(hisi_sas_async_init_wait_phyup,
phy, &async);
}
async_synchronize_full_domain(&async);
hisi_sas_refresh_port_id(hisi_hba);
clear_bit(HISI_SAS_REJECT_CMD_BIT, &hisi_hba->flags);
if (hisi_hba->reject_stp_links_msk)
hisi_sas_terminate_stp_reject(hisi_hba);
hisi_sas_reset_init_all_devices(hisi_hba);
scsi_unblock_requests(shost);
clear_bit(HISI_SAS_RESETTING_BIT, &hisi_hba->flags);
up(&hisi_hba->sem);
hisi_sas_rescan_topology(hisi_hba, hisi_hba->phy_state);
}
EXPORT_SYMBOL_GPL(hisi_sas_controller_reset_done);
static int hisi_sas_controller_prereset(struct hisi_hba *hisi_hba)
{
if (!hisi_hba->hw->soft_reset)
return -ENOENT;
down(&hisi_hba->sem);
if (test_and_set_bit(HISI_SAS_RESETTING_BIT, &hisi_hba->flags)) {
up(&hisi_hba->sem);
return -EPERM;
}
if (hisi_sas_debugfs_enable)
hisi_hba->hw->debugfs_snapshot_regs(hisi_hba);
return 0;
}
static int hisi_sas_controller_reset(struct hisi_hba *hisi_hba)
{
struct device *dev = hisi_hba->dev;
struct Scsi_Host *shost = hisi_hba->shost;
int rc;
dev_info(dev, "controller resetting...\n");
hisi_sas_controller_reset_prepare(hisi_hba);
rc = hisi_hba->hw->soft_reset(hisi_hba);
if (rc) {
dev_warn(dev, "controller reset failed (%d)\n", rc);
clear_bit(HISI_SAS_REJECT_CMD_BIT, &hisi_hba->flags);
up(&hisi_hba->sem);
scsi_unblock_requests(shost);
clear_bit(HISI_SAS_RESETTING_BIT, &hisi_hba->flags);
return rc;
}
clear_bit(HISI_SAS_HW_FAULT_BIT, &hisi_hba->flags);
hisi_sas_controller_reset_done(hisi_hba);
dev_info(dev, "controller reset complete\n");
return 0;
}
static int hisi_sas_abort_task(struct sas_task *task)
{
struct hisi_sas_internal_abort_data internal_abort_data = { false };
struct domain_device *device = task->dev;
struct hisi_sas_device *sas_dev = device->lldd_dev;
struct hisi_sas_slot *slot = task->lldd_task;
struct hisi_hba *hisi_hba;
struct device *dev;
int rc = TMF_RESP_FUNC_FAILED;
unsigned long flags;
if (!sas_dev)
return TMF_RESP_FUNC_FAILED;
hisi_hba = dev_to_hisi_hba(task->dev);
dev = hisi_hba->dev;
spin_lock_irqsave(&task->task_state_lock, flags);
if (task->task_state_flags & SAS_TASK_STATE_DONE) {
struct hisi_sas_cq *cq;
if (slot) {
/*
* sync irq or poll queue to avoid free'ing task
* before using task in IO completion
*/
cq = &hisi_hba->cq[slot->dlvry_queue];
hisi_sas_sync_cq(cq);
}
spin_unlock_irqrestore(&task->task_state_lock, flags);
rc = TMF_RESP_FUNC_COMPLETE;
goto out;
}
task->task_state_flags |= SAS_TASK_STATE_ABORTED;
spin_unlock_irqrestore(&task->task_state_lock, flags);
if (!slot)
goto out;
if (task->task_proto & SAS_PROTOCOL_SSP) {
u16 tag = slot->idx;
int rc2;
rc = sas_abort_task(task, tag);
rc2 = sas_execute_internal_abort_single(device, tag,
slot->dlvry_queue, &internal_abort_data);
if (rc2 < 0) {
dev_err(dev, "abort task: internal abort (%d)\n", rc2);
return TMF_RESP_FUNC_FAILED;
}
/*
* If the TMF finds that the IO is not in the device and also
* the internal abort does not succeed, then it is safe to
* free the slot.
* Note: if the internal abort succeeds then the slot
* will have already been completed
*/
if (rc == TMF_RESP_FUNC_COMPLETE && rc2 != TMF_RESP_FUNC_SUCC) {
if (task->lldd_task)
hisi_sas_do_release_task(hisi_hba, task, slot, true);
}
} else if (task->task_proto & SAS_PROTOCOL_SATA ||
task->task_proto & SAS_PROTOCOL_STP) {
if (task->dev->dev_type == SAS_SATA_DEV) {
struct ata_queued_cmd *qc = task->uldd_task;
rc = hisi_sas_internal_task_abort_dev(sas_dev, false);
if (rc < 0) {
dev_err(dev, "abort task: internal abort failed\n");
goto out;
}
hisi_sas_dereg_device(hisi_hba, device);
/*
* If an ATA internal command times out in ATA EH, it
* need to execute soft reset, so check the scsicmd
*/
if ((sas_dev->dev_status == HISI_SAS_DEV_NCQ_ERR) &&
qc && qc->scsicmd) {
hisi_sas_do_release_task(hisi_hba, task, slot, true);
rc = TMF_RESP_FUNC_COMPLETE;
} else {
rc = hisi_sas_softreset_ata_disk(device);
}
}
} else if (task->task_proto & SAS_PROTOCOL_SMP) {
/* SMP */
u32 tag = slot->idx;
struct hisi_sas_cq *cq = &hisi_hba->cq[slot->dlvry_queue];
rc = sas_execute_internal_abort_single(device,
tag, slot->dlvry_queue,
&internal_abort_data);
if (((rc < 0) || (rc == TMF_RESP_FUNC_FAILED)) &&
task->lldd_task) {
/*
* sync irq or poll queue to avoid free'ing task
* before using task in IO completion
*/
hisi_sas_sync_cq(cq);
slot->task = NULL;
}
}
out:
if (rc != TMF_RESP_FUNC_COMPLETE)
dev_notice(dev, "abort task: rc=%d\n", rc);
return rc;
}
static int hisi_sas_abort_task_set(struct domain_device *device, u8 *lun)
{
struct hisi_sas_device *sas_dev = device->lldd_dev;
struct hisi_hba *hisi_hba = dev_to_hisi_hba(device);
struct device *dev = hisi_hba->dev;
int rc;
rc = hisi_sas_internal_task_abort_dev(sas_dev, false);
if (rc < 0) {
dev_err(dev, "abort task set: internal abort rc=%d\n", rc);
return TMF_RESP_FUNC_FAILED;
}
hisi_sas_dereg_device(hisi_hba, device);
rc = sas_abort_task_set(device, lun);
if (rc == TMF_RESP_FUNC_COMPLETE)
hisi_sas_release_task(hisi_hba, device);
return rc;
}
static int hisi_sas_debug_I_T_nexus_reset(struct domain_device *device)
{
struct sas_phy *local_phy = sas_get_local_phy(device);
struct hisi_sas_device *sas_dev = device->lldd_dev;
struct hisi_hba *hisi_hba = dev_to_hisi_hba(device);
struct sas_ha_struct *sas_ha = &hisi_hba->sha;
int rc, reset_type;
if (!local_phy->enabled) {
sas_put_local_phy(local_phy);
return -ENODEV;
}
if (scsi_is_sas_phy_local(local_phy)) {
struct asd_sas_phy *sas_phy =
sas_ha->sas_phy[local_phy->number];
struct hisi_sas_phy *phy =
container_of(sas_phy, struct hisi_sas_phy, sas_phy);
unsigned long flags;
spin_lock_irqsave(&phy->lock, flags);
phy->in_reset = 1;
spin_unlock_irqrestore(&phy->lock, flags);
}
reset_type = (sas_dev->dev_status == HISI_SAS_DEV_INIT ||
!dev_is_sata(device)) ? true : false;
rc = sas_phy_reset(local_phy, reset_type);
sas_put_local_phy(local_phy);
if (scsi_is_sas_phy_local(local_phy)) {
struct asd_sas_phy *sas_phy =
sas_ha->sas_phy[local_phy->number];
struct hisi_sas_phy *phy =
container_of(sas_phy, struct hisi_sas_phy, sas_phy);
unsigned long flags;
spin_lock_irqsave(&phy->lock, flags);
phy->in_reset = 0;
spin_unlock_irqrestore(&phy->lock, flags);
/* report PHY down if timed out */
if (rc == -ETIMEDOUT)
hisi_sas_phy_down(hisi_hba, sas_phy->id, 0, GFP_KERNEL);
return rc;
}
/* Remote phy */
if (rc)
return rc;
if (dev_is_sata(device)) {
struct ata_link *link = &device->sata_dev.ap->link;
rc = ata_wait_after_reset(link, jiffies + HISI_SAS_WAIT_PHYUP_TIMEOUT,
smp_ata_check_ready_type);
} else {
msleep(2000);
}
return rc;
}
static int hisi_sas_I_T_nexus_reset(struct domain_device *device)
{
struct hisi_sas_device *sas_dev = device->lldd_dev;
struct hisi_hba *hisi_hba = dev_to_hisi_hba(device);
struct device *dev = hisi_hba->dev;
int rc;
if (sas_dev->dev_status == HISI_SAS_DEV_NCQ_ERR)
sas_dev->dev_status = HISI_SAS_DEV_NORMAL;
rc = hisi_sas_internal_task_abort_dev(sas_dev, false);
if (rc < 0) {
dev_err(dev, "I_T nexus reset: internal abort (%d)\n", rc);
return TMF_RESP_FUNC_FAILED;
}
hisi_sas_dereg_device(hisi_hba, device);
rc = hisi_sas_debug_I_T_nexus_reset(device);
if (rc == TMF_RESP_FUNC_COMPLETE && dev_is_sata(device)) {
struct sas_phy *local_phy;
rc = hisi_sas_softreset_ata_disk(device);
switch (rc) {
case -ECOMM:
rc = -ENODEV;
break;
case TMF_RESP_FUNC_FAILED:
case -EMSGSIZE:
case -EIO:
local_phy = sas_get_local_phy(device);
rc = sas_phy_enable(local_phy, 0);
if (!rc) {
local_phy->enabled = 0;
dev_err(dev, "Disabled local phy of ATA disk %016llx due to softreset fail (%d)\n",
SAS_ADDR(device->sas_addr), rc);
rc = -ENODEV;
}
sas_put_local_phy(local_phy);
break;
default:
break;
}
}
if ((rc == TMF_RESP_FUNC_COMPLETE) || (rc == -ENODEV))
hisi_sas_release_task(hisi_hba, device);
return rc;
}
static int hisi_sas_lu_reset(struct domain_device *device, u8 *lun)
{
struct hisi_sas_device *sas_dev = device->lldd_dev;
struct hisi_hba *hisi_hba = dev_to_hisi_hba(device);
struct device *dev = hisi_hba->dev;
int rc = TMF_RESP_FUNC_FAILED;
/* Clear internal IO and then lu reset */
rc = hisi_sas_internal_task_abort_dev(sas_dev, false);
if (rc < 0) {
dev_err(dev, "lu_reset: internal abort failed\n");
goto out;
}
hisi_sas_dereg_device(hisi_hba, device);
if (dev_is_sata(device)) {
struct sas_phy *phy;
phy = sas_get_local_phy(device);
rc = sas_phy_reset(phy, true);
if (rc == 0)
hisi_sas_release_task(hisi_hba, device);
sas_put_local_phy(phy);
} else {
rc = sas_lu_reset(device, lun);
if (rc == TMF_RESP_FUNC_COMPLETE)
hisi_sas_release_task(hisi_hba, device);
}
out:
if (rc != TMF_RESP_FUNC_COMPLETE)
dev_err(dev, "lu_reset: for device[%d]:rc= %d\n",
sas_dev->device_id, rc);
return rc;
}
static void hisi_sas_async_I_T_nexus_reset(void *data, async_cookie_t cookie)
{
struct domain_device *device = data;
struct hisi_hba *hisi_hba = dev_to_hisi_hba(device);
int rc;
rc = hisi_sas_debug_I_T_nexus_reset(device);
if (rc != TMF_RESP_FUNC_COMPLETE)
dev_info(hisi_hba->dev, "I_T_nexus reset fail for dev:%016llx rc=%d\n",
SAS_ADDR(device->sas_addr), rc);
}
static int hisi_sas_clear_nexus_ha(struct sas_ha_struct *sas_ha)
{
struct hisi_hba *hisi_hba = sas_ha->lldd_ha;
HISI_SAS_DECLARE_RST_WORK_ON_STACK(r);
ASYNC_DOMAIN_EXCLUSIVE(async);
int i;
queue_work(hisi_hba->wq, &r.work);
wait_for_completion(r.completion);
if (!r.done)
return TMF_RESP_FUNC_FAILED;
for (i = 0; i < HISI_SAS_MAX_DEVICES; i++) {
struct hisi_sas_device *sas_dev = &hisi_hba->devices[i];
struct domain_device *device = sas_dev->sas_device;
if ((sas_dev->dev_type == SAS_PHY_UNUSED) || !device ||
dev_is_expander(device->dev_type))
continue;
async_schedule_domain(hisi_sas_async_I_T_nexus_reset,
device, &async);
}
async_synchronize_full_domain(&async);
hisi_sas_release_tasks(hisi_hba);
return TMF_RESP_FUNC_COMPLETE;
}
static int hisi_sas_query_task(struct sas_task *task)
{
int rc = TMF_RESP_FUNC_FAILED;
if (task->lldd_task && task->task_proto & SAS_PROTOCOL_SSP) {
struct hisi_sas_slot *slot = task->lldd_task;
u32 tag = slot->idx;
rc = sas_query_task(task, tag);
switch (rc) {
/* The task is still in Lun, release it then */
case TMF_RESP_FUNC_SUCC:
/* The task is not in Lun or failed, reset the phy */
case TMF_RESP_FUNC_FAILED:
case TMF_RESP_FUNC_COMPLETE:
break;
default:
rc = TMF_RESP_FUNC_FAILED;
break;
}
}
return rc;
}
static bool hisi_sas_internal_abort_timeout(struct sas_task *task,
void *data)
{
struct domain_device *device = task->dev;
struct hisi_hba *hisi_hba = dev_to_hisi_hba(device);
struct hisi_sas_internal_abort_data *timeout = data;
if (hisi_sas_debugfs_enable) {
/*
* If timeout occurs in device gone scenario, to avoid
* circular dependency like:
* hisi_sas_dev_gone() -> down() -> ... ->
* hisi_sas_internal_abort_timeout() -> down().
*/
if (!timeout->rst_ha_timeout)
down(&hisi_hba->sem);
hisi_hba->hw->debugfs_snapshot_regs(hisi_hba);
if (!timeout->rst_ha_timeout)
up(&hisi_hba->sem);
}
if (task->task_state_flags & SAS_TASK_STATE_DONE) {
pr_err("Internal abort: timeout %016llx\n",
SAS_ADDR(device->sas_addr));
} else {
struct hisi_sas_slot *slot = task->lldd_task;
set_bit(HISI_SAS_HW_FAULT_BIT, &hisi_hba->flags);
if (slot) {
struct hisi_sas_cq *cq =
&hisi_hba->cq[slot->dlvry_queue];
/*
* sync irq or poll queue to avoid free'ing task
* before using task in IO completion
*/
hisi_sas_sync_cq(cq);
slot->task = NULL;
}
if (timeout->rst_ha_timeout) {
pr_err("Internal abort: timeout and not done %016llx. Queuing reset.\n",
SAS_ADDR(device->sas_addr));
queue_work(hisi_hba->wq, &hisi_hba->rst_work);
} else {
pr_err("Internal abort: timeout and not done %016llx.\n",
SAS_ADDR(device->sas_addr));
}
return true;
}
return false;
}
static void hisi_sas_port_formed(struct asd_sas_phy *sas_phy)
{
hisi_sas_port_notify_formed(sas_phy);
}
static int hisi_sas_write_gpio(struct sas_ha_struct *sha, u8 reg_type,
u8 reg_index, u8 reg_count, u8 *write_data)
{
struct hisi_hba *hisi_hba = sha->lldd_ha;
if (!hisi_hba->hw->write_gpio)
return -EOPNOTSUPP;
return hisi_hba->hw->write_gpio(hisi_hba, reg_type,
reg_index, reg_count, write_data);
}
static void hisi_sas_phy_disconnected(struct hisi_sas_phy *phy)
{
struct asd_sas_phy *sas_phy = &phy->sas_phy;
struct sas_phy *sphy = sas_phy->phy;
unsigned long flags;
phy->phy_attached = 0;
phy->phy_type = 0;
phy->port = NULL;
spin_lock_irqsave(&phy->lock, flags);
if (phy->enable)
sphy->negotiated_linkrate = SAS_LINK_RATE_UNKNOWN;
else
sphy->negotiated_linkrate = SAS_PHY_DISABLED;
spin_unlock_irqrestore(&phy->lock, flags);
}
void hisi_sas_phy_down(struct hisi_hba *hisi_hba, int phy_no, int rdy,
gfp_t gfp_flags)
{
struct hisi_sas_phy *phy = &hisi_hba->phy[phy_no];
struct asd_sas_phy *sas_phy = &phy->sas_phy;
struct device *dev = hisi_hba->dev;
if (rdy) {
/* Phy down but ready */
hisi_sas_bytes_dmaed(hisi_hba, phy_no, gfp_flags);
hisi_sas_port_notify_formed(sas_phy);
} else {
struct hisi_sas_port *port = phy->port;
if (test_bit(HISI_SAS_RESETTING_BIT, &hisi_hba->flags) ||
phy->in_reset) {
dev_info(dev, "ignore flutter phy%d down\n", phy_no);
return;
}
/* Phy down and not ready */
sas_notify_phy_event(sas_phy, PHYE_LOSS_OF_SIGNAL, gfp_flags);
sas_phy_disconnected(sas_phy);
if (port) {
if (phy->phy_type & PORT_TYPE_SAS) {
int port_id = port->id;
if (!hisi_hba->hw->get_wideport_bitmap(hisi_hba,
port_id))
port->port_attached = 0;
} else if (phy->phy_type & PORT_TYPE_SATA)
port->port_attached = 0;
}
hisi_sas_phy_disconnected(phy);
}
}
EXPORT_SYMBOL_GPL(hisi_sas_phy_down);
void hisi_sas_phy_bcast(struct hisi_sas_phy *phy)
{
struct asd_sas_phy *sas_phy = &phy->sas_phy;
struct hisi_hba *hisi_hba = phy->hisi_hba;
if (test_bit(HISI_SAS_RESETTING_BIT, &hisi_hba->flags))
return;
sas_notify_port_event(sas_phy, PORTE_BROADCAST_RCVD, GFP_ATOMIC);
}
EXPORT_SYMBOL_GPL(hisi_sas_phy_bcast);
int hisi_sas_host_reset(struct Scsi_Host *shost, int reset_type)
{
struct hisi_hba *hisi_hba = shost_priv(shost);
if (reset_type != SCSI_ADAPTER_RESET)
return -EOPNOTSUPP;
queue_work(hisi_hba->wq, &hisi_hba->rst_work);
return 0;
}
EXPORT_SYMBOL_GPL(hisi_sas_host_reset);
struct scsi_transport_template *hisi_sas_stt;
EXPORT_SYMBOL_GPL(hisi_sas_stt);
static struct sas_domain_function_template hisi_sas_transport_ops = {
.lldd_dev_found = hisi_sas_dev_found,
.lldd_dev_gone = hisi_sas_dev_gone,
.lldd_execute_task = hisi_sas_queue_command,
.lldd_control_phy = hisi_sas_control_phy,
.lldd_abort_task = hisi_sas_abort_task,
.lldd_abort_task_set = hisi_sas_abort_task_set,
.lldd_I_T_nexus_reset = hisi_sas_I_T_nexus_reset,
.lldd_lu_reset = hisi_sas_lu_reset,
.lldd_query_task = hisi_sas_query_task,
.lldd_clear_nexus_ha = hisi_sas_clear_nexus_ha,
.lldd_port_formed = hisi_sas_port_formed,
.lldd_write_gpio = hisi_sas_write_gpio,
.lldd_tmf_aborted = hisi_sas_tmf_aborted,
.lldd_abort_timeout = hisi_sas_internal_abort_timeout,
};
void hisi_sas_init_mem(struct hisi_hba *hisi_hba)
{
int i, s, j, max_command_entries = HISI_SAS_MAX_COMMANDS;
struct hisi_sas_breakpoint *sata_breakpoint = hisi_hba->sata_breakpoint;
for (i = 0; i < hisi_hba->queue_count; i++) {
struct hisi_sas_cq *cq = &hisi_hba->cq[i];
struct hisi_sas_dq *dq = &hisi_hba->dq[i];
struct hisi_sas_cmd_hdr *cmd_hdr = hisi_hba->cmd_hdr[i];
s = sizeof(struct hisi_sas_cmd_hdr);
for (j = 0; j < HISI_SAS_QUEUE_SLOTS; j++)
memset(&cmd_hdr[j], 0, s);
dq->wr_point = 0;
s = hisi_hba->hw->complete_hdr_size * HISI_SAS_QUEUE_SLOTS;
memset(hisi_hba->complete_hdr[i], 0, s);
cq->rd_point = 0;
}
s = sizeof(struct hisi_sas_initial_fis) * hisi_hba->n_phy;
memset(hisi_hba->initial_fis, 0, s);
s = max_command_entries * sizeof(struct hisi_sas_iost);
memset(hisi_hba->iost, 0, s);
s = max_command_entries * sizeof(struct hisi_sas_breakpoint);
memset(hisi_hba->breakpoint, 0, s);
s = sizeof(struct hisi_sas_sata_breakpoint);
for (j = 0; j < HISI_SAS_MAX_ITCT_ENTRIES; j++)
memset(&sata_breakpoint[j], 0, s);
}
EXPORT_SYMBOL_GPL(hisi_sas_init_mem);
int hisi_sas_alloc(struct hisi_hba *hisi_hba)
{
struct device *dev = hisi_hba->dev;
int i, j, s, max_command_entries = HISI_SAS_MAX_COMMANDS;
int max_command_entries_ru, sz_slot_buf_ru;
int blk_cnt, slots_per_blk;
sema_init(&hisi_hba->sem, 1);
spin_lock_init(&hisi_hba->lock);
for (i = 0; i < hisi_hba->n_phy; i++) {
hisi_sas_phy_init(hisi_hba, i);
hisi_hba->port[i].port_attached = 0;
hisi_hba->port[i].id = -1;
}
for (i = 0; i < HISI_SAS_MAX_DEVICES; i++) {
hisi_hba->devices[i].dev_type = SAS_PHY_UNUSED;
hisi_hba->devices[i].device_id = i;
hisi_hba->devices[i].dev_status = HISI_SAS_DEV_INIT;
}
for (i = 0; i < hisi_hba->queue_count; i++) {
struct hisi_sas_cq *cq = &hisi_hba->cq[i];
struct hisi_sas_dq *dq = &hisi_hba->dq[i];
/* Completion queue structure */
cq->id = i;
cq->hisi_hba = hisi_hba;
spin_lock_init(&cq->poll_lock);
/* Delivery queue structure */
spin_lock_init(&dq->lock);
INIT_LIST_HEAD(&dq->list);
dq->id = i;
dq->hisi_hba = hisi_hba;
/* Delivery queue */
s = sizeof(struct hisi_sas_cmd_hdr) * HISI_SAS_QUEUE_SLOTS;
hisi_hba->cmd_hdr[i] = dmam_alloc_coherent(dev, s,
&hisi_hba->cmd_hdr_dma[i],
GFP_KERNEL);
if (!hisi_hba->cmd_hdr[i])
goto err_out;
/* Completion queue */
s = hisi_hba->hw->complete_hdr_size * HISI_SAS_QUEUE_SLOTS;
hisi_hba->complete_hdr[i] = dmam_alloc_coherent(dev, s,
&hisi_hba->complete_hdr_dma[i],
GFP_KERNEL);
if (!hisi_hba->complete_hdr[i])
goto err_out;
}
s = HISI_SAS_MAX_ITCT_ENTRIES * sizeof(struct hisi_sas_itct);
hisi_hba->itct = dmam_alloc_coherent(dev, s, &hisi_hba->itct_dma,
GFP_KERNEL);
if (!hisi_hba->itct)
goto err_out;
hisi_hba->slot_info = devm_kcalloc(dev, max_command_entries,
sizeof(struct hisi_sas_slot),
GFP_KERNEL);
if (!hisi_hba->slot_info)
goto err_out;
/* roundup to avoid overly large block size */
max_command_entries_ru = roundup(max_command_entries, 64);
if (hisi_hba->prot_mask & HISI_SAS_DIX_PROT_MASK)
sz_slot_buf_ru = sizeof(struct hisi_sas_slot_dif_buf_table);
else
sz_slot_buf_ru = sizeof(struct hisi_sas_slot_buf_table);
sz_slot_buf_ru = roundup(sz_slot_buf_ru, 64);
s = max(lcm(max_command_entries_ru, sz_slot_buf_ru), PAGE_SIZE);
blk_cnt = (max_command_entries_ru * sz_slot_buf_ru) / s;
slots_per_blk = s / sz_slot_buf_ru;
for (i = 0; i < blk_cnt; i++) {
int slot_index = i * slots_per_blk;
dma_addr_t buf_dma;
void *buf;
buf = dmam_alloc_coherent(dev, s, &buf_dma,
GFP_KERNEL);
if (!buf)
goto err_out;
for (j = 0; j < slots_per_blk; j++, slot_index++) {
struct hisi_sas_slot *slot;
slot = &hisi_hba->slot_info[slot_index];
slot->buf = buf;
slot->buf_dma = buf_dma;
slot->idx = slot_index;
buf += sz_slot_buf_ru;
buf_dma += sz_slot_buf_ru;
}
}
s = max_command_entries * sizeof(struct hisi_sas_iost);
hisi_hba->iost = dmam_alloc_coherent(dev, s, &hisi_hba->iost_dma,
GFP_KERNEL);
if (!hisi_hba->iost)
goto err_out;
s = max_command_entries * sizeof(struct hisi_sas_breakpoint);
hisi_hba->breakpoint = dmam_alloc_coherent(dev, s,
&hisi_hba->breakpoint_dma,
GFP_KERNEL);
if (!hisi_hba->breakpoint)
goto err_out;
s = hisi_hba->slot_index_count = max_command_entries;
hisi_hba->slot_index_tags = devm_bitmap_zalloc(dev, s, GFP_KERNEL);
if (!hisi_hba->slot_index_tags)
goto err_out;
s = sizeof(struct hisi_sas_initial_fis) * HISI_SAS_MAX_PHYS;
hisi_hba->initial_fis = dmam_alloc_coherent(dev, s,
&hisi_hba->initial_fis_dma,
GFP_KERNEL);
if (!hisi_hba->initial_fis)
goto err_out;
s = HISI_SAS_MAX_ITCT_ENTRIES * sizeof(struct hisi_sas_sata_breakpoint);
hisi_hba->sata_breakpoint = dmam_alloc_coherent(dev, s,
&hisi_hba->sata_breakpoint_dma,
GFP_KERNEL);
if (!hisi_hba->sata_breakpoint)
goto err_out;
hisi_hba->last_slot_index = 0;
hisi_hba->wq =
alloc_ordered_workqueue("%s", WQ_MEM_RECLAIM, dev_name(dev));
if (!hisi_hba->wq) {
dev_err(dev, "sas_alloc: failed to create workqueue\n");
goto err_out;
}
return 0;
err_out:
return -ENOMEM;
}
EXPORT_SYMBOL_GPL(hisi_sas_alloc);
void hisi_sas_free(struct hisi_hba *hisi_hba)
{
int i;
for (i = 0; i < hisi_hba->n_phy; i++) {
struct hisi_sas_phy *phy = &hisi_hba->phy[i];
del_timer_sync(&phy->timer);
}
if (hisi_hba->wq)
destroy_workqueue(hisi_hba->wq);
}
EXPORT_SYMBOL_GPL(hisi_sas_free);
void hisi_sas_rst_work_handler(struct work_struct *work)
{
struct hisi_hba *hisi_hba =
container_of(work, struct hisi_hba, rst_work);
if (hisi_sas_controller_prereset(hisi_hba))
return;
hisi_sas_controller_reset(hisi_hba);
}
EXPORT_SYMBOL_GPL(hisi_sas_rst_work_handler);
void hisi_sas_sync_rst_work_handler(struct work_struct *work)
{
struct hisi_sas_rst *rst =
container_of(work, struct hisi_sas_rst, work);
if (hisi_sas_controller_prereset(rst->hisi_hba))
goto rst_complete;
if (!hisi_sas_controller_reset(rst->hisi_hba))
rst->done = true;
rst_complete:
complete(rst->completion);
}
EXPORT_SYMBOL_GPL(hisi_sas_sync_rst_work_handler);
int hisi_sas_get_fw_info(struct hisi_hba *hisi_hba)
{
struct device *dev = hisi_hba->dev;
struct platform_device *pdev = hisi_hba->platform_dev;
struct device_node *np = pdev ? pdev->dev.of_node : NULL;
struct clk *refclk;
if (device_property_read_u8_array(dev, "sas-addr", hisi_hba->sas_addr,
SAS_ADDR_SIZE)) {
dev_err(dev, "could not get property sas-addr\n");
return -ENOENT;
}
if (np) {
/*
* These properties are only required for platform device-based
* controller with DT firmware.
*/
hisi_hba->ctrl = syscon_regmap_lookup_by_phandle(np,
"hisilicon,sas-syscon");
if (IS_ERR(hisi_hba->ctrl)) {
dev_err(dev, "could not get syscon\n");
return -ENOENT;
}
if (device_property_read_u32(dev, "ctrl-reset-reg",
&hisi_hba->ctrl_reset_reg)) {
dev_err(dev, "could not get property ctrl-reset-reg\n");
return -ENOENT;
}
if (device_property_read_u32(dev, "ctrl-reset-sts-reg",
&hisi_hba->ctrl_reset_sts_reg)) {
dev_err(dev, "could not get property ctrl-reset-sts-reg\n");
return -ENOENT;
}
if (device_property_read_u32(dev, "ctrl-clock-ena-reg",
&hisi_hba->ctrl_clock_ena_reg)) {
dev_err(dev, "could not get property ctrl-clock-ena-reg\n");
return -ENOENT;
}
}
refclk = devm_clk_get(dev, NULL);
if (IS_ERR(refclk))
dev_dbg(dev, "no ref clk property\n");
else
hisi_hba->refclk_frequency_mhz = clk_get_rate(refclk) / 1000000;
if (device_property_read_u32(dev, "phy-count", &hisi_hba->n_phy)) {
dev_err(dev, "could not get property phy-count\n");
return -ENOENT;
}
if (device_property_read_u32(dev, "queue-count",
&hisi_hba->queue_count)) {
dev_err(dev, "could not get property queue-count\n");
return -ENOENT;
}
return 0;
}
EXPORT_SYMBOL_GPL(hisi_sas_get_fw_info);
static struct Scsi_Host *hisi_sas_shost_alloc(struct platform_device *pdev,
const struct hisi_sas_hw *hw)
{
struct resource *res;
struct Scsi_Host *shost;
struct hisi_hba *hisi_hba;
struct device *dev = &pdev->dev;
int error;
shost = scsi_host_alloc(hw->sht, sizeof(*hisi_hba));
if (!shost) {
dev_err(dev, "scsi host alloc failed\n");
return NULL;
}
hisi_hba = shost_priv(shost);
INIT_WORK(&hisi_hba->rst_work, hisi_sas_rst_work_handler);
hisi_hba->hw = hw;
hisi_hba->dev = dev;
hisi_hba->platform_dev = pdev;
hisi_hba->shost = shost;
SHOST_TO_SAS_HA(shost) = &hisi_hba->sha;
timer_setup(&hisi_hba->timer, NULL, 0);
if (hisi_sas_get_fw_info(hisi_hba) < 0)
goto err_out;
error = dma_set_mask_and_coherent(dev, DMA_BIT_MASK(64));
if (error) {
dev_err(dev, "No usable DMA addressing method\n");
goto err_out;
}
hisi_hba->regs = devm_platform_ioremap_resource(pdev, 0);
if (IS_ERR(hisi_hba->regs))
goto err_out;
res = platform_get_resource(pdev, IORESOURCE_MEM, 1);
if (res) {
hisi_hba->sgpio_regs = devm_ioremap_resource(dev, res);
if (IS_ERR(hisi_hba->sgpio_regs))
goto err_out;
}
if (hisi_sas_alloc(hisi_hba)) {
hisi_sas_free(hisi_hba);
goto err_out;
}
return shost;
err_out:
scsi_host_put(shost);
dev_err(dev, "shost alloc failed\n");
return NULL;
}
static int hisi_sas_interrupt_preinit(struct hisi_hba *hisi_hba)
{
if (hisi_hba->hw->interrupt_preinit)
return hisi_hba->hw->interrupt_preinit(hisi_hba);
return 0;
}
int hisi_sas_probe(struct platform_device *pdev,
const struct hisi_sas_hw *hw)
{
struct Scsi_Host *shost;
struct hisi_hba *hisi_hba;
struct device *dev = &pdev->dev;
struct asd_sas_phy **arr_phy;
struct asd_sas_port **arr_port;
struct sas_ha_struct *sha;
int rc, phy_nr, port_nr, i;
shost = hisi_sas_shost_alloc(pdev, hw);
if (!shost)
return -ENOMEM;
sha = SHOST_TO_SAS_HA(shost);
hisi_hba = shost_priv(shost);
platform_set_drvdata(pdev, sha);
phy_nr = port_nr = hisi_hba->n_phy;
arr_phy = devm_kcalloc(dev, phy_nr, sizeof(void *), GFP_KERNEL);
arr_port = devm_kcalloc(dev, port_nr, sizeof(void *), GFP_KERNEL);
if (!arr_phy || !arr_port) {
rc = -ENOMEM;
goto err_out_ha;
}
sha->sas_phy = arr_phy;
sha->sas_port = arr_port;
sha->lldd_ha = hisi_hba;
shost->transportt = hisi_sas_stt;
shost->max_id = HISI_SAS_MAX_DEVICES;
shost->max_lun = ~0;
shost->max_channel = 1;
shost->max_cmd_len = 16;
if (hisi_hba->hw->slot_index_alloc) {
shost->can_queue = HISI_SAS_MAX_COMMANDS;
shost->cmd_per_lun = HISI_SAS_MAX_COMMANDS;
} else {
shost->can_queue = HISI_SAS_UNRESERVED_IPTT;
shost->cmd_per_lun = HISI_SAS_UNRESERVED_IPTT;
}
sha->sas_ha_name = DRV_NAME;
sha->dev = hisi_hba->dev;
sha->sas_addr = &hisi_hba->sas_addr[0];
sha->num_phys = hisi_hba->n_phy;
sha->shost = hisi_hba->shost;
for (i = 0; i < hisi_hba->n_phy; i++) {
sha->sas_phy[i] = &hisi_hba->phy[i].sas_phy;
sha->sas_port[i] = &hisi_hba->port[i].sas_port;
}
rc = hisi_sas_interrupt_preinit(hisi_hba);
if (rc)
goto err_out_ha;
rc = scsi_add_host(shost, &pdev->dev);
if (rc)
goto err_out_ha;
rc = sas_register_ha(sha);
if (rc)
goto err_out_register_ha;
rc = hisi_hba->hw->hw_init(hisi_hba);
if (rc)
goto err_out_hw_init;
scsi_scan_host(shost);
return 0;
err_out_hw_init:
sas_unregister_ha(sha);
err_out_register_ha:
scsi_remove_host(shost);
err_out_ha:
hisi_sas_free(hisi_hba);
scsi_host_put(shost);
return rc;
}
EXPORT_SYMBOL_GPL(hisi_sas_probe);
void hisi_sas_remove(struct platform_device *pdev)
{
struct sas_ha_struct *sha = platform_get_drvdata(pdev);
struct hisi_hba *hisi_hba = sha->lldd_ha;
struct Scsi_Host *shost = sha->shost;
del_timer_sync(&hisi_hba->timer);
sas_unregister_ha(sha);
sas_remove_host(shost);
hisi_sas_free(hisi_hba);
scsi_host_put(shost);
}
EXPORT_SYMBOL_GPL(hisi_sas_remove);
#if IS_ENABLED(CONFIG_SCSI_HISI_SAS_DEBUGFS_DEFAULT_ENABLE)
#define DEBUGFS_ENABLE_DEFAULT "enabled"
bool hisi_sas_debugfs_enable = true;
u32 hisi_sas_debugfs_dump_count = 50;
#else
#define DEBUGFS_ENABLE_DEFAULT "disabled"
bool hisi_sas_debugfs_enable;
u32 hisi_sas_debugfs_dump_count = 1;
#endif
EXPORT_SYMBOL_GPL(hisi_sas_debugfs_enable);
module_param_named(debugfs_enable, hisi_sas_debugfs_enable, bool, 0444);
MODULE_PARM_DESC(hisi_sas_debugfs_enable,
"Enable driver debugfs (default "DEBUGFS_ENABLE_DEFAULT")");
EXPORT_SYMBOL_GPL(hisi_sas_debugfs_dump_count);
module_param_named(debugfs_dump_count, hisi_sas_debugfs_dump_count, uint, 0444);
MODULE_PARM_DESC(hisi_sas_debugfs_dump_count, "Number of debugfs dumps to allow");
struct dentry *hisi_sas_debugfs_dir;
EXPORT_SYMBOL_GPL(hisi_sas_debugfs_dir);
static __init int hisi_sas_init(void)
{
hisi_sas_stt = sas_domain_attach_transport(&hisi_sas_transport_ops);
if (!hisi_sas_stt)
return -ENOMEM;
if (hisi_sas_debugfs_enable) {
hisi_sas_debugfs_dir = debugfs_create_dir("hisi_sas", NULL);
if (hisi_sas_debugfs_dump_count > HISI_SAS_MAX_DEBUGFS_DUMP) {
pr_info("hisi_sas: Limiting debugfs dump count\n");
hisi_sas_debugfs_dump_count = HISI_SAS_MAX_DEBUGFS_DUMP;
}
}
return 0;
}
static __exit void hisi_sas_exit(void)
{
sas_release_transport(hisi_sas_stt);
if (hisi_sas_debugfs_enable)
debugfs_remove(hisi_sas_debugfs_dir);
}
module_init(hisi_sas_init);
module_exit(hisi_sas_exit);
MODULE_LICENSE("GPL");
MODULE_AUTHOR("John Garry <john.garry@huawei.com>");
MODULE_DESCRIPTION("HISILICON SAS controller driver");
MODULE_ALIAS("platform:" DRV_NAME);