f28eab6ae4
MAC address, hardware type, calibration values and etc are stored in efuse, so we read them at probe stage and use them as capabilities to register hardware. There are two physical efuse -- one is the main efuse for digital hardware part, and the other is for analog part. Because they are very similar, we only describe the main efuse below. The main efuse is split into two regions -- one is for logic map, and the other is for physical map. For both regions, we use the same method to read data, but need additional parser to get logic map. To allow reading operation, we need to convert power state to active, and turn to idle state after reading. For WiFi 7 chips, we introduce efuse blocks to define feature group easier, and these blocks are discontinue. For example, RF block is from 0x1_0000 ~ 0x1_0240, and the next block PCIE_SDIO is starting from 0x2_0000. Comparing to old one used by WiFi 6 chips, there is only single one logic map, it would be a little hard to add an new field to a group if we don't reserve a room in advance. The relationship between efuse, region and block is shown as below: (logical map) +------------+ +---------------+ +-----------------+ | main efuse | | region 1 | | block 0x1_0000~ | | (digital) | |(to logcal map)| +-----------------+ | | | | => +-----------------+ | | => | | | block 0x2_0000~ | | | | | +-----------------+ | | |---------------| : | | | region 2 | +------------+ +---------------+ +------------+ +-----------------+ | 2nd efuse | ======================> | block 0x7_0000~ | | (analog) | +-----------------+ +------------+ The parser converting from raw data to logic map is to decode block page, block page offset, and word_en bits. Each word_en bit indicates two following bytes as data of logic map, so total four word_en bits can represent eight bytes. Thus, block page offset is 8-byte alignment. The layout of a tuple is shown as below +--------+--------+--------+--------+--------+--------+ | fixed 3 byte header | | | | | | | | | | [19:17] block_page | | | ... | | [16:4] block_page_offset| | | | | [3:0] word_en | ^ | ^ | | +----|---+--------+--------+---|----+----|---+--------+ | | | +-------------------------+---------+ a word_en bit indicates two bytes as data For example, block_page = 0x3 block_page_offset = 0x80 (must 8-byte alignment) word_en = 0x6 (b'0110; 0 means data is presented) following 4 bytes = 34 56 78 90 Then, 0x3_0080 = 34 56 0x3_0086 = 78 90 A special block page is RTW89_EFUSE_BLOCK_ADIE (7) that uses different but similar format, because its real efuse size is smaller than main efuse. Signed-off-by: Ping-Ke Shih <pkshih@realtek.com> Signed-off-by: Kalle Valo <kvalo@kernel.org> Link: https://lore.kernel.org/r/20231117024029.113845-4-pkshih@realtek.com
357 lines
8.6 KiB
C
357 lines
8.6 KiB
C
// SPDX-License-Identifier: GPL-2.0 OR BSD-3-Clause
|
|
/* Copyright(c) 2019-2020 Realtek Corporation
|
|
*/
|
|
|
|
#include "debug.h"
|
|
#include "efuse.h"
|
|
#include "mac.h"
|
|
#include "reg.h"
|
|
|
|
#define EF_FV_OFSET 0x5ea
|
|
#define EF_CV_MASK GENMASK(7, 4)
|
|
#define EF_CV_INV 15
|
|
|
|
enum rtw89_efuse_bank {
|
|
RTW89_EFUSE_BANK_WIFI,
|
|
RTW89_EFUSE_BANK_BT,
|
|
};
|
|
|
|
static int rtw89_switch_efuse_bank(struct rtw89_dev *rtwdev,
|
|
enum rtw89_efuse_bank bank)
|
|
{
|
|
u8 val;
|
|
|
|
if (rtwdev->chip->chip_id != RTL8852A)
|
|
return 0;
|
|
|
|
val = rtw89_read32_mask(rtwdev, R_AX_EFUSE_CTRL_1,
|
|
B_AX_EF_CELL_SEL_MASK);
|
|
if (bank == val)
|
|
return 0;
|
|
|
|
rtw89_write32_mask(rtwdev, R_AX_EFUSE_CTRL_1, B_AX_EF_CELL_SEL_MASK,
|
|
bank);
|
|
|
|
val = rtw89_read32_mask(rtwdev, R_AX_EFUSE_CTRL_1,
|
|
B_AX_EF_CELL_SEL_MASK);
|
|
if (bank == val)
|
|
return 0;
|
|
|
|
return -EBUSY;
|
|
}
|
|
|
|
static void rtw89_enable_otp_burst_mode(struct rtw89_dev *rtwdev, bool en)
|
|
{
|
|
if (en)
|
|
rtw89_write32_set(rtwdev, R_AX_EFUSE_CTRL_1_V1, B_AX_EF_BURST);
|
|
else
|
|
rtw89_write32_clr(rtwdev, R_AX_EFUSE_CTRL_1_V1, B_AX_EF_BURST);
|
|
}
|
|
|
|
static void rtw89_enable_efuse_pwr_cut_ddv(struct rtw89_dev *rtwdev)
|
|
{
|
|
enum rtw89_core_chip_id chip_id = rtwdev->chip->chip_id;
|
|
struct rtw89_hal *hal = &rtwdev->hal;
|
|
|
|
if (chip_id == RTL8852A)
|
|
return;
|
|
|
|
rtw89_write8_set(rtwdev, R_AX_PMC_DBG_CTRL2, B_AX_SYSON_DIS_PMCR_AX_WRMSK);
|
|
rtw89_write16_set(rtwdev, R_AX_SYS_ISO_CTRL, B_AX_PWC_EV2EF_B14);
|
|
|
|
fsleep(1000);
|
|
|
|
rtw89_write16_set(rtwdev, R_AX_SYS_ISO_CTRL, B_AX_PWC_EV2EF_B15);
|
|
rtw89_write16_clr(rtwdev, R_AX_SYS_ISO_CTRL, B_AX_ISO_EB2CORE);
|
|
if (chip_id == RTL8852B && hal->cv == CHIP_CAV)
|
|
rtw89_enable_otp_burst_mode(rtwdev, true);
|
|
}
|
|
|
|
static void rtw89_disable_efuse_pwr_cut_ddv(struct rtw89_dev *rtwdev)
|
|
{
|
|
enum rtw89_core_chip_id chip_id = rtwdev->chip->chip_id;
|
|
struct rtw89_hal *hal = &rtwdev->hal;
|
|
|
|
if (chip_id == RTL8852A)
|
|
return;
|
|
|
|
if (chip_id == RTL8852B && hal->cv == CHIP_CAV)
|
|
rtw89_enable_otp_burst_mode(rtwdev, false);
|
|
|
|
rtw89_write16_set(rtwdev, R_AX_SYS_ISO_CTRL, B_AX_ISO_EB2CORE);
|
|
rtw89_write16_clr(rtwdev, R_AX_SYS_ISO_CTRL, B_AX_PWC_EV2EF_B15);
|
|
|
|
fsleep(1000);
|
|
|
|
rtw89_write16_clr(rtwdev, R_AX_SYS_ISO_CTRL, B_AX_PWC_EV2EF_B14);
|
|
rtw89_write8_clr(rtwdev, R_AX_PMC_DBG_CTRL2, B_AX_SYSON_DIS_PMCR_AX_WRMSK);
|
|
}
|
|
|
|
static int rtw89_dump_physical_efuse_map_ddv(struct rtw89_dev *rtwdev, u8 *map,
|
|
u32 dump_addr, u32 dump_size)
|
|
{
|
|
u32 efuse_ctl;
|
|
u32 addr;
|
|
int ret;
|
|
|
|
rtw89_enable_efuse_pwr_cut_ddv(rtwdev);
|
|
|
|
for (addr = dump_addr; addr < dump_addr + dump_size; addr++) {
|
|
efuse_ctl = u32_encode_bits(addr, B_AX_EF_ADDR_MASK);
|
|
rtw89_write32(rtwdev, R_AX_EFUSE_CTRL, efuse_ctl & ~B_AX_EF_RDY);
|
|
|
|
ret = read_poll_timeout_atomic(rtw89_read32, efuse_ctl,
|
|
efuse_ctl & B_AX_EF_RDY, 1, 1000000,
|
|
true, rtwdev, R_AX_EFUSE_CTRL);
|
|
if (ret)
|
|
return -EBUSY;
|
|
|
|
*map++ = (u8)(efuse_ctl & 0xff);
|
|
}
|
|
|
|
rtw89_disable_efuse_pwr_cut_ddv(rtwdev);
|
|
|
|
return 0;
|
|
}
|
|
|
|
int rtw89_cnv_efuse_state_ax(struct rtw89_dev *rtwdev, bool idle)
|
|
{
|
|
return 0;
|
|
}
|
|
|
|
static int rtw89_dump_physical_efuse_map_dav(struct rtw89_dev *rtwdev, u8 *map,
|
|
u32 dump_addr, u32 dump_size)
|
|
{
|
|
u32 addr;
|
|
u8 val8;
|
|
int err;
|
|
int ret;
|
|
|
|
for (addr = dump_addr; addr < dump_addr + dump_size; addr++) {
|
|
ret = rtw89_mac_write_xtal_si(rtwdev, XTAL_SI_CTRL, 0x40, FULL_BIT_MASK);
|
|
if (ret)
|
|
return ret;
|
|
ret = rtw89_mac_write_xtal_si(rtwdev, XTAL_SI_LOW_ADDR,
|
|
addr & 0xff, XTAL_SI_LOW_ADDR_MASK);
|
|
if (ret)
|
|
return ret;
|
|
ret = rtw89_mac_write_xtal_si(rtwdev, XTAL_SI_CTRL, addr >> 8,
|
|
XTAL_SI_HIGH_ADDR_MASK);
|
|
if (ret)
|
|
return ret;
|
|
ret = rtw89_mac_write_xtal_si(rtwdev, XTAL_SI_CTRL, 0,
|
|
XTAL_SI_MODE_SEL_MASK);
|
|
if (ret)
|
|
return ret;
|
|
|
|
ret = read_poll_timeout_atomic(rtw89_mac_read_xtal_si, err,
|
|
!err && (val8 & XTAL_SI_RDY),
|
|
1, 10000, false,
|
|
rtwdev, XTAL_SI_CTRL, &val8);
|
|
if (ret) {
|
|
rtw89_warn(rtwdev, "failed to read dav efuse\n");
|
|
return ret;
|
|
}
|
|
|
|
ret = rtw89_mac_read_xtal_si(rtwdev, XTAL_SI_READ_VAL, &val8);
|
|
if (ret)
|
|
return ret;
|
|
*map++ = val8;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int rtw89_dump_physical_efuse_map(struct rtw89_dev *rtwdev, u8 *map,
|
|
u32 dump_addr, u32 dump_size, bool dav)
|
|
{
|
|
int ret;
|
|
|
|
if (!map || dump_size == 0)
|
|
return 0;
|
|
|
|
rtw89_switch_efuse_bank(rtwdev, RTW89_EFUSE_BANK_WIFI);
|
|
|
|
if (dav) {
|
|
ret = rtw89_dump_physical_efuse_map_dav(rtwdev, map, dump_addr, dump_size);
|
|
if (ret)
|
|
return ret;
|
|
} else {
|
|
ret = rtw89_dump_physical_efuse_map_ddv(rtwdev, map, dump_addr, dump_size);
|
|
if (ret)
|
|
return ret;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
#define invalid_efuse_header(hdr1, hdr2) \
|
|
((hdr1) == 0xff || (hdr2) == 0xff)
|
|
#define invalid_efuse_content(word_en, i) \
|
|
(((word_en) & BIT(i)) != 0x0)
|
|
#define get_efuse_blk_idx(hdr1, hdr2) \
|
|
((((hdr2) & 0xf0) >> 4) | (((hdr1) & 0x0f) << 4))
|
|
#define block_idx_to_logical_idx(blk_idx, i) \
|
|
(((blk_idx) << 3) + ((i) << 1))
|
|
static int rtw89_dump_logical_efuse_map(struct rtw89_dev *rtwdev, u8 *phy_map,
|
|
u8 *log_map)
|
|
{
|
|
u32 physical_size = rtwdev->chip->physical_efuse_size;
|
|
u32 logical_size = rtwdev->chip->logical_efuse_size;
|
|
u8 sec_ctrl_size = rtwdev->chip->sec_ctrl_efuse_size;
|
|
u32 phy_idx = sec_ctrl_size;
|
|
u32 log_idx;
|
|
u8 hdr1, hdr2;
|
|
u8 blk_idx;
|
|
u8 word_en;
|
|
int i;
|
|
|
|
if (!phy_map)
|
|
return 0;
|
|
|
|
while (phy_idx < physical_size - sec_ctrl_size) {
|
|
hdr1 = phy_map[phy_idx];
|
|
hdr2 = phy_map[phy_idx + 1];
|
|
if (invalid_efuse_header(hdr1, hdr2))
|
|
break;
|
|
|
|
blk_idx = get_efuse_blk_idx(hdr1, hdr2);
|
|
word_en = hdr2 & 0xf;
|
|
phy_idx += 2;
|
|
|
|
for (i = 0; i < 4; i++) {
|
|
if (invalid_efuse_content(word_en, i))
|
|
continue;
|
|
|
|
log_idx = block_idx_to_logical_idx(blk_idx, i);
|
|
if (phy_idx + 1 > physical_size - sec_ctrl_size - 1 ||
|
|
log_idx + 1 > logical_size)
|
|
return -EINVAL;
|
|
|
|
log_map[log_idx] = phy_map[phy_idx];
|
|
log_map[log_idx + 1] = phy_map[phy_idx + 1];
|
|
phy_idx += 2;
|
|
}
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
int rtw89_parse_efuse_map_ax(struct rtw89_dev *rtwdev)
|
|
{
|
|
u32 phy_size = rtwdev->chip->physical_efuse_size;
|
|
u32 log_size = rtwdev->chip->logical_efuse_size;
|
|
u32 dav_phy_size = rtwdev->chip->dav_phy_efuse_size;
|
|
u32 dav_log_size = rtwdev->chip->dav_log_efuse_size;
|
|
u32 full_log_size = log_size + dav_log_size;
|
|
u8 *phy_map = NULL;
|
|
u8 *log_map = NULL;
|
|
u8 *dav_phy_map = NULL;
|
|
u8 *dav_log_map = NULL;
|
|
int ret;
|
|
|
|
if (rtw89_read16(rtwdev, R_AX_SYS_WL_EFUSE_CTRL) & B_AX_AUTOLOAD_SUS)
|
|
rtwdev->efuse.valid = true;
|
|
else
|
|
rtw89_warn(rtwdev, "failed to check efuse autoload\n");
|
|
|
|
phy_map = kmalloc(phy_size, GFP_KERNEL);
|
|
log_map = kmalloc(full_log_size, GFP_KERNEL);
|
|
if (dav_phy_size && dav_log_size) {
|
|
dav_phy_map = kmalloc(dav_phy_size, GFP_KERNEL);
|
|
dav_log_map = log_map + log_size;
|
|
}
|
|
|
|
if (!phy_map || !log_map || (dav_phy_size && !dav_phy_map)) {
|
|
ret = -ENOMEM;
|
|
goto out_free;
|
|
}
|
|
|
|
ret = rtw89_dump_physical_efuse_map(rtwdev, phy_map, 0, phy_size, false);
|
|
if (ret) {
|
|
rtw89_warn(rtwdev, "failed to dump efuse physical map\n");
|
|
goto out_free;
|
|
}
|
|
ret = rtw89_dump_physical_efuse_map(rtwdev, dav_phy_map, 0, dav_phy_size, true);
|
|
if (ret) {
|
|
rtw89_warn(rtwdev, "failed to dump efuse dav physical map\n");
|
|
goto out_free;
|
|
}
|
|
|
|
memset(log_map, 0xff, full_log_size);
|
|
ret = rtw89_dump_logical_efuse_map(rtwdev, phy_map, log_map);
|
|
if (ret) {
|
|
rtw89_warn(rtwdev, "failed to dump efuse logical map\n");
|
|
goto out_free;
|
|
}
|
|
ret = rtw89_dump_logical_efuse_map(rtwdev, dav_phy_map, dav_log_map);
|
|
if (ret) {
|
|
rtw89_warn(rtwdev, "failed to dump efuse dav logical map\n");
|
|
goto out_free;
|
|
}
|
|
|
|
rtw89_hex_dump(rtwdev, RTW89_DBG_FW, "log_map: ", log_map, full_log_size);
|
|
|
|
ret = rtwdev->chip->ops->read_efuse(rtwdev, log_map, RTW89_EFUSE_BLOCK_IGNORE);
|
|
if (ret) {
|
|
rtw89_warn(rtwdev, "failed to read efuse map\n");
|
|
goto out_free;
|
|
}
|
|
|
|
out_free:
|
|
kfree(dav_phy_map);
|
|
kfree(log_map);
|
|
kfree(phy_map);
|
|
|
|
return ret;
|
|
}
|
|
|
|
int rtw89_parse_phycap_map_ax(struct rtw89_dev *rtwdev)
|
|
{
|
|
u32 phycap_addr = rtwdev->chip->phycap_addr;
|
|
u32 phycap_size = rtwdev->chip->phycap_size;
|
|
u8 *phycap_map = NULL;
|
|
int ret = 0;
|
|
|
|
if (!phycap_size)
|
|
return 0;
|
|
|
|
phycap_map = kmalloc(phycap_size, GFP_KERNEL);
|
|
if (!phycap_map)
|
|
return -ENOMEM;
|
|
|
|
ret = rtw89_dump_physical_efuse_map(rtwdev, phycap_map,
|
|
phycap_addr, phycap_size, false);
|
|
if (ret) {
|
|
rtw89_warn(rtwdev, "failed to dump phycap map\n");
|
|
goto out_free;
|
|
}
|
|
|
|
ret = rtwdev->chip->ops->read_phycap(rtwdev, phycap_map);
|
|
if (ret) {
|
|
rtw89_warn(rtwdev, "failed to read phycap map\n");
|
|
goto out_free;
|
|
}
|
|
|
|
out_free:
|
|
kfree(phycap_map);
|
|
|
|
return ret;
|
|
}
|
|
|
|
int rtw89_read_efuse_ver(struct rtw89_dev *rtwdev, u8 *ecv)
|
|
{
|
|
int ret;
|
|
u8 val;
|
|
|
|
ret = rtw89_dump_physical_efuse_map(rtwdev, &val, EF_FV_OFSET, 1, false);
|
|
if (ret)
|
|
return ret;
|
|
|
|
*ecv = u8_get_bits(val, EF_CV_MASK);
|
|
if (*ecv == EF_CV_INV)
|
|
return -ENOENT;
|
|
|
|
return 0;
|
|
}
|
|
EXPORT_SYMBOL(rtw89_read_efuse_ver);
|