dfdd70e24e
The only place ipa_version_supported() is called is in the probe function. The version comes from the match data. Rather than checking the version validity separately, just consider anything that has match data to be supported. Signed-off-by: Alex Elder <elder@linaro.org> Signed-off-by: Paolo Abeni <pabeni@redhat.com>
1029 lines
28 KiB
C
1029 lines
28 KiB
C
// SPDX-License-Identifier: GPL-2.0
|
|
|
|
/* Copyright (c) 2012-2018, The Linux Foundation. All rights reserved.
|
|
* Copyright (C) 2018-2024 Linaro Ltd.
|
|
*/
|
|
|
|
#include <linux/bug.h>
|
|
#include <linux/firmware.h>
|
|
#include <linux/io.h>
|
|
#include <linux/module.h>
|
|
#include <linux/of.h>
|
|
#include <linux/of_address.h>
|
|
#include <linux/platform_device.h>
|
|
#include <linux/pm_runtime.h>
|
|
#include <linux/types.h>
|
|
|
|
#include <linux/firmware/qcom/qcom_scm.h>
|
|
#include <linux/soc/qcom/mdt_loader.h>
|
|
|
|
#include "ipa.h"
|
|
#include "ipa_cmd.h"
|
|
#include "ipa_data.h"
|
|
#include "ipa_endpoint.h"
|
|
#include "ipa_interrupt.h"
|
|
#include "ipa_mem.h"
|
|
#include "ipa_modem.h"
|
|
#include "ipa_power.h"
|
|
#include "ipa_reg.h"
|
|
#include "ipa_resource.h"
|
|
#include "ipa_smp2p.h"
|
|
#include "ipa_sysfs.h"
|
|
#include "ipa_table.h"
|
|
#include "ipa_uc.h"
|
|
#include "ipa_version.h"
|
|
|
|
/**
|
|
* DOC: The IP Accelerator
|
|
*
|
|
* This driver supports the Qualcomm IP Accelerator (IPA), which is a
|
|
* networking component found in many Qualcomm SoCs. The IPA is connected
|
|
* to the application processor (AP), but is also connected (and partially
|
|
* controlled by) other "execution environments" (EEs), such as a modem.
|
|
*
|
|
* The IPA is the conduit between the AP and the modem that carries network
|
|
* traffic. This driver presents a network interface representing the
|
|
* connection of the modem to external (e.g. LTE) networks.
|
|
*
|
|
* The IPA provides protocol checksum calculation, offloading this work
|
|
* from the AP. The IPA offers additional functionality, including routing,
|
|
* filtering, and NAT support, but that more advanced functionality is not
|
|
* currently supported. Despite that, some resources--including routing
|
|
* tables and filter tables--are defined in this driver because they must
|
|
* be initialized even when the advanced hardware features are not used.
|
|
*
|
|
* There are two distinct layers that implement the IPA hardware, and this
|
|
* is reflected in the organization of the driver. The generic software
|
|
* interface (GSI) is an integral component of the IPA, providing a
|
|
* well-defined communication layer between the AP subsystem and the IPA
|
|
* core. The GSI implements a set of "channels" used for communication
|
|
* between the AP and the IPA.
|
|
*
|
|
* The IPA layer uses GSI channels to implement its "endpoints". And while
|
|
* a GSI channel carries data between the AP and the IPA, a pair of IPA
|
|
* endpoints is used to carry traffic between two EEs. Specifically, the main
|
|
* modem network interface is implemented by two pairs of endpoints: a TX
|
|
* endpoint on the AP coupled with an RX endpoint on the modem; and another
|
|
* RX endpoint on the AP receiving data from a TX endpoint on the modem.
|
|
*/
|
|
|
|
/* The name of the GSI firmware file relative to /lib/firmware */
|
|
#define IPA_FW_PATH_DEFAULT "ipa_fws.mdt"
|
|
#define IPA_PAS_ID 15
|
|
|
|
/* Shift of 19.2 MHz timestamp to achieve lower resolution timestamps */
|
|
/* IPA v5.5+ does not specify Qtime timestamp config for DPL */
|
|
#define DPL_TIMESTAMP_SHIFT 14 /* ~1.172 kHz, ~853 usec per tick */
|
|
#define TAG_TIMESTAMP_SHIFT 14
|
|
#define NAT_TIMESTAMP_SHIFT 24 /* ~1.144 Hz, ~874 msec per tick */
|
|
|
|
/* Divider for 19.2 MHz crystal oscillator clock to get common timer clock */
|
|
#define IPA_XO_CLOCK_DIVIDER 192 /* 1 is subtracted where used */
|
|
|
|
/**
|
|
* enum ipa_firmware_loader: How GSI firmware gets loaded
|
|
*
|
|
* @IPA_LOADER_DEFER: System not ready; try again later
|
|
* @IPA_LOADER_SELF: AP loads GSI firmware
|
|
* @IPA_LOADER_MODEM: Modem loads GSI firmware, signals when done
|
|
* @IPA_LOADER_SKIP: Neither AP nor modem need to load GSI firmware
|
|
* @IPA_LOADER_INVALID: GSI firmware loader specification is invalid
|
|
*/
|
|
enum ipa_firmware_loader {
|
|
IPA_LOADER_DEFER,
|
|
IPA_LOADER_SELF,
|
|
IPA_LOADER_MODEM,
|
|
IPA_LOADER_SKIP,
|
|
IPA_LOADER_INVALID,
|
|
};
|
|
|
|
/**
|
|
* ipa_setup() - Set up IPA hardware
|
|
* @ipa: IPA pointer
|
|
*
|
|
* Perform initialization that requires issuing immediate commands on
|
|
* the command TX endpoint. If the modem is doing GSI firmware load
|
|
* and initialization, this function will be called when an SMP2P
|
|
* interrupt has been signaled by the modem. Otherwise it will be
|
|
* called from ipa_probe() after GSI firmware has been successfully
|
|
* loaded, authenticated, and started by Trust Zone.
|
|
*/
|
|
int ipa_setup(struct ipa *ipa)
|
|
{
|
|
struct ipa_endpoint *exception_endpoint;
|
|
struct ipa_endpoint *command_endpoint;
|
|
struct device *dev = ipa->dev;
|
|
int ret;
|
|
|
|
ret = gsi_setup(&ipa->gsi);
|
|
if (ret)
|
|
return ret;
|
|
|
|
ipa_endpoint_setup(ipa);
|
|
|
|
/* We need to use the AP command TX endpoint to perform other
|
|
* initialization, so we enable first.
|
|
*/
|
|
command_endpoint = ipa->name_map[IPA_ENDPOINT_AP_COMMAND_TX];
|
|
ret = ipa_endpoint_enable_one(command_endpoint);
|
|
if (ret)
|
|
goto err_endpoint_teardown;
|
|
|
|
ret = ipa_mem_setup(ipa); /* No matching teardown required */
|
|
if (ret)
|
|
goto err_command_disable;
|
|
|
|
ret = ipa_table_setup(ipa); /* No matching teardown required */
|
|
if (ret)
|
|
goto err_command_disable;
|
|
|
|
/* Enable the exception handling endpoint, and tell the hardware
|
|
* to use it by default.
|
|
*/
|
|
exception_endpoint = ipa->name_map[IPA_ENDPOINT_AP_LAN_RX];
|
|
ret = ipa_endpoint_enable_one(exception_endpoint);
|
|
if (ret)
|
|
goto err_command_disable;
|
|
|
|
ipa_endpoint_default_route_set(ipa, exception_endpoint->endpoint_id);
|
|
|
|
/* We're all set. Now prepare for communication with the modem */
|
|
ret = ipa_qmi_setup(ipa);
|
|
if (ret)
|
|
goto err_default_route_clear;
|
|
|
|
ipa->setup_complete = true;
|
|
|
|
dev_info(dev, "IPA driver setup completed successfully\n");
|
|
|
|
return 0;
|
|
|
|
err_default_route_clear:
|
|
ipa_endpoint_default_route_clear(ipa);
|
|
ipa_endpoint_disable_one(exception_endpoint);
|
|
err_command_disable:
|
|
ipa_endpoint_disable_one(command_endpoint);
|
|
err_endpoint_teardown:
|
|
ipa_endpoint_teardown(ipa);
|
|
gsi_teardown(&ipa->gsi);
|
|
|
|
return ret;
|
|
}
|
|
|
|
/**
|
|
* ipa_teardown() - Inverse of ipa_setup()
|
|
* @ipa: IPA pointer
|
|
*/
|
|
static void ipa_teardown(struct ipa *ipa)
|
|
{
|
|
struct ipa_endpoint *exception_endpoint;
|
|
struct ipa_endpoint *command_endpoint;
|
|
|
|
/* We're going to tear everything down, as if setup never completed */
|
|
ipa->setup_complete = false;
|
|
|
|
ipa_qmi_teardown(ipa);
|
|
ipa_endpoint_default_route_clear(ipa);
|
|
exception_endpoint = ipa->name_map[IPA_ENDPOINT_AP_LAN_RX];
|
|
ipa_endpoint_disable_one(exception_endpoint);
|
|
command_endpoint = ipa->name_map[IPA_ENDPOINT_AP_COMMAND_TX];
|
|
ipa_endpoint_disable_one(command_endpoint);
|
|
ipa_endpoint_teardown(ipa);
|
|
gsi_teardown(&ipa->gsi);
|
|
}
|
|
|
|
static void
|
|
ipa_hardware_config_bcr(struct ipa *ipa, const struct ipa_data *data)
|
|
{
|
|
const struct reg *reg;
|
|
u32 val;
|
|
|
|
/* IPA v4.5+ has no backward compatibility register */
|
|
if (ipa->version >= IPA_VERSION_4_5)
|
|
return;
|
|
|
|
reg = ipa_reg(ipa, IPA_BCR);
|
|
val = data->backward_compat;
|
|
iowrite32(val, ipa->reg_virt + reg_offset(reg));
|
|
}
|
|
|
|
static void ipa_hardware_config_tx(struct ipa *ipa)
|
|
{
|
|
enum ipa_version version = ipa->version;
|
|
const struct reg *reg;
|
|
u32 offset;
|
|
u32 val;
|
|
|
|
if (version <= IPA_VERSION_4_0 || version >= IPA_VERSION_4_5)
|
|
return;
|
|
|
|
/* Disable PA mask to allow HOLB drop */
|
|
reg = ipa_reg(ipa, IPA_TX_CFG);
|
|
offset = reg_offset(reg);
|
|
|
|
val = ioread32(ipa->reg_virt + offset);
|
|
|
|
val &= ~reg_bit(reg, PA_MASK_EN);
|
|
|
|
iowrite32(val, ipa->reg_virt + offset);
|
|
}
|
|
|
|
static void ipa_hardware_config_clkon(struct ipa *ipa)
|
|
{
|
|
enum ipa_version version = ipa->version;
|
|
const struct reg *reg;
|
|
u32 val;
|
|
|
|
if (version >= IPA_VERSION_4_5)
|
|
return;
|
|
|
|
if (version < IPA_VERSION_4_0 && version != IPA_VERSION_3_1)
|
|
return;
|
|
|
|
/* Implement some hardware workarounds */
|
|
reg = ipa_reg(ipa, CLKON_CFG);
|
|
if (version == IPA_VERSION_3_1) {
|
|
/* Disable MISC clock gating */
|
|
val = reg_bit(reg, CLKON_MISC);
|
|
} else { /* IPA v4.0+ */
|
|
/* Enable open global clocks in the CLKON configuration */
|
|
val = reg_bit(reg, CLKON_GLOBAL);
|
|
val |= reg_bit(reg, GLOBAL_2X_CLK);
|
|
}
|
|
|
|
iowrite32(val, ipa->reg_virt + reg_offset(reg));
|
|
}
|
|
|
|
/* Configure bus access behavior for IPA components */
|
|
static void ipa_hardware_config_comp(struct ipa *ipa)
|
|
{
|
|
const struct reg *reg;
|
|
u32 offset;
|
|
u32 val;
|
|
|
|
/* Nothing to configure prior to IPA v4.0 */
|
|
if (ipa->version < IPA_VERSION_4_0)
|
|
return;
|
|
|
|
reg = ipa_reg(ipa, COMP_CFG);
|
|
offset = reg_offset(reg);
|
|
|
|
val = ioread32(ipa->reg_virt + offset);
|
|
|
|
if (ipa->version == IPA_VERSION_4_0) {
|
|
val &= ~reg_bit(reg, IPA_QMB_SELECT_CONS_EN);
|
|
val &= ~reg_bit(reg, IPA_QMB_SELECT_PROD_EN);
|
|
val &= ~reg_bit(reg, IPA_QMB_SELECT_GLOBAL_EN);
|
|
} else if (ipa->version < IPA_VERSION_4_5) {
|
|
val |= reg_bit(reg, GSI_MULTI_AXI_MASTERS_DIS);
|
|
} else {
|
|
/* For IPA v4.5+ FULL_FLUSH_WAIT_RS_CLOSURE_EN is 0 */
|
|
}
|
|
|
|
val |= reg_bit(reg, GSI_MULTI_INORDER_RD_DIS);
|
|
val |= reg_bit(reg, GSI_MULTI_INORDER_WR_DIS);
|
|
|
|
iowrite32(val, ipa->reg_virt + offset);
|
|
}
|
|
|
|
/* Configure DDR and (possibly) PCIe max read/write QSB values */
|
|
static void
|
|
ipa_hardware_config_qsb(struct ipa *ipa, const struct ipa_data *data)
|
|
{
|
|
const struct ipa_qsb_data *data0;
|
|
const struct ipa_qsb_data *data1;
|
|
const struct reg *reg;
|
|
u32 val;
|
|
|
|
/* QMB 0 represents DDR; QMB 1 (if present) represents PCIe */
|
|
data0 = &data->qsb_data[IPA_QSB_MASTER_DDR];
|
|
if (data->qsb_count > 1)
|
|
data1 = &data->qsb_data[IPA_QSB_MASTER_PCIE];
|
|
|
|
/* Max outstanding write accesses for QSB masters */
|
|
reg = ipa_reg(ipa, QSB_MAX_WRITES);
|
|
|
|
val = reg_encode(reg, GEN_QMB_0_MAX_WRITES, data0->max_writes);
|
|
if (data->qsb_count > 1)
|
|
val |= reg_encode(reg, GEN_QMB_1_MAX_WRITES, data1->max_writes);
|
|
|
|
iowrite32(val, ipa->reg_virt + reg_offset(reg));
|
|
|
|
/* Max outstanding read accesses for QSB masters */
|
|
reg = ipa_reg(ipa, QSB_MAX_READS);
|
|
|
|
val = reg_encode(reg, GEN_QMB_0_MAX_READS, data0->max_reads);
|
|
if (ipa->version >= IPA_VERSION_4_0)
|
|
val |= reg_encode(reg, GEN_QMB_0_MAX_READS_BEATS,
|
|
data0->max_reads_beats);
|
|
if (data->qsb_count > 1) {
|
|
val = reg_encode(reg, GEN_QMB_1_MAX_READS, data1->max_reads);
|
|
if (ipa->version >= IPA_VERSION_4_0)
|
|
val |= reg_encode(reg, GEN_QMB_1_MAX_READS_BEATS,
|
|
data1->max_reads_beats);
|
|
}
|
|
|
|
iowrite32(val, ipa->reg_virt + reg_offset(reg));
|
|
}
|
|
|
|
/* The internal inactivity timer clock is used for the aggregation timer */
|
|
#define TIMER_FREQUENCY 32000 /* 32 KHz inactivity timer clock */
|
|
|
|
/* Compute the value to use in the COUNTER_CFG register AGGR_GRANULARITY
|
|
* field to represent the given number of microseconds. The value is one
|
|
* less than the number of timer ticks in the requested period. 0 is not
|
|
* a valid granularity value (so for example @usec must be at least 16 for
|
|
* a TIMER_FREQUENCY of 32000).
|
|
*/
|
|
static __always_inline u32 ipa_aggr_granularity_val(u32 usec)
|
|
{
|
|
return DIV_ROUND_CLOSEST(usec * TIMER_FREQUENCY, USEC_PER_SEC) - 1;
|
|
}
|
|
|
|
/* IPA uses unified Qtime starting at IPA v4.5, implementing various
|
|
* timestamps and timers independent of the IPA core clock rate. The
|
|
* Qtimer is based on a 56-bit timestamp incremented at each tick of
|
|
* a 19.2 MHz SoC crystal oscillator (XO clock).
|
|
*
|
|
* For IPA timestamps (tag, NAT, data path logging) a lower resolution
|
|
* timestamp is achieved by shifting the Qtimer timestamp value right
|
|
* some number of bits to produce the low-order bits of the coarser
|
|
* granularity timestamp.
|
|
*
|
|
* For timers, a common timer clock is derived from the XO clock using
|
|
* a divider (we use 192, to produce a 100kHz timer clock). From
|
|
* this common clock, three "pulse generators" are used to produce
|
|
* timer ticks at a configurable frequency. IPA timers (such as
|
|
* those used for aggregation or head-of-line block handling) now
|
|
* define their period based on one of these pulse generators.
|
|
*/
|
|
static void ipa_qtime_config(struct ipa *ipa)
|
|
{
|
|
const struct reg *reg;
|
|
u32 offset;
|
|
u32 val;
|
|
|
|
/* Timer clock divider must be disabled when we change the rate */
|
|
reg = ipa_reg(ipa, TIMERS_XO_CLK_DIV_CFG);
|
|
iowrite32(0, ipa->reg_virt + reg_offset(reg));
|
|
|
|
reg = ipa_reg(ipa, QTIME_TIMESTAMP_CFG);
|
|
if (ipa->version < IPA_VERSION_5_5) {
|
|
/* Set DPL time stamp resolution to use Qtime (not 1 msec) */
|
|
val = reg_encode(reg, DPL_TIMESTAMP_LSB, DPL_TIMESTAMP_SHIFT);
|
|
val |= reg_bit(reg, DPL_TIMESTAMP_SEL);
|
|
}
|
|
/* Configure tag and NAT Qtime timestamp resolution as well */
|
|
val = reg_encode(reg, TAG_TIMESTAMP_LSB, TAG_TIMESTAMP_SHIFT);
|
|
val = reg_encode(reg, NAT_TIMESTAMP_LSB, NAT_TIMESTAMP_SHIFT);
|
|
|
|
iowrite32(val, ipa->reg_virt + reg_offset(reg));
|
|
|
|
/* Set granularity of pulse generators used for other timers */
|
|
reg = ipa_reg(ipa, TIMERS_PULSE_GRAN_CFG);
|
|
val = reg_encode(reg, PULSE_GRAN_0, IPA_GRAN_100_US);
|
|
val |= reg_encode(reg, PULSE_GRAN_1, IPA_GRAN_1_MS);
|
|
if (ipa->version >= IPA_VERSION_5_0) {
|
|
val |= reg_encode(reg, PULSE_GRAN_2, IPA_GRAN_10_MS);
|
|
val |= reg_encode(reg, PULSE_GRAN_3, IPA_GRAN_10_MS);
|
|
} else {
|
|
val |= reg_encode(reg, PULSE_GRAN_2, IPA_GRAN_1_MS);
|
|
}
|
|
|
|
iowrite32(val, ipa->reg_virt + reg_offset(reg));
|
|
|
|
/* Actual divider is 1 more than value supplied here */
|
|
reg = ipa_reg(ipa, TIMERS_XO_CLK_DIV_CFG);
|
|
offset = reg_offset(reg);
|
|
|
|
val = reg_encode(reg, DIV_VALUE, IPA_XO_CLOCK_DIVIDER - 1);
|
|
|
|
iowrite32(val, ipa->reg_virt + offset);
|
|
|
|
/* Divider value is set; re-enable the common timer clock divider */
|
|
val |= reg_bit(reg, DIV_ENABLE);
|
|
|
|
iowrite32(val, ipa->reg_virt + offset);
|
|
}
|
|
|
|
/* Before IPA v4.5 timing is controlled by a counter register */
|
|
static void ipa_hardware_config_counter(struct ipa *ipa)
|
|
{
|
|
u32 granularity = ipa_aggr_granularity_val(IPA_AGGR_GRANULARITY);
|
|
const struct reg *reg;
|
|
u32 val;
|
|
|
|
reg = ipa_reg(ipa, COUNTER_CFG);
|
|
/* If defined, EOT_COAL_GRANULARITY is 0 */
|
|
val = reg_encode(reg, AGGR_GRANULARITY, granularity);
|
|
iowrite32(val, ipa->reg_virt + reg_offset(reg));
|
|
}
|
|
|
|
static void ipa_hardware_config_timing(struct ipa *ipa)
|
|
{
|
|
if (ipa->version < IPA_VERSION_4_5)
|
|
ipa_hardware_config_counter(ipa);
|
|
else
|
|
ipa_qtime_config(ipa);
|
|
}
|
|
|
|
static void ipa_hardware_config_hashing(struct ipa *ipa)
|
|
{
|
|
const struct reg *reg;
|
|
|
|
/* Other than IPA v4.2, all versions enable "hashing". Starting
|
|
* with IPA v5.0, the filter and router tables are implemented
|
|
* differently, but the default configuration enables this feature
|
|
* (now referred to as "cacheing"), so there's nothing to do here.
|
|
*/
|
|
if (ipa->version != IPA_VERSION_4_2)
|
|
return;
|
|
|
|
/* IPA v4.2 does not support hashed tables, so disable them */
|
|
reg = ipa_reg(ipa, FILT_ROUT_HASH_EN);
|
|
|
|
/* IPV6_ROUTER_HASH, IPV6_FILTER_HASH, IPV4_ROUTER_HASH,
|
|
* IPV4_FILTER_HASH are all zero.
|
|
*/
|
|
iowrite32(0, ipa->reg_virt + reg_offset(reg));
|
|
}
|
|
|
|
static void ipa_idle_indication_cfg(struct ipa *ipa,
|
|
u32 enter_idle_debounce_thresh,
|
|
bool const_non_idle_enable)
|
|
{
|
|
const struct reg *reg;
|
|
u32 val;
|
|
|
|
if (ipa->version < IPA_VERSION_3_5_1)
|
|
return;
|
|
|
|
reg = ipa_reg(ipa, IDLE_INDICATION_CFG);
|
|
val = reg_encode(reg, ENTER_IDLE_DEBOUNCE_THRESH,
|
|
enter_idle_debounce_thresh);
|
|
if (const_non_idle_enable)
|
|
val |= reg_bit(reg, CONST_NON_IDLE_ENABLE);
|
|
|
|
iowrite32(val, ipa->reg_virt + reg_offset(reg));
|
|
}
|
|
|
|
/**
|
|
* ipa_hardware_dcd_config() - Enable dynamic clock division on IPA
|
|
* @ipa: IPA pointer
|
|
*
|
|
* Configures when the IPA signals it is idle to the global clock
|
|
* controller, which can respond by scaling down the clock to save
|
|
* power.
|
|
*/
|
|
static void ipa_hardware_dcd_config(struct ipa *ipa)
|
|
{
|
|
/* Recommended values for IPA 3.5 and later according to IPA HPG */
|
|
ipa_idle_indication_cfg(ipa, 256, false);
|
|
}
|
|
|
|
static void ipa_hardware_dcd_deconfig(struct ipa *ipa)
|
|
{
|
|
/* Power-on reset values */
|
|
ipa_idle_indication_cfg(ipa, 0, true);
|
|
}
|
|
|
|
/**
|
|
* ipa_hardware_config() - Primitive hardware initialization
|
|
* @ipa: IPA pointer
|
|
* @data: IPA configuration data
|
|
*/
|
|
static void ipa_hardware_config(struct ipa *ipa, const struct ipa_data *data)
|
|
{
|
|
ipa_hardware_config_bcr(ipa, data);
|
|
ipa_hardware_config_tx(ipa);
|
|
ipa_hardware_config_clkon(ipa);
|
|
ipa_hardware_config_comp(ipa);
|
|
ipa_hardware_config_qsb(ipa, data);
|
|
ipa_hardware_config_timing(ipa);
|
|
ipa_hardware_config_hashing(ipa);
|
|
ipa_hardware_dcd_config(ipa);
|
|
}
|
|
|
|
/**
|
|
* ipa_hardware_deconfig() - Inverse of ipa_hardware_config()
|
|
* @ipa: IPA pointer
|
|
*
|
|
* This restores the power-on reset values (even if they aren't different)
|
|
*/
|
|
static void ipa_hardware_deconfig(struct ipa *ipa)
|
|
{
|
|
/* Mostly we just leave things as we set them. */
|
|
ipa_hardware_dcd_deconfig(ipa);
|
|
}
|
|
|
|
/**
|
|
* ipa_config() - Configure IPA hardware
|
|
* @ipa: IPA pointer
|
|
* @data: IPA configuration data
|
|
*
|
|
* Perform initialization requiring IPA power to be enabled.
|
|
*/
|
|
static int ipa_config(struct ipa *ipa, const struct ipa_data *data)
|
|
{
|
|
int ret;
|
|
|
|
ipa_hardware_config(ipa, data);
|
|
|
|
ret = ipa_mem_config(ipa);
|
|
if (ret)
|
|
goto err_hardware_deconfig;
|
|
|
|
ret = ipa_interrupt_config(ipa);
|
|
if (ret)
|
|
goto err_mem_deconfig;
|
|
|
|
ipa_uc_config(ipa);
|
|
|
|
ret = ipa_endpoint_config(ipa);
|
|
if (ret)
|
|
goto err_uc_deconfig;
|
|
|
|
ipa_table_config(ipa); /* No deconfig required */
|
|
|
|
/* Assign resource limitation to each group; no deconfig required */
|
|
ret = ipa_resource_config(ipa, data->resource_data);
|
|
if (ret)
|
|
goto err_endpoint_deconfig;
|
|
|
|
ret = ipa_modem_config(ipa);
|
|
if (ret)
|
|
goto err_endpoint_deconfig;
|
|
|
|
return 0;
|
|
|
|
err_endpoint_deconfig:
|
|
ipa_endpoint_deconfig(ipa);
|
|
err_uc_deconfig:
|
|
ipa_uc_deconfig(ipa);
|
|
ipa_interrupt_deconfig(ipa);
|
|
err_mem_deconfig:
|
|
ipa_mem_deconfig(ipa);
|
|
err_hardware_deconfig:
|
|
ipa_hardware_deconfig(ipa);
|
|
|
|
return ret;
|
|
}
|
|
|
|
/**
|
|
* ipa_deconfig() - Inverse of ipa_config()
|
|
* @ipa: IPA pointer
|
|
*/
|
|
static void ipa_deconfig(struct ipa *ipa)
|
|
{
|
|
ipa_modem_deconfig(ipa);
|
|
ipa_endpoint_deconfig(ipa);
|
|
ipa_uc_deconfig(ipa);
|
|
ipa_interrupt_deconfig(ipa);
|
|
ipa_mem_deconfig(ipa);
|
|
ipa_hardware_deconfig(ipa);
|
|
}
|
|
|
|
static int ipa_firmware_load(struct device *dev)
|
|
{
|
|
const struct firmware *fw;
|
|
struct device_node *node;
|
|
struct resource res;
|
|
phys_addr_t phys;
|
|
const char *path;
|
|
ssize_t size;
|
|
void *virt;
|
|
int ret;
|
|
|
|
node = of_parse_phandle(dev->of_node, "memory-region", 0);
|
|
if (!node) {
|
|
dev_err(dev, "DT error getting \"memory-region\" property\n");
|
|
return -EINVAL;
|
|
}
|
|
|
|
ret = of_address_to_resource(node, 0, &res);
|
|
of_node_put(node);
|
|
if (ret) {
|
|
dev_err(dev, "error %d getting \"memory-region\" resource\n",
|
|
ret);
|
|
return ret;
|
|
}
|
|
|
|
/* Use name from DTB if specified; use default for *any* error */
|
|
ret = of_property_read_string(dev->of_node, "firmware-name", &path);
|
|
if (ret) {
|
|
dev_dbg(dev, "error %d getting \"firmware-name\" resource\n",
|
|
ret);
|
|
path = IPA_FW_PATH_DEFAULT;
|
|
}
|
|
|
|
ret = request_firmware(&fw, path, dev);
|
|
if (ret) {
|
|
dev_err(dev, "error %d requesting \"%s\"\n", ret, path);
|
|
return ret;
|
|
}
|
|
|
|
phys = res.start;
|
|
size = (size_t)resource_size(&res);
|
|
virt = memremap(phys, size, MEMREMAP_WC);
|
|
if (!virt) {
|
|
dev_err(dev, "unable to remap firmware memory\n");
|
|
ret = -ENOMEM;
|
|
goto out_release_firmware;
|
|
}
|
|
|
|
ret = qcom_mdt_load(dev, fw, path, IPA_PAS_ID, virt, phys, size, NULL);
|
|
if (ret)
|
|
dev_err(dev, "error %d loading \"%s\"\n", ret, path);
|
|
else if ((ret = qcom_scm_pas_auth_and_reset(IPA_PAS_ID)))
|
|
dev_err(dev, "error %d authenticating \"%s\"\n", ret, path);
|
|
|
|
memunmap(virt);
|
|
out_release_firmware:
|
|
release_firmware(fw);
|
|
|
|
return ret;
|
|
}
|
|
|
|
static const struct of_device_id ipa_match[] = {
|
|
{
|
|
.compatible = "qcom,msm8998-ipa",
|
|
.data = &ipa_data_v3_1,
|
|
},
|
|
{
|
|
.compatible = "qcom,sdm845-ipa",
|
|
.data = &ipa_data_v3_5_1,
|
|
},
|
|
{
|
|
.compatible = "qcom,sc7180-ipa",
|
|
.data = &ipa_data_v4_2,
|
|
},
|
|
{
|
|
.compatible = "qcom,sdx55-ipa",
|
|
.data = &ipa_data_v4_5,
|
|
},
|
|
{
|
|
.compatible = "qcom,sm6350-ipa",
|
|
.data = &ipa_data_v4_7,
|
|
},
|
|
{
|
|
.compatible = "qcom,sm8350-ipa",
|
|
.data = &ipa_data_v4_9,
|
|
},
|
|
{
|
|
.compatible = "qcom,sc7280-ipa",
|
|
.data = &ipa_data_v4_11,
|
|
},
|
|
{
|
|
.compatible = "qcom,sdx65-ipa",
|
|
.data = &ipa_data_v5_0,
|
|
},
|
|
{
|
|
.compatible = "qcom,sm8550-ipa",
|
|
.data = &ipa_data_v5_5,
|
|
},
|
|
{ },
|
|
};
|
|
MODULE_DEVICE_TABLE(of, ipa_match);
|
|
|
|
/* Check things that can be validated at build time. This just
|
|
* groups these things BUILD_BUG_ON() calls don't clutter the rest
|
|
* of the code.
|
|
* */
|
|
static void ipa_validate_build(void)
|
|
{
|
|
/* At one time we assumed a 64-bit build, allowing some do_div()
|
|
* calls to be replaced by simple division or modulo operations.
|
|
* We currently only perform divide and modulo operations on u32,
|
|
* u16, or size_t objects, and of those only size_t has any chance
|
|
* of being a 64-bit value. (It should be guaranteed 32 bits wide
|
|
* on a 32-bit build, but there is no harm in verifying that.)
|
|
*/
|
|
BUILD_BUG_ON(!IS_ENABLED(CONFIG_64BIT) && sizeof(size_t) != 4);
|
|
|
|
/* Code assumes the EE ID for the AP is 0 (zeroed structure field) */
|
|
BUILD_BUG_ON(GSI_EE_AP != 0);
|
|
|
|
/* There's no point if we have no channels or event rings */
|
|
BUILD_BUG_ON(!GSI_CHANNEL_COUNT_MAX);
|
|
BUILD_BUG_ON(!GSI_EVT_RING_COUNT_MAX);
|
|
|
|
/* GSI hardware design limits */
|
|
BUILD_BUG_ON(GSI_CHANNEL_COUNT_MAX > 32);
|
|
BUILD_BUG_ON(GSI_EVT_RING_COUNT_MAX > 31);
|
|
|
|
/* The number of TREs in a transaction is limited by the channel's
|
|
* TLV FIFO size. A transaction structure uses 8-bit fields
|
|
* to represents the number of TREs it has allocated and used.
|
|
*/
|
|
BUILD_BUG_ON(GSI_TLV_MAX > U8_MAX);
|
|
|
|
/* This is used as a divisor */
|
|
BUILD_BUG_ON(!IPA_AGGR_GRANULARITY);
|
|
|
|
/* Aggregation granularity value can't be 0, and must fit */
|
|
BUILD_BUG_ON(!ipa_aggr_granularity_val(IPA_AGGR_GRANULARITY));
|
|
}
|
|
|
|
static enum ipa_firmware_loader ipa_firmware_loader(struct device *dev)
|
|
{
|
|
bool modem_init;
|
|
const char *str;
|
|
int ret;
|
|
|
|
/* Look up the old and new properties by name */
|
|
modem_init = of_property_read_bool(dev->of_node, "modem-init");
|
|
ret = of_property_read_string(dev->of_node, "qcom,gsi-loader", &str);
|
|
|
|
/* If the new property doesn't exist, it's legacy behavior */
|
|
if (ret == -EINVAL) {
|
|
if (modem_init)
|
|
return IPA_LOADER_MODEM;
|
|
goto out_self;
|
|
}
|
|
|
|
/* Any other error on the new property means it's poorly defined */
|
|
if (ret)
|
|
return IPA_LOADER_INVALID;
|
|
|
|
/* New property value exists; if old one does too, that's invalid */
|
|
if (modem_init)
|
|
return IPA_LOADER_INVALID;
|
|
|
|
/* Modem loads GSI firmware for "modem" */
|
|
if (!strcmp(str, "modem"))
|
|
return IPA_LOADER_MODEM;
|
|
|
|
/* No GSI firmware load is needed for "skip" */
|
|
if (!strcmp(str, "skip"))
|
|
return IPA_LOADER_SKIP;
|
|
|
|
/* Any value other than "self" is an error */
|
|
if (strcmp(str, "self"))
|
|
return IPA_LOADER_INVALID;
|
|
out_self:
|
|
/* We need Trust Zone to load firmware; make sure it's available */
|
|
if (qcom_scm_is_available())
|
|
return IPA_LOADER_SELF;
|
|
|
|
return IPA_LOADER_DEFER;
|
|
}
|
|
|
|
/**
|
|
* ipa_probe() - IPA platform driver probe function
|
|
* @pdev: Platform device pointer
|
|
*
|
|
* Return: 0 if successful, or a negative error code (possibly
|
|
* EPROBE_DEFER)
|
|
*
|
|
* This is the main entry point for the IPA driver. Initialization proceeds
|
|
* in several stages:
|
|
* - The "init" stage involves activities that can be initialized without
|
|
* access to the IPA hardware.
|
|
* - The "config" stage requires IPA power to be active so IPA registers
|
|
* can be accessed, but does not require the use of IPA immediate commands.
|
|
* - The "setup" stage uses IPA immediate commands, and so requires the GSI
|
|
* layer to be initialized.
|
|
*
|
|
* A Boolean Device Tree "modem-init" property determines whether GSI
|
|
* initialization will be performed by the AP (Trust Zone) or the modem.
|
|
* If the AP does GSI initialization, the setup phase is entered after
|
|
* this has completed successfully. Otherwise the modem initializes
|
|
* the GSI layer and signals it has finished by sending an SMP2P interrupt
|
|
* to the AP; this triggers the start if IPA setup.
|
|
*/
|
|
static int ipa_probe(struct platform_device *pdev)
|
|
{
|
|
struct device *dev = &pdev->dev;
|
|
struct ipa_interrupt *interrupt;
|
|
enum ipa_firmware_loader loader;
|
|
const struct ipa_data *data;
|
|
struct ipa_power *power;
|
|
struct ipa *ipa;
|
|
int ret;
|
|
|
|
ipa_validate_build();
|
|
|
|
/* Get configuration data early; needed for power initialization */
|
|
data = of_device_get_match_data(dev);
|
|
if (!data) {
|
|
dev_err(dev, "matched hardware not supported\n");
|
|
return -ENODEV;
|
|
}
|
|
|
|
if (!data->modem_route_count) {
|
|
dev_err(dev, "modem_route_count cannot be zero\n");
|
|
return -EINVAL;
|
|
}
|
|
|
|
loader = ipa_firmware_loader(dev);
|
|
if (loader == IPA_LOADER_INVALID)
|
|
return -EINVAL;
|
|
if (loader == IPA_LOADER_DEFER)
|
|
return -EPROBE_DEFER;
|
|
|
|
/* The IPA interrupt might not be ready when we're probed, so this
|
|
* might return -EPROBE_DEFER.
|
|
*/
|
|
interrupt = ipa_interrupt_init(pdev);
|
|
if (IS_ERR(interrupt))
|
|
return PTR_ERR(interrupt);
|
|
|
|
/* The clock and interconnects might not be ready when we're probed,
|
|
* so this might return -EPROBE_DEFER.
|
|
*/
|
|
power = ipa_power_init(dev, data->power_data);
|
|
if (IS_ERR(power)) {
|
|
ret = PTR_ERR(power);
|
|
goto err_interrupt_exit;
|
|
}
|
|
|
|
/* No more EPROBE_DEFER. Allocate and initialize the IPA structure */
|
|
ipa = kzalloc(sizeof(*ipa), GFP_KERNEL);
|
|
if (!ipa) {
|
|
ret = -ENOMEM;
|
|
goto err_power_exit;
|
|
}
|
|
|
|
ipa->dev = dev;
|
|
dev_set_drvdata(dev, ipa);
|
|
ipa->interrupt = interrupt;
|
|
ipa->power = power;
|
|
ipa->version = data->version;
|
|
ipa->modem_route_count = data->modem_route_count;
|
|
init_completion(&ipa->completion);
|
|
|
|
ret = ipa_reg_init(ipa, pdev);
|
|
if (ret)
|
|
goto err_kfree_ipa;
|
|
|
|
ret = ipa_mem_init(ipa, pdev, data->mem_data);
|
|
if (ret)
|
|
goto err_reg_exit;
|
|
|
|
ret = ipa_cmd_init(ipa);
|
|
if (ret)
|
|
goto err_mem_exit;
|
|
|
|
ret = gsi_init(&ipa->gsi, pdev, ipa->version, data->endpoint_count,
|
|
data->endpoint_data);
|
|
if (ret)
|
|
goto err_mem_exit;
|
|
|
|
/* Result is a non-zero mask of endpoints that support filtering */
|
|
ret = ipa_endpoint_init(ipa, data->endpoint_count, data->endpoint_data);
|
|
if (ret)
|
|
goto err_gsi_exit;
|
|
|
|
ret = ipa_table_init(ipa);
|
|
if (ret)
|
|
goto err_endpoint_exit;
|
|
|
|
ret = ipa_smp2p_init(ipa, pdev, loader == IPA_LOADER_MODEM);
|
|
if (ret)
|
|
goto err_table_exit;
|
|
|
|
/* Power needs to be active for config and setup */
|
|
ret = pm_runtime_get_sync(dev);
|
|
if (WARN_ON(ret < 0))
|
|
goto err_power_put;
|
|
|
|
ret = ipa_config(ipa, data);
|
|
if (ret)
|
|
goto err_power_put;
|
|
|
|
dev_info(dev, "IPA driver initialized");
|
|
|
|
/* If the modem is loading GSI firmware, it will trigger a call to
|
|
* ipa_setup() when it has finished. In that case we're done here.
|
|
*/
|
|
if (loader == IPA_LOADER_MODEM)
|
|
goto done;
|
|
|
|
if (loader == IPA_LOADER_SELF) {
|
|
/* The AP is loading GSI firmware; do so now */
|
|
ret = ipa_firmware_load(dev);
|
|
if (ret)
|
|
goto err_deconfig;
|
|
} /* Otherwise loader == IPA_LOADER_SKIP */
|
|
|
|
/* GSI firmware is loaded; proceed to setup */
|
|
ret = ipa_setup(ipa);
|
|
if (ret)
|
|
goto err_deconfig;
|
|
done:
|
|
pm_runtime_mark_last_busy(dev);
|
|
(void)pm_runtime_put_autosuspend(dev);
|
|
|
|
return 0;
|
|
|
|
err_deconfig:
|
|
ipa_deconfig(ipa);
|
|
err_power_put:
|
|
pm_runtime_put_noidle(dev);
|
|
ipa_smp2p_exit(ipa);
|
|
err_table_exit:
|
|
ipa_table_exit(ipa);
|
|
err_endpoint_exit:
|
|
ipa_endpoint_exit(ipa);
|
|
err_gsi_exit:
|
|
gsi_exit(&ipa->gsi);
|
|
err_mem_exit:
|
|
ipa_mem_exit(ipa);
|
|
err_reg_exit:
|
|
ipa_reg_exit(ipa);
|
|
err_kfree_ipa:
|
|
kfree(ipa);
|
|
err_power_exit:
|
|
ipa_power_exit(power);
|
|
err_interrupt_exit:
|
|
ipa_interrupt_exit(interrupt);
|
|
|
|
return ret;
|
|
}
|
|
|
|
static void ipa_remove(struct platform_device *pdev)
|
|
{
|
|
struct ipa_interrupt *interrupt;
|
|
struct ipa_power *power;
|
|
struct device *dev;
|
|
struct ipa *ipa;
|
|
int ret;
|
|
|
|
ipa = dev_get_drvdata(&pdev->dev);
|
|
dev = ipa->dev;
|
|
WARN_ON(dev != &pdev->dev);
|
|
|
|
power = ipa->power;
|
|
interrupt = ipa->interrupt;
|
|
|
|
/* Prevent the modem from triggering a call to ipa_setup(). This
|
|
* also ensures a modem-initiated setup that's underway completes.
|
|
*/
|
|
ipa_smp2p_irq_disable_setup(ipa);
|
|
|
|
ret = pm_runtime_get_sync(dev);
|
|
if (WARN_ON(ret < 0))
|
|
goto out_power_put;
|
|
|
|
if (ipa->setup_complete) {
|
|
ret = ipa_modem_stop(ipa);
|
|
/* If starting or stopping is in progress, try once more */
|
|
if (ret == -EBUSY) {
|
|
usleep_range(USEC_PER_MSEC, 2 * USEC_PER_MSEC);
|
|
ret = ipa_modem_stop(ipa);
|
|
}
|
|
if (ret) {
|
|
/*
|
|
* Not cleaning up here properly might also yield a
|
|
* crash later on. As the device is still unregistered
|
|
* in this case, this might even yield a crash later on.
|
|
*/
|
|
dev_err(dev, "Failed to stop modem (%pe), leaking resources\n",
|
|
ERR_PTR(ret));
|
|
return;
|
|
}
|
|
|
|
ipa_teardown(ipa);
|
|
}
|
|
|
|
ipa_deconfig(ipa);
|
|
out_power_put:
|
|
pm_runtime_put_noidle(dev);
|
|
ipa_smp2p_exit(ipa);
|
|
ipa_table_exit(ipa);
|
|
ipa_endpoint_exit(ipa);
|
|
gsi_exit(&ipa->gsi);
|
|
ipa_mem_exit(ipa);
|
|
ipa_reg_exit(ipa);
|
|
kfree(ipa);
|
|
ipa_power_exit(power);
|
|
ipa_interrupt_exit(interrupt);
|
|
|
|
dev_info(dev, "IPA driver removed");
|
|
}
|
|
|
|
static const struct attribute_group *ipa_attribute_groups[] = {
|
|
&ipa_attribute_group,
|
|
&ipa_feature_attribute_group,
|
|
&ipa_endpoint_id_attribute_group,
|
|
&ipa_modem_attribute_group,
|
|
NULL,
|
|
};
|
|
|
|
static struct platform_driver ipa_driver = {
|
|
.probe = ipa_probe,
|
|
.remove_new = ipa_remove,
|
|
.shutdown = ipa_remove,
|
|
.driver = {
|
|
.name = "ipa",
|
|
.pm = &ipa_pm_ops,
|
|
.of_match_table = ipa_match,
|
|
.dev_groups = ipa_attribute_groups,
|
|
},
|
|
};
|
|
|
|
module_platform_driver(ipa_driver);
|
|
|
|
MODULE_LICENSE("GPL v2");
|
|
MODULE_DESCRIPTION("Qualcomm IP Accelerator device driver");
|