1
linux/arch/x86/xen/xen-ops.h
Juergen Gross d05208cf7f xen: add capability to remap non-RAM pages to different PFNs
When running as a Xen PV dom0 it can happen that the kernel is being
loaded to a guest physical address conflicting with the host memory
map.

In order to be able to resolve this conflict, add the capability to
remap non-RAM areas to different guest PFNs. A function to use this
remapping information for other purposes than doing the remap will be
added when needed.

As the number of conflicts should be rather low (currently only
machines with max. 1 conflict are known), save the remap data in a
small statically allocated array.

Signed-off-by: Juergen Gross <jgross@suse.com>
Reviewed-by: Jan Beulich <jbeulich@suse.com>
Signed-off-by: Juergen Gross <jgross@suse.com>
2024-09-10 15:26:34 +02:00

330 lines
8.8 KiB
C

/* SPDX-License-Identifier: GPL-2.0 */
#ifndef XEN_OPS_H
#define XEN_OPS_H
#include <linux/init.h>
#include <linux/clocksource.h>
#include <linux/irqreturn.h>
#include <linux/linkage.h>
#include <xen/interface/xenpmu.h>
#include <xen/xen-ops.h>
#include <asm/page.h>
#include <trace/events/xen.h>
/* These are code, but not functions. Defined in entry.S */
extern const char xen_failsafe_callback[];
void xen_entry_SYSENTER_compat(void);
#ifdef CONFIG_X86_64
void xen_entry_SYSCALL_64(void);
void xen_entry_SYSCALL_compat(void);
#endif
extern void *xen_initial_gdt;
struct trap_info;
void xen_copy_trap_info(struct trap_info *traps);
DECLARE_PER_CPU_ALIGNED(struct vcpu_info, xen_vcpu_info);
DECLARE_PER_CPU(unsigned long, xen_cr3);
extern struct start_info *xen_start_info;
extern struct shared_info xen_dummy_shared_info;
extern struct shared_info *HYPERVISOR_shared_info;
void xen_setup_mfn_list_list(void);
void xen_build_mfn_list_list(void);
void xen_setup_machphys_mapping(void);
void xen_setup_kernel_pagetable(pgd_t *pgd, unsigned long max_pfn);
void __init xen_reserve_special_pages(void);
void __init xen_pt_check_e820(void);
void xen_mm_pin_all(void);
void xen_mm_unpin_all(void);
#ifdef CONFIG_X86_64
void __init xen_relocate_p2m(void);
#endif
void __init xen_do_remap_nonram(void);
void __init xen_add_remap_nonram(phys_addr_t maddr, phys_addr_t paddr,
unsigned long size);
void __init xen_chk_is_e820_usable(phys_addr_t start, phys_addr_t size,
const char *component);
unsigned long __ref xen_chk_extra_mem(unsigned long pfn);
void __init xen_inv_extra_mem(void);
void __init xen_remap_memory(void);
phys_addr_t __init xen_find_free_area(phys_addr_t size);
char * __init xen_memory_setup(void);
void __init xen_arch_setup(void);
void xen_banner(void);
void xen_enable_sysenter(void);
void xen_enable_syscall(void);
void xen_vcpu_restore(void);
void xen_hvm_init_shared_info(void);
void xen_unplug_emulated_devices(void);
void __init xen_build_dynamic_phys_to_machine(void);
void __init xen_vmalloc_p2m_tree(void);
void xen_init_irq_ops(void);
void xen_setup_timer(int cpu);
void xen_setup_runstate_info(int cpu);
void xen_teardown_timer(int cpu);
void xen_setup_cpu_clockevents(void);
void xen_save_time_memory_area(void);
void xen_restore_time_memory_area(void);
void xen_init_time_ops(void);
void xen_hvm_init_time_ops(void);
bool xen_vcpu_stolen(int vcpu);
void xen_vcpu_setup(int cpu);
void xen_vcpu_info_reset(int cpu);
void xen_setup_vcpu_info_placement(void);
#ifdef CONFIG_SMP
void xen_smp_init(void);
void __init xen_hvm_smp_init(void);
extern cpumask_var_t xen_cpu_initialized_map;
#else
static inline void xen_smp_init(void) {}
static inline void xen_hvm_smp_init(void) {}
#endif
#ifdef CONFIG_PARAVIRT_SPINLOCKS
void __init xen_init_spinlocks(void);
void xen_init_lock_cpu(int cpu);
void xen_uninit_lock_cpu(int cpu);
#else
static inline void xen_init_spinlocks(void)
{
}
static inline void xen_init_lock_cpu(int cpu)
{
}
static inline void xen_uninit_lock_cpu(int cpu)
{
}
#endif
struct dom0_vga_console_info;
#ifdef CONFIG_XEN_DOM0
void __init xen_init_vga(const struct dom0_vga_console_info *, size_t size,
struct screen_info *);
#else
static inline void __init xen_init_vga(const struct dom0_vga_console_info *info,
size_t size, struct screen_info *si)
{
}
#endif
void xen_add_preferred_consoles(void);
void __init xen_init_apic(void);
#ifdef CONFIG_XEN_EFI
extern void xen_efi_init(struct boot_params *boot_params);
#else
static inline void __init xen_efi_init(struct boot_params *boot_params)
{
}
#endif
__visible void xen_irq_enable_direct(void);
__visible void xen_irq_disable_direct(void);
__visible unsigned long xen_save_fl_direct(void);
__visible unsigned long xen_read_cr2(void);
__visible unsigned long xen_read_cr2_direct(void);
/* These are not functions, and cannot be called normally */
__visible void xen_iret(void);
extern int xen_panic_handler_init(void);
int xen_cpuhp_setup(int (*cpu_up_prepare_cb)(unsigned int),
int (*cpu_dead_cb)(unsigned int));
void xen_pin_vcpu(int cpu);
void xen_emergency_restart(void);
void xen_force_evtchn_callback(void);
#ifdef CONFIG_XEN_PV
void xen_pv_pre_suspend(void);
void xen_pv_post_suspend(int suspend_cancelled);
void xen_start_kernel(struct start_info *si);
#else
static inline void xen_pv_pre_suspend(void) {}
static inline void xen_pv_post_suspend(int suspend_cancelled) {}
#endif
#ifdef CONFIG_XEN_PVHVM
void xen_hvm_post_suspend(int suspend_cancelled);
#else
static inline void xen_hvm_post_suspend(int suspend_cancelled) {}
#endif
/*
* The maximum amount of extra memory compared to the base size. The
* main scaling factor is the size of struct page. At extreme ratios
* of base:extra, all the base memory can be filled with page
* structures for the extra memory, leaving no space for anything
* else.
*
* 10x seems like a reasonable balance between scaling flexibility and
* leaving a practically usable system.
*/
#define EXTRA_MEM_RATIO (10)
void xen_add_extra_mem(unsigned long start_pfn, unsigned long n_pfns);
struct dentry * __init xen_init_debugfs(void);
enum pt_level {
PT_PGD,
PT_P4D,
PT_PUD,
PT_PMD,
PT_PTE
};
bool __set_phys_to_machine(unsigned long pfn, unsigned long mfn);
void set_pte_mfn(unsigned long vaddr, unsigned long pfn, pgprot_t flags);
unsigned long xen_read_cr2_direct(void);
void xen_init_mmu_ops(void);
void xen_hvm_init_mmu_ops(void);
/* Multicalls */
struct multicall_space
{
struct multicall_entry *mc;
void *args;
};
/* Allocate room for a multicall and its args */
struct multicall_space __xen_mc_entry(size_t args);
DECLARE_PER_CPU(unsigned long, xen_mc_irq_flags);
/* Call to start a batch of multiple __xen_mc_entry()s. Must be
paired with xen_mc_issue() */
static inline void xen_mc_batch(void)
{
unsigned long flags;
/* need to disable interrupts until this entry is complete */
local_irq_save(flags);
trace_xen_mc_batch(xen_get_lazy_mode());
__this_cpu_write(xen_mc_irq_flags, flags);
}
static inline struct multicall_space xen_mc_entry(size_t args)
{
xen_mc_batch();
return __xen_mc_entry(args);
}
/* Flush all pending multicalls */
void xen_mc_flush(void);
/* Issue a multicall if we're not in a lazy mode */
static inline void xen_mc_issue(unsigned mode)
{
trace_xen_mc_issue(mode);
if ((xen_get_lazy_mode() & mode) == 0)
xen_mc_flush();
/* restore flags saved in xen_mc_batch */
local_irq_restore(this_cpu_read(xen_mc_irq_flags));
}
/* Set up a callback to be called when the current batch is flushed */
void xen_mc_callback(void (*fn)(void *), void *data);
/*
* Try to extend the arguments of the previous multicall command. The
* previous command's op must match. If it does, then it attempts to
* extend the argument space allocated to the multicall entry by
* arg_size bytes.
*
* The returned multicall_space will return with mc pointing to the
* command on success, or NULL on failure, and args pointing to the
* newly allocated space.
*/
struct multicall_space xen_mc_extend_args(unsigned long op, size_t arg_size);
/* Do percpu data initialization for multicalls. */
void mc_percpu_init(unsigned int cpu);
extern bool is_xen_pmu;
irqreturn_t xen_pmu_irq_handler(int irq, void *dev_id);
#ifdef CONFIG_XEN_HAVE_VPMU
void xen_pmu_init(int cpu);
void xen_pmu_finish(int cpu);
#else
static inline void xen_pmu_init(int cpu) {}
static inline void xen_pmu_finish(int cpu) {}
#endif
bool pmu_msr_read(unsigned int msr, uint64_t *val, int *err);
bool pmu_msr_write(unsigned int msr, uint32_t low, uint32_t high, int *err);
int pmu_apic_update(uint32_t reg);
unsigned long long xen_read_pmc(int counter);
#ifdef CONFIG_SMP
void asm_cpu_bringup_and_idle(void);
asmlinkage void cpu_bringup_and_idle(void);
extern void xen_send_IPI_mask(const struct cpumask *mask,
int vector);
extern void xen_send_IPI_mask_allbutself(const struct cpumask *mask,
int vector);
extern void xen_send_IPI_allbutself(int vector);
extern void xen_send_IPI_all(int vector);
extern void xen_send_IPI_self(int vector);
extern int xen_smp_intr_init(unsigned int cpu);
extern void xen_smp_intr_free(unsigned int cpu);
int xen_smp_intr_init_pv(unsigned int cpu);
void xen_smp_intr_free_pv(unsigned int cpu);
void xen_smp_count_cpus(void);
void xen_smp_cpus_done(unsigned int max_cpus);
void xen_smp_send_reschedule(int cpu);
void xen_smp_send_call_function_ipi(const struct cpumask *mask);
void xen_smp_send_call_function_single_ipi(int cpu);
void __noreturn xen_cpu_bringup_again(unsigned long stack);
struct xen_common_irq {
int irq;
char *name;
};
#else /* CONFIG_SMP */
static inline int xen_smp_intr_init(unsigned int cpu)
{
return 0;
}
static inline void xen_smp_intr_free(unsigned int cpu) {}
static inline int xen_smp_intr_init_pv(unsigned int cpu)
{
return 0;
}
static inline void xen_smp_intr_free_pv(unsigned int cpu) {}
static inline void xen_smp_count_cpus(void) { }
#endif /* CONFIG_SMP */
#endif /* XEN_OPS_H */