1
linux/arch/x86/platform/efi/quirks.c
Anisse Astier d86ff3333c efivarfs: expose used and total size
When writing EFI variables, one might get errors with no other message
on why it fails. Being able to see how much is used by EFI variables
helps analyzing such issues.

Since this is not a conventional filesystem, block size is intentionally
set to 1 instead of PAGE_SIZE.

x86 quirks of reserved size are taken into account; so that available
and free size can be different, further helping debugging space issues.

With this patch, one can see the remaining space in EFI variable storage
via efivarfs, like this:

   $ df -h /sys/firmware/efi/efivars/
   Filesystem      Size  Used Avail Use% Mounted on
   efivarfs        176K  106K   66K  62% /sys/firmware/efi/efivars

Signed-off-by: Anisse Astier <an.astier@criteo.com>
[ardb: - rename efi_reserved_space() to efivar_reserved_space()
       - whitespace/coding style tweaks]
Signed-off-by: Ard Biesheuvel <ardb@kernel.org>
2023-05-17 18:21:34 +02:00

782 lines
22 KiB
C

// SPDX-License-Identifier: GPL-2.0-only
#define pr_fmt(fmt) "efi: " fmt
#include <linux/init.h>
#include <linux/kernel.h>
#include <linux/string.h>
#include <linux/time.h>
#include <linux/types.h>
#include <linux/efi.h>
#include <linux/slab.h>
#include <linux/memblock.h>
#include <linux/acpi.h>
#include <linux/dmi.h>
#include <asm/e820/api.h>
#include <asm/efi.h>
#include <asm/uv/uv.h>
#include <asm/cpu_device_id.h>
#include <asm/realmode.h>
#include <asm/reboot.h>
#define EFI_MIN_RESERVE 5120
#define EFI_DUMMY_GUID \
EFI_GUID(0x4424ac57, 0xbe4b, 0x47dd, 0x9e, 0x97, 0xed, 0x50, 0xf0, 0x9f, 0x92, 0xa9)
#define QUARK_CSH_SIGNATURE 0x5f435348 /* _CSH */
#define QUARK_SECURITY_HEADER_SIZE 0x400
/*
* Header prepended to the standard EFI capsule on Quark systems the are based
* on Intel firmware BSP.
* @csh_signature: Unique identifier to sanity check signed module
* presence ("_CSH").
* @version: Current version of CSH used. Should be one for Quark A0.
* @modulesize: Size of the entire module including the module header
* and payload.
* @security_version_number_index: Index of SVN to use for validation of signed
* module.
* @security_version_number: Used to prevent against roll back of modules.
* @rsvd_module_id: Currently unused for Clanton (Quark).
* @rsvd_module_vendor: Vendor Identifier. For Intel products value is
* 0x00008086.
* @rsvd_date: BCD representation of build date as yyyymmdd, where
* yyyy=4 digit year, mm=1-12, dd=1-31.
* @headersize: Total length of the header including including any
* padding optionally added by the signing tool.
* @hash_algo: What Hash is used in the module signing.
* @cryp_algo: What Crypto is used in the module signing.
* @keysize: Total length of the key data including including any
* padding optionally added by the signing tool.
* @signaturesize: Total length of the signature including including any
* padding optionally added by the signing tool.
* @rsvd_next_header: 32-bit pointer to the next Secure Boot Module in the
* chain, if there is a next header.
* @rsvd: Reserved, padding structure to required size.
*
* See also QuartSecurityHeader_t in
* Quark_EDKII_v1.2.1.1/QuarkPlatformPkg/Include/QuarkBootRom.h
* from https://downloadcenter.intel.com/download/23197/Intel-Quark-SoC-X1000-Board-Support-Package-BSP
*/
struct quark_security_header {
u32 csh_signature;
u32 version;
u32 modulesize;
u32 security_version_number_index;
u32 security_version_number;
u32 rsvd_module_id;
u32 rsvd_module_vendor;
u32 rsvd_date;
u32 headersize;
u32 hash_algo;
u32 cryp_algo;
u32 keysize;
u32 signaturesize;
u32 rsvd_next_header;
u32 rsvd[2];
};
static const efi_char16_t efi_dummy_name[] = L"DUMMY";
static bool efi_no_storage_paranoia;
/*
* Some firmware implementations refuse to boot if there's insufficient
* space in the variable store. The implementation of garbage collection
* in some FW versions causes stale (deleted) variables to take up space
* longer than intended and space is only freed once the store becomes
* almost completely full.
*
* Enabling this option disables the space checks in
* efi_query_variable_store() and forces garbage collection.
*
* Only enable this option if deleting EFI variables does not free up
* space in your variable store, e.g. if despite deleting variables
* you're unable to create new ones.
*/
static int __init setup_storage_paranoia(char *arg)
{
efi_no_storage_paranoia = true;
return 0;
}
early_param("efi_no_storage_paranoia", setup_storage_paranoia);
/*
* Deleting the dummy variable which kicks off garbage collection
*/
void efi_delete_dummy_variable(void)
{
efi.set_variable_nonblocking((efi_char16_t *)efi_dummy_name,
&EFI_DUMMY_GUID,
EFI_VARIABLE_NON_VOLATILE |
EFI_VARIABLE_BOOTSERVICE_ACCESS |
EFI_VARIABLE_RUNTIME_ACCESS, 0, NULL);
}
u64 efivar_reserved_space(void)
{
if (efi_no_storage_paranoia)
return 0;
return EFI_MIN_RESERVE;
}
EXPORT_SYMBOL_GPL(efivar_reserved_space);
/*
* In the nonblocking case we do not attempt to perform garbage
* collection if we do not have enough free space. Rather, we do the
* bare minimum check and give up immediately if the available space
* is below EFI_MIN_RESERVE.
*
* This function is intended to be small and simple because it is
* invoked from crash handler paths.
*/
static efi_status_t
query_variable_store_nonblocking(u32 attributes, unsigned long size)
{
efi_status_t status;
u64 storage_size, remaining_size, max_size;
status = efi.query_variable_info_nonblocking(attributes, &storage_size,
&remaining_size,
&max_size);
if (status != EFI_SUCCESS)
return status;
if (remaining_size - size < EFI_MIN_RESERVE)
return EFI_OUT_OF_RESOURCES;
return EFI_SUCCESS;
}
/*
* Some firmware implementations refuse to boot if there's insufficient space
* in the variable store. Ensure that we never use more than a safe limit.
*
* Return EFI_SUCCESS if it is safe to write 'size' bytes to the variable
* store.
*/
efi_status_t efi_query_variable_store(u32 attributes, unsigned long size,
bool nonblocking)
{
efi_status_t status;
u64 storage_size, remaining_size, max_size;
if (!(attributes & EFI_VARIABLE_NON_VOLATILE))
return 0;
if (nonblocking)
return query_variable_store_nonblocking(attributes, size);
status = efi.query_variable_info(attributes, &storage_size,
&remaining_size, &max_size);
if (status != EFI_SUCCESS)
return status;
/*
* We account for that by refusing the write if permitting it would
* reduce the available space to under 5KB. This figure was provided by
* Samsung, so should be safe.
*/
if ((remaining_size - size < EFI_MIN_RESERVE) &&
!efi_no_storage_paranoia) {
/*
* Triggering garbage collection may require that the firmware
* generate a real EFI_OUT_OF_RESOURCES error. We can force
* that by attempting to use more space than is available.
*/
unsigned long dummy_size = remaining_size + 1024;
void *dummy = kzalloc(dummy_size, GFP_KERNEL);
if (!dummy)
return EFI_OUT_OF_RESOURCES;
status = efi.set_variable((efi_char16_t *)efi_dummy_name,
&EFI_DUMMY_GUID,
EFI_VARIABLE_NON_VOLATILE |
EFI_VARIABLE_BOOTSERVICE_ACCESS |
EFI_VARIABLE_RUNTIME_ACCESS,
dummy_size, dummy);
if (status == EFI_SUCCESS) {
/*
* This should have failed, so if it didn't make sure
* that we delete it...
*/
efi_delete_dummy_variable();
}
kfree(dummy);
/*
* The runtime code may now have triggered a garbage collection
* run, so check the variable info again
*/
status = efi.query_variable_info(attributes, &storage_size,
&remaining_size, &max_size);
if (status != EFI_SUCCESS)
return status;
/*
* There still isn't enough room, so return an error
*/
if (remaining_size - size < EFI_MIN_RESERVE)
return EFI_OUT_OF_RESOURCES;
}
return EFI_SUCCESS;
}
EXPORT_SYMBOL_GPL(efi_query_variable_store);
/*
* The UEFI specification makes it clear that the operating system is
* free to do whatever it wants with boot services code after
* ExitBootServices() has been called. Ignoring this recommendation a
* significant bunch of EFI implementations continue calling into boot
* services code (SetVirtualAddressMap). In order to work around such
* buggy implementations we reserve boot services region during EFI
* init and make sure it stays executable. Then, after
* SetVirtualAddressMap(), it is discarded.
*
* However, some boot services regions contain data that is required
* by drivers, so we need to track which memory ranges can never be
* freed. This is done by tagging those regions with the
* EFI_MEMORY_RUNTIME attribute.
*
* Any driver that wants to mark a region as reserved must use
* efi_mem_reserve() which will insert a new EFI memory descriptor
* into efi.memmap (splitting existing regions if necessary) and tag
* it with EFI_MEMORY_RUNTIME.
*/
void __init efi_arch_mem_reserve(phys_addr_t addr, u64 size)
{
struct efi_memory_map_data data = { 0 };
struct efi_mem_range mr;
efi_memory_desc_t md;
int num_entries;
void *new;
if (efi_mem_desc_lookup(addr, &md) ||
md.type != EFI_BOOT_SERVICES_DATA) {
pr_err("Failed to lookup EFI memory descriptor for %pa\n", &addr);
return;
}
if (addr + size > md.phys_addr + (md.num_pages << EFI_PAGE_SHIFT)) {
pr_err("Region spans EFI memory descriptors, %pa\n", &addr);
return;
}
size += addr % EFI_PAGE_SIZE;
size = round_up(size, EFI_PAGE_SIZE);
addr = round_down(addr, EFI_PAGE_SIZE);
mr.range.start = addr;
mr.range.end = addr + size - 1;
mr.attribute = md.attribute | EFI_MEMORY_RUNTIME;
num_entries = efi_memmap_split_count(&md, &mr.range);
num_entries += efi.memmap.nr_map;
if (efi_memmap_alloc(num_entries, &data) != 0) {
pr_err("Could not allocate boot services memmap\n");
return;
}
new = early_memremap_prot(data.phys_map, data.size,
pgprot_val(pgprot_encrypted(FIXMAP_PAGE_NORMAL)));
if (!new) {
pr_err("Failed to map new boot services memmap\n");
return;
}
efi_memmap_insert(&efi.memmap, new, &mr);
early_memunmap(new, data.size);
efi_memmap_install(&data);
e820__range_update(addr, size, E820_TYPE_RAM, E820_TYPE_RESERVED);
e820__update_table(e820_table);
}
/*
* Helper function for efi_reserve_boot_services() to figure out if we
* can free regions in efi_free_boot_services().
*
* Use this function to ensure we do not free regions owned by somebody
* else. We must only reserve (and then free) regions:
*
* - Not within any part of the kernel
* - Not the BIOS reserved area (E820_TYPE_RESERVED, E820_TYPE_NVS, etc)
*/
static __init bool can_free_region(u64 start, u64 size)
{
if (start + size > __pa_symbol(_text) && start <= __pa_symbol(_end))
return false;
if (!e820__mapped_all(start, start+size, E820_TYPE_RAM))
return false;
return true;
}
void __init efi_reserve_boot_services(void)
{
efi_memory_desc_t *md;
if (!efi_enabled(EFI_MEMMAP))
return;
for_each_efi_memory_desc(md) {
u64 start = md->phys_addr;
u64 size = md->num_pages << EFI_PAGE_SHIFT;
bool already_reserved;
if (md->type != EFI_BOOT_SERVICES_CODE &&
md->type != EFI_BOOT_SERVICES_DATA)
continue;
already_reserved = memblock_is_region_reserved(start, size);
/*
* Because the following memblock_reserve() is paired
* with memblock_free_late() for this region in
* efi_free_boot_services(), we must be extremely
* careful not to reserve, and subsequently free,
* critical regions of memory (like the kernel image) or
* those regions that somebody else has already
* reserved.
*
* A good example of a critical region that must not be
* freed is page zero (first 4Kb of memory), which may
* contain boot services code/data but is marked
* E820_TYPE_RESERVED by trim_bios_range().
*/
if (!already_reserved) {
memblock_reserve(start, size);
/*
* If we are the first to reserve the region, no
* one else cares about it. We own it and can
* free it later.
*/
if (can_free_region(start, size))
continue;
}
/*
* We don't own the region. We must not free it.
*
* Setting this bit for a boot services region really
* doesn't make sense as far as the firmware is
* concerned, but it does provide us with a way to tag
* those regions that must not be paired with
* memblock_free_late().
*/
md->attribute |= EFI_MEMORY_RUNTIME;
}
}
/*
* Apart from having VA mappings for EFI boot services code/data regions,
* (duplicate) 1:1 mappings were also created as a quirk for buggy firmware. So,
* unmap both 1:1 and VA mappings.
*/
static void __init efi_unmap_pages(efi_memory_desc_t *md)
{
pgd_t *pgd = efi_mm.pgd;
u64 pa = md->phys_addr;
u64 va = md->virt_addr;
/*
* EFI mixed mode has all RAM mapped to access arguments while making
* EFI runtime calls, hence don't unmap EFI boot services code/data
* regions.
*/
if (efi_is_mixed())
return;
if (kernel_unmap_pages_in_pgd(pgd, pa, md->num_pages))
pr_err("Failed to unmap 1:1 mapping for 0x%llx\n", pa);
if (kernel_unmap_pages_in_pgd(pgd, va, md->num_pages))
pr_err("Failed to unmap VA mapping for 0x%llx\n", va);
}
void __init efi_free_boot_services(void)
{
struct efi_memory_map_data data = { 0 };
efi_memory_desc_t *md;
int num_entries = 0;
void *new, *new_md;
/* Keep all regions for /sys/kernel/debug/efi */
if (efi_enabled(EFI_DBG))
return;
for_each_efi_memory_desc(md) {
unsigned long long start = md->phys_addr;
unsigned long long size = md->num_pages << EFI_PAGE_SHIFT;
size_t rm_size;
if (md->type != EFI_BOOT_SERVICES_CODE &&
md->type != EFI_BOOT_SERVICES_DATA) {
num_entries++;
continue;
}
/* Do not free, someone else owns it: */
if (md->attribute & EFI_MEMORY_RUNTIME) {
num_entries++;
continue;
}
/*
* Before calling set_virtual_address_map(), EFI boot services
* code/data regions were mapped as a quirk for buggy firmware.
* Unmap them from efi_pgd before freeing them up.
*/
efi_unmap_pages(md);
/*
* Nasty quirk: if all sub-1MB memory is used for boot
* services, we can get here without having allocated the
* real mode trampoline. It's too late to hand boot services
* memory back to the memblock allocator, so instead
* try to manually allocate the trampoline if needed.
*
* I've seen this on a Dell XPS 13 9350 with firmware
* 1.4.4 with SGX enabled booting Linux via Fedora 24's
* grub2-efi on a hard disk. (And no, I don't know why
* this happened, but Linux should still try to boot rather
* panicking early.)
*/
rm_size = real_mode_size_needed();
if (rm_size && (start + rm_size) < (1<<20) && size >= rm_size) {
set_real_mode_mem(start);
start += rm_size;
size -= rm_size;
}
/*
* Don't free memory under 1M for two reasons:
* - BIOS might clobber it
* - Crash kernel needs it to be reserved
*/
if (start + size < SZ_1M)
continue;
if (start < SZ_1M) {
size -= (SZ_1M - start);
start = SZ_1M;
}
memblock_free_late(start, size);
}
if (!num_entries)
return;
if (efi_memmap_alloc(num_entries, &data) != 0) {
pr_err("Failed to allocate new EFI memmap\n");
return;
}
new = memremap(data.phys_map, data.size, MEMREMAP_WB);
if (!new) {
pr_err("Failed to map new EFI memmap\n");
return;
}
/*
* Build a new EFI memmap that excludes any boot services
* regions that are not tagged EFI_MEMORY_RUNTIME, since those
* regions have now been freed.
*/
new_md = new;
for_each_efi_memory_desc(md) {
if (!(md->attribute & EFI_MEMORY_RUNTIME) &&
(md->type == EFI_BOOT_SERVICES_CODE ||
md->type == EFI_BOOT_SERVICES_DATA))
continue;
memcpy(new_md, md, efi.memmap.desc_size);
new_md += efi.memmap.desc_size;
}
memunmap(new);
if (efi_memmap_install(&data) != 0) {
pr_err("Could not install new EFI memmap\n");
return;
}
}
/*
* A number of config table entries get remapped to virtual addresses
* after entering EFI virtual mode. However, the kexec kernel requires
* their physical addresses therefore we pass them via setup_data and
* correct those entries to their respective physical addresses here.
*
* Currently only handles smbios which is necessary for some firmware
* implementation.
*/
int __init efi_reuse_config(u64 tables, int nr_tables)
{
int i, sz, ret = 0;
void *p, *tablep;
struct efi_setup_data *data;
if (nr_tables == 0)
return 0;
if (!efi_setup)
return 0;
if (!efi_enabled(EFI_64BIT))
return 0;
data = early_memremap(efi_setup, sizeof(*data));
if (!data) {
ret = -ENOMEM;
goto out;
}
if (!data->smbios)
goto out_memremap;
sz = sizeof(efi_config_table_64_t);
p = tablep = early_memremap(tables, nr_tables * sz);
if (!p) {
pr_err("Could not map Configuration table!\n");
ret = -ENOMEM;
goto out_memremap;
}
for (i = 0; i < nr_tables; i++) {
efi_guid_t guid;
guid = ((efi_config_table_64_t *)p)->guid;
if (!efi_guidcmp(guid, SMBIOS_TABLE_GUID))
((efi_config_table_64_t *)p)->table = data->smbios;
p += sz;
}
early_memunmap(tablep, nr_tables * sz);
out_memremap:
early_memunmap(data, sizeof(*data));
out:
return ret;
}
void __init efi_apply_memmap_quirks(void)
{
/*
* Once setup is done earlier, unmap the EFI memory map on mismatched
* firmware/kernel architectures since there is no support for runtime
* services.
*/
if (!efi_runtime_supported()) {
pr_info("Setup done, disabling due to 32/64-bit mismatch\n");
efi_memmap_unmap();
}
}
/*
* For most modern platforms the preferred method of powering off is via
* ACPI. However, there are some that are known to require the use of
* EFI runtime services and for which ACPI does not work at all.
*
* Using EFI is a last resort, to be used only if no other option
* exists.
*/
bool efi_reboot_required(void)
{
if (!acpi_gbl_reduced_hardware)
return false;
efi_reboot_quirk_mode = EFI_RESET_WARM;
return true;
}
bool efi_poweroff_required(void)
{
return acpi_gbl_reduced_hardware || acpi_no_s5;
}
#ifdef CONFIG_EFI_CAPSULE_QUIRK_QUARK_CSH
static int qrk_capsule_setup_info(struct capsule_info *cap_info, void **pkbuff,
size_t hdr_bytes)
{
struct quark_security_header *csh = *pkbuff;
/* Only process data block that is larger than the security header */
if (hdr_bytes < sizeof(struct quark_security_header))
return 0;
if (csh->csh_signature != QUARK_CSH_SIGNATURE ||
csh->headersize != QUARK_SECURITY_HEADER_SIZE)
return 1;
/* Only process data block if EFI header is included */
if (hdr_bytes < QUARK_SECURITY_HEADER_SIZE +
sizeof(efi_capsule_header_t))
return 0;
pr_debug("Quark security header detected\n");
if (csh->rsvd_next_header != 0) {
pr_err("multiple Quark security headers not supported\n");
return -EINVAL;
}
*pkbuff += csh->headersize;
cap_info->total_size = csh->headersize;
/*
* Update the first page pointer to skip over the CSH header.
*/
cap_info->phys[0] += csh->headersize;
/*
* cap_info->capsule should point at a virtual mapping of the entire
* capsule, starting at the capsule header. Our image has the Quark
* security header prepended, so we cannot rely on the default vmap()
* mapping created by the generic capsule code.
* Given that the Quark firmware does not appear to care about the
* virtual mapping, let's just point cap_info->capsule at our copy
* of the capsule header.
*/
cap_info->capsule = &cap_info->header;
return 1;
}
static const struct x86_cpu_id efi_capsule_quirk_ids[] = {
X86_MATCH_VENDOR_FAM_MODEL(INTEL, 5, INTEL_FAM5_QUARK_X1000,
&qrk_capsule_setup_info),
{ }
};
int efi_capsule_setup_info(struct capsule_info *cap_info, void *kbuff,
size_t hdr_bytes)
{
int (*quirk_handler)(struct capsule_info *, void **, size_t);
const struct x86_cpu_id *id;
int ret;
if (hdr_bytes < sizeof(efi_capsule_header_t))
return 0;
cap_info->total_size = 0;
id = x86_match_cpu(efi_capsule_quirk_ids);
if (id) {
/*
* The quirk handler is supposed to return
* - a value > 0 if the setup should continue, after advancing
* kbuff as needed
* - 0 if not enough hdr_bytes are available yet
* - a negative error code otherwise
*/
quirk_handler = (typeof(quirk_handler))id->driver_data;
ret = quirk_handler(cap_info, &kbuff, hdr_bytes);
if (ret <= 0)
return ret;
}
memcpy(&cap_info->header, kbuff, sizeof(cap_info->header));
cap_info->total_size += cap_info->header.imagesize;
return __efi_capsule_setup_info(cap_info);
}
#endif
/*
* If any access by any efi runtime service causes a page fault, then,
* 1. If it's efi_reset_system(), reboot through BIOS.
* 2. If any other efi runtime service, then
* a. Return error status to the efi caller process.
* b. Disable EFI Runtime Services forever and
* c. Freeze efi_rts_wq and schedule new process.
*
* @return: Returns, if the page fault is not handled. This function
* will never return if the page fault is handled successfully.
*/
void efi_crash_gracefully_on_page_fault(unsigned long phys_addr)
{
if (!IS_ENABLED(CONFIG_X86_64))
return;
/*
* If we get an interrupt/NMI while processing an EFI runtime service
* then this is a regular OOPS, not an EFI failure.
*/
if (in_interrupt())
return;
/*
* Make sure that an efi runtime service caused the page fault.
* READ_ONCE() because we might be OOPSing in a different thread,
* and we don't want to trip KTSAN while trying to OOPS.
*/
if (READ_ONCE(efi_rts_work.efi_rts_id) == EFI_NONE ||
current_work() != &efi_rts_work.work)
return;
/*
* Address range 0x0000 - 0x0fff is always mapped in the efi_pgd, so
* page faulting on these addresses isn't expected.
*/
if (phys_addr <= 0x0fff)
return;
/*
* Print stack trace as it might be useful to know which EFI Runtime
* Service is buggy.
*/
WARN(1, FW_BUG "Page fault caused by firmware at PA: 0x%lx\n",
phys_addr);
/*
* Buggy efi_reset_system() is handled differently from other EFI
* Runtime Services as it doesn't use efi_rts_wq. Although,
* native_machine_emergency_restart() says that machine_real_restart()
* could fail, it's better not to complicate this fault handler
* because this case occurs *very* rarely and hence could be improved
* on a need by basis.
*/
if (efi_rts_work.efi_rts_id == EFI_RESET_SYSTEM) {
pr_info("efi_reset_system() buggy! Reboot through BIOS\n");
machine_real_restart(MRR_BIOS);
return;
}
/*
* Before calling EFI Runtime Service, the kernel has switched the
* calling process to efi_mm. Hence, switch back to task_mm.
*/
arch_efi_call_virt_teardown();
/* Signal error status to the efi caller process */
efi_rts_work.status = EFI_ABORTED;
complete(&efi_rts_work.efi_rts_comp);
clear_bit(EFI_RUNTIME_SERVICES, &efi.flags);
pr_info("Froze efi_rts_wq and disabled EFI Runtime Services\n");
/*
* Call schedule() in an infinite loop, so that any spurious wake ups
* will never run efi_rts_wq again.
*/
for (;;) {
set_current_state(TASK_IDLE);
schedule();
}
}