1
linux/arch/x86/platform/efi/efi.c
Ard Biesheuvel 37aee82c21 x86/efi: Drop support for fake EFI memory maps
Between kexec and confidential VM support, handling the EFI memory maps
correctly on x86 is already proving to be rather difficult (as opposed
to other EFI architectures which manage to never modify the EFI memory
map to begin with)

EFI fake memory map support is essentially a development hack (for
testing new support for the 'special purpose' and 'more reliable' EFI
memory attributes) that leaked into production code. The regions marked
in this manner are not actually recognized as such by the firmware
itself or the EFI stub (and never have), and marking memory as 'more
reliable' seems rather futile if the underlying memory is just ordinary
RAM.

Marking memory as 'special purpose' in this way is also dubious, but may
be in use in production code nonetheless. However, the same should be
achievable by using the memmap= command line option with the ! operator.

EFI fake memmap support is not enabled by any of the major distros
(Debian, Fedora, SUSE, Ubuntu) and does not exist on other
architectures, so let's drop support for it.

Acked-by: Borislav Petkov (AMD) <bp@alien8.de>
Acked-by: Dan Williams <dan.j.williams@intel.com>
Signed-off-by: Ard Biesheuvel <ardb@kernel.org>
2024-07-02 00:26:24 +02:00

956 lines
24 KiB
C

// SPDX-License-Identifier: GPL-2.0
/*
* Common EFI (Extensible Firmware Interface) support functions
* Based on Extensible Firmware Interface Specification version 1.0
*
* Copyright (C) 1999 VA Linux Systems
* Copyright (C) 1999 Walt Drummond <drummond@valinux.com>
* Copyright (C) 1999-2002 Hewlett-Packard Co.
* David Mosberger-Tang <davidm@hpl.hp.com>
* Stephane Eranian <eranian@hpl.hp.com>
* Copyright (C) 2005-2008 Intel Co.
* Fenghua Yu <fenghua.yu@intel.com>
* Bibo Mao <bibo.mao@intel.com>
* Chandramouli Narayanan <mouli@linux.intel.com>
* Huang Ying <ying.huang@intel.com>
* Copyright (C) 2013 SuSE Labs
* Borislav Petkov <bp@suse.de> - runtime services VA mapping
*
* Copied from efi_32.c to eliminate the duplicated code between EFI
* 32/64 support code. --ying 2007-10-26
*
* All EFI Runtime Services are not implemented yet as EFI only
* supports physical mode addressing on SoftSDV. This is to be fixed
* in a future version. --drummond 1999-07-20
*
* Implemented EFI runtime services and virtual mode calls. --davidm
*
* Goutham Rao: <goutham.rao@intel.com>
* Skip non-WB memory and ignore empty memory ranges.
*/
#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
#include <linux/kernel.h>
#include <linux/init.h>
#include <linux/efi.h>
#include <linux/efi-bgrt.h>
#include <linux/export.h>
#include <linux/memblock.h>
#include <linux/slab.h>
#include <linux/spinlock.h>
#include <linux/uaccess.h>
#include <linux/time.h>
#include <linux/io.h>
#include <linux/reboot.h>
#include <linux/bcd.h>
#include <asm/setup.h>
#include <asm/efi.h>
#include <asm/e820/api.h>
#include <asm/time.h>
#include <asm/tlbflush.h>
#include <asm/x86_init.h>
#include <asm/uv/uv.h>
static unsigned long efi_systab_phys __initdata;
static unsigned long prop_phys = EFI_INVALID_TABLE_ADDR;
static unsigned long uga_phys = EFI_INVALID_TABLE_ADDR;
static unsigned long efi_runtime, efi_nr_tables;
unsigned long efi_fw_vendor, efi_config_table;
static const efi_config_table_type_t arch_tables[] __initconst = {
{EFI_PROPERTIES_TABLE_GUID, &prop_phys, "PROP" },
{UGA_IO_PROTOCOL_GUID, &uga_phys, "UGA" },
#ifdef CONFIG_X86_UV
{UV_SYSTEM_TABLE_GUID, &uv_systab_phys, "UVsystab" },
#endif
{},
};
static const unsigned long * const efi_tables[] = {
&efi.acpi,
&efi.acpi20,
&efi.smbios,
&efi.smbios3,
&uga_phys,
#ifdef CONFIG_X86_UV
&uv_systab_phys,
#endif
&efi_fw_vendor,
&efi_runtime,
&efi_config_table,
&efi.esrt,
&prop_phys,
&efi_mem_attr_table,
#ifdef CONFIG_EFI_RCI2_TABLE
&rci2_table_phys,
#endif
&efi.tpm_log,
&efi.tpm_final_log,
&efi_rng_seed,
#ifdef CONFIG_LOAD_UEFI_KEYS
&efi.mokvar_table,
#endif
#ifdef CONFIG_EFI_COCO_SECRET
&efi.coco_secret,
#endif
#ifdef CONFIG_UNACCEPTED_MEMORY
&efi.unaccepted,
#endif
};
u64 efi_setup; /* efi setup_data physical address */
static int add_efi_memmap __initdata;
static int __init setup_add_efi_memmap(char *arg)
{
add_efi_memmap = 1;
return 0;
}
early_param("add_efi_memmap", setup_add_efi_memmap);
/*
* Tell the kernel about the EFI memory map. This might include
* more than the max 128 entries that can fit in the passed in e820
* legacy (zeropage) memory map, but the kernel's e820 table can hold
* E820_MAX_ENTRIES.
*/
static void __init do_add_efi_memmap(void)
{
efi_memory_desc_t *md;
if (!efi_enabled(EFI_MEMMAP))
return;
for_each_efi_memory_desc(md) {
unsigned long long start = md->phys_addr;
unsigned long long size = md->num_pages << EFI_PAGE_SHIFT;
int e820_type;
switch (md->type) {
case EFI_LOADER_CODE:
case EFI_LOADER_DATA:
case EFI_BOOT_SERVICES_CODE:
case EFI_BOOT_SERVICES_DATA:
case EFI_CONVENTIONAL_MEMORY:
if (efi_soft_reserve_enabled()
&& (md->attribute & EFI_MEMORY_SP))
e820_type = E820_TYPE_SOFT_RESERVED;
else if (md->attribute & EFI_MEMORY_WB)
e820_type = E820_TYPE_RAM;
else
e820_type = E820_TYPE_RESERVED;
break;
case EFI_ACPI_RECLAIM_MEMORY:
e820_type = E820_TYPE_ACPI;
break;
case EFI_ACPI_MEMORY_NVS:
e820_type = E820_TYPE_NVS;
break;
case EFI_UNUSABLE_MEMORY:
e820_type = E820_TYPE_UNUSABLE;
break;
case EFI_PERSISTENT_MEMORY:
e820_type = E820_TYPE_PMEM;
break;
default:
/*
* EFI_RESERVED_TYPE EFI_RUNTIME_SERVICES_CODE
* EFI_RUNTIME_SERVICES_DATA EFI_MEMORY_MAPPED_IO
* EFI_MEMORY_MAPPED_IO_PORT_SPACE EFI_PAL_CODE
*/
e820_type = E820_TYPE_RESERVED;
break;
}
e820__range_add(start, size, e820_type);
}
e820__update_table(e820_table);
}
/*
* Given add_efi_memmap defaults to 0 and there is no alternative
* e820 mechanism for soft-reserved memory, import the full EFI memory
* map if soft reservations are present and enabled. Otherwise, the
* mechanism to disable the kernel's consideration of EFI_MEMORY_SP is
* the efi=nosoftreserve option.
*/
static bool do_efi_soft_reserve(void)
{
efi_memory_desc_t *md;
if (!efi_enabled(EFI_MEMMAP))
return false;
if (!efi_soft_reserve_enabled())
return false;
for_each_efi_memory_desc(md)
if (md->type == EFI_CONVENTIONAL_MEMORY &&
(md->attribute & EFI_MEMORY_SP))
return true;
return false;
}
int __init efi_memblock_x86_reserve_range(void)
{
struct efi_info *e = &boot_params.efi_info;
struct efi_memory_map_data data;
phys_addr_t pmap;
int rv;
if (efi_enabled(EFI_PARAVIRT))
return 0;
/* Can't handle firmware tables above 4GB on i386 */
if (IS_ENABLED(CONFIG_X86_32) && e->efi_memmap_hi > 0) {
pr_err("Memory map is above 4GB, disabling EFI.\n");
return -EINVAL;
}
pmap = (phys_addr_t)(e->efi_memmap | ((u64)e->efi_memmap_hi << 32));
data.phys_map = pmap;
data.size = e->efi_memmap_size;
data.desc_size = e->efi_memdesc_size;
data.desc_version = e->efi_memdesc_version;
if (!efi_enabled(EFI_PARAVIRT)) {
rv = efi_memmap_init_early(&data);
if (rv)
return rv;
}
if (add_efi_memmap || do_efi_soft_reserve())
do_add_efi_memmap();
WARN(efi.memmap.desc_version != 1,
"Unexpected EFI_MEMORY_DESCRIPTOR version %ld",
efi.memmap.desc_version);
memblock_reserve(pmap, efi.memmap.nr_map * efi.memmap.desc_size);
set_bit(EFI_PRESERVE_BS_REGIONS, &efi.flags);
return 0;
}
#define OVERFLOW_ADDR_SHIFT (64 - EFI_PAGE_SHIFT)
#define OVERFLOW_ADDR_MASK (U64_MAX << OVERFLOW_ADDR_SHIFT)
#define U64_HIGH_BIT (~(U64_MAX >> 1))
static bool __init efi_memmap_entry_valid(const efi_memory_desc_t *md, int i)
{
u64 end = (md->num_pages << EFI_PAGE_SHIFT) + md->phys_addr - 1;
u64 end_hi = 0;
char buf[64];
if (md->num_pages == 0) {
end = 0;
} else if (md->num_pages > EFI_PAGES_MAX ||
EFI_PAGES_MAX - md->num_pages <
(md->phys_addr >> EFI_PAGE_SHIFT)) {
end_hi = (md->num_pages & OVERFLOW_ADDR_MASK)
>> OVERFLOW_ADDR_SHIFT;
if ((md->phys_addr & U64_HIGH_BIT) && !(end & U64_HIGH_BIT))
end_hi += 1;
} else {
return true;
}
pr_warn_once(FW_BUG "Invalid EFI memory map entries:\n");
if (end_hi) {
pr_warn("mem%02u: %s range=[0x%016llx-0x%llx%016llx] (invalid)\n",
i, efi_md_typeattr_format(buf, sizeof(buf), md),
md->phys_addr, end_hi, end);
} else {
pr_warn("mem%02u: %s range=[0x%016llx-0x%016llx] (invalid)\n",
i, efi_md_typeattr_format(buf, sizeof(buf), md),
md->phys_addr, end);
}
return false;
}
static void __init efi_clean_memmap(void)
{
efi_memory_desc_t *out = efi.memmap.map;
const efi_memory_desc_t *in = out;
const efi_memory_desc_t *end = efi.memmap.map_end;
int i, n_removal;
for (i = n_removal = 0; in < end; i++) {
if (efi_memmap_entry_valid(in, i)) {
if (out != in)
memcpy(out, in, efi.memmap.desc_size);
out = (void *)out + efi.memmap.desc_size;
} else {
n_removal++;
}
in = (void *)in + efi.memmap.desc_size;
}
if (n_removal > 0) {
struct efi_memory_map_data data = {
.phys_map = efi.memmap.phys_map,
.desc_version = efi.memmap.desc_version,
.desc_size = efi.memmap.desc_size,
.size = efi.memmap.desc_size * (efi.memmap.nr_map - n_removal),
.flags = 0,
};
pr_warn("Removing %d invalid memory map entries.\n", n_removal);
efi_memmap_install(&data);
}
}
/*
* Firmware can use EfiMemoryMappedIO to request that MMIO regions be
* mapped by the OS so they can be accessed by EFI runtime services, but
* should have no other significance to the OS (UEFI r2.10, sec 7.2).
* However, most bootloaders and EFI stubs convert EfiMemoryMappedIO
* regions to E820_TYPE_RESERVED entries, which prevent Linux from
* allocating space from them (see remove_e820_regions()).
*
* Some platforms use EfiMemoryMappedIO entries for PCI MMCONFIG space and
* PCI host bridge windows, which means Linux can't allocate BAR space for
* hot-added devices.
*
* Remove large EfiMemoryMappedIO regions from the E820 map to avoid this
* problem.
*
* Retain small EfiMemoryMappedIO regions because on some platforms, these
* describe non-window space that's included in host bridge _CRS. If we
* assign that space to PCI devices, they don't work.
*/
static void __init efi_remove_e820_mmio(void)
{
efi_memory_desc_t *md;
u64 size, start, end;
int i = 0;
for_each_efi_memory_desc(md) {
if (md->type == EFI_MEMORY_MAPPED_IO) {
size = md->num_pages << EFI_PAGE_SHIFT;
start = md->phys_addr;
end = start + size - 1;
if (size >= 256*1024) {
pr_info("Remove mem%02u: MMIO range=[0x%08llx-0x%08llx] (%lluMB) from e820 map\n",
i, start, end, size >> 20);
e820__range_remove(start, size,
E820_TYPE_RESERVED, 1);
} else {
pr_info("Not removing mem%02u: MMIO range=[0x%08llx-0x%08llx] (%lluKB) from e820 map\n",
i, start, end, size >> 10);
}
}
i++;
}
}
void __init efi_print_memmap(void)
{
efi_memory_desc_t *md;
int i = 0;
for_each_efi_memory_desc(md) {
char buf[64];
pr_info("mem%02u: %s range=[0x%016llx-0x%016llx] (%lluMB)\n",
i++, efi_md_typeattr_format(buf, sizeof(buf), md),
md->phys_addr,
md->phys_addr + (md->num_pages << EFI_PAGE_SHIFT) - 1,
(md->num_pages >> (20 - EFI_PAGE_SHIFT)));
}
}
static int __init efi_systab_init(unsigned long phys)
{
int size = efi_enabled(EFI_64BIT) ? sizeof(efi_system_table_64_t)
: sizeof(efi_system_table_32_t);
const efi_table_hdr_t *hdr;
bool over4g = false;
void *p;
int ret;
hdr = p = early_memremap_ro(phys, size);
if (p == NULL) {
pr_err("Couldn't map the system table!\n");
return -ENOMEM;
}
ret = efi_systab_check_header(hdr);
if (ret) {
early_memunmap(p, size);
return ret;
}
if (efi_enabled(EFI_64BIT)) {
const efi_system_table_64_t *systab64 = p;
efi_runtime = systab64->runtime;
over4g = systab64->runtime > U32_MAX;
if (efi_setup) {
struct efi_setup_data *data;
data = early_memremap_ro(efi_setup, sizeof(*data));
if (!data) {
early_memunmap(p, size);
return -ENOMEM;
}
efi_fw_vendor = (unsigned long)data->fw_vendor;
efi_config_table = (unsigned long)data->tables;
over4g |= data->fw_vendor > U32_MAX ||
data->tables > U32_MAX;
early_memunmap(data, sizeof(*data));
} else {
efi_fw_vendor = systab64->fw_vendor;
efi_config_table = systab64->tables;
over4g |= systab64->fw_vendor > U32_MAX ||
systab64->tables > U32_MAX;
}
efi_nr_tables = systab64->nr_tables;
} else {
const efi_system_table_32_t *systab32 = p;
efi_fw_vendor = systab32->fw_vendor;
efi_runtime = systab32->runtime;
efi_config_table = systab32->tables;
efi_nr_tables = systab32->nr_tables;
}
efi.runtime_version = hdr->revision;
efi_systab_report_header(hdr, efi_fw_vendor);
early_memunmap(p, size);
if (IS_ENABLED(CONFIG_X86_32) && over4g) {
pr_err("EFI data located above 4GB, disabling EFI.\n");
return -EINVAL;
}
return 0;
}
static int __init efi_config_init(const efi_config_table_type_t *arch_tables)
{
void *config_tables;
int sz, ret;
if (efi_nr_tables == 0)
return 0;
if (efi_enabled(EFI_64BIT))
sz = sizeof(efi_config_table_64_t);
else
sz = sizeof(efi_config_table_32_t);
/*
* Let's see what config tables the firmware passed to us.
*/
config_tables = early_memremap(efi_config_table, efi_nr_tables * sz);
if (config_tables == NULL) {
pr_err("Could not map Configuration table!\n");
return -ENOMEM;
}
ret = efi_config_parse_tables(config_tables, efi_nr_tables,
arch_tables);
early_memunmap(config_tables, efi_nr_tables * sz);
return ret;
}
void __init efi_init(void)
{
if (IS_ENABLED(CONFIG_X86_32) &&
(boot_params.efi_info.efi_systab_hi ||
boot_params.efi_info.efi_memmap_hi)) {
pr_info("Table located above 4GB, disabling EFI.\n");
return;
}
efi_systab_phys = boot_params.efi_info.efi_systab |
((__u64)boot_params.efi_info.efi_systab_hi << 32);
if (efi_systab_init(efi_systab_phys))
return;
if (efi_reuse_config(efi_config_table, efi_nr_tables))
return;
if (efi_config_init(arch_tables))
return;
/*
* Note: We currently don't support runtime services on an EFI
* that doesn't match the kernel 32/64-bit mode.
*/
if (!efi_runtime_supported())
pr_err("No EFI runtime due to 32/64-bit mismatch with kernel\n");
if (!efi_runtime_supported() || efi_runtime_disabled()) {
efi_memmap_unmap();
return;
}
/* Parse the EFI Properties table if it exists */
if (prop_phys != EFI_INVALID_TABLE_ADDR) {
efi_properties_table_t *tbl;
tbl = early_memremap_ro(prop_phys, sizeof(*tbl));
if (tbl == NULL) {
pr_err("Could not map Properties table!\n");
} else {
if (tbl->memory_protection_attribute &
EFI_PROPERTIES_RUNTIME_MEMORY_PROTECTION_NON_EXECUTABLE_PE_DATA)
set_bit(EFI_NX_PE_DATA, &efi.flags);
early_memunmap(tbl, sizeof(*tbl));
}
}
set_bit(EFI_RUNTIME_SERVICES, &efi.flags);
efi_clean_memmap();
efi_remove_e820_mmio();
if (efi_enabled(EFI_DBG))
efi_print_memmap();
}
/* Merge contiguous regions of the same type and attribute */
static void __init efi_merge_regions(void)
{
efi_memory_desc_t *md, *prev_md = NULL;
for_each_efi_memory_desc(md) {
u64 prev_size;
if (!prev_md) {
prev_md = md;
continue;
}
if (prev_md->type != md->type ||
prev_md->attribute != md->attribute) {
prev_md = md;
continue;
}
prev_size = prev_md->num_pages << EFI_PAGE_SHIFT;
if (md->phys_addr == (prev_md->phys_addr + prev_size)) {
prev_md->num_pages += md->num_pages;
md->type = EFI_RESERVED_TYPE;
md->attribute = 0;
continue;
}
prev_md = md;
}
}
static void *realloc_pages(void *old_memmap, int old_shift)
{
void *ret;
ret = (void *)__get_free_pages(GFP_KERNEL, old_shift + 1);
if (!ret)
goto out;
/*
* A first-time allocation doesn't have anything to copy.
*/
if (!old_memmap)
return ret;
memcpy(ret, old_memmap, PAGE_SIZE << old_shift);
out:
free_pages((unsigned long)old_memmap, old_shift);
return ret;
}
/*
* Iterate the EFI memory map in reverse order because the regions
* will be mapped top-down. The end result is the same as if we had
* mapped things forward, but doesn't require us to change the
* existing implementation of efi_map_region().
*/
static inline void *efi_map_next_entry_reverse(void *entry)
{
/* Initial call */
if (!entry)
return efi.memmap.map_end - efi.memmap.desc_size;
entry -= efi.memmap.desc_size;
if (entry < efi.memmap.map)
return NULL;
return entry;
}
/*
* efi_map_next_entry - Return the next EFI memory map descriptor
* @entry: Previous EFI memory map descriptor
*
* This is a helper function to iterate over the EFI memory map, which
* we do in different orders depending on the current configuration.
*
* To begin traversing the memory map @entry must be %NULL.
*
* Returns %NULL when we reach the end of the memory map.
*/
static void *efi_map_next_entry(void *entry)
{
if (efi_enabled(EFI_64BIT)) {
/*
* Starting in UEFI v2.5 the EFI_PROPERTIES_TABLE
* config table feature requires us to map all entries
* in the same order as they appear in the EFI memory
* map. That is to say, entry N must have a lower
* virtual address than entry N+1. This is because the
* firmware toolchain leaves relative references in
* the code/data sections, which are split and become
* separate EFI memory regions. Mapping things
* out-of-order leads to the firmware accessing
* unmapped addresses.
*
* Since we need to map things this way whether or not
* the kernel actually makes use of
* EFI_PROPERTIES_TABLE, let's just switch to this
* scheme by default for 64-bit.
*/
return efi_map_next_entry_reverse(entry);
}
/* Initial call */
if (!entry)
return efi.memmap.map;
entry += efi.memmap.desc_size;
if (entry >= efi.memmap.map_end)
return NULL;
return entry;
}
static bool should_map_region(efi_memory_desc_t *md)
{
/*
* Runtime regions always require runtime mappings (obviously).
*/
if (md->attribute & EFI_MEMORY_RUNTIME)
return true;
/*
* 32-bit EFI doesn't suffer from the bug that requires us to
* reserve boot services regions, and mixed mode support
* doesn't exist for 32-bit kernels.
*/
if (IS_ENABLED(CONFIG_X86_32))
return false;
/*
* EFI specific purpose memory may be reserved by default
* depending on kernel config and boot options.
*/
if (md->type == EFI_CONVENTIONAL_MEMORY &&
efi_soft_reserve_enabled() &&
(md->attribute & EFI_MEMORY_SP))
return false;
/*
* Map all of RAM so that we can access arguments in the 1:1
* mapping when making EFI runtime calls.
*/
if (efi_is_mixed()) {
if (md->type == EFI_CONVENTIONAL_MEMORY ||
md->type == EFI_LOADER_DATA ||
md->type == EFI_LOADER_CODE)
return true;
}
/*
* Map boot services regions as a workaround for buggy
* firmware that accesses them even when they shouldn't.
*
* See efi_{reserve,free}_boot_services().
*/
if (md->type == EFI_BOOT_SERVICES_CODE ||
md->type == EFI_BOOT_SERVICES_DATA)
return true;
return false;
}
/*
* Map the efi memory ranges of the runtime services and update new_mmap with
* virtual addresses.
*/
static void * __init efi_map_regions(int *count, int *pg_shift)
{
void *p, *new_memmap = NULL;
unsigned long left = 0;
unsigned long desc_size;
efi_memory_desc_t *md;
desc_size = efi.memmap.desc_size;
p = NULL;
while ((p = efi_map_next_entry(p))) {
md = p;
if (!should_map_region(md))
continue;
efi_map_region(md);
if (left < desc_size) {
new_memmap = realloc_pages(new_memmap, *pg_shift);
if (!new_memmap)
return NULL;
left += PAGE_SIZE << *pg_shift;
(*pg_shift)++;
}
memcpy(new_memmap + (*count * desc_size), md, desc_size);
left -= desc_size;
(*count)++;
}
return new_memmap;
}
static void __init kexec_enter_virtual_mode(void)
{
#ifdef CONFIG_KEXEC_CORE
efi_memory_desc_t *md;
unsigned int num_pages;
/*
* We don't do virtual mode, since we don't do runtime services, on
* non-native EFI.
*/
if (efi_is_mixed()) {
efi_memmap_unmap();
clear_bit(EFI_RUNTIME_SERVICES, &efi.flags);
return;
}
if (efi_alloc_page_tables()) {
pr_err("Failed to allocate EFI page tables\n");
clear_bit(EFI_RUNTIME_SERVICES, &efi.flags);
return;
}
/*
* Map efi regions which were passed via setup_data. The virt_addr is a
* fixed addr which was used in first kernel of a kexec boot.
*/
for_each_efi_memory_desc(md)
efi_map_region_fixed(md); /* FIXME: add error handling */
/*
* Unregister the early EFI memmap from efi_init() and install
* the new EFI memory map.
*/
efi_memmap_unmap();
if (efi_memmap_init_late(efi.memmap.phys_map,
efi.memmap.desc_size * efi.memmap.nr_map)) {
pr_err("Failed to remap late EFI memory map\n");
clear_bit(EFI_RUNTIME_SERVICES, &efi.flags);
return;
}
num_pages = ALIGN(efi.memmap.nr_map * efi.memmap.desc_size, PAGE_SIZE);
num_pages >>= PAGE_SHIFT;
if (efi_setup_page_tables(efi.memmap.phys_map, num_pages)) {
clear_bit(EFI_RUNTIME_SERVICES, &efi.flags);
return;
}
efi_sync_low_kernel_mappings();
efi_native_runtime_setup();
#endif
}
/*
* This function will switch the EFI runtime services to virtual mode.
* Essentially, we look through the EFI memmap and map every region that
* has the runtime attribute bit set in its memory descriptor into the
* efi_pgd page table.
*
* The new method does a pagetable switch in a preemption-safe manner
* so that we're in a different address space when calling a runtime
* function. For function arguments passing we do copy the PUDs of the
* kernel page table into efi_pgd prior to each call.
*
* Specially for kexec boot, efi runtime maps in previous kernel should
* be passed in via setup_data. In that case runtime ranges will be mapped
* to the same virtual addresses as the first kernel, see
* kexec_enter_virtual_mode().
*/
static void __init __efi_enter_virtual_mode(void)
{
int count = 0, pg_shift = 0;
void *new_memmap = NULL;
efi_status_t status;
unsigned long pa;
if (efi_alloc_page_tables()) {
pr_err("Failed to allocate EFI page tables\n");
goto err;
}
efi_merge_regions();
new_memmap = efi_map_regions(&count, &pg_shift);
if (!new_memmap) {
pr_err("Error reallocating memory, EFI runtime non-functional!\n");
goto err;
}
pa = __pa(new_memmap);
/*
* Unregister the early EFI memmap from efi_init() and install
* the new EFI memory map that we are about to pass to the
* firmware via SetVirtualAddressMap().
*/
efi_memmap_unmap();
if (efi_memmap_init_late(pa, efi.memmap.desc_size * count)) {
pr_err("Failed to remap late EFI memory map\n");
goto err;
}
if (efi_enabled(EFI_DBG)) {
pr_info("EFI runtime memory map:\n");
efi_print_memmap();
}
if (efi_setup_page_tables(pa, 1 << pg_shift))
goto err;
efi_sync_low_kernel_mappings();
status = efi_set_virtual_address_map(efi.memmap.desc_size * count,
efi.memmap.desc_size,
efi.memmap.desc_version,
(efi_memory_desc_t *)pa,
efi_systab_phys);
if (status != EFI_SUCCESS) {
pr_err("Unable to switch EFI into virtual mode (status=%lx)!\n",
status);
goto err;
}
efi_check_for_embedded_firmwares();
efi_free_boot_services();
if (!efi_is_mixed())
efi_native_runtime_setup();
else
efi_thunk_runtime_setup();
/*
* Apply more restrictive page table mapping attributes now that
* SVAM() has been called and the firmware has performed all
* necessary relocation fixups for the new virtual addresses.
*/
efi_runtime_update_mappings();
/* clean DUMMY object */
efi_delete_dummy_variable();
return;
err:
clear_bit(EFI_RUNTIME_SERVICES, &efi.flags);
}
void __init efi_enter_virtual_mode(void)
{
if (efi_enabled(EFI_PARAVIRT))
return;
efi.runtime = (efi_runtime_services_t *)efi_runtime;
if (efi_setup)
kexec_enter_virtual_mode();
else
__efi_enter_virtual_mode();
efi_dump_pagetable();
}
bool efi_is_table_address(unsigned long phys_addr)
{
unsigned int i;
if (phys_addr == EFI_INVALID_TABLE_ADDR)
return false;
for (i = 0; i < ARRAY_SIZE(efi_tables); i++)
if (*(efi_tables[i]) == phys_addr)
return true;
return false;
}
char *efi_systab_show_arch(char *str)
{
if (uga_phys != EFI_INVALID_TABLE_ADDR)
str += sprintf(str, "UGA=0x%lx\n", uga_phys);
return str;
}
#define EFI_FIELD(var) efi_ ## var
#define EFI_ATTR_SHOW(name) \
static ssize_t name##_show(struct kobject *kobj, \
struct kobj_attribute *attr, char *buf) \
{ \
return sprintf(buf, "0x%lx\n", EFI_FIELD(name)); \
}
EFI_ATTR_SHOW(fw_vendor);
EFI_ATTR_SHOW(runtime);
EFI_ATTR_SHOW(config_table);
struct kobj_attribute efi_attr_fw_vendor = __ATTR_RO(fw_vendor);
struct kobj_attribute efi_attr_runtime = __ATTR_RO(runtime);
struct kobj_attribute efi_attr_config_table = __ATTR_RO(config_table);
umode_t efi_attr_is_visible(struct kobject *kobj, struct attribute *attr, int n)
{
if (attr == &efi_attr_fw_vendor.attr) {
if (efi_enabled(EFI_PARAVIRT) ||
efi_fw_vendor == EFI_INVALID_TABLE_ADDR)
return 0;
} else if (attr == &efi_attr_runtime.attr) {
if (efi_runtime == EFI_INVALID_TABLE_ADDR)
return 0;
} else if (attr == &efi_attr_config_table.attr) {
if (efi_config_table == EFI_INVALID_TABLE_ADDR)
return 0;
}
return attr->mode;
}
enum efi_secureboot_mode __x86_ima_efi_boot_mode(void)
{
return boot_params.secure_boot;
}