1
linux/arch/x86/kvm/x86.c
Paolo Bonzini 3f8df62852 Merge tag 'kvm-x86-vmx-6.12' of https://github.com/kvm-x86/linux into HEAD
KVM VMX changes for 6.12:

 - Set FINAL/PAGE in the page fault error code for EPT Violations if and only
   if the GVA is valid.  If the GVA is NOT valid, there is no guest-side page
   table walk and so stuffing paging related metadata is nonsensical.

 - Fix a bug where KVM would incorrectly synthesize a nested VM-Exit instead of
   emulating posted interrupt delivery to L2.

 - Add a lockdep assertion to detect unsafe accesses of vmcs12 structures.

 - Harden eVMCS loading against an impossible NULL pointer deref (really truly
   should be impossible).

 - Minor SGX fix and a cleanup.
2024-09-17 12:41:23 -04:00

14024 lines
374 KiB
C

// SPDX-License-Identifier: GPL-2.0-only
/*
* Kernel-based Virtual Machine driver for Linux
*
* derived from drivers/kvm/kvm_main.c
*
* Copyright (C) 2006 Qumranet, Inc.
* Copyright (C) 2008 Qumranet, Inc.
* Copyright IBM Corporation, 2008
* Copyright 2010 Red Hat, Inc. and/or its affiliates.
*
* Authors:
* Avi Kivity <avi@qumranet.com>
* Yaniv Kamay <yaniv@qumranet.com>
* Amit Shah <amit.shah@qumranet.com>
* Ben-Ami Yassour <benami@il.ibm.com>
*/
#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
#include <linux/kvm_host.h>
#include "irq.h"
#include "ioapic.h"
#include "mmu.h"
#include "i8254.h"
#include "tss.h"
#include "kvm_cache_regs.h"
#include "kvm_emulate.h"
#include "mmu/page_track.h"
#include "x86.h"
#include "cpuid.h"
#include "pmu.h"
#include "hyperv.h"
#include "lapic.h"
#include "xen.h"
#include "smm.h"
#include <linux/clocksource.h>
#include <linux/interrupt.h>
#include <linux/kvm.h>
#include <linux/fs.h>
#include <linux/vmalloc.h>
#include <linux/export.h>
#include <linux/moduleparam.h>
#include <linux/mman.h>
#include <linux/highmem.h>
#include <linux/iommu.h>
#include <linux/cpufreq.h>
#include <linux/user-return-notifier.h>
#include <linux/srcu.h>
#include <linux/slab.h>
#include <linux/perf_event.h>
#include <linux/uaccess.h>
#include <linux/hash.h>
#include <linux/pci.h>
#include <linux/timekeeper_internal.h>
#include <linux/pvclock_gtod.h>
#include <linux/kvm_irqfd.h>
#include <linux/irqbypass.h>
#include <linux/sched/stat.h>
#include <linux/sched/isolation.h>
#include <linux/mem_encrypt.h>
#include <linux/entry-kvm.h>
#include <linux/suspend.h>
#include <linux/smp.h>
#include <trace/events/ipi.h>
#include <trace/events/kvm.h>
#include <asm/debugreg.h>
#include <asm/msr.h>
#include <asm/desc.h>
#include <asm/mce.h>
#include <asm/pkru.h>
#include <linux/kernel_stat.h>
#include <asm/fpu/api.h>
#include <asm/fpu/xcr.h>
#include <asm/fpu/xstate.h>
#include <asm/pvclock.h>
#include <asm/div64.h>
#include <asm/irq_remapping.h>
#include <asm/mshyperv.h>
#include <asm/hypervisor.h>
#include <asm/tlbflush.h>
#include <asm/intel_pt.h>
#include <asm/emulate_prefix.h>
#include <asm/sgx.h>
#include <clocksource/hyperv_timer.h>
#define CREATE_TRACE_POINTS
#include "trace.h"
#define MAX_IO_MSRS 256
#define KVM_MAX_MCE_BANKS 32
/*
* Note, kvm_caps fields should *never* have default values, all fields must be
* recomputed from scratch during vendor module load, e.g. to account for a
* vendor module being reloaded with different module parameters.
*/
struct kvm_caps kvm_caps __read_mostly;
EXPORT_SYMBOL_GPL(kvm_caps);
struct kvm_host_values kvm_host __read_mostly;
EXPORT_SYMBOL_GPL(kvm_host);
#define ERR_PTR_USR(e) ((void __user *)ERR_PTR(e))
#define emul_to_vcpu(ctxt) \
((struct kvm_vcpu *)(ctxt)->vcpu)
/* EFER defaults:
* - enable syscall per default because its emulated by KVM
* - enable LME and LMA per default on 64 bit KVM
*/
#ifdef CONFIG_X86_64
static
u64 __read_mostly efer_reserved_bits = ~((u64)(EFER_SCE | EFER_LME | EFER_LMA));
#else
static u64 __read_mostly efer_reserved_bits = ~((u64)EFER_SCE);
#endif
static u64 __read_mostly cr4_reserved_bits = CR4_RESERVED_BITS;
#define KVM_EXIT_HYPERCALL_VALID_MASK (1 << KVM_HC_MAP_GPA_RANGE)
#define KVM_CAP_PMU_VALID_MASK KVM_PMU_CAP_DISABLE
#define KVM_X2APIC_API_VALID_FLAGS (KVM_X2APIC_API_USE_32BIT_IDS | \
KVM_X2APIC_API_DISABLE_BROADCAST_QUIRK)
static void update_cr8_intercept(struct kvm_vcpu *vcpu);
static void process_nmi(struct kvm_vcpu *vcpu);
static void __kvm_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags);
static void store_regs(struct kvm_vcpu *vcpu);
static int sync_regs(struct kvm_vcpu *vcpu);
static int kvm_vcpu_do_singlestep(struct kvm_vcpu *vcpu);
static int __set_sregs2(struct kvm_vcpu *vcpu, struct kvm_sregs2 *sregs2);
static void __get_sregs2(struct kvm_vcpu *vcpu, struct kvm_sregs2 *sregs2);
static DEFINE_MUTEX(vendor_module_lock);
struct kvm_x86_ops kvm_x86_ops __read_mostly;
#define KVM_X86_OP(func) \
DEFINE_STATIC_CALL_NULL(kvm_x86_##func, \
*(((struct kvm_x86_ops *)0)->func));
#define KVM_X86_OP_OPTIONAL KVM_X86_OP
#define KVM_X86_OP_OPTIONAL_RET0 KVM_X86_OP
#include <asm/kvm-x86-ops.h>
EXPORT_STATIC_CALL_GPL(kvm_x86_get_cs_db_l_bits);
EXPORT_STATIC_CALL_GPL(kvm_x86_cache_reg);
static bool __read_mostly ignore_msrs = 0;
module_param(ignore_msrs, bool, 0644);
bool __read_mostly report_ignored_msrs = true;
module_param(report_ignored_msrs, bool, 0644);
EXPORT_SYMBOL_GPL(report_ignored_msrs);
unsigned int min_timer_period_us = 200;
module_param(min_timer_period_us, uint, 0644);
static bool __read_mostly kvmclock_periodic_sync = true;
module_param(kvmclock_periodic_sync, bool, 0444);
/* tsc tolerance in parts per million - default to 1/2 of the NTP threshold */
static u32 __read_mostly tsc_tolerance_ppm = 250;
module_param(tsc_tolerance_ppm, uint, 0644);
static bool __read_mostly vector_hashing = true;
module_param(vector_hashing, bool, 0444);
bool __read_mostly enable_vmware_backdoor = false;
module_param(enable_vmware_backdoor, bool, 0444);
EXPORT_SYMBOL_GPL(enable_vmware_backdoor);
/*
* Flags to manipulate forced emulation behavior (any non-zero value will
* enable forced emulation).
*/
#define KVM_FEP_CLEAR_RFLAGS_RF BIT(1)
static int __read_mostly force_emulation_prefix;
module_param(force_emulation_prefix, int, 0644);
int __read_mostly pi_inject_timer = -1;
module_param(pi_inject_timer, bint, 0644);
/* Enable/disable PMU virtualization */
bool __read_mostly enable_pmu = true;
EXPORT_SYMBOL_GPL(enable_pmu);
module_param(enable_pmu, bool, 0444);
bool __read_mostly eager_page_split = true;
module_param(eager_page_split, bool, 0644);
/* Enable/disable SMT_RSB bug mitigation */
static bool __read_mostly mitigate_smt_rsb;
module_param(mitigate_smt_rsb, bool, 0444);
/*
* Restoring the host value for MSRs that are only consumed when running in
* usermode, e.g. SYSCALL MSRs and TSC_AUX, can be deferred until the CPU
* returns to userspace, i.e. the kernel can run with the guest's value.
*/
#define KVM_MAX_NR_USER_RETURN_MSRS 16
struct kvm_user_return_msrs {
struct user_return_notifier urn;
bool registered;
struct kvm_user_return_msr_values {
u64 host;
u64 curr;
} values[KVM_MAX_NR_USER_RETURN_MSRS];
};
u32 __read_mostly kvm_nr_uret_msrs;
EXPORT_SYMBOL_GPL(kvm_nr_uret_msrs);
static u32 __read_mostly kvm_uret_msrs_list[KVM_MAX_NR_USER_RETURN_MSRS];
static struct kvm_user_return_msrs __percpu *user_return_msrs;
#define KVM_SUPPORTED_XCR0 (XFEATURE_MASK_FP | XFEATURE_MASK_SSE \
| XFEATURE_MASK_YMM | XFEATURE_MASK_BNDREGS \
| XFEATURE_MASK_BNDCSR | XFEATURE_MASK_AVX512 \
| XFEATURE_MASK_PKRU | XFEATURE_MASK_XTILE)
bool __read_mostly allow_smaller_maxphyaddr = 0;
EXPORT_SYMBOL_GPL(allow_smaller_maxphyaddr);
bool __read_mostly enable_apicv = true;
EXPORT_SYMBOL_GPL(enable_apicv);
const struct _kvm_stats_desc kvm_vm_stats_desc[] = {
KVM_GENERIC_VM_STATS(),
STATS_DESC_COUNTER(VM, mmu_shadow_zapped),
STATS_DESC_COUNTER(VM, mmu_pte_write),
STATS_DESC_COUNTER(VM, mmu_pde_zapped),
STATS_DESC_COUNTER(VM, mmu_flooded),
STATS_DESC_COUNTER(VM, mmu_recycled),
STATS_DESC_COUNTER(VM, mmu_cache_miss),
STATS_DESC_ICOUNTER(VM, mmu_unsync),
STATS_DESC_ICOUNTER(VM, pages_4k),
STATS_DESC_ICOUNTER(VM, pages_2m),
STATS_DESC_ICOUNTER(VM, pages_1g),
STATS_DESC_ICOUNTER(VM, nx_lpage_splits),
STATS_DESC_PCOUNTER(VM, max_mmu_rmap_size),
STATS_DESC_PCOUNTER(VM, max_mmu_page_hash_collisions)
};
const struct kvm_stats_header kvm_vm_stats_header = {
.name_size = KVM_STATS_NAME_SIZE,
.num_desc = ARRAY_SIZE(kvm_vm_stats_desc),
.id_offset = sizeof(struct kvm_stats_header),
.desc_offset = sizeof(struct kvm_stats_header) + KVM_STATS_NAME_SIZE,
.data_offset = sizeof(struct kvm_stats_header) + KVM_STATS_NAME_SIZE +
sizeof(kvm_vm_stats_desc),
};
const struct _kvm_stats_desc kvm_vcpu_stats_desc[] = {
KVM_GENERIC_VCPU_STATS(),
STATS_DESC_COUNTER(VCPU, pf_taken),
STATS_DESC_COUNTER(VCPU, pf_fixed),
STATS_DESC_COUNTER(VCPU, pf_emulate),
STATS_DESC_COUNTER(VCPU, pf_spurious),
STATS_DESC_COUNTER(VCPU, pf_fast),
STATS_DESC_COUNTER(VCPU, pf_mmio_spte_created),
STATS_DESC_COUNTER(VCPU, pf_guest),
STATS_DESC_COUNTER(VCPU, tlb_flush),
STATS_DESC_COUNTER(VCPU, invlpg),
STATS_DESC_COUNTER(VCPU, exits),
STATS_DESC_COUNTER(VCPU, io_exits),
STATS_DESC_COUNTER(VCPU, mmio_exits),
STATS_DESC_COUNTER(VCPU, signal_exits),
STATS_DESC_COUNTER(VCPU, irq_window_exits),
STATS_DESC_COUNTER(VCPU, nmi_window_exits),
STATS_DESC_COUNTER(VCPU, l1d_flush),
STATS_DESC_COUNTER(VCPU, halt_exits),
STATS_DESC_COUNTER(VCPU, request_irq_exits),
STATS_DESC_COUNTER(VCPU, irq_exits),
STATS_DESC_COUNTER(VCPU, host_state_reload),
STATS_DESC_COUNTER(VCPU, fpu_reload),
STATS_DESC_COUNTER(VCPU, insn_emulation),
STATS_DESC_COUNTER(VCPU, insn_emulation_fail),
STATS_DESC_COUNTER(VCPU, hypercalls),
STATS_DESC_COUNTER(VCPU, irq_injections),
STATS_DESC_COUNTER(VCPU, nmi_injections),
STATS_DESC_COUNTER(VCPU, req_event),
STATS_DESC_COUNTER(VCPU, nested_run),
STATS_DESC_COUNTER(VCPU, directed_yield_attempted),
STATS_DESC_COUNTER(VCPU, directed_yield_successful),
STATS_DESC_COUNTER(VCPU, preemption_reported),
STATS_DESC_COUNTER(VCPU, preemption_other),
STATS_DESC_IBOOLEAN(VCPU, guest_mode),
STATS_DESC_COUNTER(VCPU, notify_window_exits),
};
const struct kvm_stats_header kvm_vcpu_stats_header = {
.name_size = KVM_STATS_NAME_SIZE,
.num_desc = ARRAY_SIZE(kvm_vcpu_stats_desc),
.id_offset = sizeof(struct kvm_stats_header),
.desc_offset = sizeof(struct kvm_stats_header) + KVM_STATS_NAME_SIZE,
.data_offset = sizeof(struct kvm_stats_header) + KVM_STATS_NAME_SIZE +
sizeof(kvm_vcpu_stats_desc),
};
static struct kmem_cache *x86_emulator_cache;
/*
* The three MSR lists(msrs_to_save, emulated_msrs, msr_based_features) track
* the set of MSRs that KVM exposes to userspace through KVM_GET_MSRS,
* KVM_SET_MSRS, and KVM_GET_MSR_INDEX_LIST. msrs_to_save holds MSRs that
* require host support, i.e. should be probed via RDMSR. emulated_msrs holds
* MSRs that KVM emulates without strictly requiring host support.
* msr_based_features holds MSRs that enumerate features, i.e. are effectively
* CPUID leafs. Note, msr_based_features isn't mutually exclusive with
* msrs_to_save and emulated_msrs.
*/
static const u32 msrs_to_save_base[] = {
MSR_IA32_SYSENTER_CS, MSR_IA32_SYSENTER_ESP, MSR_IA32_SYSENTER_EIP,
MSR_STAR,
#ifdef CONFIG_X86_64
MSR_CSTAR, MSR_KERNEL_GS_BASE, MSR_SYSCALL_MASK, MSR_LSTAR,
#endif
MSR_IA32_TSC, MSR_IA32_CR_PAT, MSR_VM_HSAVE_PA,
MSR_IA32_FEAT_CTL, MSR_IA32_BNDCFGS, MSR_TSC_AUX,
MSR_IA32_SPEC_CTRL, MSR_IA32_TSX_CTRL,
MSR_IA32_RTIT_CTL, MSR_IA32_RTIT_STATUS, MSR_IA32_RTIT_CR3_MATCH,
MSR_IA32_RTIT_OUTPUT_BASE, MSR_IA32_RTIT_OUTPUT_MASK,
MSR_IA32_RTIT_ADDR0_A, MSR_IA32_RTIT_ADDR0_B,
MSR_IA32_RTIT_ADDR1_A, MSR_IA32_RTIT_ADDR1_B,
MSR_IA32_RTIT_ADDR2_A, MSR_IA32_RTIT_ADDR2_B,
MSR_IA32_RTIT_ADDR3_A, MSR_IA32_RTIT_ADDR3_B,
MSR_IA32_UMWAIT_CONTROL,
MSR_IA32_XFD, MSR_IA32_XFD_ERR,
};
static const u32 msrs_to_save_pmu[] = {
MSR_ARCH_PERFMON_FIXED_CTR0, MSR_ARCH_PERFMON_FIXED_CTR1,
MSR_ARCH_PERFMON_FIXED_CTR0 + 2,
MSR_CORE_PERF_FIXED_CTR_CTRL, MSR_CORE_PERF_GLOBAL_STATUS,
MSR_CORE_PERF_GLOBAL_CTRL,
MSR_IA32_PEBS_ENABLE, MSR_IA32_DS_AREA, MSR_PEBS_DATA_CFG,
/* This part of MSRs should match KVM_MAX_NR_INTEL_GP_COUNTERS. */
MSR_ARCH_PERFMON_PERFCTR0, MSR_ARCH_PERFMON_PERFCTR1,
MSR_ARCH_PERFMON_PERFCTR0 + 2, MSR_ARCH_PERFMON_PERFCTR0 + 3,
MSR_ARCH_PERFMON_PERFCTR0 + 4, MSR_ARCH_PERFMON_PERFCTR0 + 5,
MSR_ARCH_PERFMON_PERFCTR0 + 6, MSR_ARCH_PERFMON_PERFCTR0 + 7,
MSR_ARCH_PERFMON_EVENTSEL0, MSR_ARCH_PERFMON_EVENTSEL1,
MSR_ARCH_PERFMON_EVENTSEL0 + 2, MSR_ARCH_PERFMON_EVENTSEL0 + 3,
MSR_ARCH_PERFMON_EVENTSEL0 + 4, MSR_ARCH_PERFMON_EVENTSEL0 + 5,
MSR_ARCH_PERFMON_EVENTSEL0 + 6, MSR_ARCH_PERFMON_EVENTSEL0 + 7,
MSR_K7_EVNTSEL0, MSR_K7_EVNTSEL1, MSR_K7_EVNTSEL2, MSR_K7_EVNTSEL3,
MSR_K7_PERFCTR0, MSR_K7_PERFCTR1, MSR_K7_PERFCTR2, MSR_K7_PERFCTR3,
/* This part of MSRs should match KVM_MAX_NR_AMD_GP_COUNTERS. */
MSR_F15H_PERF_CTL0, MSR_F15H_PERF_CTL1, MSR_F15H_PERF_CTL2,
MSR_F15H_PERF_CTL3, MSR_F15H_PERF_CTL4, MSR_F15H_PERF_CTL5,
MSR_F15H_PERF_CTR0, MSR_F15H_PERF_CTR1, MSR_F15H_PERF_CTR2,
MSR_F15H_PERF_CTR3, MSR_F15H_PERF_CTR4, MSR_F15H_PERF_CTR5,
MSR_AMD64_PERF_CNTR_GLOBAL_CTL,
MSR_AMD64_PERF_CNTR_GLOBAL_STATUS,
MSR_AMD64_PERF_CNTR_GLOBAL_STATUS_CLR,
};
static u32 msrs_to_save[ARRAY_SIZE(msrs_to_save_base) +
ARRAY_SIZE(msrs_to_save_pmu)];
static unsigned num_msrs_to_save;
static const u32 emulated_msrs_all[] = {
MSR_KVM_SYSTEM_TIME, MSR_KVM_WALL_CLOCK,
MSR_KVM_SYSTEM_TIME_NEW, MSR_KVM_WALL_CLOCK_NEW,
#ifdef CONFIG_KVM_HYPERV
HV_X64_MSR_GUEST_OS_ID, HV_X64_MSR_HYPERCALL,
HV_X64_MSR_TIME_REF_COUNT, HV_X64_MSR_REFERENCE_TSC,
HV_X64_MSR_TSC_FREQUENCY, HV_X64_MSR_APIC_FREQUENCY,
HV_X64_MSR_CRASH_P0, HV_X64_MSR_CRASH_P1, HV_X64_MSR_CRASH_P2,
HV_X64_MSR_CRASH_P3, HV_X64_MSR_CRASH_P4, HV_X64_MSR_CRASH_CTL,
HV_X64_MSR_RESET,
HV_X64_MSR_VP_INDEX,
HV_X64_MSR_VP_RUNTIME,
HV_X64_MSR_SCONTROL,
HV_X64_MSR_STIMER0_CONFIG,
HV_X64_MSR_VP_ASSIST_PAGE,
HV_X64_MSR_REENLIGHTENMENT_CONTROL, HV_X64_MSR_TSC_EMULATION_CONTROL,
HV_X64_MSR_TSC_EMULATION_STATUS, HV_X64_MSR_TSC_INVARIANT_CONTROL,
HV_X64_MSR_SYNDBG_OPTIONS,
HV_X64_MSR_SYNDBG_CONTROL, HV_X64_MSR_SYNDBG_STATUS,
HV_X64_MSR_SYNDBG_SEND_BUFFER, HV_X64_MSR_SYNDBG_RECV_BUFFER,
HV_X64_MSR_SYNDBG_PENDING_BUFFER,
#endif
MSR_KVM_ASYNC_PF_EN, MSR_KVM_STEAL_TIME,
MSR_KVM_PV_EOI_EN, MSR_KVM_ASYNC_PF_INT, MSR_KVM_ASYNC_PF_ACK,
MSR_IA32_TSC_ADJUST,
MSR_IA32_TSC_DEADLINE,
MSR_IA32_ARCH_CAPABILITIES,
MSR_IA32_PERF_CAPABILITIES,
MSR_IA32_MISC_ENABLE,
MSR_IA32_MCG_STATUS,
MSR_IA32_MCG_CTL,
MSR_IA32_MCG_EXT_CTL,
MSR_IA32_SMBASE,
MSR_SMI_COUNT,
MSR_PLATFORM_INFO,
MSR_MISC_FEATURES_ENABLES,
MSR_AMD64_VIRT_SPEC_CTRL,
MSR_AMD64_TSC_RATIO,
MSR_IA32_POWER_CTL,
MSR_IA32_UCODE_REV,
/*
* KVM always supports the "true" VMX control MSRs, even if the host
* does not. The VMX MSRs as a whole are considered "emulated" as KVM
* doesn't strictly require them to exist in the host (ignoring that
* KVM would refuse to load in the first place if the core set of MSRs
* aren't supported).
*/
MSR_IA32_VMX_BASIC,
MSR_IA32_VMX_TRUE_PINBASED_CTLS,
MSR_IA32_VMX_TRUE_PROCBASED_CTLS,
MSR_IA32_VMX_TRUE_EXIT_CTLS,
MSR_IA32_VMX_TRUE_ENTRY_CTLS,
MSR_IA32_VMX_MISC,
MSR_IA32_VMX_CR0_FIXED0,
MSR_IA32_VMX_CR4_FIXED0,
MSR_IA32_VMX_VMCS_ENUM,
MSR_IA32_VMX_PROCBASED_CTLS2,
MSR_IA32_VMX_EPT_VPID_CAP,
MSR_IA32_VMX_VMFUNC,
MSR_K7_HWCR,
MSR_KVM_POLL_CONTROL,
};
static u32 emulated_msrs[ARRAY_SIZE(emulated_msrs_all)];
static unsigned num_emulated_msrs;
/*
* List of MSRs that control the existence of MSR-based features, i.e. MSRs
* that are effectively CPUID leafs. VMX MSRs are also included in the set of
* feature MSRs, but are handled separately to allow expedited lookups.
*/
static const u32 msr_based_features_all_except_vmx[] = {
MSR_AMD64_DE_CFG,
MSR_IA32_UCODE_REV,
MSR_IA32_ARCH_CAPABILITIES,
MSR_IA32_PERF_CAPABILITIES,
};
static u32 msr_based_features[ARRAY_SIZE(msr_based_features_all_except_vmx) +
(KVM_LAST_EMULATED_VMX_MSR - KVM_FIRST_EMULATED_VMX_MSR + 1)];
static unsigned int num_msr_based_features;
/*
* All feature MSRs except uCode revID, which tracks the currently loaded uCode
* patch, are immutable once the vCPU model is defined.
*/
static bool kvm_is_immutable_feature_msr(u32 msr)
{
int i;
if (msr >= KVM_FIRST_EMULATED_VMX_MSR && msr <= KVM_LAST_EMULATED_VMX_MSR)
return true;
for (i = 0; i < ARRAY_SIZE(msr_based_features_all_except_vmx); i++) {
if (msr == msr_based_features_all_except_vmx[i])
return msr != MSR_IA32_UCODE_REV;
}
return false;
}
static bool kvm_is_advertised_msr(u32 msr_index)
{
unsigned int i;
for (i = 0; i < num_msrs_to_save; i++) {
if (msrs_to_save[i] == msr_index)
return true;
}
for (i = 0; i < num_emulated_msrs; i++) {
if (emulated_msrs[i] == msr_index)
return true;
}
return false;
}
typedef int (*msr_access_t)(struct kvm_vcpu *vcpu, u32 index, u64 *data,
bool host_initiated);
static __always_inline int kvm_do_msr_access(struct kvm_vcpu *vcpu, u32 msr,
u64 *data, bool host_initiated,
enum kvm_msr_access rw,
msr_access_t msr_access_fn)
{
const char *op = rw == MSR_TYPE_W ? "wrmsr" : "rdmsr";
int ret;
BUILD_BUG_ON(rw != MSR_TYPE_R && rw != MSR_TYPE_W);
/*
* Zero the data on read failures to avoid leaking stack data to the
* guest and/or userspace, e.g. if the failure is ignored below.
*/
ret = msr_access_fn(vcpu, msr, data, host_initiated);
if (ret && rw == MSR_TYPE_R)
*data = 0;
if (ret != KVM_MSR_RET_UNSUPPORTED)
return ret;
/*
* Userspace is allowed to read MSRs, and write '0' to MSRs, that KVM
* advertises to userspace, even if an MSR isn't fully supported.
* Simply check that @data is '0', which covers both the write '0' case
* and all reads (in which case @data is zeroed on failure; see above).
*/
if (host_initiated && !*data && kvm_is_advertised_msr(msr))
return 0;
if (!ignore_msrs) {
kvm_debug_ratelimited("unhandled %s: 0x%x data 0x%llx\n",
op, msr, *data);
return ret;
}
if (report_ignored_msrs)
kvm_pr_unimpl("ignored %s: 0x%x data 0x%llx\n", op, msr, *data);
return 0;
}
static struct kmem_cache *kvm_alloc_emulator_cache(void)
{
unsigned int useroffset = offsetof(struct x86_emulate_ctxt, src);
unsigned int size = sizeof(struct x86_emulate_ctxt);
return kmem_cache_create_usercopy("x86_emulator", size,
__alignof__(struct x86_emulate_ctxt),
SLAB_ACCOUNT, useroffset,
size - useroffset, NULL);
}
static int emulator_fix_hypercall(struct x86_emulate_ctxt *ctxt);
static inline void kvm_async_pf_hash_reset(struct kvm_vcpu *vcpu)
{
int i;
for (i = 0; i < ASYNC_PF_PER_VCPU; i++)
vcpu->arch.apf.gfns[i] = ~0;
}
static void kvm_on_user_return(struct user_return_notifier *urn)
{
unsigned slot;
struct kvm_user_return_msrs *msrs
= container_of(urn, struct kvm_user_return_msrs, urn);
struct kvm_user_return_msr_values *values;
unsigned long flags;
/*
* Disabling irqs at this point since the following code could be
* interrupted and executed through kvm_arch_disable_virtualization_cpu()
*/
local_irq_save(flags);
if (msrs->registered) {
msrs->registered = false;
user_return_notifier_unregister(urn);
}
local_irq_restore(flags);
for (slot = 0; slot < kvm_nr_uret_msrs; ++slot) {
values = &msrs->values[slot];
if (values->host != values->curr) {
wrmsrl(kvm_uret_msrs_list[slot], values->host);
values->curr = values->host;
}
}
}
static int kvm_probe_user_return_msr(u32 msr)
{
u64 val;
int ret;
preempt_disable();
ret = rdmsrl_safe(msr, &val);
if (ret)
goto out;
ret = wrmsrl_safe(msr, val);
out:
preempt_enable();
return ret;
}
int kvm_add_user_return_msr(u32 msr)
{
BUG_ON(kvm_nr_uret_msrs >= KVM_MAX_NR_USER_RETURN_MSRS);
if (kvm_probe_user_return_msr(msr))
return -1;
kvm_uret_msrs_list[kvm_nr_uret_msrs] = msr;
return kvm_nr_uret_msrs++;
}
EXPORT_SYMBOL_GPL(kvm_add_user_return_msr);
int kvm_find_user_return_msr(u32 msr)
{
int i;
for (i = 0; i < kvm_nr_uret_msrs; ++i) {
if (kvm_uret_msrs_list[i] == msr)
return i;
}
return -1;
}
EXPORT_SYMBOL_GPL(kvm_find_user_return_msr);
static void kvm_user_return_msr_cpu_online(void)
{
struct kvm_user_return_msrs *msrs = this_cpu_ptr(user_return_msrs);
u64 value;
int i;
for (i = 0; i < kvm_nr_uret_msrs; ++i) {
rdmsrl_safe(kvm_uret_msrs_list[i], &value);
msrs->values[i].host = value;
msrs->values[i].curr = value;
}
}
int kvm_set_user_return_msr(unsigned slot, u64 value, u64 mask)
{
struct kvm_user_return_msrs *msrs = this_cpu_ptr(user_return_msrs);
int err;
value = (value & mask) | (msrs->values[slot].host & ~mask);
if (value == msrs->values[slot].curr)
return 0;
err = wrmsrl_safe(kvm_uret_msrs_list[slot], value);
if (err)
return 1;
msrs->values[slot].curr = value;
if (!msrs->registered) {
msrs->urn.on_user_return = kvm_on_user_return;
user_return_notifier_register(&msrs->urn);
msrs->registered = true;
}
return 0;
}
EXPORT_SYMBOL_GPL(kvm_set_user_return_msr);
static void drop_user_return_notifiers(void)
{
struct kvm_user_return_msrs *msrs = this_cpu_ptr(user_return_msrs);
if (msrs->registered)
kvm_on_user_return(&msrs->urn);
}
u64 kvm_get_apic_base(struct kvm_vcpu *vcpu)
{
return vcpu->arch.apic_base;
}
enum lapic_mode kvm_get_apic_mode(struct kvm_vcpu *vcpu)
{
return kvm_apic_mode(kvm_get_apic_base(vcpu));
}
EXPORT_SYMBOL_GPL(kvm_get_apic_mode);
int kvm_set_apic_base(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
{
enum lapic_mode old_mode = kvm_get_apic_mode(vcpu);
enum lapic_mode new_mode = kvm_apic_mode(msr_info->data);
u64 reserved_bits = kvm_vcpu_reserved_gpa_bits_raw(vcpu) | 0x2ff |
(guest_cpuid_has(vcpu, X86_FEATURE_X2APIC) ? 0 : X2APIC_ENABLE);
if ((msr_info->data & reserved_bits) != 0 || new_mode == LAPIC_MODE_INVALID)
return 1;
if (!msr_info->host_initiated) {
if (old_mode == LAPIC_MODE_X2APIC && new_mode == LAPIC_MODE_XAPIC)
return 1;
if (old_mode == LAPIC_MODE_DISABLED && new_mode == LAPIC_MODE_X2APIC)
return 1;
}
kvm_lapic_set_base(vcpu, msr_info->data);
kvm_recalculate_apic_map(vcpu->kvm);
return 0;
}
/*
* Handle a fault on a hardware virtualization (VMX or SVM) instruction.
*
* Hardware virtualization extension instructions may fault if a reboot turns
* off virtualization while processes are running. Usually after catching the
* fault we just panic; during reboot instead the instruction is ignored.
*/
noinstr void kvm_spurious_fault(void)
{
/* Fault while not rebooting. We want the trace. */
BUG_ON(!kvm_rebooting);
}
EXPORT_SYMBOL_GPL(kvm_spurious_fault);
#define EXCPT_BENIGN 0
#define EXCPT_CONTRIBUTORY 1
#define EXCPT_PF 2
static int exception_class(int vector)
{
switch (vector) {
case PF_VECTOR:
return EXCPT_PF;
case DE_VECTOR:
case TS_VECTOR:
case NP_VECTOR:
case SS_VECTOR:
case GP_VECTOR:
return EXCPT_CONTRIBUTORY;
default:
break;
}
return EXCPT_BENIGN;
}
#define EXCPT_FAULT 0
#define EXCPT_TRAP 1
#define EXCPT_ABORT 2
#define EXCPT_INTERRUPT 3
#define EXCPT_DB 4
static int exception_type(int vector)
{
unsigned int mask;
if (WARN_ON(vector > 31 || vector == NMI_VECTOR))
return EXCPT_INTERRUPT;
mask = 1 << vector;
/*
* #DBs can be trap-like or fault-like, the caller must check other CPU
* state, e.g. DR6, to determine whether a #DB is a trap or fault.
*/
if (mask & (1 << DB_VECTOR))
return EXCPT_DB;
if (mask & ((1 << BP_VECTOR) | (1 << OF_VECTOR)))
return EXCPT_TRAP;
if (mask & ((1 << DF_VECTOR) | (1 << MC_VECTOR)))
return EXCPT_ABORT;
/* Reserved exceptions will result in fault */
return EXCPT_FAULT;
}
void kvm_deliver_exception_payload(struct kvm_vcpu *vcpu,
struct kvm_queued_exception *ex)
{
if (!ex->has_payload)
return;
switch (ex->vector) {
case DB_VECTOR:
/*
* "Certain debug exceptions may clear bit 0-3. The
* remaining contents of the DR6 register are never
* cleared by the processor".
*/
vcpu->arch.dr6 &= ~DR_TRAP_BITS;
/*
* In order to reflect the #DB exception payload in guest
* dr6, three components need to be considered: active low
* bit, FIXED_1 bits and active high bits (e.g. DR6_BD,
* DR6_BS and DR6_BT)
* DR6_ACTIVE_LOW contains the FIXED_1 and active low bits.
* In the target guest dr6:
* FIXED_1 bits should always be set.
* Active low bits should be cleared if 1-setting in payload.
* Active high bits should be set if 1-setting in payload.
*
* Note, the payload is compatible with the pending debug
* exceptions/exit qualification under VMX, that active_low bits
* are active high in payload.
* So they need to be flipped for DR6.
*/
vcpu->arch.dr6 |= DR6_ACTIVE_LOW;
vcpu->arch.dr6 |= ex->payload;
vcpu->arch.dr6 ^= ex->payload & DR6_ACTIVE_LOW;
/*
* The #DB payload is defined as compatible with the 'pending
* debug exceptions' field under VMX, not DR6. While bit 12 is
* defined in the 'pending debug exceptions' field (enabled
* breakpoint), it is reserved and must be zero in DR6.
*/
vcpu->arch.dr6 &= ~BIT(12);
break;
case PF_VECTOR:
vcpu->arch.cr2 = ex->payload;
break;
}
ex->has_payload = false;
ex->payload = 0;
}
EXPORT_SYMBOL_GPL(kvm_deliver_exception_payload);
static void kvm_queue_exception_vmexit(struct kvm_vcpu *vcpu, unsigned int vector,
bool has_error_code, u32 error_code,
bool has_payload, unsigned long payload)
{
struct kvm_queued_exception *ex = &vcpu->arch.exception_vmexit;
ex->vector = vector;
ex->injected = false;
ex->pending = true;
ex->has_error_code = has_error_code;
ex->error_code = error_code;
ex->has_payload = has_payload;
ex->payload = payload;
}
static void kvm_multiple_exception(struct kvm_vcpu *vcpu,
unsigned nr, bool has_error, u32 error_code,
bool has_payload, unsigned long payload, bool reinject)
{
u32 prev_nr;
int class1, class2;
kvm_make_request(KVM_REQ_EVENT, vcpu);
/*
* If the exception is destined for L2 and isn't being reinjected,
* morph it to a VM-Exit if L1 wants to intercept the exception. A
* previously injected exception is not checked because it was checked
* when it was original queued, and re-checking is incorrect if _L1_
* injected the exception, in which case it's exempt from interception.
*/
if (!reinject && is_guest_mode(vcpu) &&
kvm_x86_ops.nested_ops->is_exception_vmexit(vcpu, nr, error_code)) {
kvm_queue_exception_vmexit(vcpu, nr, has_error, error_code,
has_payload, payload);
return;
}
if (!vcpu->arch.exception.pending && !vcpu->arch.exception.injected) {
queue:
if (reinject) {
/*
* On VM-Entry, an exception can be pending if and only
* if event injection was blocked by nested_run_pending.
* In that case, however, vcpu_enter_guest() requests an
* immediate exit, and the guest shouldn't proceed far
* enough to need reinjection.
*/
WARN_ON_ONCE(kvm_is_exception_pending(vcpu));
vcpu->arch.exception.injected = true;
if (WARN_ON_ONCE(has_payload)) {
/*
* A reinjected event has already
* delivered its payload.
*/
has_payload = false;
payload = 0;
}
} else {
vcpu->arch.exception.pending = true;
vcpu->arch.exception.injected = false;
}
vcpu->arch.exception.has_error_code = has_error;
vcpu->arch.exception.vector = nr;
vcpu->arch.exception.error_code = error_code;
vcpu->arch.exception.has_payload = has_payload;
vcpu->arch.exception.payload = payload;
if (!is_guest_mode(vcpu))
kvm_deliver_exception_payload(vcpu,
&vcpu->arch.exception);
return;
}
/* to check exception */
prev_nr = vcpu->arch.exception.vector;
if (prev_nr == DF_VECTOR) {
/* triple fault -> shutdown */
kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
return;
}
class1 = exception_class(prev_nr);
class2 = exception_class(nr);
if ((class1 == EXCPT_CONTRIBUTORY && class2 == EXCPT_CONTRIBUTORY) ||
(class1 == EXCPT_PF && class2 != EXCPT_BENIGN)) {
/*
* Synthesize #DF. Clear the previously injected or pending
* exception so as not to incorrectly trigger shutdown.
*/
vcpu->arch.exception.injected = false;
vcpu->arch.exception.pending = false;
kvm_queue_exception_e(vcpu, DF_VECTOR, 0);
} else {
/* replace previous exception with a new one in a hope
that instruction re-execution will regenerate lost
exception */
goto queue;
}
}
void kvm_queue_exception(struct kvm_vcpu *vcpu, unsigned nr)
{
kvm_multiple_exception(vcpu, nr, false, 0, false, 0, false);
}
EXPORT_SYMBOL_GPL(kvm_queue_exception);
void kvm_requeue_exception(struct kvm_vcpu *vcpu, unsigned nr)
{
kvm_multiple_exception(vcpu, nr, false, 0, false, 0, true);
}
EXPORT_SYMBOL_GPL(kvm_requeue_exception);
void kvm_queue_exception_p(struct kvm_vcpu *vcpu, unsigned nr,
unsigned long payload)
{
kvm_multiple_exception(vcpu, nr, false, 0, true, payload, false);
}
EXPORT_SYMBOL_GPL(kvm_queue_exception_p);
static void kvm_queue_exception_e_p(struct kvm_vcpu *vcpu, unsigned nr,
u32 error_code, unsigned long payload)
{
kvm_multiple_exception(vcpu, nr, true, error_code,
true, payload, false);
}
int kvm_complete_insn_gp(struct kvm_vcpu *vcpu, int err)
{
if (err)
kvm_inject_gp(vcpu, 0);
else
return kvm_skip_emulated_instruction(vcpu);
return 1;
}
EXPORT_SYMBOL_GPL(kvm_complete_insn_gp);
static int complete_emulated_insn_gp(struct kvm_vcpu *vcpu, int err)
{
if (err) {
kvm_inject_gp(vcpu, 0);
return 1;
}
return kvm_emulate_instruction(vcpu, EMULTYPE_NO_DECODE | EMULTYPE_SKIP |
EMULTYPE_COMPLETE_USER_EXIT);
}
void kvm_inject_page_fault(struct kvm_vcpu *vcpu, struct x86_exception *fault)
{
++vcpu->stat.pf_guest;
/*
* Async #PF in L2 is always forwarded to L1 as a VM-Exit regardless of
* whether or not L1 wants to intercept "regular" #PF.
*/
if (is_guest_mode(vcpu) && fault->async_page_fault)
kvm_queue_exception_vmexit(vcpu, PF_VECTOR,
true, fault->error_code,
true, fault->address);
else
kvm_queue_exception_e_p(vcpu, PF_VECTOR, fault->error_code,
fault->address);
}
void kvm_inject_emulated_page_fault(struct kvm_vcpu *vcpu,
struct x86_exception *fault)
{
struct kvm_mmu *fault_mmu;
WARN_ON_ONCE(fault->vector != PF_VECTOR);
fault_mmu = fault->nested_page_fault ? vcpu->arch.mmu :
vcpu->arch.walk_mmu;
/*
* Invalidate the TLB entry for the faulting address, if it exists,
* else the access will fault indefinitely (and to emulate hardware).
*/
if ((fault->error_code & PFERR_PRESENT_MASK) &&
!(fault->error_code & PFERR_RSVD_MASK))
kvm_mmu_invalidate_addr(vcpu, fault_mmu, fault->address,
KVM_MMU_ROOT_CURRENT);
fault_mmu->inject_page_fault(vcpu, fault);
}
EXPORT_SYMBOL_GPL(kvm_inject_emulated_page_fault);
void kvm_inject_nmi(struct kvm_vcpu *vcpu)
{
atomic_inc(&vcpu->arch.nmi_queued);
kvm_make_request(KVM_REQ_NMI, vcpu);
}
void kvm_queue_exception_e(struct kvm_vcpu *vcpu, unsigned nr, u32 error_code)
{
kvm_multiple_exception(vcpu, nr, true, error_code, false, 0, false);
}
EXPORT_SYMBOL_GPL(kvm_queue_exception_e);
void kvm_requeue_exception_e(struct kvm_vcpu *vcpu, unsigned nr, u32 error_code)
{
kvm_multiple_exception(vcpu, nr, true, error_code, false, 0, true);
}
EXPORT_SYMBOL_GPL(kvm_requeue_exception_e);
/*
* Checks if cpl <= required_cpl; if true, return true. Otherwise queue
* a #GP and return false.
*/
bool kvm_require_cpl(struct kvm_vcpu *vcpu, int required_cpl)
{
if (kvm_x86_call(get_cpl)(vcpu) <= required_cpl)
return true;
kvm_queue_exception_e(vcpu, GP_VECTOR, 0);
return false;
}
bool kvm_require_dr(struct kvm_vcpu *vcpu, int dr)
{
if ((dr != 4 && dr != 5) || !kvm_is_cr4_bit_set(vcpu, X86_CR4_DE))
return true;
kvm_queue_exception(vcpu, UD_VECTOR);
return false;
}
EXPORT_SYMBOL_GPL(kvm_require_dr);
static inline u64 pdptr_rsvd_bits(struct kvm_vcpu *vcpu)
{
return vcpu->arch.reserved_gpa_bits | rsvd_bits(5, 8) | rsvd_bits(1, 2);
}
/*
* Load the pae pdptrs. Return 1 if they are all valid, 0 otherwise.
*/
int load_pdptrs(struct kvm_vcpu *vcpu, unsigned long cr3)
{
struct kvm_mmu *mmu = vcpu->arch.walk_mmu;
gfn_t pdpt_gfn = cr3 >> PAGE_SHIFT;
gpa_t real_gpa;
int i;
int ret;
u64 pdpte[ARRAY_SIZE(mmu->pdptrs)];
/*
* If the MMU is nested, CR3 holds an L2 GPA and needs to be translated
* to an L1 GPA.
*/
real_gpa = kvm_translate_gpa(vcpu, mmu, gfn_to_gpa(pdpt_gfn),
PFERR_USER_MASK | PFERR_WRITE_MASK, NULL);
if (real_gpa == INVALID_GPA)
return 0;
/* Note the offset, PDPTRs are 32 byte aligned when using PAE paging. */
ret = kvm_vcpu_read_guest_page(vcpu, gpa_to_gfn(real_gpa), pdpte,
cr3 & GENMASK(11, 5), sizeof(pdpte));
if (ret < 0)
return 0;
for (i = 0; i < ARRAY_SIZE(pdpte); ++i) {
if ((pdpte[i] & PT_PRESENT_MASK) &&
(pdpte[i] & pdptr_rsvd_bits(vcpu))) {
return 0;
}
}
/*
* Marking VCPU_EXREG_PDPTR dirty doesn't work for !tdp_enabled.
* Shadow page roots need to be reconstructed instead.
*/
if (!tdp_enabled && memcmp(mmu->pdptrs, pdpte, sizeof(mmu->pdptrs)))
kvm_mmu_free_roots(vcpu->kvm, mmu, KVM_MMU_ROOT_CURRENT);
memcpy(mmu->pdptrs, pdpte, sizeof(mmu->pdptrs));
kvm_register_mark_dirty(vcpu, VCPU_EXREG_PDPTR);
kvm_make_request(KVM_REQ_LOAD_MMU_PGD, vcpu);
vcpu->arch.pdptrs_from_userspace = false;
return 1;
}
EXPORT_SYMBOL_GPL(load_pdptrs);
static bool kvm_is_valid_cr0(struct kvm_vcpu *vcpu, unsigned long cr0)
{
#ifdef CONFIG_X86_64
if (cr0 & 0xffffffff00000000UL)
return false;
#endif
if ((cr0 & X86_CR0_NW) && !(cr0 & X86_CR0_CD))
return false;
if ((cr0 & X86_CR0_PG) && !(cr0 & X86_CR0_PE))
return false;
return kvm_x86_call(is_valid_cr0)(vcpu, cr0);
}
void kvm_post_set_cr0(struct kvm_vcpu *vcpu, unsigned long old_cr0, unsigned long cr0)
{
/*
* CR0.WP is incorporated into the MMU role, but only for non-nested,
* indirect shadow MMUs. If paging is disabled, no updates are needed
* as there are no permission bits to emulate. If TDP is enabled, the
* MMU's metadata needs to be updated, e.g. so that emulating guest
* translations does the right thing, but there's no need to unload the
* root as CR0.WP doesn't affect SPTEs.
*/
if ((cr0 ^ old_cr0) == X86_CR0_WP) {
if (!(cr0 & X86_CR0_PG))
return;
if (tdp_enabled) {
kvm_init_mmu(vcpu);
return;
}
}
if ((cr0 ^ old_cr0) & X86_CR0_PG) {
kvm_clear_async_pf_completion_queue(vcpu);
kvm_async_pf_hash_reset(vcpu);
/*
* Clearing CR0.PG is defined to flush the TLB from the guest's
* perspective.
*/
if (!(cr0 & X86_CR0_PG))
kvm_make_request(KVM_REQ_TLB_FLUSH_GUEST, vcpu);
}
if ((cr0 ^ old_cr0) & KVM_MMU_CR0_ROLE_BITS)
kvm_mmu_reset_context(vcpu);
}
EXPORT_SYMBOL_GPL(kvm_post_set_cr0);
int kvm_set_cr0(struct kvm_vcpu *vcpu, unsigned long cr0)
{
unsigned long old_cr0 = kvm_read_cr0(vcpu);
if (!kvm_is_valid_cr0(vcpu, cr0))
return 1;
cr0 |= X86_CR0_ET;
/* Write to CR0 reserved bits are ignored, even on Intel. */
cr0 &= ~CR0_RESERVED_BITS;
#ifdef CONFIG_X86_64
if ((vcpu->arch.efer & EFER_LME) && !is_paging(vcpu) &&
(cr0 & X86_CR0_PG)) {
int cs_db, cs_l;
if (!is_pae(vcpu))
return 1;
kvm_x86_call(get_cs_db_l_bits)(vcpu, &cs_db, &cs_l);
if (cs_l)
return 1;
}
#endif
if (!(vcpu->arch.efer & EFER_LME) && (cr0 & X86_CR0_PG) &&
is_pae(vcpu) && ((cr0 ^ old_cr0) & X86_CR0_PDPTR_BITS) &&
!load_pdptrs(vcpu, kvm_read_cr3(vcpu)))
return 1;
if (!(cr0 & X86_CR0_PG) &&
(is_64_bit_mode(vcpu) || kvm_is_cr4_bit_set(vcpu, X86_CR4_PCIDE)))
return 1;
kvm_x86_call(set_cr0)(vcpu, cr0);
kvm_post_set_cr0(vcpu, old_cr0, cr0);
return 0;
}
EXPORT_SYMBOL_GPL(kvm_set_cr0);
void kvm_lmsw(struct kvm_vcpu *vcpu, unsigned long msw)
{
(void)kvm_set_cr0(vcpu, kvm_read_cr0_bits(vcpu, ~0x0eul) | (msw & 0x0f));
}
EXPORT_SYMBOL_GPL(kvm_lmsw);
void kvm_load_guest_xsave_state(struct kvm_vcpu *vcpu)
{
if (vcpu->arch.guest_state_protected)
return;
if (kvm_is_cr4_bit_set(vcpu, X86_CR4_OSXSAVE)) {
if (vcpu->arch.xcr0 != kvm_host.xcr0)
xsetbv(XCR_XFEATURE_ENABLED_MASK, vcpu->arch.xcr0);
if (guest_can_use(vcpu, X86_FEATURE_XSAVES) &&
vcpu->arch.ia32_xss != kvm_host.xss)
wrmsrl(MSR_IA32_XSS, vcpu->arch.ia32_xss);
}
if (cpu_feature_enabled(X86_FEATURE_PKU) &&
vcpu->arch.pkru != vcpu->arch.host_pkru &&
((vcpu->arch.xcr0 & XFEATURE_MASK_PKRU) ||
kvm_is_cr4_bit_set(vcpu, X86_CR4_PKE)))
write_pkru(vcpu->arch.pkru);
}
EXPORT_SYMBOL_GPL(kvm_load_guest_xsave_state);
void kvm_load_host_xsave_state(struct kvm_vcpu *vcpu)
{
if (vcpu->arch.guest_state_protected)
return;
if (cpu_feature_enabled(X86_FEATURE_PKU) &&
((vcpu->arch.xcr0 & XFEATURE_MASK_PKRU) ||
kvm_is_cr4_bit_set(vcpu, X86_CR4_PKE))) {
vcpu->arch.pkru = rdpkru();
if (vcpu->arch.pkru != vcpu->arch.host_pkru)
write_pkru(vcpu->arch.host_pkru);
}
if (kvm_is_cr4_bit_set(vcpu, X86_CR4_OSXSAVE)) {
if (vcpu->arch.xcr0 != kvm_host.xcr0)
xsetbv(XCR_XFEATURE_ENABLED_MASK, kvm_host.xcr0);
if (guest_can_use(vcpu, X86_FEATURE_XSAVES) &&
vcpu->arch.ia32_xss != kvm_host.xss)
wrmsrl(MSR_IA32_XSS, kvm_host.xss);
}
}
EXPORT_SYMBOL_GPL(kvm_load_host_xsave_state);
#ifdef CONFIG_X86_64
static inline u64 kvm_guest_supported_xfd(struct kvm_vcpu *vcpu)
{
return vcpu->arch.guest_supported_xcr0 & XFEATURE_MASK_USER_DYNAMIC;
}
#endif
static int __kvm_set_xcr(struct kvm_vcpu *vcpu, u32 index, u64 xcr)
{
u64 xcr0 = xcr;
u64 old_xcr0 = vcpu->arch.xcr0;
u64 valid_bits;
/* Only support XCR_XFEATURE_ENABLED_MASK(xcr0) now */
if (index != XCR_XFEATURE_ENABLED_MASK)
return 1;
if (!(xcr0 & XFEATURE_MASK_FP))
return 1;
if ((xcr0 & XFEATURE_MASK_YMM) && !(xcr0 & XFEATURE_MASK_SSE))
return 1;
/*
* Do not allow the guest to set bits that we do not support
* saving. However, xcr0 bit 0 is always set, even if the
* emulated CPU does not support XSAVE (see kvm_vcpu_reset()).
*/
valid_bits = vcpu->arch.guest_supported_xcr0 | XFEATURE_MASK_FP;
if (xcr0 & ~valid_bits)
return 1;
if ((!(xcr0 & XFEATURE_MASK_BNDREGS)) !=
(!(xcr0 & XFEATURE_MASK_BNDCSR)))
return 1;
if (xcr0 & XFEATURE_MASK_AVX512) {
if (!(xcr0 & XFEATURE_MASK_YMM))
return 1;
if ((xcr0 & XFEATURE_MASK_AVX512) != XFEATURE_MASK_AVX512)
return 1;
}
if ((xcr0 & XFEATURE_MASK_XTILE) &&
((xcr0 & XFEATURE_MASK_XTILE) != XFEATURE_MASK_XTILE))
return 1;
vcpu->arch.xcr0 = xcr0;
if ((xcr0 ^ old_xcr0) & XFEATURE_MASK_EXTEND)
kvm_update_cpuid_runtime(vcpu);
return 0;
}
int kvm_emulate_xsetbv(struct kvm_vcpu *vcpu)
{
/* Note, #UD due to CR4.OSXSAVE=0 has priority over the intercept. */
if (kvm_x86_call(get_cpl)(vcpu) != 0 ||
__kvm_set_xcr(vcpu, kvm_rcx_read(vcpu), kvm_read_edx_eax(vcpu))) {
kvm_inject_gp(vcpu, 0);
return 1;
}
return kvm_skip_emulated_instruction(vcpu);
}
EXPORT_SYMBOL_GPL(kvm_emulate_xsetbv);
bool __kvm_is_valid_cr4(struct kvm_vcpu *vcpu, unsigned long cr4)
{
if (cr4 & cr4_reserved_bits)
return false;
if (cr4 & vcpu->arch.cr4_guest_rsvd_bits)
return false;
return true;
}
EXPORT_SYMBOL_GPL(__kvm_is_valid_cr4);
static bool kvm_is_valid_cr4(struct kvm_vcpu *vcpu, unsigned long cr4)
{
return __kvm_is_valid_cr4(vcpu, cr4) &&
kvm_x86_call(is_valid_cr4)(vcpu, cr4);
}
void kvm_post_set_cr4(struct kvm_vcpu *vcpu, unsigned long old_cr4, unsigned long cr4)
{
if ((cr4 ^ old_cr4) & KVM_MMU_CR4_ROLE_BITS)
kvm_mmu_reset_context(vcpu);
/*
* If CR4.PCIDE is changed 0 -> 1, there is no need to flush the TLB
* according to the SDM; however, stale prev_roots could be reused
* incorrectly in the future after a MOV to CR3 with NOFLUSH=1, so we
* free them all. This is *not* a superset of KVM_REQ_TLB_FLUSH_GUEST
* or KVM_REQ_TLB_FLUSH_CURRENT, because the hardware TLB is not flushed,
* so fall through.
*/
if (!tdp_enabled &&
(cr4 & X86_CR4_PCIDE) && !(old_cr4 & X86_CR4_PCIDE))
kvm_mmu_unload(vcpu);
/*
* The TLB has to be flushed for all PCIDs if any of the following
* (architecturally required) changes happen:
* - CR4.PCIDE is changed from 1 to 0
* - CR4.PGE is toggled
*
* This is a superset of KVM_REQ_TLB_FLUSH_CURRENT.
*/
if (((cr4 ^ old_cr4) & X86_CR4_PGE) ||
(!(cr4 & X86_CR4_PCIDE) && (old_cr4 & X86_CR4_PCIDE)))
kvm_make_request(KVM_REQ_TLB_FLUSH_GUEST, vcpu);
/*
* The TLB has to be flushed for the current PCID if any of the
* following (architecturally required) changes happen:
* - CR4.SMEP is changed from 0 to 1
* - CR4.PAE is toggled
*/
else if (((cr4 ^ old_cr4) & X86_CR4_PAE) ||
((cr4 & X86_CR4_SMEP) && !(old_cr4 & X86_CR4_SMEP)))
kvm_make_request(KVM_REQ_TLB_FLUSH_CURRENT, vcpu);
}
EXPORT_SYMBOL_GPL(kvm_post_set_cr4);
int kvm_set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4)
{
unsigned long old_cr4 = kvm_read_cr4(vcpu);
if (!kvm_is_valid_cr4(vcpu, cr4))
return 1;
if (is_long_mode(vcpu)) {
if (!(cr4 & X86_CR4_PAE))
return 1;
if ((cr4 ^ old_cr4) & X86_CR4_LA57)
return 1;
} else if (is_paging(vcpu) && (cr4 & X86_CR4_PAE)
&& ((cr4 ^ old_cr4) & X86_CR4_PDPTR_BITS)
&& !load_pdptrs(vcpu, kvm_read_cr3(vcpu)))
return 1;
if ((cr4 & X86_CR4_PCIDE) && !(old_cr4 & X86_CR4_PCIDE)) {
/* PCID can not be enabled when cr3[11:0]!=000H or EFER.LMA=0 */
if ((kvm_read_cr3(vcpu) & X86_CR3_PCID_MASK) || !is_long_mode(vcpu))
return 1;
}
kvm_x86_call(set_cr4)(vcpu, cr4);
kvm_post_set_cr4(vcpu, old_cr4, cr4);
return 0;
}
EXPORT_SYMBOL_GPL(kvm_set_cr4);
static void kvm_invalidate_pcid(struct kvm_vcpu *vcpu, unsigned long pcid)
{
struct kvm_mmu *mmu = vcpu->arch.mmu;
unsigned long roots_to_free = 0;
int i;
/*
* MOV CR3 and INVPCID are usually not intercepted when using TDP, but
* this is reachable when running EPT=1 and unrestricted_guest=0, and
* also via the emulator. KVM's TDP page tables are not in the scope of
* the invalidation, but the guest's TLB entries need to be flushed as
* the CPU may have cached entries in its TLB for the target PCID.
*/
if (unlikely(tdp_enabled)) {
kvm_make_request(KVM_REQ_TLB_FLUSH_GUEST, vcpu);
return;
}
/*
* If neither the current CR3 nor any of the prev_roots use the given
* PCID, then nothing needs to be done here because a resync will
* happen anyway before switching to any other CR3.
*/
if (kvm_get_active_pcid(vcpu) == pcid) {
kvm_make_request(KVM_REQ_MMU_SYNC, vcpu);
kvm_make_request(KVM_REQ_TLB_FLUSH_CURRENT, vcpu);
}
/*
* If PCID is disabled, there is no need to free prev_roots even if the
* PCIDs for them are also 0, because MOV to CR3 always flushes the TLB
* with PCIDE=0.
*/
if (!kvm_is_cr4_bit_set(vcpu, X86_CR4_PCIDE))
return;
for (i = 0; i < KVM_MMU_NUM_PREV_ROOTS; i++)
if (kvm_get_pcid(vcpu, mmu->prev_roots[i].pgd) == pcid)
roots_to_free |= KVM_MMU_ROOT_PREVIOUS(i);
kvm_mmu_free_roots(vcpu->kvm, mmu, roots_to_free);
}
int kvm_set_cr3(struct kvm_vcpu *vcpu, unsigned long cr3)
{
bool skip_tlb_flush = false;
unsigned long pcid = 0;
#ifdef CONFIG_X86_64
if (kvm_is_cr4_bit_set(vcpu, X86_CR4_PCIDE)) {
skip_tlb_flush = cr3 & X86_CR3_PCID_NOFLUSH;
cr3 &= ~X86_CR3_PCID_NOFLUSH;
pcid = cr3 & X86_CR3_PCID_MASK;
}
#endif
/* PDPTRs are always reloaded for PAE paging. */
if (cr3 == kvm_read_cr3(vcpu) && !is_pae_paging(vcpu))
goto handle_tlb_flush;
/*
* Do not condition the GPA check on long mode, this helper is used to
* stuff CR3, e.g. for RSM emulation, and there is no guarantee that
* the current vCPU mode is accurate.
*/
if (!kvm_vcpu_is_legal_cr3(vcpu, cr3))
return 1;
if (is_pae_paging(vcpu) && !load_pdptrs(vcpu, cr3))
return 1;
if (cr3 != kvm_read_cr3(vcpu))
kvm_mmu_new_pgd(vcpu, cr3);
vcpu->arch.cr3 = cr3;
kvm_register_mark_dirty(vcpu, VCPU_EXREG_CR3);
/* Do not call post_set_cr3, we do not get here for confidential guests. */
handle_tlb_flush:
/*
* A load of CR3 that flushes the TLB flushes only the current PCID,
* even if PCID is disabled, in which case PCID=0 is flushed. It's a
* moot point in the end because _disabling_ PCID will flush all PCIDs,
* and it's impossible to use a non-zero PCID when PCID is disabled,
* i.e. only PCID=0 can be relevant.
*/
if (!skip_tlb_flush)
kvm_invalidate_pcid(vcpu, pcid);
return 0;
}
EXPORT_SYMBOL_GPL(kvm_set_cr3);
int kvm_set_cr8(struct kvm_vcpu *vcpu, unsigned long cr8)
{
if (cr8 & CR8_RESERVED_BITS)
return 1;
if (lapic_in_kernel(vcpu))
kvm_lapic_set_tpr(vcpu, cr8);
else
vcpu->arch.cr8 = cr8;
return 0;
}
EXPORT_SYMBOL_GPL(kvm_set_cr8);
unsigned long kvm_get_cr8(struct kvm_vcpu *vcpu)
{
if (lapic_in_kernel(vcpu))
return kvm_lapic_get_cr8(vcpu);
else
return vcpu->arch.cr8;
}
EXPORT_SYMBOL_GPL(kvm_get_cr8);
static void kvm_update_dr0123(struct kvm_vcpu *vcpu)
{
int i;
if (!(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP)) {
for (i = 0; i < KVM_NR_DB_REGS; i++)
vcpu->arch.eff_db[i] = vcpu->arch.db[i];
}
}
void kvm_update_dr7(struct kvm_vcpu *vcpu)
{
unsigned long dr7;
if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP)
dr7 = vcpu->arch.guest_debug_dr7;
else
dr7 = vcpu->arch.dr7;
kvm_x86_call(set_dr7)(vcpu, dr7);
vcpu->arch.switch_db_regs &= ~KVM_DEBUGREG_BP_ENABLED;
if (dr7 & DR7_BP_EN_MASK)
vcpu->arch.switch_db_regs |= KVM_DEBUGREG_BP_ENABLED;
}
EXPORT_SYMBOL_GPL(kvm_update_dr7);
static u64 kvm_dr6_fixed(struct kvm_vcpu *vcpu)
{
u64 fixed = DR6_FIXED_1;
if (!guest_cpuid_has(vcpu, X86_FEATURE_RTM))
fixed |= DR6_RTM;
if (!guest_cpuid_has(vcpu, X86_FEATURE_BUS_LOCK_DETECT))
fixed |= DR6_BUS_LOCK;
return fixed;
}
int kvm_set_dr(struct kvm_vcpu *vcpu, int dr, unsigned long val)
{
size_t size = ARRAY_SIZE(vcpu->arch.db);
switch (dr) {
case 0 ... 3:
vcpu->arch.db[array_index_nospec(dr, size)] = val;
if (!(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP))
vcpu->arch.eff_db[dr] = val;
break;
case 4:
case 6:
if (!kvm_dr6_valid(val))
return 1; /* #GP */
vcpu->arch.dr6 = (val & DR6_VOLATILE) | kvm_dr6_fixed(vcpu);
break;
case 5:
default: /* 7 */
if (!kvm_dr7_valid(val))
return 1; /* #GP */
vcpu->arch.dr7 = (val & DR7_VOLATILE) | DR7_FIXED_1;
kvm_update_dr7(vcpu);
break;
}
return 0;
}
EXPORT_SYMBOL_GPL(kvm_set_dr);
unsigned long kvm_get_dr(struct kvm_vcpu *vcpu, int dr)
{
size_t size = ARRAY_SIZE(vcpu->arch.db);
switch (dr) {
case 0 ... 3:
return vcpu->arch.db[array_index_nospec(dr, size)];
case 4:
case 6:
return vcpu->arch.dr6;
case 5:
default: /* 7 */
return vcpu->arch.dr7;
}
}
EXPORT_SYMBOL_GPL(kvm_get_dr);
int kvm_emulate_rdpmc(struct kvm_vcpu *vcpu)
{
u32 ecx = kvm_rcx_read(vcpu);
u64 data;
if (kvm_pmu_rdpmc(vcpu, ecx, &data)) {
kvm_inject_gp(vcpu, 0);
return 1;
}
kvm_rax_write(vcpu, (u32)data);
kvm_rdx_write(vcpu, data >> 32);
return kvm_skip_emulated_instruction(vcpu);
}
EXPORT_SYMBOL_GPL(kvm_emulate_rdpmc);
/*
* Some IA32_ARCH_CAPABILITIES bits have dependencies on MSRs that KVM
* does not yet virtualize. These include:
* 10 - MISC_PACKAGE_CTRLS
* 11 - ENERGY_FILTERING_CTL
* 12 - DOITM
* 18 - FB_CLEAR_CTRL
* 21 - XAPIC_DISABLE_STATUS
* 23 - OVERCLOCKING_STATUS
*/
#define KVM_SUPPORTED_ARCH_CAP \
(ARCH_CAP_RDCL_NO | ARCH_CAP_IBRS_ALL | ARCH_CAP_RSBA | \
ARCH_CAP_SKIP_VMENTRY_L1DFLUSH | ARCH_CAP_SSB_NO | ARCH_CAP_MDS_NO | \
ARCH_CAP_PSCHANGE_MC_NO | ARCH_CAP_TSX_CTRL_MSR | ARCH_CAP_TAA_NO | \
ARCH_CAP_SBDR_SSDP_NO | ARCH_CAP_FBSDP_NO | ARCH_CAP_PSDP_NO | \
ARCH_CAP_FB_CLEAR | ARCH_CAP_RRSBA | ARCH_CAP_PBRSB_NO | ARCH_CAP_GDS_NO | \
ARCH_CAP_RFDS_NO | ARCH_CAP_RFDS_CLEAR | ARCH_CAP_BHI_NO)
static u64 kvm_get_arch_capabilities(void)
{
u64 data = kvm_host.arch_capabilities & KVM_SUPPORTED_ARCH_CAP;
/*
* If nx_huge_pages is enabled, KVM's shadow paging will ensure that
* the nested hypervisor runs with NX huge pages. If it is not,
* L1 is anyway vulnerable to ITLB_MULTIHIT exploits from other
* L1 guests, so it need not worry about its own (L2) guests.
*/
data |= ARCH_CAP_PSCHANGE_MC_NO;
/*
* If we're doing cache flushes (either "always" or "cond")
* we will do one whenever the guest does a vmlaunch/vmresume.
* If an outer hypervisor is doing the cache flush for us
* (ARCH_CAP_SKIP_VMENTRY_L1DFLUSH), we can safely pass that
* capability to the guest too, and if EPT is disabled we're not
* vulnerable. Overall, only VMENTER_L1D_FLUSH_NEVER will
* require a nested hypervisor to do a flush of its own.
*/
if (l1tf_vmx_mitigation != VMENTER_L1D_FLUSH_NEVER)
data |= ARCH_CAP_SKIP_VMENTRY_L1DFLUSH;
if (!boot_cpu_has_bug(X86_BUG_CPU_MELTDOWN))
data |= ARCH_CAP_RDCL_NO;
if (!boot_cpu_has_bug(X86_BUG_SPEC_STORE_BYPASS))
data |= ARCH_CAP_SSB_NO;
if (!boot_cpu_has_bug(X86_BUG_MDS))
data |= ARCH_CAP_MDS_NO;
if (!boot_cpu_has_bug(X86_BUG_RFDS))
data |= ARCH_CAP_RFDS_NO;
if (!boot_cpu_has(X86_FEATURE_RTM)) {
/*
* If RTM=0 because the kernel has disabled TSX, the host might
* have TAA_NO or TSX_CTRL. Clear TAA_NO (the guest sees RTM=0
* and therefore knows that there cannot be TAA) but keep
* TSX_CTRL: some buggy userspaces leave it set on tsx=on hosts,
* and we want to allow migrating those guests to tsx=off hosts.
*/
data &= ~ARCH_CAP_TAA_NO;
} else if (!boot_cpu_has_bug(X86_BUG_TAA)) {
data |= ARCH_CAP_TAA_NO;
} else {
/*
* Nothing to do here; we emulate TSX_CTRL if present on the
* host so the guest can choose between disabling TSX or
* using VERW to clear CPU buffers.
*/
}
if (!boot_cpu_has_bug(X86_BUG_GDS) || gds_ucode_mitigated())
data |= ARCH_CAP_GDS_NO;
return data;
}
static int kvm_get_feature_msr(struct kvm_vcpu *vcpu, u32 index, u64 *data,
bool host_initiated)
{
WARN_ON_ONCE(!host_initiated);
switch (index) {
case MSR_IA32_ARCH_CAPABILITIES:
*data = kvm_get_arch_capabilities();
break;
case MSR_IA32_PERF_CAPABILITIES:
*data = kvm_caps.supported_perf_cap;
break;
case MSR_IA32_UCODE_REV:
rdmsrl_safe(index, data);
break;
default:
return kvm_x86_call(get_feature_msr)(index, data);
}
return 0;
}
static int do_get_feature_msr(struct kvm_vcpu *vcpu, unsigned index, u64 *data)
{
return kvm_do_msr_access(vcpu, index, data, true, MSR_TYPE_R,
kvm_get_feature_msr);
}
static bool __kvm_valid_efer(struct kvm_vcpu *vcpu, u64 efer)
{
if (efer & EFER_AUTOIBRS && !guest_cpuid_has(vcpu, X86_FEATURE_AUTOIBRS))
return false;
if (efer & EFER_FFXSR && !guest_cpuid_has(vcpu, X86_FEATURE_FXSR_OPT))
return false;
if (efer & EFER_SVME && !guest_cpuid_has(vcpu, X86_FEATURE_SVM))
return false;
if (efer & (EFER_LME | EFER_LMA) &&
!guest_cpuid_has(vcpu, X86_FEATURE_LM))
return false;
if (efer & EFER_NX && !guest_cpuid_has(vcpu, X86_FEATURE_NX))
return false;
return true;
}
bool kvm_valid_efer(struct kvm_vcpu *vcpu, u64 efer)
{
if (efer & efer_reserved_bits)
return false;
return __kvm_valid_efer(vcpu, efer);
}
EXPORT_SYMBOL_GPL(kvm_valid_efer);
static int set_efer(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
{
u64 old_efer = vcpu->arch.efer;
u64 efer = msr_info->data;
int r;
if (efer & efer_reserved_bits)
return 1;
if (!msr_info->host_initiated) {
if (!__kvm_valid_efer(vcpu, efer))
return 1;
if (is_paging(vcpu) &&
(vcpu->arch.efer & EFER_LME) != (efer & EFER_LME))
return 1;
}
efer &= ~EFER_LMA;
efer |= vcpu->arch.efer & EFER_LMA;
r = kvm_x86_call(set_efer)(vcpu, efer);
if (r) {
WARN_ON(r > 0);
return r;
}
if ((efer ^ old_efer) & KVM_MMU_EFER_ROLE_BITS)
kvm_mmu_reset_context(vcpu);
if (!static_cpu_has(X86_FEATURE_XSAVES) &&
(efer & EFER_SVME))
kvm_hv_xsaves_xsavec_maybe_warn(vcpu);
return 0;
}
void kvm_enable_efer_bits(u64 mask)
{
efer_reserved_bits &= ~mask;
}
EXPORT_SYMBOL_GPL(kvm_enable_efer_bits);
bool kvm_msr_allowed(struct kvm_vcpu *vcpu, u32 index, u32 type)
{
struct kvm_x86_msr_filter *msr_filter;
struct msr_bitmap_range *ranges;
struct kvm *kvm = vcpu->kvm;
bool allowed;
int idx;
u32 i;
/* x2APIC MSRs do not support filtering. */
if (index >= 0x800 && index <= 0x8ff)
return true;
idx = srcu_read_lock(&kvm->srcu);
msr_filter = srcu_dereference(kvm->arch.msr_filter, &kvm->srcu);
if (!msr_filter) {
allowed = true;
goto out;
}
allowed = msr_filter->default_allow;
ranges = msr_filter->ranges;
for (i = 0; i < msr_filter->count; i++) {
u32 start = ranges[i].base;
u32 end = start + ranges[i].nmsrs;
u32 flags = ranges[i].flags;
unsigned long *bitmap = ranges[i].bitmap;
if ((index >= start) && (index < end) && (flags & type)) {
allowed = test_bit(index - start, bitmap);
break;
}
}
out:
srcu_read_unlock(&kvm->srcu, idx);
return allowed;
}
EXPORT_SYMBOL_GPL(kvm_msr_allowed);
/*
* Write @data into the MSR specified by @index. Select MSR specific fault
* checks are bypassed if @host_initiated is %true.
* Returns 0 on success, non-0 otherwise.
* Assumes vcpu_load() was already called.
*/
static int __kvm_set_msr(struct kvm_vcpu *vcpu, u32 index, u64 data,
bool host_initiated)
{
struct msr_data msr;
switch (index) {
case MSR_FS_BASE:
case MSR_GS_BASE:
case MSR_KERNEL_GS_BASE:
case MSR_CSTAR:
case MSR_LSTAR:
if (is_noncanonical_address(data, vcpu))
return 1;
break;
case MSR_IA32_SYSENTER_EIP:
case MSR_IA32_SYSENTER_ESP:
/*
* IA32_SYSENTER_ESP and IA32_SYSENTER_EIP cause #GP if
* non-canonical address is written on Intel but not on
* AMD (which ignores the top 32-bits, because it does
* not implement 64-bit SYSENTER).
*
* 64-bit code should hence be able to write a non-canonical
* value on AMD. Making the address canonical ensures that
* vmentry does not fail on Intel after writing a non-canonical
* value, and that something deterministic happens if the guest
* invokes 64-bit SYSENTER.
*/
data = __canonical_address(data, vcpu_virt_addr_bits(vcpu));
break;
case MSR_TSC_AUX:
if (!kvm_is_supported_user_return_msr(MSR_TSC_AUX))
return 1;
if (!host_initiated &&
!guest_cpuid_has(vcpu, X86_FEATURE_RDTSCP) &&
!guest_cpuid_has(vcpu, X86_FEATURE_RDPID))
return 1;
/*
* Per Intel's SDM, bits 63:32 are reserved, but AMD's APM has
* incomplete and conflicting architectural behavior. Current
* AMD CPUs completely ignore bits 63:32, i.e. they aren't
* reserved and always read as zeros. Enforce Intel's reserved
* bits check if the guest CPU is Intel compatible, otherwise
* clear the bits. This ensures cross-vendor migration will
* provide consistent behavior for the guest.
*/
if (guest_cpuid_is_intel_compatible(vcpu) && (data >> 32) != 0)
return 1;
data = (u32)data;
break;
}
msr.data = data;
msr.index = index;
msr.host_initiated = host_initiated;
return kvm_x86_call(set_msr)(vcpu, &msr);
}
static int _kvm_set_msr(struct kvm_vcpu *vcpu, u32 index, u64 *data,
bool host_initiated)
{
return __kvm_set_msr(vcpu, index, *data, host_initiated);
}
static int kvm_set_msr_ignored_check(struct kvm_vcpu *vcpu,
u32 index, u64 data, bool host_initiated)
{
return kvm_do_msr_access(vcpu, index, &data, host_initiated, MSR_TYPE_W,
_kvm_set_msr);
}
/*
* Read the MSR specified by @index into @data. Select MSR specific fault
* checks are bypassed if @host_initiated is %true.
* Returns 0 on success, non-0 otherwise.
* Assumes vcpu_load() was already called.
*/
int __kvm_get_msr(struct kvm_vcpu *vcpu, u32 index, u64 *data,
bool host_initiated)
{
struct msr_data msr;
int ret;
switch (index) {
case MSR_TSC_AUX:
if (!kvm_is_supported_user_return_msr(MSR_TSC_AUX))
return 1;
if (!host_initiated &&
!guest_cpuid_has(vcpu, X86_FEATURE_RDTSCP) &&
!guest_cpuid_has(vcpu, X86_FEATURE_RDPID))
return 1;
break;
}
msr.index = index;
msr.host_initiated = host_initiated;
ret = kvm_x86_call(get_msr)(vcpu, &msr);
if (!ret)
*data = msr.data;
return ret;
}
static int kvm_get_msr_ignored_check(struct kvm_vcpu *vcpu,
u32 index, u64 *data, bool host_initiated)
{
return kvm_do_msr_access(vcpu, index, data, host_initiated, MSR_TYPE_R,
__kvm_get_msr);
}
int kvm_get_msr_with_filter(struct kvm_vcpu *vcpu, u32 index, u64 *data)
{
if (!kvm_msr_allowed(vcpu, index, KVM_MSR_FILTER_READ))
return KVM_MSR_RET_FILTERED;
return kvm_get_msr_ignored_check(vcpu, index, data, false);
}
EXPORT_SYMBOL_GPL(kvm_get_msr_with_filter);
int kvm_set_msr_with_filter(struct kvm_vcpu *vcpu, u32 index, u64 data)
{
if (!kvm_msr_allowed(vcpu, index, KVM_MSR_FILTER_WRITE))
return KVM_MSR_RET_FILTERED;
return kvm_set_msr_ignored_check(vcpu, index, data, false);
}
EXPORT_SYMBOL_GPL(kvm_set_msr_with_filter);
int kvm_get_msr(struct kvm_vcpu *vcpu, u32 index, u64 *data)
{
return kvm_get_msr_ignored_check(vcpu, index, data, false);
}
EXPORT_SYMBOL_GPL(kvm_get_msr);
int kvm_set_msr(struct kvm_vcpu *vcpu, u32 index, u64 data)
{
return kvm_set_msr_ignored_check(vcpu, index, data, false);
}
EXPORT_SYMBOL_GPL(kvm_set_msr);
static void complete_userspace_rdmsr(struct kvm_vcpu *vcpu)
{
if (!vcpu->run->msr.error) {
kvm_rax_write(vcpu, (u32)vcpu->run->msr.data);
kvm_rdx_write(vcpu, vcpu->run->msr.data >> 32);
}
}
static int complete_emulated_msr_access(struct kvm_vcpu *vcpu)
{
return complete_emulated_insn_gp(vcpu, vcpu->run->msr.error);
}
static int complete_emulated_rdmsr(struct kvm_vcpu *vcpu)
{
complete_userspace_rdmsr(vcpu);
return complete_emulated_msr_access(vcpu);
}
static int complete_fast_msr_access(struct kvm_vcpu *vcpu)
{
return kvm_x86_call(complete_emulated_msr)(vcpu, vcpu->run->msr.error);
}
static int complete_fast_rdmsr(struct kvm_vcpu *vcpu)
{
complete_userspace_rdmsr(vcpu);
return complete_fast_msr_access(vcpu);
}
static u64 kvm_msr_reason(int r)
{
switch (r) {
case KVM_MSR_RET_UNSUPPORTED:
return KVM_MSR_EXIT_REASON_UNKNOWN;
case KVM_MSR_RET_FILTERED:
return KVM_MSR_EXIT_REASON_FILTER;
default:
return KVM_MSR_EXIT_REASON_INVAL;
}
}
static int kvm_msr_user_space(struct kvm_vcpu *vcpu, u32 index,
u32 exit_reason, u64 data,
int (*completion)(struct kvm_vcpu *vcpu),
int r)
{
u64 msr_reason = kvm_msr_reason(r);
/* Check if the user wanted to know about this MSR fault */
if (!(vcpu->kvm->arch.user_space_msr_mask & msr_reason))
return 0;
vcpu->run->exit_reason = exit_reason;
vcpu->run->msr.error = 0;
memset(vcpu->run->msr.pad, 0, sizeof(vcpu->run->msr.pad));
vcpu->run->msr.reason = msr_reason;
vcpu->run->msr.index = index;
vcpu->run->msr.data = data;
vcpu->arch.complete_userspace_io = completion;
return 1;
}
int kvm_emulate_rdmsr(struct kvm_vcpu *vcpu)
{
u32 ecx = kvm_rcx_read(vcpu);
u64 data;
int r;
r = kvm_get_msr_with_filter(vcpu, ecx, &data);
if (!r) {
trace_kvm_msr_read(ecx, data);
kvm_rax_write(vcpu, data & -1u);
kvm_rdx_write(vcpu, (data >> 32) & -1u);
} else {
/* MSR read failed? See if we should ask user space */
if (kvm_msr_user_space(vcpu, ecx, KVM_EXIT_X86_RDMSR, 0,
complete_fast_rdmsr, r))
return 0;
trace_kvm_msr_read_ex(ecx);
}
return kvm_x86_call(complete_emulated_msr)(vcpu, r);
}
EXPORT_SYMBOL_GPL(kvm_emulate_rdmsr);
int kvm_emulate_wrmsr(struct kvm_vcpu *vcpu)
{
u32 ecx = kvm_rcx_read(vcpu);
u64 data = kvm_read_edx_eax(vcpu);
int r;
r = kvm_set_msr_with_filter(vcpu, ecx, data);
if (!r) {
trace_kvm_msr_write(ecx, data);
} else {
/* MSR write failed? See if we should ask user space */
if (kvm_msr_user_space(vcpu, ecx, KVM_EXIT_X86_WRMSR, data,
complete_fast_msr_access, r))
return 0;
/* Signal all other negative errors to userspace */
if (r < 0)
return r;
trace_kvm_msr_write_ex(ecx, data);
}
return kvm_x86_call(complete_emulated_msr)(vcpu, r);
}
EXPORT_SYMBOL_GPL(kvm_emulate_wrmsr);
int kvm_emulate_as_nop(struct kvm_vcpu *vcpu)
{
return kvm_skip_emulated_instruction(vcpu);
}
int kvm_emulate_invd(struct kvm_vcpu *vcpu)
{
/* Treat an INVD instruction as a NOP and just skip it. */
return kvm_emulate_as_nop(vcpu);
}
EXPORT_SYMBOL_GPL(kvm_emulate_invd);
int kvm_handle_invalid_op(struct kvm_vcpu *vcpu)
{
kvm_queue_exception(vcpu, UD_VECTOR);
return 1;
}
EXPORT_SYMBOL_GPL(kvm_handle_invalid_op);
static int kvm_emulate_monitor_mwait(struct kvm_vcpu *vcpu, const char *insn)
{
if (!kvm_check_has_quirk(vcpu->kvm, KVM_X86_QUIRK_MWAIT_NEVER_UD_FAULTS) &&
!guest_cpuid_has(vcpu, X86_FEATURE_MWAIT))
return kvm_handle_invalid_op(vcpu);
pr_warn_once("%s instruction emulated as NOP!\n", insn);
return kvm_emulate_as_nop(vcpu);
}
int kvm_emulate_mwait(struct kvm_vcpu *vcpu)
{
return kvm_emulate_monitor_mwait(vcpu, "MWAIT");
}
EXPORT_SYMBOL_GPL(kvm_emulate_mwait);
int kvm_emulate_monitor(struct kvm_vcpu *vcpu)
{
return kvm_emulate_monitor_mwait(vcpu, "MONITOR");
}
EXPORT_SYMBOL_GPL(kvm_emulate_monitor);
static inline bool kvm_vcpu_exit_request(struct kvm_vcpu *vcpu)
{
xfer_to_guest_mode_prepare();
return vcpu->mode == EXITING_GUEST_MODE || kvm_request_pending(vcpu) ||
xfer_to_guest_mode_work_pending();
}
/*
* The fast path for frequent and performance sensitive wrmsr emulation,
* i.e. the sending of IPI, sending IPI early in the VM-Exit flow reduces
* the latency of virtual IPI by avoiding the expensive bits of transitioning
* from guest to host, e.g. reacquiring KVM's SRCU lock. In contrast to the
* other cases which must be called after interrupts are enabled on the host.
*/
static int handle_fastpath_set_x2apic_icr_irqoff(struct kvm_vcpu *vcpu, u64 data)
{
if (!lapic_in_kernel(vcpu) || !apic_x2apic_mode(vcpu->arch.apic))
return 1;
if (((data & APIC_SHORT_MASK) == APIC_DEST_NOSHORT) &&
((data & APIC_DEST_MASK) == APIC_DEST_PHYSICAL) &&
((data & APIC_MODE_MASK) == APIC_DM_FIXED) &&
((u32)(data >> 32) != X2APIC_BROADCAST))
return kvm_x2apic_icr_write(vcpu->arch.apic, data);
return 1;
}
static int handle_fastpath_set_tscdeadline(struct kvm_vcpu *vcpu, u64 data)
{
if (!kvm_can_use_hv_timer(vcpu))
return 1;
kvm_set_lapic_tscdeadline_msr(vcpu, data);
return 0;
}
fastpath_t handle_fastpath_set_msr_irqoff(struct kvm_vcpu *vcpu)
{
u32 msr = kvm_rcx_read(vcpu);
u64 data;
fastpath_t ret;
bool handled;
kvm_vcpu_srcu_read_lock(vcpu);
switch (msr) {
case APIC_BASE_MSR + (APIC_ICR >> 4):
data = kvm_read_edx_eax(vcpu);
handled = !handle_fastpath_set_x2apic_icr_irqoff(vcpu, data);
break;
case MSR_IA32_TSC_DEADLINE:
data = kvm_read_edx_eax(vcpu);
handled = !handle_fastpath_set_tscdeadline(vcpu, data);
break;
default:
handled = false;
break;
}
if (handled) {
if (!kvm_skip_emulated_instruction(vcpu))
ret = EXIT_FASTPATH_EXIT_USERSPACE;
else
ret = EXIT_FASTPATH_REENTER_GUEST;
trace_kvm_msr_write(msr, data);
} else {
ret = EXIT_FASTPATH_NONE;
}
kvm_vcpu_srcu_read_unlock(vcpu);
return ret;
}
EXPORT_SYMBOL_GPL(handle_fastpath_set_msr_irqoff);
/*
* Adapt set_msr() to msr_io()'s calling convention
*/
static int do_get_msr(struct kvm_vcpu *vcpu, unsigned index, u64 *data)
{
return kvm_get_msr_ignored_check(vcpu, index, data, true);
}
static int do_set_msr(struct kvm_vcpu *vcpu, unsigned index, u64 *data)
{
u64 val;
/*
* Disallow writes to immutable feature MSRs after KVM_RUN. KVM does
* not support modifying the guest vCPU model on the fly, e.g. changing
* the nVMX capabilities while L2 is running is nonsensical. Allow
* writes of the same value, e.g. to allow userspace to blindly stuff
* all MSRs when emulating RESET.
*/
if (kvm_vcpu_has_run(vcpu) && kvm_is_immutable_feature_msr(index) &&
(do_get_msr(vcpu, index, &val) || *data != val))
return -EINVAL;
return kvm_set_msr_ignored_check(vcpu, index, *data, true);
}
#ifdef CONFIG_X86_64
struct pvclock_clock {
int vclock_mode;
u64 cycle_last;
u64 mask;
u32 mult;
u32 shift;
u64 base_cycles;
u64 offset;
};
struct pvclock_gtod_data {
seqcount_t seq;
struct pvclock_clock clock; /* extract of a clocksource struct */
struct pvclock_clock raw_clock; /* extract of a clocksource struct */
ktime_t offs_boot;
u64 wall_time_sec;
};
static struct pvclock_gtod_data pvclock_gtod_data;
static void update_pvclock_gtod(struct timekeeper *tk)
{
struct pvclock_gtod_data *vdata = &pvclock_gtod_data;
write_seqcount_begin(&vdata->seq);
/* copy pvclock gtod data */
vdata->clock.vclock_mode = tk->tkr_mono.clock->vdso_clock_mode;
vdata->clock.cycle_last = tk->tkr_mono.cycle_last;
vdata->clock.mask = tk->tkr_mono.mask;
vdata->clock.mult = tk->tkr_mono.mult;
vdata->clock.shift = tk->tkr_mono.shift;
vdata->clock.base_cycles = tk->tkr_mono.xtime_nsec;
vdata->clock.offset = tk->tkr_mono.base;
vdata->raw_clock.vclock_mode = tk->tkr_raw.clock->vdso_clock_mode;
vdata->raw_clock.cycle_last = tk->tkr_raw.cycle_last;
vdata->raw_clock.mask = tk->tkr_raw.mask;
vdata->raw_clock.mult = tk->tkr_raw.mult;
vdata->raw_clock.shift = tk->tkr_raw.shift;
vdata->raw_clock.base_cycles = tk->tkr_raw.xtime_nsec;
vdata->raw_clock.offset = tk->tkr_raw.base;
vdata->wall_time_sec = tk->xtime_sec;
vdata->offs_boot = tk->offs_boot;
write_seqcount_end(&vdata->seq);
}
static s64 get_kvmclock_base_ns(void)
{
/* Count up from boot time, but with the frequency of the raw clock. */
return ktime_to_ns(ktime_add(ktime_get_raw(), pvclock_gtod_data.offs_boot));
}
#else
static s64 get_kvmclock_base_ns(void)
{
/* Master clock not used, so we can just use CLOCK_BOOTTIME. */
return ktime_get_boottime_ns();
}
#endif
static void kvm_write_wall_clock(struct kvm *kvm, gpa_t wall_clock, int sec_hi_ofs)
{
int version;
int r;
struct pvclock_wall_clock wc;
u32 wc_sec_hi;
u64 wall_nsec;
if (!wall_clock)
return;
r = kvm_read_guest(kvm, wall_clock, &version, sizeof(version));
if (r)
return;
if (version & 1)
++version; /* first time write, random junk */
++version;
if (kvm_write_guest(kvm, wall_clock, &version, sizeof(version)))
return;
wall_nsec = kvm_get_wall_clock_epoch(kvm);
wc.nsec = do_div(wall_nsec, NSEC_PER_SEC);
wc.sec = (u32)wall_nsec; /* overflow in 2106 guest time */
wc.version = version;
kvm_write_guest(kvm, wall_clock, &wc, sizeof(wc));
if (sec_hi_ofs) {
wc_sec_hi = wall_nsec >> 32;
kvm_write_guest(kvm, wall_clock + sec_hi_ofs,
&wc_sec_hi, sizeof(wc_sec_hi));
}
version++;
kvm_write_guest(kvm, wall_clock, &version, sizeof(version));
}
static void kvm_write_system_time(struct kvm_vcpu *vcpu, gpa_t system_time,
bool old_msr, bool host_initiated)
{
struct kvm_arch *ka = &vcpu->kvm->arch;
if (vcpu->vcpu_id == 0 && !host_initiated) {
if (ka->boot_vcpu_runs_old_kvmclock != old_msr)
kvm_make_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu);
ka->boot_vcpu_runs_old_kvmclock = old_msr;
}
vcpu->arch.time = system_time;
kvm_make_request(KVM_REQ_GLOBAL_CLOCK_UPDATE, vcpu);
/* we verify if the enable bit is set... */
if (system_time & 1)
kvm_gpc_activate(&vcpu->arch.pv_time, system_time & ~1ULL,
sizeof(struct pvclock_vcpu_time_info));
else
kvm_gpc_deactivate(&vcpu->arch.pv_time);
return;
}
static uint32_t div_frac(uint32_t dividend, uint32_t divisor)
{
do_shl32_div32(dividend, divisor);
return dividend;
}
static void kvm_get_time_scale(uint64_t scaled_hz, uint64_t base_hz,
s8 *pshift, u32 *pmultiplier)
{
uint64_t scaled64;
int32_t shift = 0;
uint64_t tps64;
uint32_t tps32;
tps64 = base_hz;
scaled64 = scaled_hz;
while (tps64 > scaled64*2 || tps64 & 0xffffffff00000000ULL) {
tps64 >>= 1;
shift--;
}
tps32 = (uint32_t)tps64;
while (tps32 <= scaled64 || scaled64 & 0xffffffff00000000ULL) {
if (scaled64 & 0xffffffff00000000ULL || tps32 & 0x80000000)
scaled64 >>= 1;
else
tps32 <<= 1;
shift++;
}
*pshift = shift;
*pmultiplier = div_frac(scaled64, tps32);
}
#ifdef CONFIG_X86_64
static atomic_t kvm_guest_has_master_clock = ATOMIC_INIT(0);
#endif
static DEFINE_PER_CPU(unsigned long, cpu_tsc_khz);
static unsigned long max_tsc_khz;
static u32 adjust_tsc_khz(u32 khz, s32 ppm)
{
u64 v = (u64)khz * (1000000 + ppm);
do_div(v, 1000000);
return v;
}
static void kvm_vcpu_write_tsc_multiplier(struct kvm_vcpu *vcpu, u64 l1_multiplier);
static int set_tsc_khz(struct kvm_vcpu *vcpu, u32 user_tsc_khz, bool scale)
{
u64 ratio;
/* Guest TSC same frequency as host TSC? */
if (!scale) {
kvm_vcpu_write_tsc_multiplier(vcpu, kvm_caps.default_tsc_scaling_ratio);
return 0;
}
/* TSC scaling supported? */
if (!kvm_caps.has_tsc_control) {
if (user_tsc_khz > tsc_khz) {
vcpu->arch.tsc_catchup = 1;
vcpu->arch.tsc_always_catchup = 1;
return 0;
} else {
pr_warn_ratelimited("user requested TSC rate below hardware speed\n");
return -1;
}
}
/* TSC scaling required - calculate ratio */
ratio = mul_u64_u32_div(1ULL << kvm_caps.tsc_scaling_ratio_frac_bits,
user_tsc_khz, tsc_khz);
if (ratio == 0 || ratio >= kvm_caps.max_tsc_scaling_ratio) {
pr_warn_ratelimited("Invalid TSC scaling ratio - virtual-tsc-khz=%u\n",
user_tsc_khz);
return -1;
}
kvm_vcpu_write_tsc_multiplier(vcpu, ratio);
return 0;
}
static int kvm_set_tsc_khz(struct kvm_vcpu *vcpu, u32 user_tsc_khz)
{
u32 thresh_lo, thresh_hi;
int use_scaling = 0;
/* tsc_khz can be zero if TSC calibration fails */
if (user_tsc_khz == 0) {
/* set tsc_scaling_ratio to a safe value */
kvm_vcpu_write_tsc_multiplier(vcpu, kvm_caps.default_tsc_scaling_ratio);
return -1;
}
/* Compute a scale to convert nanoseconds in TSC cycles */
kvm_get_time_scale(user_tsc_khz * 1000LL, NSEC_PER_SEC,
&vcpu->arch.virtual_tsc_shift,
&vcpu->arch.virtual_tsc_mult);
vcpu->arch.virtual_tsc_khz = user_tsc_khz;
/*
* Compute the variation in TSC rate which is acceptable
* within the range of tolerance and decide if the
* rate being applied is within that bounds of the hardware
* rate. If so, no scaling or compensation need be done.
*/
thresh_lo = adjust_tsc_khz(tsc_khz, -tsc_tolerance_ppm);
thresh_hi = adjust_tsc_khz(tsc_khz, tsc_tolerance_ppm);
if (user_tsc_khz < thresh_lo || user_tsc_khz > thresh_hi) {
pr_debug("requested TSC rate %u falls outside tolerance [%u,%u]\n",
user_tsc_khz, thresh_lo, thresh_hi);
use_scaling = 1;
}
return set_tsc_khz(vcpu, user_tsc_khz, use_scaling);
}
static u64 compute_guest_tsc(struct kvm_vcpu *vcpu, s64 kernel_ns)
{
u64 tsc = pvclock_scale_delta(kernel_ns-vcpu->arch.this_tsc_nsec,
vcpu->arch.virtual_tsc_mult,
vcpu->arch.virtual_tsc_shift);
tsc += vcpu->arch.this_tsc_write;
return tsc;
}
#ifdef CONFIG_X86_64
static inline bool gtod_is_based_on_tsc(int mode)
{
return mode == VDSO_CLOCKMODE_TSC || mode == VDSO_CLOCKMODE_HVCLOCK;
}
#endif
static void kvm_track_tsc_matching(struct kvm_vcpu *vcpu, bool new_generation)
{
#ifdef CONFIG_X86_64
struct kvm_arch *ka = &vcpu->kvm->arch;
struct pvclock_gtod_data *gtod = &pvclock_gtod_data;
/*
* To use the masterclock, the host clocksource must be based on TSC
* and all vCPUs must have matching TSCs. Note, the count for matching
* vCPUs doesn't include the reference vCPU, hence "+1".
*/
bool use_master_clock = (ka->nr_vcpus_matched_tsc + 1 ==
atomic_read(&vcpu->kvm->online_vcpus)) &&
gtod_is_based_on_tsc(gtod->clock.vclock_mode);
/*
* Request a masterclock update if the masterclock needs to be toggled
* on/off, or when starting a new generation and the masterclock is
* enabled (compute_guest_tsc() requires the masterclock snapshot to be
* taken _after_ the new generation is created).
*/
if ((ka->use_master_clock && new_generation) ||
(ka->use_master_clock != use_master_clock))
kvm_make_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu);
trace_kvm_track_tsc(vcpu->vcpu_id, ka->nr_vcpus_matched_tsc,
atomic_read(&vcpu->kvm->online_vcpus),
ka->use_master_clock, gtod->clock.vclock_mode);
#endif
}
/*
* Multiply tsc by a fixed point number represented by ratio.
*
* The most significant 64-N bits (mult) of ratio represent the
* integral part of the fixed point number; the remaining N bits
* (frac) represent the fractional part, ie. ratio represents a fixed
* point number (mult + frac * 2^(-N)).
*
* N equals to kvm_caps.tsc_scaling_ratio_frac_bits.
*/
static inline u64 __scale_tsc(u64 ratio, u64 tsc)
{
return mul_u64_u64_shr(tsc, ratio, kvm_caps.tsc_scaling_ratio_frac_bits);
}
u64 kvm_scale_tsc(u64 tsc, u64 ratio)
{
u64 _tsc = tsc;
if (ratio != kvm_caps.default_tsc_scaling_ratio)
_tsc = __scale_tsc(ratio, tsc);
return _tsc;
}
static u64 kvm_compute_l1_tsc_offset(struct kvm_vcpu *vcpu, u64 target_tsc)
{
u64 tsc;
tsc = kvm_scale_tsc(rdtsc(), vcpu->arch.l1_tsc_scaling_ratio);
return target_tsc - tsc;
}
u64 kvm_read_l1_tsc(struct kvm_vcpu *vcpu, u64 host_tsc)
{
return vcpu->arch.l1_tsc_offset +
kvm_scale_tsc(host_tsc, vcpu->arch.l1_tsc_scaling_ratio);
}
EXPORT_SYMBOL_GPL(kvm_read_l1_tsc);
u64 kvm_calc_nested_tsc_offset(u64 l1_offset, u64 l2_offset, u64 l2_multiplier)
{
u64 nested_offset;
if (l2_multiplier == kvm_caps.default_tsc_scaling_ratio)
nested_offset = l1_offset;
else
nested_offset = mul_s64_u64_shr((s64) l1_offset, l2_multiplier,
kvm_caps.tsc_scaling_ratio_frac_bits);
nested_offset += l2_offset;
return nested_offset;
}
EXPORT_SYMBOL_GPL(kvm_calc_nested_tsc_offset);
u64 kvm_calc_nested_tsc_multiplier(u64 l1_multiplier, u64 l2_multiplier)
{
if (l2_multiplier != kvm_caps.default_tsc_scaling_ratio)
return mul_u64_u64_shr(l1_multiplier, l2_multiplier,
kvm_caps.tsc_scaling_ratio_frac_bits);
return l1_multiplier;
}
EXPORT_SYMBOL_GPL(kvm_calc_nested_tsc_multiplier);
static void kvm_vcpu_write_tsc_offset(struct kvm_vcpu *vcpu, u64 l1_offset)
{
trace_kvm_write_tsc_offset(vcpu->vcpu_id,
vcpu->arch.l1_tsc_offset,
l1_offset);
vcpu->arch.l1_tsc_offset = l1_offset;
/*
* If we are here because L1 chose not to trap WRMSR to TSC then
* according to the spec this should set L1's TSC (as opposed to
* setting L1's offset for L2).
*/
if (is_guest_mode(vcpu))
vcpu->arch.tsc_offset = kvm_calc_nested_tsc_offset(
l1_offset,
kvm_x86_call(get_l2_tsc_offset)(vcpu),
kvm_x86_call(get_l2_tsc_multiplier)(vcpu));
else
vcpu->arch.tsc_offset = l1_offset;
kvm_x86_call(write_tsc_offset)(vcpu);
}
static void kvm_vcpu_write_tsc_multiplier(struct kvm_vcpu *vcpu, u64 l1_multiplier)
{
vcpu->arch.l1_tsc_scaling_ratio = l1_multiplier;
/* Userspace is changing the multiplier while L2 is active */
if (is_guest_mode(vcpu))
vcpu->arch.tsc_scaling_ratio = kvm_calc_nested_tsc_multiplier(
l1_multiplier,
kvm_x86_call(get_l2_tsc_multiplier)(vcpu));
else
vcpu->arch.tsc_scaling_ratio = l1_multiplier;
if (kvm_caps.has_tsc_control)
kvm_x86_call(write_tsc_multiplier)(vcpu);
}
static inline bool kvm_check_tsc_unstable(void)
{
#ifdef CONFIG_X86_64
/*
* TSC is marked unstable when we're running on Hyper-V,
* 'TSC page' clocksource is good.
*/
if (pvclock_gtod_data.clock.vclock_mode == VDSO_CLOCKMODE_HVCLOCK)
return false;
#endif
return check_tsc_unstable();
}
/*
* Infers attempts to synchronize the guest's tsc from host writes. Sets the
* offset for the vcpu and tracks the TSC matching generation that the vcpu
* participates in.
*/
static void __kvm_synchronize_tsc(struct kvm_vcpu *vcpu, u64 offset, u64 tsc,
u64 ns, bool matched)
{
struct kvm *kvm = vcpu->kvm;
lockdep_assert_held(&kvm->arch.tsc_write_lock);
/*
* We also track th most recent recorded KHZ, write and time to
* allow the matching interval to be extended at each write.
*/
kvm->arch.last_tsc_nsec = ns;
kvm->arch.last_tsc_write = tsc;
kvm->arch.last_tsc_khz = vcpu->arch.virtual_tsc_khz;
kvm->arch.last_tsc_offset = offset;
vcpu->arch.last_guest_tsc = tsc;
kvm_vcpu_write_tsc_offset(vcpu, offset);
if (!matched) {
/*
* We split periods of matched TSC writes into generations.
* For each generation, we track the original measured
* nanosecond time, offset, and write, so if TSCs are in
* sync, we can match exact offset, and if not, we can match
* exact software computation in compute_guest_tsc()
*
* These values are tracked in kvm->arch.cur_xxx variables.
*/
kvm->arch.cur_tsc_generation++;
kvm->arch.cur_tsc_nsec = ns;
kvm->arch.cur_tsc_write = tsc;
kvm->arch.cur_tsc_offset = offset;
kvm->arch.nr_vcpus_matched_tsc = 0;
} else if (vcpu->arch.this_tsc_generation != kvm->arch.cur_tsc_generation) {
kvm->arch.nr_vcpus_matched_tsc++;
}
/* Keep track of which generation this VCPU has synchronized to */
vcpu->arch.this_tsc_generation = kvm->arch.cur_tsc_generation;
vcpu->arch.this_tsc_nsec = kvm->arch.cur_tsc_nsec;
vcpu->arch.this_tsc_write = kvm->arch.cur_tsc_write;
kvm_track_tsc_matching(vcpu, !matched);
}
static void kvm_synchronize_tsc(struct kvm_vcpu *vcpu, u64 *user_value)
{
u64 data = user_value ? *user_value : 0;
struct kvm *kvm = vcpu->kvm;
u64 offset, ns, elapsed;
unsigned long flags;
bool matched = false;
bool synchronizing = false;
raw_spin_lock_irqsave(&kvm->arch.tsc_write_lock, flags);
offset = kvm_compute_l1_tsc_offset(vcpu, data);
ns = get_kvmclock_base_ns();
elapsed = ns - kvm->arch.last_tsc_nsec;
if (vcpu->arch.virtual_tsc_khz) {
if (data == 0) {
/*
* Force synchronization when creating a vCPU, or when
* userspace explicitly writes a zero value.
*/
synchronizing = true;
} else if (kvm->arch.user_set_tsc) {
u64 tsc_exp = kvm->arch.last_tsc_write +
nsec_to_cycles(vcpu, elapsed);
u64 tsc_hz = vcpu->arch.virtual_tsc_khz * 1000LL;
/*
* Here lies UAPI baggage: when a user-initiated TSC write has
* a small delta (1 second) of virtual cycle time against the
* previously set vCPU, we assume that they were intended to be
* in sync and the delta was only due to the racy nature of the
* legacy API.
*
* This trick falls down when restoring a guest which genuinely
* has been running for less time than the 1 second of imprecision
* which we allow for in the legacy API. In this case, the first
* value written by userspace (on any vCPU) should not be subject
* to this 'correction' to make it sync up with values that only
* come from the kernel's default vCPU creation. Make the 1-second
* slop hack only trigger if the user_set_tsc flag is already set.
*/
synchronizing = data < tsc_exp + tsc_hz &&
data + tsc_hz > tsc_exp;
}
}
if (user_value)
kvm->arch.user_set_tsc = true;
/*
* For a reliable TSC, we can match TSC offsets, and for an unstable
* TSC, we add elapsed time in this computation. We could let the
* compensation code attempt to catch up if we fall behind, but
* it's better to try to match offsets from the beginning.
*/
if (synchronizing &&
vcpu->arch.virtual_tsc_khz == kvm->arch.last_tsc_khz) {
if (!kvm_check_tsc_unstable()) {
offset = kvm->arch.cur_tsc_offset;
} else {
u64 delta = nsec_to_cycles(vcpu, elapsed);
data += delta;
offset = kvm_compute_l1_tsc_offset(vcpu, data);
}
matched = true;
}
__kvm_synchronize_tsc(vcpu, offset, data, ns, matched);
raw_spin_unlock_irqrestore(&kvm->arch.tsc_write_lock, flags);
}
static inline void adjust_tsc_offset_guest(struct kvm_vcpu *vcpu,
s64 adjustment)
{
u64 tsc_offset = vcpu->arch.l1_tsc_offset;
kvm_vcpu_write_tsc_offset(vcpu, tsc_offset + adjustment);
}
static inline void adjust_tsc_offset_host(struct kvm_vcpu *vcpu, s64 adjustment)
{
if (vcpu->arch.l1_tsc_scaling_ratio != kvm_caps.default_tsc_scaling_ratio)
WARN_ON(adjustment < 0);
adjustment = kvm_scale_tsc((u64) adjustment,
vcpu->arch.l1_tsc_scaling_ratio);
adjust_tsc_offset_guest(vcpu, adjustment);
}
#ifdef CONFIG_X86_64
static u64 read_tsc(void)
{
u64 ret = (u64)rdtsc_ordered();
u64 last = pvclock_gtod_data.clock.cycle_last;
if (likely(ret >= last))
return ret;
/*
* GCC likes to generate cmov here, but this branch is extremely
* predictable (it's just a function of time and the likely is
* very likely) and there's a data dependence, so force GCC
* to generate a branch instead. I don't barrier() because
* we don't actually need a barrier, and if this function
* ever gets inlined it will generate worse code.
*/
asm volatile ("");
return last;
}
static inline u64 vgettsc(struct pvclock_clock *clock, u64 *tsc_timestamp,
int *mode)
{
u64 tsc_pg_val;
long v;
switch (clock->vclock_mode) {
case VDSO_CLOCKMODE_HVCLOCK:
if (hv_read_tsc_page_tsc(hv_get_tsc_page(),
tsc_timestamp, &tsc_pg_val)) {
/* TSC page valid */
*mode = VDSO_CLOCKMODE_HVCLOCK;
v = (tsc_pg_val - clock->cycle_last) &
clock->mask;
} else {
/* TSC page invalid */
*mode = VDSO_CLOCKMODE_NONE;
}
break;
case VDSO_CLOCKMODE_TSC:
*mode = VDSO_CLOCKMODE_TSC;
*tsc_timestamp = read_tsc();
v = (*tsc_timestamp - clock->cycle_last) &
clock->mask;
break;
default:
*mode = VDSO_CLOCKMODE_NONE;
}
if (*mode == VDSO_CLOCKMODE_NONE)
*tsc_timestamp = v = 0;
return v * clock->mult;
}
/*
* As with get_kvmclock_base_ns(), this counts from boot time, at the
* frequency of CLOCK_MONOTONIC_RAW (hence adding gtos->offs_boot).
*/
static int do_kvmclock_base(s64 *t, u64 *tsc_timestamp)
{
struct pvclock_gtod_data *gtod = &pvclock_gtod_data;
unsigned long seq;
int mode;
u64 ns;
do {
seq = read_seqcount_begin(&gtod->seq);
ns = gtod->raw_clock.base_cycles;
ns += vgettsc(&gtod->raw_clock, tsc_timestamp, &mode);
ns >>= gtod->raw_clock.shift;
ns += ktime_to_ns(ktime_add(gtod->raw_clock.offset, gtod->offs_boot));
} while (unlikely(read_seqcount_retry(&gtod->seq, seq)));
*t = ns;
return mode;
}
/*
* This calculates CLOCK_MONOTONIC at the time of the TSC snapshot, with
* no boot time offset.
*/
static int do_monotonic(s64 *t, u64 *tsc_timestamp)
{
struct pvclock_gtod_data *gtod = &pvclock_gtod_data;
unsigned long seq;
int mode;
u64 ns;
do {
seq = read_seqcount_begin(&gtod->seq);
ns = gtod->clock.base_cycles;
ns += vgettsc(&gtod->clock, tsc_timestamp, &mode);
ns >>= gtod->clock.shift;
ns += ktime_to_ns(gtod->clock.offset);
} while (unlikely(read_seqcount_retry(&gtod->seq, seq)));
*t = ns;
return mode;
}
static int do_realtime(struct timespec64 *ts, u64 *tsc_timestamp)
{
struct pvclock_gtod_data *gtod = &pvclock_gtod_data;
unsigned long seq;
int mode;
u64 ns;
do {
seq = read_seqcount_begin(&gtod->seq);
ts->tv_sec = gtod->wall_time_sec;
ns = gtod->clock.base_cycles;
ns += vgettsc(&gtod->clock, tsc_timestamp, &mode);
ns >>= gtod->clock.shift;
} while (unlikely(read_seqcount_retry(&gtod->seq, seq)));
ts->tv_sec += __iter_div_u64_rem(ns, NSEC_PER_SEC, &ns);
ts->tv_nsec = ns;
return mode;
}
/*
* Calculates the kvmclock_base_ns (CLOCK_MONOTONIC_RAW + boot time) and
* reports the TSC value from which it do so. Returns true if host is
* using TSC based clocksource.
*/
static bool kvm_get_time_and_clockread(s64 *kernel_ns, u64 *tsc_timestamp)
{
/* checked again under seqlock below */
if (!gtod_is_based_on_tsc(pvclock_gtod_data.clock.vclock_mode))
return false;
return gtod_is_based_on_tsc(do_kvmclock_base(kernel_ns,
tsc_timestamp));
}
/*
* Calculates CLOCK_MONOTONIC and reports the TSC value from which it did
* so. Returns true if host is using TSC based clocksource.
*/
bool kvm_get_monotonic_and_clockread(s64 *kernel_ns, u64 *tsc_timestamp)
{
/* checked again under seqlock below */
if (!gtod_is_based_on_tsc(pvclock_gtod_data.clock.vclock_mode))
return false;
return gtod_is_based_on_tsc(do_monotonic(kernel_ns,
tsc_timestamp));
}
/*
* Calculates CLOCK_REALTIME and reports the TSC value from which it did
* so. Returns true if host is using TSC based clocksource.
*
* DO NOT USE this for anything related to migration. You want CLOCK_TAI
* for that.
*/
static bool kvm_get_walltime_and_clockread(struct timespec64 *ts,
u64 *tsc_timestamp)
{
/* checked again under seqlock below */
if (!gtod_is_based_on_tsc(pvclock_gtod_data.clock.vclock_mode))
return false;
return gtod_is_based_on_tsc(do_realtime(ts, tsc_timestamp));
}
#endif
/*
*
* Assuming a stable TSC across physical CPUS, and a stable TSC
* across virtual CPUs, the following condition is possible.
* Each numbered line represents an event visible to both
* CPUs at the next numbered event.
*
* "timespecX" represents host monotonic time. "tscX" represents
* RDTSC value.
*
* VCPU0 on CPU0 | VCPU1 on CPU1
*
* 1. read timespec0,tsc0
* 2. | timespec1 = timespec0 + N
* | tsc1 = tsc0 + M
* 3. transition to guest | transition to guest
* 4. ret0 = timespec0 + (rdtsc - tsc0) |
* 5. | ret1 = timespec1 + (rdtsc - tsc1)
* | ret1 = timespec0 + N + (rdtsc - (tsc0 + M))
*
* Since ret0 update is visible to VCPU1 at time 5, to obey monotonicity:
*
* - ret0 < ret1
* - timespec0 + (rdtsc - tsc0) < timespec0 + N + (rdtsc - (tsc0 + M))
* ...
* - 0 < N - M => M < N
*
* That is, when timespec0 != timespec1, M < N. Unfortunately that is not
* always the case (the difference between two distinct xtime instances
* might be smaller then the difference between corresponding TSC reads,
* when updating guest vcpus pvclock areas).
*
* To avoid that problem, do not allow visibility of distinct
* system_timestamp/tsc_timestamp values simultaneously: use a master
* copy of host monotonic time values. Update that master copy
* in lockstep.
*
* Rely on synchronization of host TSCs and guest TSCs for monotonicity.
*
*/
static void pvclock_update_vm_gtod_copy(struct kvm *kvm)
{
#ifdef CONFIG_X86_64
struct kvm_arch *ka = &kvm->arch;
int vclock_mode;
bool host_tsc_clocksource, vcpus_matched;
lockdep_assert_held(&kvm->arch.tsc_write_lock);
vcpus_matched = (ka->nr_vcpus_matched_tsc + 1 ==
atomic_read(&kvm->online_vcpus));
/*
* If the host uses TSC clock, then passthrough TSC as stable
* to the guest.
*/
host_tsc_clocksource = kvm_get_time_and_clockread(
&ka->master_kernel_ns,
&ka->master_cycle_now);
ka->use_master_clock = host_tsc_clocksource && vcpus_matched
&& !ka->backwards_tsc_observed
&& !ka->boot_vcpu_runs_old_kvmclock;
if (ka->use_master_clock)
atomic_set(&kvm_guest_has_master_clock, 1);
vclock_mode = pvclock_gtod_data.clock.vclock_mode;
trace_kvm_update_master_clock(ka->use_master_clock, vclock_mode,
vcpus_matched);
#endif
}
static void kvm_make_mclock_inprogress_request(struct kvm *kvm)
{
kvm_make_all_cpus_request(kvm, KVM_REQ_MCLOCK_INPROGRESS);
}
static void __kvm_start_pvclock_update(struct kvm *kvm)
{
raw_spin_lock_irq(&kvm->arch.tsc_write_lock);
write_seqcount_begin(&kvm->arch.pvclock_sc);
}
static void kvm_start_pvclock_update(struct kvm *kvm)
{
kvm_make_mclock_inprogress_request(kvm);
/* no guest entries from this point */
__kvm_start_pvclock_update(kvm);
}
static void kvm_end_pvclock_update(struct kvm *kvm)
{
struct kvm_arch *ka = &kvm->arch;
struct kvm_vcpu *vcpu;
unsigned long i;
write_seqcount_end(&ka->pvclock_sc);
raw_spin_unlock_irq(&ka->tsc_write_lock);
kvm_for_each_vcpu(i, vcpu, kvm)
kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
/* guest entries allowed */
kvm_for_each_vcpu(i, vcpu, kvm)
kvm_clear_request(KVM_REQ_MCLOCK_INPROGRESS, vcpu);
}
static void kvm_update_masterclock(struct kvm *kvm)
{
kvm_hv_request_tsc_page_update(kvm);
kvm_start_pvclock_update(kvm);
pvclock_update_vm_gtod_copy(kvm);
kvm_end_pvclock_update(kvm);
}
/*
* Use the kernel's tsc_khz directly if the TSC is constant, otherwise use KVM's
* per-CPU value (which may be zero if a CPU is going offline). Note, tsc_khz
* can change during boot even if the TSC is constant, as it's possible for KVM
* to be loaded before TSC calibration completes. Ideally, KVM would get a
* notification when calibration completes, but practically speaking calibration
* will complete before userspace is alive enough to create VMs.
*/
static unsigned long get_cpu_tsc_khz(void)
{
if (static_cpu_has(X86_FEATURE_CONSTANT_TSC))
return tsc_khz;
else
return __this_cpu_read(cpu_tsc_khz);
}
/* Called within read_seqcount_begin/retry for kvm->pvclock_sc. */
static void __get_kvmclock(struct kvm *kvm, struct kvm_clock_data *data)
{
struct kvm_arch *ka = &kvm->arch;
struct pvclock_vcpu_time_info hv_clock;
/* both __this_cpu_read() and rdtsc() should be on the same cpu */
get_cpu();
data->flags = 0;
if (ka->use_master_clock &&
(static_cpu_has(X86_FEATURE_CONSTANT_TSC) || __this_cpu_read(cpu_tsc_khz))) {
#ifdef CONFIG_X86_64
struct timespec64 ts;
if (kvm_get_walltime_and_clockread(&ts, &data->host_tsc)) {
data->realtime = ts.tv_nsec + NSEC_PER_SEC * ts.tv_sec;
data->flags |= KVM_CLOCK_REALTIME | KVM_CLOCK_HOST_TSC;
} else
#endif
data->host_tsc = rdtsc();
data->flags |= KVM_CLOCK_TSC_STABLE;
hv_clock.tsc_timestamp = ka->master_cycle_now;
hv_clock.system_time = ka->master_kernel_ns + ka->kvmclock_offset;
kvm_get_time_scale(NSEC_PER_SEC, get_cpu_tsc_khz() * 1000LL,
&hv_clock.tsc_shift,
&hv_clock.tsc_to_system_mul);
data->clock = __pvclock_read_cycles(&hv_clock, data->host_tsc);
} else {
data->clock = get_kvmclock_base_ns() + ka->kvmclock_offset;
}
put_cpu();
}
static void get_kvmclock(struct kvm *kvm, struct kvm_clock_data *data)
{
struct kvm_arch *ka = &kvm->arch;
unsigned seq;
do {
seq = read_seqcount_begin(&ka->pvclock_sc);
__get_kvmclock(kvm, data);
} while (read_seqcount_retry(&ka->pvclock_sc, seq));
}
u64 get_kvmclock_ns(struct kvm *kvm)
{
struct kvm_clock_data data;
get_kvmclock(kvm, &data);
return data.clock;
}
static void kvm_setup_guest_pvclock(struct kvm_vcpu *v,
struct gfn_to_pfn_cache *gpc,
unsigned int offset,
bool force_tsc_unstable)
{
struct kvm_vcpu_arch *vcpu = &v->arch;
struct pvclock_vcpu_time_info *guest_hv_clock;
unsigned long flags;
read_lock_irqsave(&gpc->lock, flags);
while (!kvm_gpc_check(gpc, offset + sizeof(*guest_hv_clock))) {
read_unlock_irqrestore(&gpc->lock, flags);
if (kvm_gpc_refresh(gpc, offset + sizeof(*guest_hv_clock)))
return;
read_lock_irqsave(&gpc->lock, flags);
}
guest_hv_clock = (void *)(gpc->khva + offset);
/*
* This VCPU is paused, but it's legal for a guest to read another
* VCPU's kvmclock, so we really have to follow the specification where
* it says that version is odd if data is being modified, and even after
* it is consistent.
*/
guest_hv_clock->version = vcpu->hv_clock.version = (guest_hv_clock->version + 1) | 1;
smp_wmb();
/* retain PVCLOCK_GUEST_STOPPED if set in guest copy */
vcpu->hv_clock.flags |= (guest_hv_clock->flags & PVCLOCK_GUEST_STOPPED);
if (vcpu->pvclock_set_guest_stopped_request) {
vcpu->hv_clock.flags |= PVCLOCK_GUEST_STOPPED;
vcpu->pvclock_set_guest_stopped_request = false;
}
memcpy(guest_hv_clock, &vcpu->hv_clock, sizeof(*guest_hv_clock));
if (force_tsc_unstable)
guest_hv_clock->flags &= ~PVCLOCK_TSC_STABLE_BIT;
smp_wmb();
guest_hv_clock->version = ++vcpu->hv_clock.version;
kvm_gpc_mark_dirty_in_slot(gpc);
read_unlock_irqrestore(&gpc->lock, flags);
trace_kvm_pvclock_update(v->vcpu_id, &vcpu->hv_clock);
}
static int kvm_guest_time_update(struct kvm_vcpu *v)
{
unsigned long flags, tgt_tsc_khz;
unsigned seq;
struct kvm_vcpu_arch *vcpu = &v->arch;
struct kvm_arch *ka = &v->kvm->arch;
s64 kernel_ns;
u64 tsc_timestamp, host_tsc;
u8 pvclock_flags;
bool use_master_clock;
#ifdef CONFIG_KVM_XEN
/*
* For Xen guests we may need to override PVCLOCK_TSC_STABLE_BIT as unless
* explicitly told to use TSC as its clocksource Xen will not set this bit.
* This default behaviour led to bugs in some guest kernels which cause
* problems if they observe PVCLOCK_TSC_STABLE_BIT in the pvclock flags.
*/
bool xen_pvclock_tsc_unstable =
ka->xen_hvm_config.flags & KVM_XEN_HVM_CONFIG_PVCLOCK_TSC_UNSTABLE;
#endif
kernel_ns = 0;
host_tsc = 0;
/*
* If the host uses TSC clock, then passthrough TSC as stable
* to the guest.
*/
do {
seq = read_seqcount_begin(&ka->pvclock_sc);
use_master_clock = ka->use_master_clock;
if (use_master_clock) {
host_tsc = ka->master_cycle_now;
kernel_ns = ka->master_kernel_ns;
}
} while (read_seqcount_retry(&ka->pvclock_sc, seq));
/* Keep irq disabled to prevent changes to the clock */
local_irq_save(flags);
tgt_tsc_khz = get_cpu_tsc_khz();
if (unlikely(tgt_tsc_khz == 0)) {
local_irq_restore(flags);
kvm_make_request(KVM_REQ_CLOCK_UPDATE, v);
return 1;
}
if (!use_master_clock) {
host_tsc = rdtsc();
kernel_ns = get_kvmclock_base_ns();
}
tsc_timestamp = kvm_read_l1_tsc(v, host_tsc);
/*
* We may have to catch up the TSC to match elapsed wall clock
* time for two reasons, even if kvmclock is used.
* 1) CPU could have been running below the maximum TSC rate
* 2) Broken TSC compensation resets the base at each VCPU
* entry to avoid unknown leaps of TSC even when running
* again on the same CPU. This may cause apparent elapsed
* time to disappear, and the guest to stand still or run
* very slowly.
*/
if (vcpu->tsc_catchup) {
u64 tsc = compute_guest_tsc(v, kernel_ns);
if (tsc > tsc_timestamp) {
adjust_tsc_offset_guest(v, tsc - tsc_timestamp);
tsc_timestamp = tsc;
}
}
local_irq_restore(flags);
/* With all the info we got, fill in the values */
if (kvm_caps.has_tsc_control)
tgt_tsc_khz = kvm_scale_tsc(tgt_tsc_khz,
v->arch.l1_tsc_scaling_ratio);
if (unlikely(vcpu->hw_tsc_khz != tgt_tsc_khz)) {
kvm_get_time_scale(NSEC_PER_SEC, tgt_tsc_khz * 1000LL,
&vcpu->hv_clock.tsc_shift,
&vcpu->hv_clock.tsc_to_system_mul);
vcpu->hw_tsc_khz = tgt_tsc_khz;
kvm_xen_update_tsc_info(v);
}
vcpu->hv_clock.tsc_timestamp = tsc_timestamp;
vcpu->hv_clock.system_time = kernel_ns + v->kvm->arch.kvmclock_offset;
vcpu->last_guest_tsc = tsc_timestamp;
/* If the host uses TSC clocksource, then it is stable */
pvclock_flags = 0;
if (use_master_clock)
pvclock_flags |= PVCLOCK_TSC_STABLE_BIT;
vcpu->hv_clock.flags = pvclock_flags;
if (vcpu->pv_time.active)
kvm_setup_guest_pvclock(v, &vcpu->pv_time, 0, false);
#ifdef CONFIG_KVM_XEN
if (vcpu->xen.vcpu_info_cache.active)
kvm_setup_guest_pvclock(v, &vcpu->xen.vcpu_info_cache,
offsetof(struct compat_vcpu_info, time),
xen_pvclock_tsc_unstable);
if (vcpu->xen.vcpu_time_info_cache.active)
kvm_setup_guest_pvclock(v, &vcpu->xen.vcpu_time_info_cache, 0,
xen_pvclock_tsc_unstable);
#endif
kvm_hv_setup_tsc_page(v->kvm, &vcpu->hv_clock);
return 0;
}
/*
* The pvclock_wall_clock ABI tells the guest the wall clock time at
* which it started (i.e. its epoch, when its kvmclock was zero).
*
* In fact those clocks are subtly different; wall clock frequency is
* adjusted by NTP and has leap seconds, while the kvmclock is a
* simple function of the TSC without any such adjustment.
*
* Perhaps the ABI should have exposed CLOCK_TAI and a ratio between
* that and kvmclock, but even that would be subject to change over
* time.
*
* Attempt to calculate the epoch at a given moment using the *same*
* TSC reading via kvm_get_walltime_and_clockread() to obtain both
* wallclock and kvmclock times, and subtracting one from the other.
*
* Fall back to using their values at slightly different moments by
* calling ktime_get_real_ns() and get_kvmclock_ns() separately.
*/
uint64_t kvm_get_wall_clock_epoch(struct kvm *kvm)
{
#ifdef CONFIG_X86_64
struct pvclock_vcpu_time_info hv_clock;
struct kvm_arch *ka = &kvm->arch;
unsigned long seq, local_tsc_khz;
struct timespec64 ts;
uint64_t host_tsc;
do {
seq = read_seqcount_begin(&ka->pvclock_sc);
local_tsc_khz = 0;
if (!ka->use_master_clock)
break;
/*
* The TSC read and the call to get_cpu_tsc_khz() must happen
* on the same CPU.
*/
get_cpu();
local_tsc_khz = get_cpu_tsc_khz();
if (local_tsc_khz &&
!kvm_get_walltime_and_clockread(&ts, &host_tsc))
local_tsc_khz = 0; /* Fall back to old method */
put_cpu();
/*
* These values must be snapshotted within the seqcount loop.
* After that, it's just mathematics which can happen on any
* CPU at any time.
*/
hv_clock.tsc_timestamp = ka->master_cycle_now;
hv_clock.system_time = ka->master_kernel_ns + ka->kvmclock_offset;
} while (read_seqcount_retry(&ka->pvclock_sc, seq));
/*
* If the conditions were right, and obtaining the wallclock+TSC was
* successful, calculate the KVM clock at the corresponding time and
* subtract one from the other to get the guest's epoch in nanoseconds
* since 1970-01-01.
*/
if (local_tsc_khz) {
kvm_get_time_scale(NSEC_PER_SEC, local_tsc_khz * NSEC_PER_USEC,
&hv_clock.tsc_shift,
&hv_clock.tsc_to_system_mul);
return ts.tv_nsec + NSEC_PER_SEC * ts.tv_sec -
__pvclock_read_cycles(&hv_clock, host_tsc);
}
#endif
return ktime_get_real_ns() - get_kvmclock_ns(kvm);
}
/*
* kvmclock updates which are isolated to a given vcpu, such as
* vcpu->cpu migration, should not allow system_timestamp from
* the rest of the vcpus to remain static. Otherwise ntp frequency
* correction applies to one vcpu's system_timestamp but not
* the others.
*
* So in those cases, request a kvmclock update for all vcpus.
* We need to rate-limit these requests though, as they can
* considerably slow guests that have a large number of vcpus.
* The time for a remote vcpu to update its kvmclock is bound
* by the delay we use to rate-limit the updates.
*/
#define KVMCLOCK_UPDATE_DELAY msecs_to_jiffies(100)
static void kvmclock_update_fn(struct work_struct *work)
{
unsigned long i;
struct delayed_work *dwork = to_delayed_work(work);
struct kvm_arch *ka = container_of(dwork, struct kvm_arch,
kvmclock_update_work);
struct kvm *kvm = container_of(ka, struct kvm, arch);
struct kvm_vcpu *vcpu;
kvm_for_each_vcpu(i, vcpu, kvm) {
kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
kvm_vcpu_kick(vcpu);
}
}
static void kvm_gen_kvmclock_update(struct kvm_vcpu *v)
{
struct kvm *kvm = v->kvm;
kvm_make_request(KVM_REQ_CLOCK_UPDATE, v);
schedule_delayed_work(&kvm->arch.kvmclock_update_work,
KVMCLOCK_UPDATE_DELAY);
}
#define KVMCLOCK_SYNC_PERIOD (300 * HZ)
static void kvmclock_sync_fn(struct work_struct *work)
{
struct delayed_work *dwork = to_delayed_work(work);
struct kvm_arch *ka = container_of(dwork, struct kvm_arch,
kvmclock_sync_work);
struct kvm *kvm = container_of(ka, struct kvm, arch);
schedule_delayed_work(&kvm->arch.kvmclock_update_work, 0);
schedule_delayed_work(&kvm->arch.kvmclock_sync_work,
KVMCLOCK_SYNC_PERIOD);
}
/* These helpers are safe iff @msr is known to be an MCx bank MSR. */
static bool is_mci_control_msr(u32 msr)
{
return (msr & 3) == 0;
}
static bool is_mci_status_msr(u32 msr)
{
return (msr & 3) == 1;
}
/*
* On AMD, HWCR[McStatusWrEn] controls whether setting MCi_STATUS results in #GP.
*/
static bool can_set_mci_status(struct kvm_vcpu *vcpu)
{
/* McStatusWrEn enabled? */
if (guest_cpuid_is_amd_compatible(vcpu))
return !!(vcpu->arch.msr_hwcr & BIT_ULL(18));
return false;
}
static int set_msr_mce(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
{
u64 mcg_cap = vcpu->arch.mcg_cap;
unsigned bank_num = mcg_cap & 0xff;
u32 msr = msr_info->index;
u64 data = msr_info->data;
u32 offset, last_msr;
switch (msr) {
case MSR_IA32_MCG_STATUS:
vcpu->arch.mcg_status = data;
break;
case MSR_IA32_MCG_CTL:
if (!(mcg_cap & MCG_CTL_P) &&
(data || !msr_info->host_initiated))
return 1;
if (data != 0 && data != ~(u64)0)
return 1;
vcpu->arch.mcg_ctl = data;
break;
case MSR_IA32_MC0_CTL2 ... MSR_IA32_MCx_CTL2(KVM_MAX_MCE_BANKS) - 1:
last_msr = MSR_IA32_MCx_CTL2(bank_num) - 1;
if (msr > last_msr)
return 1;
if (!(mcg_cap & MCG_CMCI_P) && (data || !msr_info->host_initiated))
return 1;
/* An attempt to write a 1 to a reserved bit raises #GP */
if (data & ~(MCI_CTL2_CMCI_EN | MCI_CTL2_CMCI_THRESHOLD_MASK))
return 1;
offset = array_index_nospec(msr - MSR_IA32_MC0_CTL2,
last_msr + 1 - MSR_IA32_MC0_CTL2);
vcpu->arch.mci_ctl2_banks[offset] = data;
break;
case MSR_IA32_MC0_CTL ... MSR_IA32_MCx_CTL(KVM_MAX_MCE_BANKS) - 1:
last_msr = MSR_IA32_MCx_CTL(bank_num) - 1;
if (msr > last_msr)
return 1;
/*
* Only 0 or all 1s can be written to IA32_MCi_CTL, all other
* values are architecturally undefined. But, some Linux
* kernels clear bit 10 in bank 4 to workaround a BIOS/GART TLB
* issue on AMD K8s, allow bit 10 to be clear when setting all
* other bits in order to avoid an uncaught #GP in the guest.
*
* UNIXWARE clears bit 0 of MC1_CTL to ignore correctable,
* single-bit ECC data errors.
*/
if (is_mci_control_msr(msr) &&
data != 0 && (data | (1 << 10) | 1) != ~(u64)0)
return 1;
/*
* All CPUs allow writing 0 to MCi_STATUS MSRs to clear the MSR.
* AMD-based CPUs allow non-zero values, but if and only if
* HWCR[McStatusWrEn] is set.
*/
if (!msr_info->host_initiated && is_mci_status_msr(msr) &&
data != 0 && !can_set_mci_status(vcpu))
return 1;
offset = array_index_nospec(msr - MSR_IA32_MC0_CTL,
last_msr + 1 - MSR_IA32_MC0_CTL);
vcpu->arch.mce_banks[offset] = data;
break;
default:
return 1;
}
return 0;
}
static inline bool kvm_pv_async_pf_enabled(struct kvm_vcpu *vcpu)
{
u64 mask = KVM_ASYNC_PF_ENABLED | KVM_ASYNC_PF_DELIVERY_AS_INT;
return (vcpu->arch.apf.msr_en_val & mask) == mask;
}
static int kvm_pv_enable_async_pf(struct kvm_vcpu *vcpu, u64 data)
{
gpa_t gpa = data & ~0x3f;
/* Bits 4:5 are reserved, Should be zero */
if (data & 0x30)
return 1;
if (!guest_pv_has(vcpu, KVM_FEATURE_ASYNC_PF_VMEXIT) &&
(data & KVM_ASYNC_PF_DELIVERY_AS_PF_VMEXIT))
return 1;
if (!guest_pv_has(vcpu, KVM_FEATURE_ASYNC_PF_INT) &&
(data & KVM_ASYNC_PF_DELIVERY_AS_INT))
return 1;
if (!lapic_in_kernel(vcpu))
return data ? 1 : 0;
vcpu->arch.apf.msr_en_val = data;
if (!kvm_pv_async_pf_enabled(vcpu)) {
kvm_clear_async_pf_completion_queue(vcpu);
kvm_async_pf_hash_reset(vcpu);
return 0;
}
if (kvm_gfn_to_hva_cache_init(vcpu->kvm, &vcpu->arch.apf.data, gpa,
sizeof(u64)))
return 1;
vcpu->arch.apf.send_user_only = !(data & KVM_ASYNC_PF_SEND_ALWAYS);
vcpu->arch.apf.delivery_as_pf_vmexit = data & KVM_ASYNC_PF_DELIVERY_AS_PF_VMEXIT;
kvm_async_pf_wakeup_all(vcpu);
return 0;
}
static int kvm_pv_enable_async_pf_int(struct kvm_vcpu *vcpu, u64 data)
{
/* Bits 8-63 are reserved */
if (data >> 8)
return 1;
if (!lapic_in_kernel(vcpu))
return 1;
vcpu->arch.apf.msr_int_val = data;
vcpu->arch.apf.vec = data & KVM_ASYNC_PF_VEC_MASK;
return 0;
}
static void kvmclock_reset(struct kvm_vcpu *vcpu)
{
kvm_gpc_deactivate(&vcpu->arch.pv_time);
vcpu->arch.time = 0;
}
static void kvm_vcpu_flush_tlb_all(struct kvm_vcpu *vcpu)
{
++vcpu->stat.tlb_flush;
kvm_x86_call(flush_tlb_all)(vcpu);
/* Flushing all ASIDs flushes the current ASID... */
kvm_clear_request(KVM_REQ_TLB_FLUSH_CURRENT, vcpu);
}
static void kvm_vcpu_flush_tlb_guest(struct kvm_vcpu *vcpu)
{
++vcpu->stat.tlb_flush;
if (!tdp_enabled) {
/*
* A TLB flush on behalf of the guest is equivalent to
* INVPCID(all), toggling CR4.PGE, etc., which requires
* a forced sync of the shadow page tables. Ensure all the
* roots are synced and the guest TLB in hardware is clean.
*/
kvm_mmu_sync_roots(vcpu);
kvm_mmu_sync_prev_roots(vcpu);
}
kvm_x86_call(flush_tlb_guest)(vcpu);
/*
* Flushing all "guest" TLB is always a superset of Hyper-V's fine
* grained flushing.
*/
kvm_hv_vcpu_purge_flush_tlb(vcpu);
}
static inline void kvm_vcpu_flush_tlb_current(struct kvm_vcpu *vcpu)
{
++vcpu->stat.tlb_flush;
kvm_x86_call(flush_tlb_current)(vcpu);
}
/*
* Service "local" TLB flush requests, which are specific to the current MMU
* context. In addition to the generic event handling in vcpu_enter_guest(),
* TLB flushes that are targeted at an MMU context also need to be serviced
* prior before nested VM-Enter/VM-Exit.
*/
void kvm_service_local_tlb_flush_requests(struct kvm_vcpu *vcpu)
{
if (kvm_check_request(KVM_REQ_TLB_FLUSH_CURRENT, vcpu))
kvm_vcpu_flush_tlb_current(vcpu);
if (kvm_check_request(KVM_REQ_TLB_FLUSH_GUEST, vcpu))
kvm_vcpu_flush_tlb_guest(vcpu);
}
EXPORT_SYMBOL_GPL(kvm_service_local_tlb_flush_requests);
static void record_steal_time(struct kvm_vcpu *vcpu)
{
struct gfn_to_hva_cache *ghc = &vcpu->arch.st.cache;
struct kvm_steal_time __user *st;
struct kvm_memslots *slots;
gpa_t gpa = vcpu->arch.st.msr_val & KVM_STEAL_VALID_BITS;
u64 steal;
u32 version;
if (kvm_xen_msr_enabled(vcpu->kvm)) {
kvm_xen_runstate_set_running(vcpu);
return;
}
if (!(vcpu->arch.st.msr_val & KVM_MSR_ENABLED))
return;
if (WARN_ON_ONCE(current->mm != vcpu->kvm->mm))
return;
slots = kvm_memslots(vcpu->kvm);
if (unlikely(slots->generation != ghc->generation ||
gpa != ghc->gpa ||
kvm_is_error_hva(ghc->hva) || !ghc->memslot)) {
/* We rely on the fact that it fits in a single page. */
BUILD_BUG_ON((sizeof(*st) - 1) & KVM_STEAL_VALID_BITS);
if (kvm_gfn_to_hva_cache_init(vcpu->kvm, ghc, gpa, sizeof(*st)) ||
kvm_is_error_hva(ghc->hva) || !ghc->memslot)
return;
}
st = (struct kvm_steal_time __user *)ghc->hva;
/*
* Doing a TLB flush here, on the guest's behalf, can avoid
* expensive IPIs.
*/
if (guest_pv_has(vcpu, KVM_FEATURE_PV_TLB_FLUSH)) {
u8 st_preempted = 0;
int err = -EFAULT;
if (!user_access_begin(st, sizeof(*st)))
return;
asm volatile("1: xchgb %0, %2\n"
"xor %1, %1\n"
"2:\n"
_ASM_EXTABLE_UA(1b, 2b)
: "+q" (st_preempted),
"+&r" (err),
"+m" (st->preempted));
if (err)
goto out;
user_access_end();
vcpu->arch.st.preempted = 0;
trace_kvm_pv_tlb_flush(vcpu->vcpu_id,
st_preempted & KVM_VCPU_FLUSH_TLB);
if (st_preempted & KVM_VCPU_FLUSH_TLB)
kvm_vcpu_flush_tlb_guest(vcpu);
if (!user_access_begin(st, sizeof(*st)))
goto dirty;
} else {
if (!user_access_begin(st, sizeof(*st)))
return;
unsafe_put_user(0, &st->preempted, out);
vcpu->arch.st.preempted = 0;
}
unsafe_get_user(version, &st->version, out);
if (version & 1)
version += 1; /* first time write, random junk */
version += 1;
unsafe_put_user(version, &st->version, out);
smp_wmb();
unsafe_get_user(steal, &st->steal, out);
steal += current->sched_info.run_delay -
vcpu->arch.st.last_steal;
vcpu->arch.st.last_steal = current->sched_info.run_delay;
unsafe_put_user(steal, &st->steal, out);
version += 1;
unsafe_put_user(version, &st->version, out);
out:
user_access_end();
dirty:
mark_page_dirty_in_slot(vcpu->kvm, ghc->memslot, gpa_to_gfn(ghc->gpa));
}
int kvm_set_msr_common(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
{
u32 msr = msr_info->index;
u64 data = msr_info->data;
if (msr && msr == vcpu->kvm->arch.xen_hvm_config.msr)
return kvm_xen_write_hypercall_page(vcpu, data);
switch (msr) {
case MSR_AMD64_NB_CFG:
case MSR_IA32_UCODE_WRITE:
case MSR_VM_HSAVE_PA:
case MSR_AMD64_PATCH_LOADER:
case MSR_AMD64_BU_CFG2:
case MSR_AMD64_DC_CFG:
case MSR_AMD64_TW_CFG:
case MSR_F15H_EX_CFG:
break;
case MSR_IA32_UCODE_REV:
if (msr_info->host_initiated)
vcpu->arch.microcode_version = data;
break;
case MSR_IA32_ARCH_CAPABILITIES:
if (!msr_info->host_initiated)
return 1;
vcpu->arch.arch_capabilities = data;
break;
case MSR_IA32_PERF_CAPABILITIES:
if (!msr_info->host_initiated)
return 1;
if (data & ~kvm_caps.supported_perf_cap)
return 1;
/*
* Note, this is not just a performance optimization! KVM
* disallows changing feature MSRs after the vCPU has run; PMU
* refresh will bug the VM if called after the vCPU has run.
*/
if (vcpu->arch.perf_capabilities == data)
break;
vcpu->arch.perf_capabilities = data;
kvm_pmu_refresh(vcpu);
break;
case MSR_IA32_PRED_CMD: {
u64 reserved_bits = ~(PRED_CMD_IBPB | PRED_CMD_SBPB);
if (!msr_info->host_initiated) {
if ((!guest_has_pred_cmd_msr(vcpu)))
return 1;
if (!guest_cpuid_has(vcpu, X86_FEATURE_SPEC_CTRL) &&
!guest_cpuid_has(vcpu, X86_FEATURE_AMD_IBPB))
reserved_bits |= PRED_CMD_IBPB;
if (!guest_cpuid_has(vcpu, X86_FEATURE_SBPB))
reserved_bits |= PRED_CMD_SBPB;
}
if (!boot_cpu_has(X86_FEATURE_IBPB))
reserved_bits |= PRED_CMD_IBPB;
if (!boot_cpu_has(X86_FEATURE_SBPB))
reserved_bits |= PRED_CMD_SBPB;
if (data & reserved_bits)
return 1;
if (!data)
break;
wrmsrl(MSR_IA32_PRED_CMD, data);
break;
}
case MSR_IA32_FLUSH_CMD:
if (!msr_info->host_initiated &&
!guest_cpuid_has(vcpu, X86_FEATURE_FLUSH_L1D))
return 1;
if (!boot_cpu_has(X86_FEATURE_FLUSH_L1D) || (data & ~L1D_FLUSH))
return 1;
if (!data)
break;
wrmsrl(MSR_IA32_FLUSH_CMD, L1D_FLUSH);
break;
case MSR_EFER:
return set_efer(vcpu, msr_info);
case MSR_K7_HWCR:
data &= ~(u64)0x40; /* ignore flush filter disable */
data &= ~(u64)0x100; /* ignore ignne emulation enable */
data &= ~(u64)0x8; /* ignore TLB cache disable */
/*
* Allow McStatusWrEn and TscFreqSel. (Linux guests from v3.2
* through at least v6.6 whine if TscFreqSel is clear,
* depending on F/M/S.
*/
if (data & ~(BIT_ULL(18) | BIT_ULL(24))) {
kvm_pr_unimpl_wrmsr(vcpu, msr, data);
return 1;
}
vcpu->arch.msr_hwcr = data;
break;
case MSR_FAM10H_MMIO_CONF_BASE:
if (data != 0) {
kvm_pr_unimpl_wrmsr(vcpu, msr, data);
return 1;
}
break;
case MSR_IA32_CR_PAT:
if (!kvm_pat_valid(data))
return 1;
vcpu->arch.pat = data;
break;
case MTRRphysBase_MSR(0) ... MSR_MTRRfix4K_F8000:
case MSR_MTRRdefType:
return kvm_mtrr_set_msr(vcpu, msr, data);
case MSR_IA32_APICBASE:
return kvm_set_apic_base(vcpu, msr_info);
case APIC_BASE_MSR ... APIC_BASE_MSR + 0xff:
return kvm_x2apic_msr_write(vcpu, msr, data);
case MSR_IA32_TSC_DEADLINE:
kvm_set_lapic_tscdeadline_msr(vcpu, data);
break;
case MSR_IA32_TSC_ADJUST:
if (guest_cpuid_has(vcpu, X86_FEATURE_TSC_ADJUST)) {
if (!msr_info->host_initiated) {
s64 adj = data - vcpu->arch.ia32_tsc_adjust_msr;
adjust_tsc_offset_guest(vcpu, adj);
/* Before back to guest, tsc_timestamp must be adjusted
* as well, otherwise guest's percpu pvclock time could jump.
*/
kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
}
vcpu->arch.ia32_tsc_adjust_msr = data;
}
break;
case MSR_IA32_MISC_ENABLE: {
u64 old_val = vcpu->arch.ia32_misc_enable_msr;
if (!msr_info->host_initiated) {
/* RO bits */
if ((old_val ^ data) & MSR_IA32_MISC_ENABLE_PMU_RO_MASK)
return 1;
/* R bits, i.e. writes are ignored, but don't fault. */
data = data & ~MSR_IA32_MISC_ENABLE_EMON;
data |= old_val & MSR_IA32_MISC_ENABLE_EMON;
}
if (!kvm_check_has_quirk(vcpu->kvm, KVM_X86_QUIRK_MISC_ENABLE_NO_MWAIT) &&
((old_val ^ data) & MSR_IA32_MISC_ENABLE_MWAIT)) {
if (!guest_cpuid_has(vcpu, X86_FEATURE_XMM3))
return 1;
vcpu->arch.ia32_misc_enable_msr = data;
kvm_update_cpuid_runtime(vcpu);
} else {
vcpu->arch.ia32_misc_enable_msr = data;
}
break;
}
case MSR_IA32_SMBASE:
if (!IS_ENABLED(CONFIG_KVM_SMM) || !msr_info->host_initiated)
return 1;
vcpu->arch.smbase = data;
break;
case MSR_IA32_POWER_CTL:
vcpu->arch.msr_ia32_power_ctl = data;
break;
case MSR_IA32_TSC:
if (msr_info->host_initiated) {
kvm_synchronize_tsc(vcpu, &data);
} else {
u64 adj = kvm_compute_l1_tsc_offset(vcpu, data) - vcpu->arch.l1_tsc_offset;
adjust_tsc_offset_guest(vcpu, adj);
vcpu->arch.ia32_tsc_adjust_msr += adj;
}
break;
case MSR_IA32_XSS:
if (!msr_info->host_initiated &&
!guest_cpuid_has(vcpu, X86_FEATURE_XSAVES))
return 1;
/*
* KVM supports exposing PT to the guest, but does not support
* IA32_XSS[bit 8]. Guests have to use RDMSR/WRMSR rather than
* XSAVES/XRSTORS to save/restore PT MSRs.
*/
if (data & ~kvm_caps.supported_xss)
return 1;
vcpu->arch.ia32_xss = data;
kvm_update_cpuid_runtime(vcpu);
break;
case MSR_SMI_COUNT:
if (!msr_info->host_initiated)
return 1;
vcpu->arch.smi_count = data;
break;
case MSR_KVM_WALL_CLOCK_NEW:
if (!guest_pv_has(vcpu, KVM_FEATURE_CLOCKSOURCE2))
return 1;
vcpu->kvm->arch.wall_clock = data;
kvm_write_wall_clock(vcpu->kvm, data, 0);
break;
case MSR_KVM_WALL_CLOCK:
if (!guest_pv_has(vcpu, KVM_FEATURE_CLOCKSOURCE))
return 1;
vcpu->kvm->arch.wall_clock = data;
kvm_write_wall_clock(vcpu->kvm, data, 0);
break;
case MSR_KVM_SYSTEM_TIME_NEW:
if (!guest_pv_has(vcpu, KVM_FEATURE_CLOCKSOURCE2))
return 1;
kvm_write_system_time(vcpu, data, false, msr_info->host_initiated);
break;
case MSR_KVM_SYSTEM_TIME:
if (!guest_pv_has(vcpu, KVM_FEATURE_CLOCKSOURCE))
return 1;
kvm_write_system_time(vcpu, data, true, msr_info->host_initiated);
break;
case MSR_KVM_ASYNC_PF_EN:
if (!guest_pv_has(vcpu, KVM_FEATURE_ASYNC_PF))
return 1;
if (kvm_pv_enable_async_pf(vcpu, data))
return 1;
break;
case MSR_KVM_ASYNC_PF_INT:
if (!guest_pv_has(vcpu, KVM_FEATURE_ASYNC_PF_INT))
return 1;
if (kvm_pv_enable_async_pf_int(vcpu, data))
return 1;
break;
case MSR_KVM_ASYNC_PF_ACK:
if (!guest_pv_has(vcpu, KVM_FEATURE_ASYNC_PF_INT))
return 1;
if (data & 0x1) {
vcpu->arch.apf.pageready_pending = false;
kvm_check_async_pf_completion(vcpu);
}
break;
case MSR_KVM_STEAL_TIME:
if (!guest_pv_has(vcpu, KVM_FEATURE_STEAL_TIME))
return 1;
if (unlikely(!sched_info_on()))
return 1;
if (data & KVM_STEAL_RESERVED_MASK)
return 1;
vcpu->arch.st.msr_val = data;
if (!(data & KVM_MSR_ENABLED))
break;
kvm_make_request(KVM_REQ_STEAL_UPDATE, vcpu);
break;
case MSR_KVM_PV_EOI_EN:
if (!guest_pv_has(vcpu, KVM_FEATURE_PV_EOI))
return 1;
if (kvm_lapic_set_pv_eoi(vcpu, data, sizeof(u8)))
return 1;
break;
case MSR_KVM_POLL_CONTROL:
if (!guest_pv_has(vcpu, KVM_FEATURE_POLL_CONTROL))
return 1;
/* only enable bit supported */
if (data & (-1ULL << 1))
return 1;
vcpu->arch.msr_kvm_poll_control = data;
break;
case MSR_IA32_MCG_CTL:
case MSR_IA32_MCG_STATUS:
case MSR_IA32_MC0_CTL ... MSR_IA32_MCx_CTL(KVM_MAX_MCE_BANKS) - 1:
case MSR_IA32_MC0_CTL2 ... MSR_IA32_MCx_CTL2(KVM_MAX_MCE_BANKS) - 1:
return set_msr_mce(vcpu, msr_info);
case MSR_K7_PERFCTR0 ... MSR_K7_PERFCTR3:
case MSR_P6_PERFCTR0 ... MSR_P6_PERFCTR1:
case MSR_K7_EVNTSEL0 ... MSR_K7_EVNTSEL3:
case MSR_P6_EVNTSEL0 ... MSR_P6_EVNTSEL1:
if (kvm_pmu_is_valid_msr(vcpu, msr))
return kvm_pmu_set_msr(vcpu, msr_info);
if (data)
kvm_pr_unimpl_wrmsr(vcpu, msr, data);
break;
case MSR_K7_CLK_CTL:
/*
* Ignore all writes to this no longer documented MSR.
* Writes are only relevant for old K7 processors,
* all pre-dating SVM, but a recommended workaround from
* AMD for these chips. It is possible to specify the
* affected processor models on the command line, hence
* the need to ignore the workaround.
*/
break;
#ifdef CONFIG_KVM_HYPERV
case HV_X64_MSR_GUEST_OS_ID ... HV_X64_MSR_SINT15:
case HV_X64_MSR_SYNDBG_CONTROL ... HV_X64_MSR_SYNDBG_PENDING_BUFFER:
case HV_X64_MSR_SYNDBG_OPTIONS:
case HV_X64_MSR_CRASH_P0 ... HV_X64_MSR_CRASH_P4:
case HV_X64_MSR_CRASH_CTL:
case HV_X64_MSR_STIMER0_CONFIG ... HV_X64_MSR_STIMER3_COUNT:
case HV_X64_MSR_REENLIGHTENMENT_CONTROL:
case HV_X64_MSR_TSC_EMULATION_CONTROL:
case HV_X64_MSR_TSC_EMULATION_STATUS:
case HV_X64_MSR_TSC_INVARIANT_CONTROL:
return kvm_hv_set_msr_common(vcpu, msr, data,
msr_info->host_initiated);
#endif
case MSR_IA32_BBL_CR_CTL3:
/* Drop writes to this legacy MSR -- see rdmsr
* counterpart for further detail.
*/
kvm_pr_unimpl_wrmsr(vcpu, msr, data);
break;
case MSR_AMD64_OSVW_ID_LENGTH:
if (!guest_cpuid_has(vcpu, X86_FEATURE_OSVW))
return 1;
vcpu->arch.osvw.length = data;
break;
case MSR_AMD64_OSVW_STATUS:
if (!guest_cpuid_has(vcpu, X86_FEATURE_OSVW))
return 1;
vcpu->arch.osvw.status = data;
break;
case MSR_PLATFORM_INFO:
if (!msr_info->host_initiated ||
(!(data & MSR_PLATFORM_INFO_CPUID_FAULT) &&
cpuid_fault_enabled(vcpu)))
return 1;
vcpu->arch.msr_platform_info = data;
break;
case MSR_MISC_FEATURES_ENABLES:
if (data & ~MSR_MISC_FEATURES_ENABLES_CPUID_FAULT ||
(data & MSR_MISC_FEATURES_ENABLES_CPUID_FAULT &&
!supports_cpuid_fault(vcpu)))
return 1;
vcpu->arch.msr_misc_features_enables = data;
break;
#ifdef CONFIG_X86_64
case MSR_IA32_XFD:
if (!msr_info->host_initiated &&
!guest_cpuid_has(vcpu, X86_FEATURE_XFD))
return 1;
if (data & ~kvm_guest_supported_xfd(vcpu))
return 1;
fpu_update_guest_xfd(&vcpu->arch.guest_fpu, data);
break;
case MSR_IA32_XFD_ERR:
if (!msr_info->host_initiated &&
!guest_cpuid_has(vcpu, X86_FEATURE_XFD))
return 1;
if (data & ~kvm_guest_supported_xfd(vcpu))
return 1;
vcpu->arch.guest_fpu.xfd_err = data;
break;
#endif
default:
if (kvm_pmu_is_valid_msr(vcpu, msr))
return kvm_pmu_set_msr(vcpu, msr_info);
return KVM_MSR_RET_UNSUPPORTED;
}
return 0;
}
EXPORT_SYMBOL_GPL(kvm_set_msr_common);
static int get_msr_mce(struct kvm_vcpu *vcpu, u32 msr, u64 *pdata, bool host)
{
u64 data;
u64 mcg_cap = vcpu->arch.mcg_cap;
unsigned bank_num = mcg_cap & 0xff;
u32 offset, last_msr;
switch (msr) {
case MSR_IA32_P5_MC_ADDR:
case MSR_IA32_P5_MC_TYPE:
data = 0;
break;
case MSR_IA32_MCG_CAP:
data = vcpu->arch.mcg_cap;
break;
case MSR_IA32_MCG_CTL:
if (!(mcg_cap & MCG_CTL_P) && !host)
return 1;
data = vcpu->arch.mcg_ctl;
break;
case MSR_IA32_MCG_STATUS:
data = vcpu->arch.mcg_status;
break;
case MSR_IA32_MC0_CTL2 ... MSR_IA32_MCx_CTL2(KVM_MAX_MCE_BANKS) - 1:
last_msr = MSR_IA32_MCx_CTL2(bank_num) - 1;
if (msr > last_msr)
return 1;
if (!(mcg_cap & MCG_CMCI_P) && !host)
return 1;
offset = array_index_nospec(msr - MSR_IA32_MC0_CTL2,
last_msr + 1 - MSR_IA32_MC0_CTL2);
data = vcpu->arch.mci_ctl2_banks[offset];
break;
case MSR_IA32_MC0_CTL ... MSR_IA32_MCx_CTL(KVM_MAX_MCE_BANKS) - 1:
last_msr = MSR_IA32_MCx_CTL(bank_num) - 1;
if (msr > last_msr)
return 1;
offset = array_index_nospec(msr - MSR_IA32_MC0_CTL,
last_msr + 1 - MSR_IA32_MC0_CTL);
data = vcpu->arch.mce_banks[offset];
break;
default:
return 1;
}
*pdata = data;
return 0;
}
int kvm_get_msr_common(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
{
switch (msr_info->index) {
case MSR_IA32_PLATFORM_ID:
case MSR_IA32_EBL_CR_POWERON:
case MSR_IA32_LASTBRANCHFROMIP:
case MSR_IA32_LASTBRANCHTOIP:
case MSR_IA32_LASTINTFROMIP:
case MSR_IA32_LASTINTTOIP:
case MSR_AMD64_SYSCFG:
case MSR_K8_TSEG_ADDR:
case MSR_K8_TSEG_MASK:
case MSR_VM_HSAVE_PA:
case MSR_K8_INT_PENDING_MSG:
case MSR_AMD64_NB_CFG:
case MSR_FAM10H_MMIO_CONF_BASE:
case MSR_AMD64_BU_CFG2:
case MSR_IA32_PERF_CTL:
case MSR_AMD64_DC_CFG:
case MSR_AMD64_TW_CFG:
case MSR_F15H_EX_CFG:
/*
* Intel Sandy Bridge CPUs must support the RAPL (running average power
* limit) MSRs. Just return 0, as we do not want to expose the host
* data here. Do not conditionalize this on CPUID, as KVM does not do
* so for existing CPU-specific MSRs.
*/
case MSR_RAPL_POWER_UNIT:
case MSR_PP0_ENERGY_STATUS: /* Power plane 0 (core) */
case MSR_PP1_ENERGY_STATUS: /* Power plane 1 (graphics uncore) */
case MSR_PKG_ENERGY_STATUS: /* Total package */
case MSR_DRAM_ENERGY_STATUS: /* DRAM controller */
msr_info->data = 0;
break;
case MSR_K7_EVNTSEL0 ... MSR_K7_EVNTSEL3:
case MSR_K7_PERFCTR0 ... MSR_K7_PERFCTR3:
case MSR_P6_PERFCTR0 ... MSR_P6_PERFCTR1:
case MSR_P6_EVNTSEL0 ... MSR_P6_EVNTSEL1:
if (kvm_pmu_is_valid_msr(vcpu, msr_info->index))
return kvm_pmu_get_msr(vcpu, msr_info);
msr_info->data = 0;
break;
case MSR_IA32_UCODE_REV:
msr_info->data = vcpu->arch.microcode_version;
break;
case MSR_IA32_ARCH_CAPABILITIES:
if (!msr_info->host_initiated &&
!guest_cpuid_has(vcpu, X86_FEATURE_ARCH_CAPABILITIES))
return 1;
msr_info->data = vcpu->arch.arch_capabilities;
break;
case MSR_IA32_PERF_CAPABILITIES:
if (!msr_info->host_initiated &&
!guest_cpuid_has(vcpu, X86_FEATURE_PDCM))
return 1;
msr_info->data = vcpu->arch.perf_capabilities;
break;
case MSR_IA32_POWER_CTL:
msr_info->data = vcpu->arch.msr_ia32_power_ctl;
break;
case MSR_IA32_TSC: {
/*
* Intel SDM states that MSR_IA32_TSC read adds the TSC offset
* even when not intercepted. AMD manual doesn't explicitly
* state this but appears to behave the same.
*
* On userspace reads and writes, however, we unconditionally
* return L1's TSC value to ensure backwards-compatible
* behavior for migration.
*/
u64 offset, ratio;
if (msr_info->host_initiated) {
offset = vcpu->arch.l1_tsc_offset;
ratio = vcpu->arch.l1_tsc_scaling_ratio;
} else {
offset = vcpu->arch.tsc_offset;
ratio = vcpu->arch.tsc_scaling_ratio;
}
msr_info->data = kvm_scale_tsc(rdtsc(), ratio) + offset;
break;
}
case MSR_IA32_CR_PAT:
msr_info->data = vcpu->arch.pat;
break;
case MSR_MTRRcap:
case MTRRphysBase_MSR(0) ... MSR_MTRRfix4K_F8000:
case MSR_MTRRdefType:
return kvm_mtrr_get_msr(vcpu, msr_info->index, &msr_info->data);
case 0xcd: /* fsb frequency */
msr_info->data = 3;
break;
/*
* MSR_EBC_FREQUENCY_ID
* Conservative value valid for even the basic CPU models.
* Models 0,1: 000 in bits 23:21 indicating a bus speed of
* 100MHz, model 2 000 in bits 18:16 indicating 100MHz,
* and 266MHz for model 3, or 4. Set Core Clock
* Frequency to System Bus Frequency Ratio to 1 (bits
* 31:24) even though these are only valid for CPU
* models > 2, however guests may end up dividing or
* multiplying by zero otherwise.
*/
case MSR_EBC_FREQUENCY_ID:
msr_info->data = 1 << 24;
break;
case MSR_IA32_APICBASE:
msr_info->data = kvm_get_apic_base(vcpu);
break;
case APIC_BASE_MSR ... APIC_BASE_MSR + 0xff:
return kvm_x2apic_msr_read(vcpu, msr_info->index, &msr_info->data);
case MSR_IA32_TSC_DEADLINE:
msr_info->data = kvm_get_lapic_tscdeadline_msr(vcpu);
break;
case MSR_IA32_TSC_ADJUST:
msr_info->data = (u64)vcpu->arch.ia32_tsc_adjust_msr;
break;
case MSR_IA32_MISC_ENABLE:
msr_info->data = vcpu->arch.ia32_misc_enable_msr;
break;
case MSR_IA32_SMBASE:
if (!IS_ENABLED(CONFIG_KVM_SMM) || !msr_info->host_initiated)
return 1;
msr_info->data = vcpu->arch.smbase;
break;
case MSR_SMI_COUNT:
msr_info->data = vcpu->arch.smi_count;
break;
case MSR_IA32_PERF_STATUS:
/* TSC increment by tick */
msr_info->data = 1000ULL;
/* CPU multiplier */
msr_info->data |= (((uint64_t)4ULL) << 40);
break;
case MSR_EFER:
msr_info->data = vcpu->arch.efer;
break;
case MSR_KVM_WALL_CLOCK:
if (!guest_pv_has(vcpu, KVM_FEATURE_CLOCKSOURCE))
return 1;
msr_info->data = vcpu->kvm->arch.wall_clock;
break;
case MSR_KVM_WALL_CLOCK_NEW:
if (!guest_pv_has(vcpu, KVM_FEATURE_CLOCKSOURCE2))
return 1;
msr_info->data = vcpu->kvm->arch.wall_clock;
break;
case MSR_KVM_SYSTEM_TIME:
if (!guest_pv_has(vcpu, KVM_FEATURE_CLOCKSOURCE))
return 1;
msr_info->data = vcpu->arch.time;
break;
case MSR_KVM_SYSTEM_TIME_NEW:
if (!guest_pv_has(vcpu, KVM_FEATURE_CLOCKSOURCE2))
return 1;
msr_info->data = vcpu->arch.time;
break;
case MSR_KVM_ASYNC_PF_EN:
if (!guest_pv_has(vcpu, KVM_FEATURE_ASYNC_PF))
return 1;
msr_info->data = vcpu->arch.apf.msr_en_val;
break;
case MSR_KVM_ASYNC_PF_INT:
if (!guest_pv_has(vcpu, KVM_FEATURE_ASYNC_PF_INT))
return 1;
msr_info->data = vcpu->arch.apf.msr_int_val;
break;
case MSR_KVM_ASYNC_PF_ACK:
if (!guest_pv_has(vcpu, KVM_FEATURE_ASYNC_PF_INT))
return 1;
msr_info->data = 0;
break;
case MSR_KVM_STEAL_TIME:
if (!guest_pv_has(vcpu, KVM_FEATURE_STEAL_TIME))
return 1;
msr_info->data = vcpu->arch.st.msr_val;
break;
case MSR_KVM_PV_EOI_EN:
if (!guest_pv_has(vcpu, KVM_FEATURE_PV_EOI))
return 1;
msr_info->data = vcpu->arch.pv_eoi.msr_val;
break;
case MSR_KVM_POLL_CONTROL:
if (!guest_pv_has(vcpu, KVM_FEATURE_POLL_CONTROL))
return 1;
msr_info->data = vcpu->arch.msr_kvm_poll_control;
break;
case MSR_IA32_P5_MC_ADDR:
case MSR_IA32_P5_MC_TYPE:
case MSR_IA32_MCG_CAP:
case MSR_IA32_MCG_CTL:
case MSR_IA32_MCG_STATUS:
case MSR_IA32_MC0_CTL ... MSR_IA32_MCx_CTL(KVM_MAX_MCE_BANKS) - 1:
case MSR_IA32_MC0_CTL2 ... MSR_IA32_MCx_CTL2(KVM_MAX_MCE_BANKS) - 1:
return get_msr_mce(vcpu, msr_info->index, &msr_info->data,
msr_info->host_initiated);
case MSR_IA32_XSS:
if (!msr_info->host_initiated &&
!guest_cpuid_has(vcpu, X86_FEATURE_XSAVES))
return 1;
msr_info->data = vcpu->arch.ia32_xss;
break;
case MSR_K7_CLK_CTL:
/*
* Provide expected ramp-up count for K7. All other
* are set to zero, indicating minimum divisors for
* every field.
*
* This prevents guest kernels on AMD host with CPU
* type 6, model 8 and higher from exploding due to
* the rdmsr failing.
*/
msr_info->data = 0x20000000;
break;
#ifdef CONFIG_KVM_HYPERV
case HV_X64_MSR_GUEST_OS_ID ... HV_X64_MSR_SINT15:
case HV_X64_MSR_SYNDBG_CONTROL ... HV_X64_MSR_SYNDBG_PENDING_BUFFER:
case HV_X64_MSR_SYNDBG_OPTIONS:
case HV_X64_MSR_CRASH_P0 ... HV_X64_MSR_CRASH_P4:
case HV_X64_MSR_CRASH_CTL:
case HV_X64_MSR_STIMER0_CONFIG ... HV_X64_MSR_STIMER3_COUNT:
case HV_X64_MSR_REENLIGHTENMENT_CONTROL:
case HV_X64_MSR_TSC_EMULATION_CONTROL:
case HV_X64_MSR_TSC_EMULATION_STATUS:
case HV_X64_MSR_TSC_INVARIANT_CONTROL:
return kvm_hv_get_msr_common(vcpu,
msr_info->index, &msr_info->data,
msr_info->host_initiated);
#endif
case MSR_IA32_BBL_CR_CTL3:
/* This legacy MSR exists but isn't fully documented in current
* silicon. It is however accessed by winxp in very narrow
* scenarios where it sets bit #19, itself documented as
* a "reserved" bit. Best effort attempt to source coherent
* read data here should the balance of the register be
* interpreted by the guest:
*
* L2 cache control register 3: 64GB range, 256KB size,
* enabled, latency 0x1, configured
*/
msr_info->data = 0xbe702111;
break;
case MSR_AMD64_OSVW_ID_LENGTH:
if (!guest_cpuid_has(vcpu, X86_FEATURE_OSVW))
return 1;
msr_info->data = vcpu->arch.osvw.length;
break;
case MSR_AMD64_OSVW_STATUS:
if (!guest_cpuid_has(vcpu, X86_FEATURE_OSVW))
return 1;
msr_info->data = vcpu->arch.osvw.status;
break;
case MSR_PLATFORM_INFO:
if (!msr_info->host_initiated &&
!vcpu->kvm->arch.guest_can_read_msr_platform_info)
return 1;
msr_info->data = vcpu->arch.msr_platform_info;
break;
case MSR_MISC_FEATURES_ENABLES:
msr_info->data = vcpu->arch.msr_misc_features_enables;
break;
case MSR_K7_HWCR:
msr_info->data = vcpu->arch.msr_hwcr;
break;
#ifdef CONFIG_X86_64
case MSR_IA32_XFD:
if (!msr_info->host_initiated &&
!guest_cpuid_has(vcpu, X86_FEATURE_XFD))
return 1;
msr_info->data = vcpu->arch.guest_fpu.fpstate->xfd;
break;
case MSR_IA32_XFD_ERR:
if (!msr_info->host_initiated &&
!guest_cpuid_has(vcpu, X86_FEATURE_XFD))
return 1;
msr_info->data = vcpu->arch.guest_fpu.xfd_err;
break;
#endif
default:
if (kvm_pmu_is_valid_msr(vcpu, msr_info->index))
return kvm_pmu_get_msr(vcpu, msr_info);
return KVM_MSR_RET_UNSUPPORTED;
}
return 0;
}
EXPORT_SYMBOL_GPL(kvm_get_msr_common);
/*
* Read or write a bunch of msrs. All parameters are kernel addresses.
*
* @return number of msrs set successfully.
*/
static int __msr_io(struct kvm_vcpu *vcpu, struct kvm_msrs *msrs,
struct kvm_msr_entry *entries,
int (*do_msr)(struct kvm_vcpu *vcpu,
unsigned index, u64 *data))
{
int i;
for (i = 0; i < msrs->nmsrs; ++i)
if (do_msr(vcpu, entries[i].index, &entries[i].data))
break;
return i;
}
/*
* Read or write a bunch of msrs. Parameters are user addresses.
*
* @return number of msrs set successfully.
*/
static int msr_io(struct kvm_vcpu *vcpu, struct kvm_msrs __user *user_msrs,
int (*do_msr)(struct kvm_vcpu *vcpu,
unsigned index, u64 *data),
int writeback)
{
struct kvm_msrs msrs;
struct kvm_msr_entry *entries;
unsigned size;
int r;
r = -EFAULT;
if (copy_from_user(&msrs, user_msrs, sizeof(msrs)))
goto out;
r = -E2BIG;
if (msrs.nmsrs >= MAX_IO_MSRS)
goto out;
size = sizeof(struct kvm_msr_entry) * msrs.nmsrs;
entries = memdup_user(user_msrs->entries, size);
if (IS_ERR(entries)) {
r = PTR_ERR(entries);
goto out;
}
r = __msr_io(vcpu, &msrs, entries, do_msr);
if (writeback && copy_to_user(user_msrs->entries, entries, size))
r = -EFAULT;
kfree(entries);
out:
return r;
}
static inline bool kvm_can_mwait_in_guest(void)
{
return boot_cpu_has(X86_FEATURE_MWAIT) &&
!boot_cpu_has_bug(X86_BUG_MONITOR) &&
boot_cpu_has(X86_FEATURE_ARAT);
}
#ifdef CONFIG_KVM_HYPERV
static int kvm_ioctl_get_supported_hv_cpuid(struct kvm_vcpu *vcpu,
struct kvm_cpuid2 __user *cpuid_arg)
{
struct kvm_cpuid2 cpuid;
int r;
r = -EFAULT;
if (copy_from_user(&cpuid, cpuid_arg, sizeof(cpuid)))
return r;
r = kvm_get_hv_cpuid(vcpu, &cpuid, cpuid_arg->entries);
if (r)
return r;
r = -EFAULT;
if (copy_to_user(cpuid_arg, &cpuid, sizeof(cpuid)))
return r;
return 0;
}
#endif
static bool kvm_is_vm_type_supported(unsigned long type)
{
return type < 32 && (kvm_caps.supported_vm_types & BIT(type));
}
int kvm_vm_ioctl_check_extension(struct kvm *kvm, long ext)
{
int r = 0;
switch (ext) {
case KVM_CAP_IRQCHIP:
case KVM_CAP_HLT:
case KVM_CAP_MMU_SHADOW_CACHE_CONTROL:
case KVM_CAP_SET_TSS_ADDR:
case KVM_CAP_EXT_CPUID:
case KVM_CAP_EXT_EMUL_CPUID:
case KVM_CAP_CLOCKSOURCE:
case KVM_CAP_PIT:
case KVM_CAP_NOP_IO_DELAY:
case KVM_CAP_MP_STATE:
case KVM_CAP_SYNC_MMU:
case KVM_CAP_USER_NMI:
case KVM_CAP_REINJECT_CONTROL:
case KVM_CAP_IRQ_INJECT_STATUS:
case KVM_CAP_IOEVENTFD:
case KVM_CAP_IOEVENTFD_NO_LENGTH:
case KVM_CAP_PIT2:
case KVM_CAP_PIT_STATE2:
case KVM_CAP_SET_IDENTITY_MAP_ADDR:
case KVM_CAP_VCPU_EVENTS:
#ifdef CONFIG_KVM_HYPERV
case KVM_CAP_HYPERV:
case KVM_CAP_HYPERV_VAPIC:
case KVM_CAP_HYPERV_SPIN:
case KVM_CAP_HYPERV_TIME:
case KVM_CAP_HYPERV_SYNIC:
case KVM_CAP_HYPERV_SYNIC2:
case KVM_CAP_HYPERV_VP_INDEX:
case KVM_CAP_HYPERV_EVENTFD:
case KVM_CAP_HYPERV_TLBFLUSH:
case KVM_CAP_HYPERV_SEND_IPI:
case KVM_CAP_HYPERV_CPUID:
case KVM_CAP_HYPERV_ENFORCE_CPUID:
case KVM_CAP_SYS_HYPERV_CPUID:
#endif
case KVM_CAP_PCI_SEGMENT:
case KVM_CAP_DEBUGREGS:
case KVM_CAP_X86_ROBUST_SINGLESTEP:
case KVM_CAP_XSAVE:
case KVM_CAP_ASYNC_PF:
case KVM_CAP_ASYNC_PF_INT:
case KVM_CAP_GET_TSC_KHZ:
case KVM_CAP_KVMCLOCK_CTRL:
case KVM_CAP_IOAPIC_POLARITY_IGNORED:
case KVM_CAP_TSC_DEADLINE_TIMER:
case KVM_CAP_DISABLE_QUIRKS:
case KVM_CAP_SET_BOOT_CPU_ID:
case KVM_CAP_SPLIT_IRQCHIP:
case KVM_CAP_IMMEDIATE_EXIT:
case KVM_CAP_PMU_EVENT_FILTER:
case KVM_CAP_PMU_EVENT_MASKED_EVENTS:
case KVM_CAP_GET_MSR_FEATURES:
case KVM_CAP_MSR_PLATFORM_INFO:
case KVM_CAP_EXCEPTION_PAYLOAD:
case KVM_CAP_X86_TRIPLE_FAULT_EVENT:
case KVM_CAP_SET_GUEST_DEBUG:
case KVM_CAP_LAST_CPU:
case KVM_CAP_X86_USER_SPACE_MSR:
case KVM_CAP_X86_MSR_FILTER:
case KVM_CAP_ENFORCE_PV_FEATURE_CPUID:
#ifdef CONFIG_X86_SGX_KVM
case KVM_CAP_SGX_ATTRIBUTE:
#endif
case KVM_CAP_VM_COPY_ENC_CONTEXT_FROM:
case KVM_CAP_VM_MOVE_ENC_CONTEXT_FROM:
case KVM_CAP_SREGS2:
case KVM_CAP_EXIT_ON_EMULATION_FAILURE:
case KVM_CAP_VCPU_ATTRIBUTES:
case KVM_CAP_SYS_ATTRIBUTES:
case KVM_CAP_VAPIC:
case KVM_CAP_ENABLE_CAP:
case KVM_CAP_VM_DISABLE_NX_HUGE_PAGES:
case KVM_CAP_IRQFD_RESAMPLE:
case KVM_CAP_MEMORY_FAULT_INFO:
case KVM_CAP_X86_GUEST_MODE:
r = 1;
break;
case KVM_CAP_PRE_FAULT_MEMORY:
r = tdp_enabled;
break;
case KVM_CAP_X86_APIC_BUS_CYCLES_NS:
r = APIC_BUS_CYCLE_NS_DEFAULT;
break;
case KVM_CAP_EXIT_HYPERCALL:
r = KVM_EXIT_HYPERCALL_VALID_MASK;
break;
case KVM_CAP_SET_GUEST_DEBUG2:
return KVM_GUESTDBG_VALID_MASK;
#ifdef CONFIG_KVM_XEN
case KVM_CAP_XEN_HVM:
r = KVM_XEN_HVM_CONFIG_HYPERCALL_MSR |
KVM_XEN_HVM_CONFIG_INTERCEPT_HCALL |
KVM_XEN_HVM_CONFIG_SHARED_INFO |
KVM_XEN_HVM_CONFIG_EVTCHN_2LEVEL |
KVM_XEN_HVM_CONFIG_EVTCHN_SEND |
KVM_XEN_HVM_CONFIG_PVCLOCK_TSC_UNSTABLE |
KVM_XEN_HVM_CONFIG_SHARED_INFO_HVA;
if (sched_info_on())
r |= KVM_XEN_HVM_CONFIG_RUNSTATE |
KVM_XEN_HVM_CONFIG_RUNSTATE_UPDATE_FLAG;
break;
#endif
case KVM_CAP_SYNC_REGS:
r = KVM_SYNC_X86_VALID_FIELDS;
break;
case KVM_CAP_ADJUST_CLOCK:
r = KVM_CLOCK_VALID_FLAGS;
break;
case KVM_CAP_X86_DISABLE_EXITS:
r = KVM_X86_DISABLE_EXITS_PAUSE;
if (!mitigate_smt_rsb) {
r |= KVM_X86_DISABLE_EXITS_HLT |
KVM_X86_DISABLE_EXITS_CSTATE;
if (kvm_can_mwait_in_guest())
r |= KVM_X86_DISABLE_EXITS_MWAIT;
}
break;
case KVM_CAP_X86_SMM:
if (!IS_ENABLED(CONFIG_KVM_SMM))
break;
/* SMBASE is usually relocated above 1M on modern chipsets,
* and SMM handlers might indeed rely on 4G segment limits,
* so do not report SMM to be available if real mode is
* emulated via vm86 mode. Still, do not go to great lengths
* to avoid userspace's usage of the feature, because it is a
* fringe case that is not enabled except via specific settings
* of the module parameters.
*/
r = kvm_x86_call(has_emulated_msr)(kvm, MSR_IA32_SMBASE);
break;
case KVM_CAP_NR_VCPUS:
r = min_t(unsigned int, num_online_cpus(), KVM_MAX_VCPUS);
break;
case KVM_CAP_MAX_VCPUS:
r = KVM_MAX_VCPUS;
break;
case KVM_CAP_MAX_VCPU_ID:
r = KVM_MAX_VCPU_IDS;
break;
case KVM_CAP_PV_MMU: /* obsolete */
r = 0;
break;
case KVM_CAP_MCE:
r = KVM_MAX_MCE_BANKS;
break;
case KVM_CAP_XCRS:
r = boot_cpu_has(X86_FEATURE_XSAVE);
break;
case KVM_CAP_TSC_CONTROL:
case KVM_CAP_VM_TSC_CONTROL:
r = kvm_caps.has_tsc_control;
break;
case KVM_CAP_X2APIC_API:
r = KVM_X2APIC_API_VALID_FLAGS;
break;
case KVM_CAP_NESTED_STATE:
r = kvm_x86_ops.nested_ops->get_state ?
kvm_x86_ops.nested_ops->get_state(NULL, NULL, 0) : 0;
break;
#ifdef CONFIG_KVM_HYPERV
case KVM_CAP_HYPERV_DIRECT_TLBFLUSH:
r = kvm_x86_ops.enable_l2_tlb_flush != NULL;
break;
case KVM_CAP_HYPERV_ENLIGHTENED_VMCS:
r = kvm_x86_ops.nested_ops->enable_evmcs != NULL;
break;
#endif
case KVM_CAP_SMALLER_MAXPHYADDR:
r = (int) allow_smaller_maxphyaddr;
break;
case KVM_CAP_STEAL_TIME:
r = sched_info_on();
break;
case KVM_CAP_X86_BUS_LOCK_EXIT:
if (kvm_caps.has_bus_lock_exit)
r = KVM_BUS_LOCK_DETECTION_OFF |
KVM_BUS_LOCK_DETECTION_EXIT;
else
r = 0;
break;
case KVM_CAP_XSAVE2: {
r = xstate_required_size(kvm_get_filtered_xcr0(), false);
if (r < sizeof(struct kvm_xsave))
r = sizeof(struct kvm_xsave);
break;
}
case KVM_CAP_PMU_CAPABILITY:
r = enable_pmu ? KVM_CAP_PMU_VALID_MASK : 0;
break;
case KVM_CAP_DISABLE_QUIRKS2:
r = KVM_X86_VALID_QUIRKS;
break;
case KVM_CAP_X86_NOTIFY_VMEXIT:
r = kvm_caps.has_notify_vmexit;
break;
case KVM_CAP_VM_TYPES:
r = kvm_caps.supported_vm_types;
break;
case KVM_CAP_READONLY_MEM:
r = kvm ? kvm_arch_has_readonly_mem(kvm) : 1;
break;
default:
break;
}
return r;
}
static int __kvm_x86_dev_get_attr(struct kvm_device_attr *attr, u64 *val)
{
if (attr->group) {
if (kvm_x86_ops.dev_get_attr)
return kvm_x86_call(dev_get_attr)(attr->group, attr->attr, val);
return -ENXIO;
}
switch (attr->attr) {
case KVM_X86_XCOMP_GUEST_SUPP:
*val = kvm_caps.supported_xcr0;
return 0;
default:
return -ENXIO;
}
}
static int kvm_x86_dev_get_attr(struct kvm_device_attr *attr)
{
u64 __user *uaddr = u64_to_user_ptr(attr->addr);
int r;
u64 val;
r = __kvm_x86_dev_get_attr(attr, &val);
if (r < 0)
return r;
if (put_user(val, uaddr))
return -EFAULT;
return 0;
}
static int kvm_x86_dev_has_attr(struct kvm_device_attr *attr)
{
u64 val;
return __kvm_x86_dev_get_attr(attr, &val);
}
long kvm_arch_dev_ioctl(struct file *filp,
unsigned int ioctl, unsigned long arg)
{
void __user *argp = (void __user *)arg;
long r;
switch (ioctl) {
case KVM_GET_MSR_INDEX_LIST: {
struct kvm_msr_list __user *user_msr_list = argp;
struct kvm_msr_list msr_list;
unsigned n;
r = -EFAULT;
if (copy_from_user(&msr_list, user_msr_list, sizeof(msr_list)))
goto out;
n = msr_list.nmsrs;
msr_list.nmsrs = num_msrs_to_save + num_emulated_msrs;
if (copy_to_user(user_msr_list, &msr_list, sizeof(msr_list)))
goto out;
r = -E2BIG;
if (n < msr_list.nmsrs)
goto out;
r = -EFAULT;
if (copy_to_user(user_msr_list->indices, &msrs_to_save,
num_msrs_to_save * sizeof(u32)))
goto out;
if (copy_to_user(user_msr_list->indices + num_msrs_to_save,
&emulated_msrs,
num_emulated_msrs * sizeof(u32)))
goto out;
r = 0;
break;
}
case KVM_GET_SUPPORTED_CPUID:
case KVM_GET_EMULATED_CPUID: {
struct kvm_cpuid2 __user *cpuid_arg = argp;
struct kvm_cpuid2 cpuid;
r = -EFAULT;
if (copy_from_user(&cpuid, cpuid_arg, sizeof(cpuid)))
goto out;
r = kvm_dev_ioctl_get_cpuid(&cpuid, cpuid_arg->entries,
ioctl);
if (r)
goto out;
r = -EFAULT;
if (copy_to_user(cpuid_arg, &cpuid, sizeof(cpuid)))
goto out;
r = 0;
break;
}
case KVM_X86_GET_MCE_CAP_SUPPORTED:
r = -EFAULT;
if (copy_to_user(argp, &kvm_caps.supported_mce_cap,
sizeof(kvm_caps.supported_mce_cap)))
goto out;
r = 0;
break;
case KVM_GET_MSR_FEATURE_INDEX_LIST: {
struct kvm_msr_list __user *user_msr_list = argp;
struct kvm_msr_list msr_list;
unsigned int n;
r = -EFAULT;
if (copy_from_user(&msr_list, user_msr_list, sizeof(msr_list)))
goto out;
n = msr_list.nmsrs;
msr_list.nmsrs = num_msr_based_features;
if (copy_to_user(user_msr_list, &msr_list, sizeof(msr_list)))
goto out;
r = -E2BIG;
if (n < msr_list.nmsrs)
goto out;
r = -EFAULT;
if (copy_to_user(user_msr_list->indices, &msr_based_features,
num_msr_based_features * sizeof(u32)))
goto out;
r = 0;
break;
}
case KVM_GET_MSRS:
r = msr_io(NULL, argp, do_get_feature_msr, 1);
break;
#ifdef CONFIG_KVM_HYPERV
case KVM_GET_SUPPORTED_HV_CPUID:
r = kvm_ioctl_get_supported_hv_cpuid(NULL, argp);
break;
#endif
case KVM_GET_DEVICE_ATTR: {
struct kvm_device_attr attr;
r = -EFAULT;
if (copy_from_user(&attr, (void __user *)arg, sizeof(attr)))
break;
r = kvm_x86_dev_get_attr(&attr);
break;
}
case KVM_HAS_DEVICE_ATTR: {
struct kvm_device_attr attr;
r = -EFAULT;
if (copy_from_user(&attr, (void __user *)arg, sizeof(attr)))
break;
r = kvm_x86_dev_has_attr(&attr);
break;
}
default:
r = -EINVAL;
break;
}
out:
return r;
}
static void wbinvd_ipi(void *garbage)
{
wbinvd();
}
static bool need_emulate_wbinvd(struct kvm_vcpu *vcpu)
{
return kvm_arch_has_noncoherent_dma(vcpu->kvm);
}
void kvm_arch_vcpu_load(struct kvm_vcpu *vcpu, int cpu)
{
struct kvm_pmu *pmu = vcpu_to_pmu(vcpu);
vcpu->arch.l1tf_flush_l1d = true;
if (vcpu->scheduled_out && pmu->version && pmu->event_count) {
pmu->need_cleanup = true;
kvm_make_request(KVM_REQ_PMU, vcpu);
}
/* Address WBINVD may be executed by guest */
if (need_emulate_wbinvd(vcpu)) {
if (kvm_x86_call(has_wbinvd_exit)())
cpumask_set_cpu(cpu, vcpu->arch.wbinvd_dirty_mask);
else if (vcpu->cpu != -1 && vcpu->cpu != cpu)
smp_call_function_single(vcpu->cpu,
wbinvd_ipi, NULL, 1);
}
kvm_x86_call(vcpu_load)(vcpu, cpu);
/* Save host pkru register if supported */
vcpu->arch.host_pkru = read_pkru();
/* Apply any externally detected TSC adjustments (due to suspend) */
if (unlikely(vcpu->arch.tsc_offset_adjustment)) {
adjust_tsc_offset_host(vcpu, vcpu->arch.tsc_offset_adjustment);
vcpu->arch.tsc_offset_adjustment = 0;
kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
}
if (unlikely(vcpu->cpu != cpu) || kvm_check_tsc_unstable()) {
s64 tsc_delta = !vcpu->arch.last_host_tsc ? 0 :
rdtsc() - vcpu->arch.last_host_tsc;
if (tsc_delta < 0)
mark_tsc_unstable("KVM discovered backwards TSC");
if (kvm_check_tsc_unstable()) {
u64 offset = kvm_compute_l1_tsc_offset(vcpu,
vcpu->arch.last_guest_tsc);
kvm_vcpu_write_tsc_offset(vcpu, offset);
vcpu->arch.tsc_catchup = 1;
}
if (kvm_lapic_hv_timer_in_use(vcpu))
kvm_lapic_restart_hv_timer(vcpu);
/*
* On a host with synchronized TSC, there is no need to update
* kvmclock on vcpu->cpu migration
*/
if (!vcpu->kvm->arch.use_master_clock || vcpu->cpu == -1)
kvm_make_request(KVM_REQ_GLOBAL_CLOCK_UPDATE, vcpu);
if (vcpu->cpu != cpu)
kvm_make_request(KVM_REQ_MIGRATE_TIMER, vcpu);
vcpu->cpu = cpu;
}
kvm_make_request(KVM_REQ_STEAL_UPDATE, vcpu);
}
static void kvm_steal_time_set_preempted(struct kvm_vcpu *vcpu)
{
struct gfn_to_hva_cache *ghc = &vcpu->arch.st.cache;
struct kvm_steal_time __user *st;
struct kvm_memslots *slots;
static const u8 preempted = KVM_VCPU_PREEMPTED;
gpa_t gpa = vcpu->arch.st.msr_val & KVM_STEAL_VALID_BITS;
/*
* The vCPU can be marked preempted if and only if the VM-Exit was on
* an instruction boundary and will not trigger guest emulation of any
* kind (see vcpu_run). Vendor specific code controls (conservatively)
* when this is true, for example allowing the vCPU to be marked
* preempted if and only if the VM-Exit was due to a host interrupt.
*/
if (!vcpu->arch.at_instruction_boundary) {
vcpu->stat.preemption_other++;
return;
}
vcpu->stat.preemption_reported++;
if (!(vcpu->arch.st.msr_val & KVM_MSR_ENABLED))
return;
if (vcpu->arch.st.preempted)
return;
/* This happens on process exit */
if (unlikely(current->mm != vcpu->kvm->mm))
return;
slots = kvm_memslots(vcpu->kvm);
if (unlikely(slots->generation != ghc->generation ||
gpa != ghc->gpa ||
kvm_is_error_hva(ghc->hva) || !ghc->memslot))
return;
st = (struct kvm_steal_time __user *)ghc->hva;
BUILD_BUG_ON(sizeof(st->preempted) != sizeof(preempted));
if (!copy_to_user_nofault(&st->preempted, &preempted, sizeof(preempted)))
vcpu->arch.st.preempted = KVM_VCPU_PREEMPTED;
mark_page_dirty_in_slot(vcpu->kvm, ghc->memslot, gpa_to_gfn(ghc->gpa));
}
void kvm_arch_vcpu_put(struct kvm_vcpu *vcpu)
{
int idx;
if (vcpu->preempted) {
vcpu->arch.preempted_in_kernel = kvm_arch_vcpu_in_kernel(vcpu);
/*
* Take the srcu lock as memslots will be accessed to check the gfn
* cache generation against the memslots generation.
*/
idx = srcu_read_lock(&vcpu->kvm->srcu);
if (kvm_xen_msr_enabled(vcpu->kvm))
kvm_xen_runstate_set_preempted(vcpu);
else
kvm_steal_time_set_preempted(vcpu);
srcu_read_unlock(&vcpu->kvm->srcu, idx);
}
kvm_x86_call(vcpu_put)(vcpu);
vcpu->arch.last_host_tsc = rdtsc();
}
static int kvm_vcpu_ioctl_get_lapic(struct kvm_vcpu *vcpu,
struct kvm_lapic_state *s)
{
kvm_x86_call(sync_pir_to_irr)(vcpu);
return kvm_apic_get_state(vcpu, s);
}
static int kvm_vcpu_ioctl_set_lapic(struct kvm_vcpu *vcpu,
struct kvm_lapic_state *s)
{
int r;
r = kvm_apic_set_state(vcpu, s);
if (r)
return r;
update_cr8_intercept(vcpu);
return 0;
}
static int kvm_cpu_accept_dm_intr(struct kvm_vcpu *vcpu)
{
/*
* We can accept userspace's request for interrupt injection
* as long as we have a place to store the interrupt number.
* The actual injection will happen when the CPU is able to
* deliver the interrupt.
*/
if (kvm_cpu_has_extint(vcpu))
return false;
/* Acknowledging ExtINT does not happen if LINT0 is masked. */
return (!lapic_in_kernel(vcpu) ||
kvm_apic_accept_pic_intr(vcpu));
}
static int kvm_vcpu_ready_for_interrupt_injection(struct kvm_vcpu *vcpu)
{
/*
* Do not cause an interrupt window exit if an exception
* is pending or an event needs reinjection; userspace
* might want to inject the interrupt manually using KVM_SET_REGS
* or KVM_SET_SREGS. For that to work, we must be at an
* instruction boundary and with no events half-injected.
*/
return (kvm_arch_interrupt_allowed(vcpu) &&
kvm_cpu_accept_dm_intr(vcpu) &&
!kvm_event_needs_reinjection(vcpu) &&
!kvm_is_exception_pending(vcpu));
}
static int kvm_vcpu_ioctl_interrupt(struct kvm_vcpu *vcpu,
struct kvm_interrupt *irq)
{
if (irq->irq >= KVM_NR_INTERRUPTS)
return -EINVAL;
if (!irqchip_in_kernel(vcpu->kvm)) {
kvm_queue_interrupt(vcpu, irq->irq, false);
kvm_make_request(KVM_REQ_EVENT, vcpu);
return 0;
}
/*
* With in-kernel LAPIC, we only use this to inject EXTINT, so
* fail for in-kernel 8259.
*/
if (pic_in_kernel(vcpu->kvm))
return -ENXIO;
if (vcpu->arch.pending_external_vector != -1)
return -EEXIST;
vcpu->arch.pending_external_vector = irq->irq;
kvm_make_request(KVM_REQ_EVENT, vcpu);
return 0;
}
static int kvm_vcpu_ioctl_nmi(struct kvm_vcpu *vcpu)
{
kvm_inject_nmi(vcpu);
return 0;
}
static int vcpu_ioctl_tpr_access_reporting(struct kvm_vcpu *vcpu,
struct kvm_tpr_access_ctl *tac)
{
if (tac->flags)
return -EINVAL;
vcpu->arch.tpr_access_reporting = !!tac->enabled;
return 0;
}
static int kvm_vcpu_ioctl_x86_setup_mce(struct kvm_vcpu *vcpu,
u64 mcg_cap)
{
int r;
unsigned bank_num = mcg_cap & 0xff, bank;
r = -EINVAL;
if (!bank_num || bank_num > KVM_MAX_MCE_BANKS)
goto out;
if (mcg_cap & ~(kvm_caps.supported_mce_cap | 0xff | 0xff0000))
goto out;
r = 0;
vcpu->arch.mcg_cap = mcg_cap;
/* Init IA32_MCG_CTL to all 1s */
if (mcg_cap & MCG_CTL_P)
vcpu->arch.mcg_ctl = ~(u64)0;
/* Init IA32_MCi_CTL to all 1s, IA32_MCi_CTL2 to all 0s */
for (bank = 0; bank < bank_num; bank++) {
vcpu->arch.mce_banks[bank*4] = ~(u64)0;
if (mcg_cap & MCG_CMCI_P)
vcpu->arch.mci_ctl2_banks[bank] = 0;
}
kvm_apic_after_set_mcg_cap(vcpu);
kvm_x86_call(setup_mce)(vcpu);
out:
return r;
}
/*
* Validate this is an UCNA (uncorrectable no action) error by checking the
* MCG_STATUS and MCi_STATUS registers:
* - none of the bits for Machine Check Exceptions are set
* - both the VAL (valid) and UC (uncorrectable) bits are set
* MCI_STATUS_PCC - Processor Context Corrupted
* MCI_STATUS_S - Signaled as a Machine Check Exception
* MCI_STATUS_AR - Software recoverable Action Required
*/
static bool is_ucna(struct kvm_x86_mce *mce)
{
return !mce->mcg_status &&
!(mce->status & (MCI_STATUS_PCC | MCI_STATUS_S | MCI_STATUS_AR)) &&
(mce->status & MCI_STATUS_VAL) &&
(mce->status & MCI_STATUS_UC);
}
static int kvm_vcpu_x86_set_ucna(struct kvm_vcpu *vcpu, struct kvm_x86_mce *mce, u64* banks)
{
u64 mcg_cap = vcpu->arch.mcg_cap;
banks[1] = mce->status;
banks[2] = mce->addr;
banks[3] = mce->misc;
vcpu->arch.mcg_status = mce->mcg_status;
if (!(mcg_cap & MCG_CMCI_P) ||
!(vcpu->arch.mci_ctl2_banks[mce->bank] & MCI_CTL2_CMCI_EN))
return 0;
if (lapic_in_kernel(vcpu))
kvm_apic_local_deliver(vcpu->arch.apic, APIC_LVTCMCI);
return 0;
}
static int kvm_vcpu_ioctl_x86_set_mce(struct kvm_vcpu *vcpu,
struct kvm_x86_mce *mce)
{
u64 mcg_cap = vcpu->arch.mcg_cap;
unsigned bank_num = mcg_cap & 0xff;
u64 *banks = vcpu->arch.mce_banks;
if (mce->bank >= bank_num || !(mce->status & MCI_STATUS_VAL))
return -EINVAL;
banks += array_index_nospec(4 * mce->bank, 4 * bank_num);
if (is_ucna(mce))
return kvm_vcpu_x86_set_ucna(vcpu, mce, banks);
/*
* if IA32_MCG_CTL is not all 1s, the uncorrected error
* reporting is disabled
*/
if ((mce->status & MCI_STATUS_UC) && (mcg_cap & MCG_CTL_P) &&
vcpu->arch.mcg_ctl != ~(u64)0)
return 0;
/*
* if IA32_MCi_CTL is not all 1s, the uncorrected error
* reporting is disabled for the bank
*/
if ((mce->status & MCI_STATUS_UC) && banks[0] != ~(u64)0)
return 0;
if (mce->status & MCI_STATUS_UC) {
if ((vcpu->arch.mcg_status & MCG_STATUS_MCIP) ||
!kvm_is_cr4_bit_set(vcpu, X86_CR4_MCE)) {
kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
return 0;
}
if (banks[1] & MCI_STATUS_VAL)
mce->status |= MCI_STATUS_OVER;
banks[2] = mce->addr;
banks[3] = mce->misc;
vcpu->arch.mcg_status = mce->mcg_status;
banks[1] = mce->status;
kvm_queue_exception(vcpu, MC_VECTOR);
} else if (!(banks[1] & MCI_STATUS_VAL)
|| !(banks[1] & MCI_STATUS_UC)) {
if (banks[1] & MCI_STATUS_VAL)
mce->status |= MCI_STATUS_OVER;
banks[2] = mce->addr;
banks[3] = mce->misc;
banks[1] = mce->status;
} else
banks[1] |= MCI_STATUS_OVER;
return 0;
}
static void kvm_vcpu_ioctl_x86_get_vcpu_events(struct kvm_vcpu *vcpu,
struct kvm_vcpu_events *events)
{
struct kvm_queued_exception *ex;
process_nmi(vcpu);
#ifdef CONFIG_KVM_SMM
if (kvm_check_request(KVM_REQ_SMI, vcpu))
process_smi(vcpu);
#endif
/*
* KVM's ABI only allows for one exception to be migrated. Luckily,
* the only time there can be two queued exceptions is if there's a
* non-exiting _injected_ exception, and a pending exiting exception.
* In that case, ignore the VM-Exiting exception as it's an extension
* of the injected exception.
*/
if (vcpu->arch.exception_vmexit.pending &&
!vcpu->arch.exception.pending &&
!vcpu->arch.exception.injected)
ex = &vcpu->arch.exception_vmexit;
else
ex = &vcpu->arch.exception;
/*
* In guest mode, payload delivery should be deferred if the exception
* will be intercepted by L1, e.g. KVM should not modifying CR2 if L1
* intercepts #PF, ditto for DR6 and #DBs. If the per-VM capability,
* KVM_CAP_EXCEPTION_PAYLOAD, is not set, userspace may or may not
* propagate the payload and so it cannot be safely deferred. Deliver
* the payload if the capability hasn't been requested.
*/
if (!vcpu->kvm->arch.exception_payload_enabled &&
ex->pending && ex->has_payload)
kvm_deliver_exception_payload(vcpu, ex);
memset(events, 0, sizeof(*events));
/*
* The API doesn't provide the instruction length for software
* exceptions, so don't report them. As long as the guest RIP
* isn't advanced, we should expect to encounter the exception
* again.
*/
if (!kvm_exception_is_soft(ex->vector)) {
events->exception.injected = ex->injected;
events->exception.pending = ex->pending;
/*
* For ABI compatibility, deliberately conflate
* pending and injected exceptions when
* KVM_CAP_EXCEPTION_PAYLOAD isn't enabled.
*/
if (!vcpu->kvm->arch.exception_payload_enabled)
events->exception.injected |= ex->pending;
}
events->exception.nr = ex->vector;
events->exception.has_error_code = ex->has_error_code;
events->exception.error_code = ex->error_code;
events->exception_has_payload = ex->has_payload;
events->exception_payload = ex->payload;
events->interrupt.injected =
vcpu->arch.interrupt.injected && !vcpu->arch.interrupt.soft;
events->interrupt.nr = vcpu->arch.interrupt.nr;
events->interrupt.shadow = kvm_x86_call(get_interrupt_shadow)(vcpu);
events->nmi.injected = vcpu->arch.nmi_injected;
events->nmi.pending = kvm_get_nr_pending_nmis(vcpu);
events->nmi.masked = kvm_x86_call(get_nmi_mask)(vcpu);
/* events->sipi_vector is never valid when reporting to user space */
#ifdef CONFIG_KVM_SMM
events->smi.smm = is_smm(vcpu);
events->smi.pending = vcpu->arch.smi_pending;
events->smi.smm_inside_nmi =
!!(vcpu->arch.hflags & HF_SMM_INSIDE_NMI_MASK);
#endif
events->smi.latched_init = kvm_lapic_latched_init(vcpu);
events->flags = (KVM_VCPUEVENT_VALID_NMI_PENDING
| KVM_VCPUEVENT_VALID_SHADOW
| KVM_VCPUEVENT_VALID_SMM);
if (vcpu->kvm->arch.exception_payload_enabled)
events->flags |= KVM_VCPUEVENT_VALID_PAYLOAD;
if (vcpu->kvm->arch.triple_fault_event) {
events->triple_fault.pending = kvm_test_request(KVM_REQ_TRIPLE_FAULT, vcpu);
events->flags |= KVM_VCPUEVENT_VALID_TRIPLE_FAULT;
}
}
static int kvm_vcpu_ioctl_x86_set_vcpu_events(struct kvm_vcpu *vcpu,
struct kvm_vcpu_events *events)
{
if (events->flags & ~(KVM_VCPUEVENT_VALID_NMI_PENDING
| KVM_VCPUEVENT_VALID_SIPI_VECTOR
| KVM_VCPUEVENT_VALID_SHADOW
| KVM_VCPUEVENT_VALID_SMM
| KVM_VCPUEVENT_VALID_PAYLOAD
| KVM_VCPUEVENT_VALID_TRIPLE_FAULT))
return -EINVAL;
if (events->flags & KVM_VCPUEVENT_VALID_PAYLOAD) {
if (!vcpu->kvm->arch.exception_payload_enabled)
return -EINVAL;
if (events->exception.pending)
events->exception.injected = 0;
else
events->exception_has_payload = 0;
} else {
events->exception.pending = 0;
events->exception_has_payload = 0;
}
if ((events->exception.injected || events->exception.pending) &&
(events->exception.nr > 31 || events->exception.nr == NMI_VECTOR))
return -EINVAL;
/* INITs are latched while in SMM */
if (events->flags & KVM_VCPUEVENT_VALID_SMM &&
(events->smi.smm || events->smi.pending) &&
vcpu->arch.mp_state == KVM_MP_STATE_INIT_RECEIVED)
return -EINVAL;
process_nmi(vcpu);
/*
* Flag that userspace is stuffing an exception, the next KVM_RUN will
* morph the exception to a VM-Exit if appropriate. Do this only for
* pending exceptions, already-injected exceptions are not subject to
* intercpetion. Note, userspace that conflates pending and injected
* is hosed, and will incorrectly convert an injected exception into a
* pending exception, which in turn may cause a spurious VM-Exit.
*/
vcpu->arch.exception_from_userspace = events->exception.pending;
vcpu->arch.exception_vmexit.pending = false;
vcpu->arch.exception.injected = events->exception.injected;
vcpu->arch.exception.pending = events->exception.pending;
vcpu->arch.exception.vector = events->exception.nr;
vcpu->arch.exception.has_error_code = events->exception.has_error_code;
vcpu->arch.exception.error_code = events->exception.error_code;
vcpu->arch.exception.has_payload = events->exception_has_payload;
vcpu->arch.exception.payload = events->exception_payload;
vcpu->arch.interrupt.injected = events->interrupt.injected;
vcpu->arch.interrupt.nr = events->interrupt.nr;
vcpu->arch.interrupt.soft = events->interrupt.soft;
if (events->flags & KVM_VCPUEVENT_VALID_SHADOW)
kvm_x86_call(set_interrupt_shadow)(vcpu,
events->interrupt.shadow);
vcpu->arch.nmi_injected = events->nmi.injected;
if (events->flags & KVM_VCPUEVENT_VALID_NMI_PENDING) {
vcpu->arch.nmi_pending = 0;
atomic_set(&vcpu->arch.nmi_queued, events->nmi.pending);
if (events->nmi.pending)
kvm_make_request(KVM_REQ_NMI, vcpu);
}
kvm_x86_call(set_nmi_mask)(vcpu, events->nmi.masked);
if (events->flags & KVM_VCPUEVENT_VALID_SIPI_VECTOR &&
lapic_in_kernel(vcpu))
vcpu->arch.apic->sipi_vector = events->sipi_vector;
if (events->flags & KVM_VCPUEVENT_VALID_SMM) {
#ifdef CONFIG_KVM_SMM
if (!!(vcpu->arch.hflags & HF_SMM_MASK) != events->smi.smm) {
kvm_leave_nested(vcpu);
kvm_smm_changed(vcpu, events->smi.smm);
}
vcpu->arch.smi_pending = events->smi.pending;
if (events->smi.smm) {
if (events->smi.smm_inside_nmi)
vcpu->arch.hflags |= HF_SMM_INSIDE_NMI_MASK;
else
vcpu->arch.hflags &= ~HF_SMM_INSIDE_NMI_MASK;
}
#else
if (events->smi.smm || events->smi.pending ||
events->smi.smm_inside_nmi)
return -EINVAL;
#endif
if (lapic_in_kernel(vcpu)) {
if (events->smi.latched_init)
set_bit(KVM_APIC_INIT, &vcpu->arch.apic->pending_events);
else
clear_bit(KVM_APIC_INIT, &vcpu->arch.apic->pending_events);
}
}
if (events->flags & KVM_VCPUEVENT_VALID_TRIPLE_FAULT) {
if (!vcpu->kvm->arch.triple_fault_event)
return -EINVAL;
if (events->triple_fault.pending)
kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
else
kvm_clear_request(KVM_REQ_TRIPLE_FAULT, vcpu);
}
kvm_make_request(KVM_REQ_EVENT, vcpu);
return 0;
}
static int kvm_vcpu_ioctl_x86_get_debugregs(struct kvm_vcpu *vcpu,
struct kvm_debugregs *dbgregs)
{
unsigned int i;
if (vcpu->kvm->arch.has_protected_state &&
vcpu->arch.guest_state_protected)
return -EINVAL;
memset(dbgregs, 0, sizeof(*dbgregs));
BUILD_BUG_ON(ARRAY_SIZE(vcpu->arch.db) != ARRAY_SIZE(dbgregs->db));
for (i = 0; i < ARRAY_SIZE(vcpu->arch.db); i++)
dbgregs->db[i] = vcpu->arch.db[i];
dbgregs->dr6 = vcpu->arch.dr6;
dbgregs->dr7 = vcpu->arch.dr7;
return 0;
}
static int kvm_vcpu_ioctl_x86_set_debugregs(struct kvm_vcpu *vcpu,
struct kvm_debugregs *dbgregs)
{
unsigned int i;
if (vcpu->kvm->arch.has_protected_state &&
vcpu->arch.guest_state_protected)
return -EINVAL;
if (dbgregs->flags)
return -EINVAL;
if (!kvm_dr6_valid(dbgregs->dr6))
return -EINVAL;
if (!kvm_dr7_valid(dbgregs->dr7))
return -EINVAL;
for (i = 0; i < ARRAY_SIZE(vcpu->arch.db); i++)
vcpu->arch.db[i] = dbgregs->db[i];
kvm_update_dr0123(vcpu);
vcpu->arch.dr6 = dbgregs->dr6;
vcpu->arch.dr7 = dbgregs->dr7;
kvm_update_dr7(vcpu);
return 0;
}
static int kvm_vcpu_ioctl_x86_get_xsave2(struct kvm_vcpu *vcpu,
u8 *state, unsigned int size)
{
/*
* Only copy state for features that are enabled for the guest. The
* state itself isn't problematic, but setting bits in the header for
* features that are supported in *this* host but not exposed to the
* guest can result in KVM_SET_XSAVE failing when live migrating to a
* compatible host without the features that are NOT exposed to the
* guest.
*
* FP+SSE can always be saved/restored via KVM_{G,S}ET_XSAVE, even if
* XSAVE/XCRO are not exposed to the guest, and even if XSAVE isn't
* supported by the host.
*/
u64 supported_xcr0 = vcpu->arch.guest_supported_xcr0 |
XFEATURE_MASK_FPSSE;
if (fpstate_is_confidential(&vcpu->arch.guest_fpu))
return vcpu->kvm->arch.has_protected_state ? -EINVAL : 0;
fpu_copy_guest_fpstate_to_uabi(&vcpu->arch.guest_fpu, state, size,
supported_xcr0, vcpu->arch.pkru);
return 0;
}
static int kvm_vcpu_ioctl_x86_get_xsave(struct kvm_vcpu *vcpu,
struct kvm_xsave *guest_xsave)
{
return kvm_vcpu_ioctl_x86_get_xsave2(vcpu, (void *)guest_xsave->region,
sizeof(guest_xsave->region));
}
static int kvm_vcpu_ioctl_x86_set_xsave(struct kvm_vcpu *vcpu,
struct kvm_xsave *guest_xsave)
{
if (fpstate_is_confidential(&vcpu->arch.guest_fpu))
return vcpu->kvm->arch.has_protected_state ? -EINVAL : 0;
return fpu_copy_uabi_to_guest_fpstate(&vcpu->arch.guest_fpu,
guest_xsave->region,
kvm_caps.supported_xcr0,
&vcpu->arch.pkru);
}
static int kvm_vcpu_ioctl_x86_get_xcrs(struct kvm_vcpu *vcpu,
struct kvm_xcrs *guest_xcrs)
{
if (vcpu->kvm->arch.has_protected_state &&
vcpu->arch.guest_state_protected)
return -EINVAL;
if (!boot_cpu_has(X86_FEATURE_XSAVE)) {
guest_xcrs->nr_xcrs = 0;
return 0;
}
guest_xcrs->nr_xcrs = 1;
guest_xcrs->flags = 0;
guest_xcrs->xcrs[0].xcr = XCR_XFEATURE_ENABLED_MASK;
guest_xcrs->xcrs[0].value = vcpu->arch.xcr0;
return 0;
}
static int kvm_vcpu_ioctl_x86_set_xcrs(struct kvm_vcpu *vcpu,
struct kvm_xcrs *guest_xcrs)
{
int i, r = 0;
if (vcpu->kvm->arch.has_protected_state &&
vcpu->arch.guest_state_protected)
return -EINVAL;
if (!boot_cpu_has(X86_FEATURE_XSAVE))
return -EINVAL;
if (guest_xcrs->nr_xcrs > KVM_MAX_XCRS || guest_xcrs->flags)
return -EINVAL;
for (i = 0; i < guest_xcrs->nr_xcrs; i++)
/* Only support XCR0 currently */
if (guest_xcrs->xcrs[i].xcr == XCR_XFEATURE_ENABLED_MASK) {
r = __kvm_set_xcr(vcpu, XCR_XFEATURE_ENABLED_MASK,
guest_xcrs->xcrs[i].value);
break;
}
if (r)
r = -EINVAL;
return r;
}
/*
* kvm_set_guest_paused() indicates to the guest kernel that it has been
* stopped by the hypervisor. This function will be called from the host only.
* EINVAL is returned when the host attempts to set the flag for a guest that
* does not support pv clocks.
*/
static int kvm_set_guest_paused(struct kvm_vcpu *vcpu)
{
if (!vcpu->arch.pv_time.active)
return -EINVAL;
vcpu->arch.pvclock_set_guest_stopped_request = true;
kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
return 0;
}
static int kvm_arch_tsc_has_attr(struct kvm_vcpu *vcpu,
struct kvm_device_attr *attr)
{
int r;
switch (attr->attr) {
case KVM_VCPU_TSC_OFFSET:
r = 0;
break;
default:
r = -ENXIO;
}
return r;
}
static int kvm_arch_tsc_get_attr(struct kvm_vcpu *vcpu,
struct kvm_device_attr *attr)
{
u64 __user *uaddr = u64_to_user_ptr(attr->addr);
int r;
switch (attr->attr) {
case KVM_VCPU_TSC_OFFSET:
r = -EFAULT;
if (put_user(vcpu->arch.l1_tsc_offset, uaddr))
break;
r = 0;
break;
default:
r = -ENXIO;
}
return r;
}
static int kvm_arch_tsc_set_attr(struct kvm_vcpu *vcpu,
struct kvm_device_attr *attr)
{
u64 __user *uaddr = u64_to_user_ptr(attr->addr);
struct kvm *kvm = vcpu->kvm;
int r;
switch (attr->attr) {
case KVM_VCPU_TSC_OFFSET: {
u64 offset, tsc, ns;
unsigned long flags;
bool matched;
r = -EFAULT;
if (get_user(offset, uaddr))
break;
raw_spin_lock_irqsave(&kvm->arch.tsc_write_lock, flags);
matched = (vcpu->arch.virtual_tsc_khz &&
kvm->arch.last_tsc_khz == vcpu->arch.virtual_tsc_khz &&
kvm->arch.last_tsc_offset == offset);
tsc = kvm_scale_tsc(rdtsc(), vcpu->arch.l1_tsc_scaling_ratio) + offset;
ns = get_kvmclock_base_ns();
kvm->arch.user_set_tsc = true;
__kvm_synchronize_tsc(vcpu, offset, tsc, ns, matched);
raw_spin_unlock_irqrestore(&kvm->arch.tsc_write_lock, flags);
r = 0;
break;
}
default:
r = -ENXIO;
}
return r;
}
static int kvm_vcpu_ioctl_device_attr(struct kvm_vcpu *vcpu,
unsigned int ioctl,
void __user *argp)
{
struct kvm_device_attr attr;
int r;
if (copy_from_user(&attr, argp, sizeof(attr)))
return -EFAULT;
if (attr.group != KVM_VCPU_TSC_CTRL)
return -ENXIO;
switch (ioctl) {
case KVM_HAS_DEVICE_ATTR:
r = kvm_arch_tsc_has_attr(vcpu, &attr);
break;
case KVM_GET_DEVICE_ATTR:
r = kvm_arch_tsc_get_attr(vcpu, &attr);
break;
case KVM_SET_DEVICE_ATTR:
r = kvm_arch_tsc_set_attr(vcpu, &attr);
break;
}
return r;
}
static int kvm_vcpu_ioctl_enable_cap(struct kvm_vcpu *vcpu,
struct kvm_enable_cap *cap)
{
if (cap->flags)
return -EINVAL;
switch (cap->cap) {
#ifdef CONFIG_KVM_HYPERV
case KVM_CAP_HYPERV_SYNIC2:
if (cap->args[0])
return -EINVAL;
fallthrough;
case KVM_CAP_HYPERV_SYNIC:
if (!irqchip_in_kernel(vcpu->kvm))
return -EINVAL;
return kvm_hv_activate_synic(vcpu, cap->cap ==
KVM_CAP_HYPERV_SYNIC2);
case KVM_CAP_HYPERV_ENLIGHTENED_VMCS:
{
int r;
uint16_t vmcs_version;
void __user *user_ptr;
if (!kvm_x86_ops.nested_ops->enable_evmcs)
return -ENOTTY;
r = kvm_x86_ops.nested_ops->enable_evmcs(vcpu, &vmcs_version);
if (!r) {
user_ptr = (void __user *)(uintptr_t)cap->args[0];
if (copy_to_user(user_ptr, &vmcs_version,
sizeof(vmcs_version)))
r = -EFAULT;
}
return r;
}
case KVM_CAP_HYPERV_DIRECT_TLBFLUSH:
if (!kvm_x86_ops.enable_l2_tlb_flush)
return -ENOTTY;
return kvm_x86_call(enable_l2_tlb_flush)(vcpu);
case KVM_CAP_HYPERV_ENFORCE_CPUID:
return kvm_hv_set_enforce_cpuid(vcpu, cap->args[0]);
#endif
case KVM_CAP_ENFORCE_PV_FEATURE_CPUID:
vcpu->arch.pv_cpuid.enforce = cap->args[0];
if (vcpu->arch.pv_cpuid.enforce)
kvm_update_pv_runtime(vcpu);
return 0;
default:
return -EINVAL;
}
}
long kvm_arch_vcpu_ioctl(struct file *filp,
unsigned int ioctl, unsigned long arg)
{
struct kvm_vcpu *vcpu = filp->private_data;
void __user *argp = (void __user *)arg;
int r;
union {
struct kvm_sregs2 *sregs2;
struct kvm_lapic_state *lapic;
struct kvm_xsave *xsave;
struct kvm_xcrs *xcrs;
void *buffer;
} u;
vcpu_load(vcpu);
u.buffer = NULL;
switch (ioctl) {
case KVM_GET_LAPIC: {
r = -EINVAL;
if (!lapic_in_kernel(vcpu))
goto out;
u.lapic = kzalloc(sizeof(struct kvm_lapic_state), GFP_KERNEL);
r = -ENOMEM;
if (!u.lapic)
goto out;
r = kvm_vcpu_ioctl_get_lapic(vcpu, u.lapic);
if (r)
goto out;
r = -EFAULT;
if (copy_to_user(argp, u.lapic, sizeof(struct kvm_lapic_state)))
goto out;
r = 0;
break;
}
case KVM_SET_LAPIC: {
r = -EINVAL;
if (!lapic_in_kernel(vcpu))
goto out;
u.lapic = memdup_user(argp, sizeof(*u.lapic));
if (IS_ERR(u.lapic)) {
r = PTR_ERR(u.lapic);
goto out_nofree;
}
r = kvm_vcpu_ioctl_set_lapic(vcpu, u.lapic);
break;
}
case KVM_INTERRUPT: {
struct kvm_interrupt irq;
r = -EFAULT;
if (copy_from_user(&irq, argp, sizeof(irq)))
goto out;
r = kvm_vcpu_ioctl_interrupt(vcpu, &irq);
break;
}
case KVM_NMI: {
r = kvm_vcpu_ioctl_nmi(vcpu);
break;
}
case KVM_SMI: {
r = kvm_inject_smi(vcpu);
break;
}
case KVM_SET_CPUID: {
struct kvm_cpuid __user *cpuid_arg = argp;
struct kvm_cpuid cpuid;
r = -EFAULT;
if (copy_from_user(&cpuid, cpuid_arg, sizeof(cpuid)))
goto out;
r = kvm_vcpu_ioctl_set_cpuid(vcpu, &cpuid, cpuid_arg->entries);
break;
}
case KVM_SET_CPUID2: {
struct kvm_cpuid2 __user *cpuid_arg = argp;
struct kvm_cpuid2 cpuid;
r = -EFAULT;
if (copy_from_user(&cpuid, cpuid_arg, sizeof(cpuid)))
goto out;
r = kvm_vcpu_ioctl_set_cpuid2(vcpu, &cpuid,
cpuid_arg->entries);
break;
}
case KVM_GET_CPUID2: {
struct kvm_cpuid2 __user *cpuid_arg = argp;
struct kvm_cpuid2 cpuid;
r = -EFAULT;
if (copy_from_user(&cpuid, cpuid_arg, sizeof(cpuid)))
goto out;
r = kvm_vcpu_ioctl_get_cpuid2(vcpu, &cpuid,
cpuid_arg->entries);
if (r)
goto out;
r = -EFAULT;
if (copy_to_user(cpuid_arg, &cpuid, sizeof(cpuid)))
goto out;
r = 0;
break;
}
case KVM_GET_MSRS: {
int idx = srcu_read_lock(&vcpu->kvm->srcu);
r = msr_io(vcpu, argp, do_get_msr, 1);
srcu_read_unlock(&vcpu->kvm->srcu, idx);
break;
}
case KVM_SET_MSRS: {
int idx = srcu_read_lock(&vcpu->kvm->srcu);
r = msr_io(vcpu, argp, do_set_msr, 0);
srcu_read_unlock(&vcpu->kvm->srcu, idx);
break;
}
case KVM_TPR_ACCESS_REPORTING: {
struct kvm_tpr_access_ctl tac;
r = -EFAULT;
if (copy_from_user(&tac, argp, sizeof(tac)))
goto out;
r = vcpu_ioctl_tpr_access_reporting(vcpu, &tac);
if (r)
goto out;
r = -EFAULT;
if (copy_to_user(argp, &tac, sizeof(tac)))
goto out;
r = 0;
break;
};
case KVM_SET_VAPIC_ADDR: {
struct kvm_vapic_addr va;
int idx;
r = -EINVAL;
if (!lapic_in_kernel(vcpu))
goto out;
r = -EFAULT;
if (copy_from_user(&va, argp, sizeof(va)))
goto out;
idx = srcu_read_lock(&vcpu->kvm->srcu);
r = kvm_lapic_set_vapic_addr(vcpu, va.vapic_addr);
srcu_read_unlock(&vcpu->kvm->srcu, idx);
break;
}
case KVM_X86_SETUP_MCE: {
u64 mcg_cap;
r = -EFAULT;
if (copy_from_user(&mcg_cap, argp, sizeof(mcg_cap)))
goto out;
r = kvm_vcpu_ioctl_x86_setup_mce(vcpu, mcg_cap);
break;
}
case KVM_X86_SET_MCE: {
struct kvm_x86_mce mce;
r = -EFAULT;
if (copy_from_user(&mce, argp, sizeof(mce)))
goto out;
r = kvm_vcpu_ioctl_x86_set_mce(vcpu, &mce);
break;
}
case KVM_GET_VCPU_EVENTS: {
struct kvm_vcpu_events events;
kvm_vcpu_ioctl_x86_get_vcpu_events(vcpu, &events);
r = -EFAULT;
if (copy_to_user(argp, &events, sizeof(struct kvm_vcpu_events)))
break;
r = 0;
break;
}
case KVM_SET_VCPU_EVENTS: {
struct kvm_vcpu_events events;
r = -EFAULT;
if (copy_from_user(&events, argp, sizeof(struct kvm_vcpu_events)))
break;
kvm_vcpu_srcu_read_lock(vcpu);
r = kvm_vcpu_ioctl_x86_set_vcpu_events(vcpu, &events);
kvm_vcpu_srcu_read_unlock(vcpu);
break;
}
case KVM_GET_DEBUGREGS: {
struct kvm_debugregs dbgregs;
r = kvm_vcpu_ioctl_x86_get_debugregs(vcpu, &dbgregs);
if (r < 0)
break;
r = -EFAULT;
if (copy_to_user(argp, &dbgregs,
sizeof(struct kvm_debugregs)))
break;
r = 0;
break;
}
case KVM_SET_DEBUGREGS: {
struct kvm_debugregs dbgregs;
r = -EFAULT;
if (copy_from_user(&dbgregs, argp,
sizeof(struct kvm_debugregs)))
break;
r = kvm_vcpu_ioctl_x86_set_debugregs(vcpu, &dbgregs);
break;
}
case KVM_GET_XSAVE: {
r = -EINVAL;
if (vcpu->arch.guest_fpu.uabi_size > sizeof(struct kvm_xsave))
break;
u.xsave = kzalloc(sizeof(struct kvm_xsave), GFP_KERNEL);
r = -ENOMEM;
if (!u.xsave)
break;
r = kvm_vcpu_ioctl_x86_get_xsave(vcpu, u.xsave);
if (r < 0)
break;
r = -EFAULT;
if (copy_to_user(argp, u.xsave, sizeof(struct kvm_xsave)))
break;
r = 0;
break;
}
case KVM_SET_XSAVE: {
int size = vcpu->arch.guest_fpu.uabi_size;
u.xsave = memdup_user(argp, size);
if (IS_ERR(u.xsave)) {
r = PTR_ERR(u.xsave);
goto out_nofree;
}
r = kvm_vcpu_ioctl_x86_set_xsave(vcpu, u.xsave);
break;
}
case KVM_GET_XSAVE2: {
int size = vcpu->arch.guest_fpu.uabi_size;
u.xsave = kzalloc(size, GFP_KERNEL);
r = -ENOMEM;
if (!u.xsave)
break;
r = kvm_vcpu_ioctl_x86_get_xsave2(vcpu, u.buffer, size);
if (r < 0)
break;
r = -EFAULT;
if (copy_to_user(argp, u.xsave, size))
break;
r = 0;
break;
}
case KVM_GET_XCRS: {
u.xcrs = kzalloc(sizeof(struct kvm_xcrs), GFP_KERNEL);
r = -ENOMEM;
if (!u.xcrs)
break;
r = kvm_vcpu_ioctl_x86_get_xcrs(vcpu, u.xcrs);
if (r < 0)
break;
r = -EFAULT;
if (copy_to_user(argp, u.xcrs,
sizeof(struct kvm_xcrs)))
break;
r = 0;
break;
}
case KVM_SET_XCRS: {
u.xcrs = memdup_user(argp, sizeof(*u.xcrs));
if (IS_ERR(u.xcrs)) {
r = PTR_ERR(u.xcrs);
goto out_nofree;
}
r = kvm_vcpu_ioctl_x86_set_xcrs(vcpu, u.xcrs);
break;
}
case KVM_SET_TSC_KHZ: {
u32 user_tsc_khz;
r = -EINVAL;
user_tsc_khz = (u32)arg;
if (kvm_caps.has_tsc_control &&
user_tsc_khz >= kvm_caps.max_guest_tsc_khz)
goto out;
if (user_tsc_khz == 0)
user_tsc_khz = tsc_khz;
if (!kvm_set_tsc_khz(vcpu, user_tsc_khz))
r = 0;
goto out;
}
case KVM_GET_TSC_KHZ: {
r = vcpu->arch.virtual_tsc_khz;
goto out;
}
case KVM_KVMCLOCK_CTRL: {
r = kvm_set_guest_paused(vcpu);
goto out;
}
case KVM_ENABLE_CAP: {
struct kvm_enable_cap cap;
r = -EFAULT;
if (copy_from_user(&cap, argp, sizeof(cap)))
goto out;
r = kvm_vcpu_ioctl_enable_cap(vcpu, &cap);
break;
}
case KVM_GET_NESTED_STATE: {
struct kvm_nested_state __user *user_kvm_nested_state = argp;
u32 user_data_size;
r = -EINVAL;
if (!kvm_x86_ops.nested_ops->get_state)
break;
BUILD_BUG_ON(sizeof(user_data_size) != sizeof(user_kvm_nested_state->size));
r = -EFAULT;
if (get_user(user_data_size, &user_kvm_nested_state->size))
break;
r = kvm_x86_ops.nested_ops->get_state(vcpu, user_kvm_nested_state,
user_data_size);
if (r < 0)
break;
if (r > user_data_size) {
if (put_user(r, &user_kvm_nested_state->size))
r = -EFAULT;
else
r = -E2BIG;
break;
}
r = 0;
break;
}
case KVM_SET_NESTED_STATE: {
struct kvm_nested_state __user *user_kvm_nested_state = argp;
struct kvm_nested_state kvm_state;
int idx;
r = -EINVAL;
if (!kvm_x86_ops.nested_ops->set_state)
break;
r = -EFAULT;
if (copy_from_user(&kvm_state, user_kvm_nested_state, sizeof(kvm_state)))
break;
r = -EINVAL;
if (kvm_state.size < sizeof(kvm_state))
break;
if (kvm_state.flags &
~(KVM_STATE_NESTED_RUN_PENDING | KVM_STATE_NESTED_GUEST_MODE
| KVM_STATE_NESTED_EVMCS | KVM_STATE_NESTED_MTF_PENDING
| KVM_STATE_NESTED_GIF_SET))
break;
/* nested_run_pending implies guest_mode. */
if ((kvm_state.flags & KVM_STATE_NESTED_RUN_PENDING)
&& !(kvm_state.flags & KVM_STATE_NESTED_GUEST_MODE))
break;
idx = srcu_read_lock(&vcpu->kvm->srcu);
r = kvm_x86_ops.nested_ops->set_state(vcpu, user_kvm_nested_state, &kvm_state);
srcu_read_unlock(&vcpu->kvm->srcu, idx);
break;
}
#ifdef CONFIG_KVM_HYPERV
case KVM_GET_SUPPORTED_HV_CPUID:
r = kvm_ioctl_get_supported_hv_cpuid(vcpu, argp);
break;
#endif
#ifdef CONFIG_KVM_XEN
case KVM_XEN_VCPU_GET_ATTR: {
struct kvm_xen_vcpu_attr xva;
r = -EFAULT;
if (copy_from_user(&xva, argp, sizeof(xva)))
goto out;
r = kvm_xen_vcpu_get_attr(vcpu, &xva);
if (!r && copy_to_user(argp, &xva, sizeof(xva)))
r = -EFAULT;
break;
}
case KVM_XEN_VCPU_SET_ATTR: {
struct kvm_xen_vcpu_attr xva;
r = -EFAULT;
if (copy_from_user(&xva, argp, sizeof(xva)))
goto out;
r = kvm_xen_vcpu_set_attr(vcpu, &xva);
break;
}
#endif
case KVM_GET_SREGS2: {
r = -EINVAL;
if (vcpu->kvm->arch.has_protected_state &&
vcpu->arch.guest_state_protected)
goto out;
u.sregs2 = kzalloc(sizeof(struct kvm_sregs2), GFP_KERNEL);
r = -ENOMEM;
if (!u.sregs2)
goto out;
__get_sregs2(vcpu, u.sregs2);
r = -EFAULT;
if (copy_to_user(argp, u.sregs2, sizeof(struct kvm_sregs2)))
goto out;
r = 0;
break;
}
case KVM_SET_SREGS2: {
r = -EINVAL;
if (vcpu->kvm->arch.has_protected_state &&
vcpu->arch.guest_state_protected)
goto out;
u.sregs2 = memdup_user(argp, sizeof(struct kvm_sregs2));
if (IS_ERR(u.sregs2)) {
r = PTR_ERR(u.sregs2);
u.sregs2 = NULL;
goto out;
}
r = __set_sregs2(vcpu, u.sregs2);
break;
}
case KVM_HAS_DEVICE_ATTR:
case KVM_GET_DEVICE_ATTR:
case KVM_SET_DEVICE_ATTR:
r = kvm_vcpu_ioctl_device_attr(vcpu, ioctl, argp);
break;
default:
r = -EINVAL;
}
out:
kfree(u.buffer);
out_nofree:
vcpu_put(vcpu);
return r;
}
vm_fault_t kvm_arch_vcpu_fault(struct kvm_vcpu *vcpu, struct vm_fault *vmf)
{
return VM_FAULT_SIGBUS;
}
static int kvm_vm_ioctl_set_tss_addr(struct kvm *kvm, unsigned long addr)
{
int ret;
if (addr > (unsigned int)(-3 * PAGE_SIZE))
return -EINVAL;
ret = kvm_x86_call(set_tss_addr)(kvm, addr);
return ret;
}
static int kvm_vm_ioctl_set_identity_map_addr(struct kvm *kvm,
u64 ident_addr)
{
return kvm_x86_call(set_identity_map_addr)(kvm, ident_addr);
}
static int kvm_vm_ioctl_set_nr_mmu_pages(struct kvm *kvm,
unsigned long kvm_nr_mmu_pages)
{
if (kvm_nr_mmu_pages < KVM_MIN_ALLOC_MMU_PAGES)
return -EINVAL;
mutex_lock(&kvm->slots_lock);
kvm_mmu_change_mmu_pages(kvm, kvm_nr_mmu_pages);
kvm->arch.n_requested_mmu_pages = kvm_nr_mmu_pages;
mutex_unlock(&kvm->slots_lock);
return 0;
}
static int kvm_vm_ioctl_get_irqchip(struct kvm *kvm, struct kvm_irqchip *chip)
{
struct kvm_pic *pic = kvm->arch.vpic;
int r;
r = 0;
switch (chip->chip_id) {
case KVM_IRQCHIP_PIC_MASTER:
memcpy(&chip->chip.pic, &pic->pics[0],
sizeof(struct kvm_pic_state));
break;
case KVM_IRQCHIP_PIC_SLAVE:
memcpy(&chip->chip.pic, &pic->pics[1],
sizeof(struct kvm_pic_state));
break;
case KVM_IRQCHIP_IOAPIC:
kvm_get_ioapic(kvm, &chip->chip.ioapic);
break;
default:
r = -EINVAL;
break;
}
return r;
}
static int kvm_vm_ioctl_set_irqchip(struct kvm *kvm, struct kvm_irqchip *chip)
{
struct kvm_pic *pic = kvm->arch.vpic;
int r;
r = 0;
switch (chip->chip_id) {
case KVM_IRQCHIP_PIC_MASTER:
spin_lock(&pic->lock);
memcpy(&pic->pics[0], &chip->chip.pic,
sizeof(struct kvm_pic_state));
spin_unlock(&pic->lock);
break;
case KVM_IRQCHIP_PIC_SLAVE:
spin_lock(&pic->lock);
memcpy(&pic->pics[1], &chip->chip.pic,
sizeof(struct kvm_pic_state));
spin_unlock(&pic->lock);
break;
case KVM_IRQCHIP_IOAPIC:
kvm_set_ioapic(kvm, &chip->chip.ioapic);
break;
default:
r = -EINVAL;
break;
}
kvm_pic_update_irq(pic);
return r;
}
static int kvm_vm_ioctl_get_pit(struct kvm *kvm, struct kvm_pit_state *ps)
{
struct kvm_kpit_state *kps = &kvm->arch.vpit->pit_state;
BUILD_BUG_ON(sizeof(*ps) != sizeof(kps->channels));
mutex_lock(&kps->lock);
memcpy(ps, &kps->channels, sizeof(*ps));
mutex_unlock(&kps->lock);
return 0;
}
static int kvm_vm_ioctl_set_pit(struct kvm *kvm, struct kvm_pit_state *ps)
{
int i;
struct kvm_pit *pit = kvm->arch.vpit;
mutex_lock(&pit->pit_state.lock);
memcpy(&pit->pit_state.channels, ps, sizeof(*ps));
for (i = 0; i < 3; i++)
kvm_pit_load_count(pit, i, ps->channels[i].count, 0);
mutex_unlock(&pit->pit_state.lock);
return 0;
}
static int kvm_vm_ioctl_get_pit2(struct kvm *kvm, struct kvm_pit_state2 *ps)
{
mutex_lock(&kvm->arch.vpit->pit_state.lock);
memcpy(ps->channels, &kvm->arch.vpit->pit_state.channels,
sizeof(ps->channels));
ps->flags = kvm->arch.vpit->pit_state.flags;
mutex_unlock(&kvm->arch.vpit->pit_state.lock);
memset(&ps->reserved, 0, sizeof(ps->reserved));
return 0;
}
static int kvm_vm_ioctl_set_pit2(struct kvm *kvm, struct kvm_pit_state2 *ps)
{
int start = 0;
int i;
u32 prev_legacy, cur_legacy;
struct kvm_pit *pit = kvm->arch.vpit;
mutex_lock(&pit->pit_state.lock);
prev_legacy = pit->pit_state.flags & KVM_PIT_FLAGS_HPET_LEGACY;
cur_legacy = ps->flags & KVM_PIT_FLAGS_HPET_LEGACY;
if (!prev_legacy && cur_legacy)
start = 1;
memcpy(&pit->pit_state.channels, &ps->channels,
sizeof(pit->pit_state.channels));
pit->pit_state.flags = ps->flags;
for (i = 0; i < 3; i++)
kvm_pit_load_count(pit, i, pit->pit_state.channels[i].count,
start && i == 0);
mutex_unlock(&pit->pit_state.lock);
return 0;
}
static int kvm_vm_ioctl_reinject(struct kvm *kvm,
struct kvm_reinject_control *control)
{
struct kvm_pit *pit = kvm->arch.vpit;
/* pit->pit_state.lock was overloaded to prevent userspace from getting
* an inconsistent state after running multiple KVM_REINJECT_CONTROL
* ioctls in parallel. Use a separate lock if that ioctl isn't rare.
*/
mutex_lock(&pit->pit_state.lock);
kvm_pit_set_reinject(pit, control->pit_reinject);
mutex_unlock(&pit->pit_state.lock);
return 0;
}
void kvm_arch_sync_dirty_log(struct kvm *kvm, struct kvm_memory_slot *memslot)
{
/*
* Flush all CPUs' dirty log buffers to the dirty_bitmap. Called
* before reporting dirty_bitmap to userspace. KVM flushes the buffers
* on all VM-Exits, thus we only need to kick running vCPUs to force a
* VM-Exit.
*/
struct kvm_vcpu *vcpu;
unsigned long i;
if (!kvm_x86_ops.cpu_dirty_log_size)
return;
kvm_for_each_vcpu(i, vcpu, kvm)
kvm_vcpu_kick(vcpu);
}
int kvm_vm_ioctl_irq_line(struct kvm *kvm, struct kvm_irq_level *irq_event,
bool line_status)
{
if (!irqchip_in_kernel(kvm))
return -ENXIO;
irq_event->status = kvm_set_irq(kvm, KVM_USERSPACE_IRQ_SOURCE_ID,
irq_event->irq, irq_event->level,
line_status);
return 0;
}
int kvm_vm_ioctl_enable_cap(struct kvm *kvm,
struct kvm_enable_cap *cap)
{
int r;
if (cap->flags)
return -EINVAL;
switch (cap->cap) {
case KVM_CAP_DISABLE_QUIRKS2:
r = -EINVAL;
if (cap->args[0] & ~KVM_X86_VALID_QUIRKS)
break;
fallthrough;
case KVM_CAP_DISABLE_QUIRKS:
kvm->arch.disabled_quirks = cap->args[0];
r = 0;
break;
case KVM_CAP_SPLIT_IRQCHIP: {
mutex_lock(&kvm->lock);
r = -EINVAL;
if (cap->args[0] > MAX_NR_RESERVED_IOAPIC_PINS)
goto split_irqchip_unlock;
r = -EEXIST;
if (irqchip_in_kernel(kvm))
goto split_irqchip_unlock;
if (kvm->created_vcpus)
goto split_irqchip_unlock;
/* Pairs with irqchip_in_kernel. */
smp_wmb();
kvm->arch.irqchip_mode = KVM_IRQCHIP_SPLIT;
kvm->arch.nr_reserved_ioapic_pins = cap->args[0];
kvm_clear_apicv_inhibit(kvm, APICV_INHIBIT_REASON_ABSENT);
r = 0;
split_irqchip_unlock:
mutex_unlock(&kvm->lock);
break;
}
case KVM_CAP_X2APIC_API:
r = -EINVAL;
if (cap->args[0] & ~KVM_X2APIC_API_VALID_FLAGS)
break;
if (cap->args[0] & KVM_X2APIC_API_USE_32BIT_IDS)
kvm->arch.x2apic_format = true;
if (cap->args[0] & KVM_X2APIC_API_DISABLE_BROADCAST_QUIRK)
kvm->arch.x2apic_broadcast_quirk_disabled = true;
r = 0;
break;
case KVM_CAP_X86_DISABLE_EXITS:
r = -EINVAL;
if (cap->args[0] & ~KVM_X86_DISABLE_VALID_EXITS)
break;
if (cap->args[0] & KVM_X86_DISABLE_EXITS_PAUSE)
kvm->arch.pause_in_guest = true;
#define SMT_RSB_MSG "This processor is affected by the Cross-Thread Return Predictions vulnerability. " \
"KVM_CAP_X86_DISABLE_EXITS should only be used with SMT disabled or trusted guests."
if (!mitigate_smt_rsb) {
if (boot_cpu_has_bug(X86_BUG_SMT_RSB) && cpu_smt_possible() &&
(cap->args[0] & ~KVM_X86_DISABLE_EXITS_PAUSE))
pr_warn_once(SMT_RSB_MSG);
if ((cap->args[0] & KVM_X86_DISABLE_EXITS_MWAIT) &&
kvm_can_mwait_in_guest())
kvm->arch.mwait_in_guest = true;
if (cap->args[0] & KVM_X86_DISABLE_EXITS_HLT)
kvm->arch.hlt_in_guest = true;
if (cap->args[0] & KVM_X86_DISABLE_EXITS_CSTATE)
kvm->arch.cstate_in_guest = true;
}
r = 0;
break;
case KVM_CAP_MSR_PLATFORM_INFO:
kvm->arch.guest_can_read_msr_platform_info = cap->args[0];
r = 0;
break;
case KVM_CAP_EXCEPTION_PAYLOAD:
kvm->arch.exception_payload_enabled = cap->args[0];
r = 0;
break;
case KVM_CAP_X86_TRIPLE_FAULT_EVENT:
kvm->arch.triple_fault_event = cap->args[0];
r = 0;
break;
case KVM_CAP_X86_USER_SPACE_MSR:
r = -EINVAL;
if (cap->args[0] & ~KVM_MSR_EXIT_REASON_VALID_MASK)
break;
kvm->arch.user_space_msr_mask = cap->args[0];
r = 0;
break;
case KVM_CAP_X86_BUS_LOCK_EXIT:
r = -EINVAL;
if (cap->args[0] & ~KVM_BUS_LOCK_DETECTION_VALID_MODE)
break;
if ((cap->args[0] & KVM_BUS_LOCK_DETECTION_OFF) &&
(cap->args[0] & KVM_BUS_LOCK_DETECTION_EXIT))
break;
if (kvm_caps.has_bus_lock_exit &&
cap->args[0] & KVM_BUS_LOCK_DETECTION_EXIT)
kvm->arch.bus_lock_detection_enabled = true;
r = 0;
break;
#ifdef CONFIG_X86_SGX_KVM
case KVM_CAP_SGX_ATTRIBUTE: {
unsigned long allowed_attributes = 0;
r = sgx_set_attribute(&allowed_attributes, cap->args[0]);
if (r)
break;
/* KVM only supports the PROVISIONKEY privileged attribute. */
if ((allowed_attributes & SGX_ATTR_PROVISIONKEY) &&
!(allowed_attributes & ~SGX_ATTR_PROVISIONKEY))
kvm->arch.sgx_provisioning_allowed = true;
else
r = -EINVAL;
break;
}
#endif
case KVM_CAP_VM_COPY_ENC_CONTEXT_FROM:
r = -EINVAL;
if (!kvm_x86_ops.vm_copy_enc_context_from)
break;
r = kvm_x86_call(vm_copy_enc_context_from)(kvm, cap->args[0]);
break;
case KVM_CAP_VM_MOVE_ENC_CONTEXT_FROM:
r = -EINVAL;
if (!kvm_x86_ops.vm_move_enc_context_from)
break;
r = kvm_x86_call(vm_move_enc_context_from)(kvm, cap->args[0]);
break;
case KVM_CAP_EXIT_HYPERCALL:
if (cap->args[0] & ~KVM_EXIT_HYPERCALL_VALID_MASK) {
r = -EINVAL;
break;
}
kvm->arch.hypercall_exit_enabled = cap->args[0];
r = 0;
break;
case KVM_CAP_EXIT_ON_EMULATION_FAILURE:
r = -EINVAL;
if (cap->args[0] & ~1)
break;
kvm->arch.exit_on_emulation_error = cap->args[0];
r = 0;
break;
case KVM_CAP_PMU_CAPABILITY:
r = -EINVAL;
if (!enable_pmu || (cap->args[0] & ~KVM_CAP_PMU_VALID_MASK))
break;
mutex_lock(&kvm->lock);
if (!kvm->created_vcpus) {
kvm->arch.enable_pmu = !(cap->args[0] & KVM_PMU_CAP_DISABLE);
r = 0;
}
mutex_unlock(&kvm->lock);
break;
case KVM_CAP_MAX_VCPU_ID:
r = -EINVAL;
if (cap->args[0] > KVM_MAX_VCPU_IDS)
break;
mutex_lock(&kvm->lock);
if (kvm->arch.bsp_vcpu_id > cap->args[0]) {
;
} else if (kvm->arch.max_vcpu_ids == cap->args[0]) {
r = 0;
} else if (!kvm->arch.max_vcpu_ids) {
kvm->arch.max_vcpu_ids = cap->args[0];
r = 0;
}
mutex_unlock(&kvm->lock);
break;
case KVM_CAP_X86_NOTIFY_VMEXIT:
r = -EINVAL;
if ((u32)cap->args[0] & ~KVM_X86_NOTIFY_VMEXIT_VALID_BITS)
break;
if (!kvm_caps.has_notify_vmexit)
break;
if (!((u32)cap->args[0] & KVM_X86_NOTIFY_VMEXIT_ENABLED))
break;
mutex_lock(&kvm->lock);
if (!kvm->created_vcpus) {
kvm->arch.notify_window = cap->args[0] >> 32;
kvm->arch.notify_vmexit_flags = (u32)cap->args[0];
r = 0;
}
mutex_unlock(&kvm->lock);
break;
case KVM_CAP_VM_DISABLE_NX_HUGE_PAGES:
r = -EINVAL;
/*
* Since the risk of disabling NX hugepages is a guest crashing
* the system, ensure the userspace process has permission to
* reboot the system.
*
* Note that unlike the reboot() syscall, the process must have
* this capability in the root namespace because exposing
* /dev/kvm into a container does not limit the scope of the
* iTLB multihit bug to that container. In other words,
* this must use capable(), not ns_capable().
*/
if (!capable(CAP_SYS_BOOT)) {
r = -EPERM;
break;
}
if (cap->args[0])
break;
mutex_lock(&kvm->lock);
if (!kvm->created_vcpus) {
kvm->arch.disable_nx_huge_pages = true;
r = 0;
}
mutex_unlock(&kvm->lock);
break;
case KVM_CAP_X86_APIC_BUS_CYCLES_NS: {
u64 bus_cycle_ns = cap->args[0];
u64 unused;
/*
* Guard against overflow in tmict_to_ns(). 128 is the highest
* divide value that can be programmed in APIC_TDCR.
*/
r = -EINVAL;
if (!bus_cycle_ns ||
check_mul_overflow((u64)U32_MAX * 128, bus_cycle_ns, &unused))
break;
r = 0;
mutex_lock(&kvm->lock);
if (!irqchip_in_kernel(kvm))
r = -ENXIO;
else if (kvm->created_vcpus)
r = -EINVAL;
else
kvm->arch.apic_bus_cycle_ns = bus_cycle_ns;
mutex_unlock(&kvm->lock);
break;
}
default:
r = -EINVAL;
break;
}
return r;
}
static struct kvm_x86_msr_filter *kvm_alloc_msr_filter(bool default_allow)
{
struct kvm_x86_msr_filter *msr_filter;
msr_filter = kzalloc(sizeof(*msr_filter), GFP_KERNEL_ACCOUNT);
if (!msr_filter)
return NULL;
msr_filter->default_allow = default_allow;
return msr_filter;
}
static void kvm_free_msr_filter(struct kvm_x86_msr_filter *msr_filter)
{
u32 i;
if (!msr_filter)
return;
for (i = 0; i < msr_filter->count; i++)
kfree(msr_filter->ranges[i].bitmap);
kfree(msr_filter);
}
static int kvm_add_msr_filter(struct kvm_x86_msr_filter *msr_filter,
struct kvm_msr_filter_range *user_range)
{
unsigned long *bitmap;
size_t bitmap_size;
if (!user_range->nmsrs)
return 0;
if (user_range->flags & ~KVM_MSR_FILTER_RANGE_VALID_MASK)
return -EINVAL;
if (!user_range->flags)
return -EINVAL;
bitmap_size = BITS_TO_LONGS(user_range->nmsrs) * sizeof(long);
if (!bitmap_size || bitmap_size > KVM_MSR_FILTER_MAX_BITMAP_SIZE)
return -EINVAL;
bitmap = memdup_user((__user u8*)user_range->bitmap, bitmap_size);
if (IS_ERR(bitmap))
return PTR_ERR(bitmap);
msr_filter->ranges[msr_filter->count] = (struct msr_bitmap_range) {
.flags = user_range->flags,
.base = user_range->base,
.nmsrs = user_range->nmsrs,
.bitmap = bitmap,
};
msr_filter->count++;
return 0;
}
static int kvm_vm_ioctl_set_msr_filter(struct kvm *kvm,
struct kvm_msr_filter *filter)
{
struct kvm_x86_msr_filter *new_filter, *old_filter;
bool default_allow;
bool empty = true;
int r;
u32 i;
if (filter->flags & ~KVM_MSR_FILTER_VALID_MASK)
return -EINVAL;
for (i = 0; i < ARRAY_SIZE(filter->ranges); i++)
empty &= !filter->ranges[i].nmsrs;
default_allow = !(filter->flags & KVM_MSR_FILTER_DEFAULT_DENY);
if (empty && !default_allow)
return -EINVAL;
new_filter = kvm_alloc_msr_filter(default_allow);
if (!new_filter)
return -ENOMEM;
for (i = 0; i < ARRAY_SIZE(filter->ranges); i++) {
r = kvm_add_msr_filter(new_filter, &filter->ranges[i]);
if (r) {
kvm_free_msr_filter(new_filter);
return r;
}
}
mutex_lock(&kvm->lock);
old_filter = rcu_replace_pointer(kvm->arch.msr_filter, new_filter,
mutex_is_locked(&kvm->lock));
mutex_unlock(&kvm->lock);
synchronize_srcu(&kvm->srcu);
kvm_free_msr_filter(old_filter);
kvm_make_all_cpus_request(kvm, KVM_REQ_MSR_FILTER_CHANGED);
return 0;
}
#ifdef CONFIG_KVM_COMPAT
/* for KVM_X86_SET_MSR_FILTER */
struct kvm_msr_filter_range_compat {
__u32 flags;
__u32 nmsrs;
__u32 base;
__u32 bitmap;
};
struct kvm_msr_filter_compat {
__u32 flags;
struct kvm_msr_filter_range_compat ranges[KVM_MSR_FILTER_MAX_RANGES];
};
#define KVM_X86_SET_MSR_FILTER_COMPAT _IOW(KVMIO, 0xc6, struct kvm_msr_filter_compat)
long kvm_arch_vm_compat_ioctl(struct file *filp, unsigned int ioctl,
unsigned long arg)
{
void __user *argp = (void __user *)arg;
struct kvm *kvm = filp->private_data;
long r = -ENOTTY;
switch (ioctl) {
case KVM_X86_SET_MSR_FILTER_COMPAT: {
struct kvm_msr_filter __user *user_msr_filter = argp;
struct kvm_msr_filter_compat filter_compat;
struct kvm_msr_filter filter;
int i;
if (copy_from_user(&filter_compat, user_msr_filter,
sizeof(filter_compat)))
return -EFAULT;
filter.flags = filter_compat.flags;
for (i = 0; i < ARRAY_SIZE(filter.ranges); i++) {
struct kvm_msr_filter_range_compat *cr;
cr = &filter_compat.ranges[i];
filter.ranges[i] = (struct kvm_msr_filter_range) {
.flags = cr->flags,
.nmsrs = cr->nmsrs,
.base = cr->base,
.bitmap = (__u8 *)(ulong)cr->bitmap,
};
}
r = kvm_vm_ioctl_set_msr_filter(kvm, &filter);
break;
}
}
return r;
}
#endif
#ifdef CONFIG_HAVE_KVM_PM_NOTIFIER
static int kvm_arch_suspend_notifier(struct kvm *kvm)
{
struct kvm_vcpu *vcpu;
unsigned long i;
int ret = 0;
mutex_lock(&kvm->lock);
kvm_for_each_vcpu(i, vcpu, kvm) {
if (!vcpu->arch.pv_time.active)
continue;
ret = kvm_set_guest_paused(vcpu);
if (ret) {
kvm_err("Failed to pause guest VCPU%d: %d\n",
vcpu->vcpu_id, ret);
break;
}
}
mutex_unlock(&kvm->lock);
return ret ? NOTIFY_BAD : NOTIFY_DONE;
}
int kvm_arch_pm_notifier(struct kvm *kvm, unsigned long state)
{
switch (state) {
case PM_HIBERNATION_PREPARE:
case PM_SUSPEND_PREPARE:
return kvm_arch_suspend_notifier(kvm);
}
return NOTIFY_DONE;
}
#endif /* CONFIG_HAVE_KVM_PM_NOTIFIER */
static int kvm_vm_ioctl_get_clock(struct kvm *kvm, void __user *argp)
{
struct kvm_clock_data data = { 0 };
get_kvmclock(kvm, &data);
if (copy_to_user(argp, &data, sizeof(data)))
return -EFAULT;
return 0;
}
static int kvm_vm_ioctl_set_clock(struct kvm *kvm, void __user *argp)
{
struct kvm_arch *ka = &kvm->arch;
struct kvm_clock_data data;
u64 now_raw_ns;
if (copy_from_user(&data, argp, sizeof(data)))
return -EFAULT;
/*
* Only KVM_CLOCK_REALTIME is used, but allow passing the
* result of KVM_GET_CLOCK back to KVM_SET_CLOCK.
*/
if (data.flags & ~KVM_CLOCK_VALID_FLAGS)
return -EINVAL;
kvm_hv_request_tsc_page_update(kvm);
kvm_start_pvclock_update(kvm);
pvclock_update_vm_gtod_copy(kvm);
/*
* This pairs with kvm_guest_time_update(): when masterclock is
* in use, we use master_kernel_ns + kvmclock_offset to set
* unsigned 'system_time' so if we use get_kvmclock_ns() (which
* is slightly ahead) here we risk going negative on unsigned
* 'system_time' when 'data.clock' is very small.
*/
if (data.flags & KVM_CLOCK_REALTIME) {
u64 now_real_ns = ktime_get_real_ns();
/*
* Avoid stepping the kvmclock backwards.
*/
if (now_real_ns > data.realtime)
data.clock += now_real_ns - data.realtime;
}
if (ka->use_master_clock)
now_raw_ns = ka->master_kernel_ns;
else
now_raw_ns = get_kvmclock_base_ns();
ka->kvmclock_offset = data.clock - now_raw_ns;
kvm_end_pvclock_update(kvm);
return 0;
}
int kvm_arch_vm_ioctl(struct file *filp, unsigned int ioctl, unsigned long arg)
{
struct kvm *kvm = filp->private_data;
void __user *argp = (void __user *)arg;
int r = -ENOTTY;
/*
* This union makes it completely explicit to gcc-3.x
* that these two variables' stack usage should be
* combined, not added together.
*/
union {
struct kvm_pit_state ps;
struct kvm_pit_state2 ps2;
struct kvm_pit_config pit_config;
} u;
switch (ioctl) {
case KVM_SET_TSS_ADDR:
r = kvm_vm_ioctl_set_tss_addr(kvm, arg);
break;
case KVM_SET_IDENTITY_MAP_ADDR: {
u64 ident_addr;
mutex_lock(&kvm->lock);
r = -EINVAL;
if (kvm->created_vcpus)
goto set_identity_unlock;
r = -EFAULT;
if (copy_from_user(&ident_addr, argp, sizeof(ident_addr)))
goto set_identity_unlock;
r = kvm_vm_ioctl_set_identity_map_addr(kvm, ident_addr);
set_identity_unlock:
mutex_unlock(&kvm->lock);
break;
}
case KVM_SET_NR_MMU_PAGES:
r = kvm_vm_ioctl_set_nr_mmu_pages(kvm, arg);
break;
case KVM_CREATE_IRQCHIP: {
mutex_lock(&kvm->lock);
r = -EEXIST;
if (irqchip_in_kernel(kvm))
goto create_irqchip_unlock;
r = -EINVAL;
if (kvm->created_vcpus)
goto create_irqchip_unlock;
r = kvm_pic_init(kvm);
if (r)
goto create_irqchip_unlock;
r = kvm_ioapic_init(kvm);
if (r) {
kvm_pic_destroy(kvm);
goto create_irqchip_unlock;
}
r = kvm_setup_default_irq_routing(kvm);
if (r) {
kvm_ioapic_destroy(kvm);
kvm_pic_destroy(kvm);
goto create_irqchip_unlock;
}
/* Write kvm->irq_routing before enabling irqchip_in_kernel. */
smp_wmb();
kvm->arch.irqchip_mode = KVM_IRQCHIP_KERNEL;
kvm_clear_apicv_inhibit(kvm, APICV_INHIBIT_REASON_ABSENT);
create_irqchip_unlock:
mutex_unlock(&kvm->lock);
break;
}
case KVM_CREATE_PIT:
u.pit_config.flags = KVM_PIT_SPEAKER_DUMMY;
goto create_pit;
case KVM_CREATE_PIT2:
r = -EFAULT;
if (copy_from_user(&u.pit_config, argp,
sizeof(struct kvm_pit_config)))
goto out;
create_pit:
mutex_lock(&kvm->lock);
r = -EEXIST;
if (kvm->arch.vpit)
goto create_pit_unlock;
r = -ENOENT;
if (!pic_in_kernel(kvm))
goto create_pit_unlock;
r = -ENOMEM;
kvm->arch.vpit = kvm_create_pit(kvm, u.pit_config.flags);
if (kvm->arch.vpit)
r = 0;
create_pit_unlock:
mutex_unlock(&kvm->lock);
break;
case KVM_GET_IRQCHIP: {
/* 0: PIC master, 1: PIC slave, 2: IOAPIC */
struct kvm_irqchip *chip;
chip = memdup_user(argp, sizeof(*chip));
if (IS_ERR(chip)) {
r = PTR_ERR(chip);
goto out;
}
r = -ENXIO;
if (!irqchip_kernel(kvm))
goto get_irqchip_out;
r = kvm_vm_ioctl_get_irqchip(kvm, chip);
if (r)
goto get_irqchip_out;
r = -EFAULT;
if (copy_to_user(argp, chip, sizeof(*chip)))
goto get_irqchip_out;
r = 0;
get_irqchip_out:
kfree(chip);
break;
}
case KVM_SET_IRQCHIP: {
/* 0: PIC master, 1: PIC slave, 2: IOAPIC */
struct kvm_irqchip *chip;
chip = memdup_user(argp, sizeof(*chip));
if (IS_ERR(chip)) {
r = PTR_ERR(chip);
goto out;
}
r = -ENXIO;
if (!irqchip_kernel(kvm))
goto set_irqchip_out;
r = kvm_vm_ioctl_set_irqchip(kvm, chip);
set_irqchip_out:
kfree(chip);
break;
}
case KVM_GET_PIT: {
r = -EFAULT;
if (copy_from_user(&u.ps, argp, sizeof(struct kvm_pit_state)))
goto out;
r = -ENXIO;
if (!kvm->arch.vpit)
goto out;
r = kvm_vm_ioctl_get_pit(kvm, &u.ps);
if (r)
goto out;
r = -EFAULT;
if (copy_to_user(argp, &u.ps, sizeof(struct kvm_pit_state)))
goto out;
r = 0;
break;
}
case KVM_SET_PIT: {
r = -EFAULT;
if (copy_from_user(&u.ps, argp, sizeof(u.ps)))
goto out;
mutex_lock(&kvm->lock);
r = -ENXIO;
if (!kvm->arch.vpit)
goto set_pit_out;
r = kvm_vm_ioctl_set_pit(kvm, &u.ps);
set_pit_out:
mutex_unlock(&kvm->lock);
break;
}
case KVM_GET_PIT2: {
r = -ENXIO;
if (!kvm->arch.vpit)
goto out;
r = kvm_vm_ioctl_get_pit2(kvm, &u.ps2);
if (r)
goto out;
r = -EFAULT;
if (copy_to_user(argp, &u.ps2, sizeof(u.ps2)))
goto out;
r = 0;
break;
}
case KVM_SET_PIT2: {
r = -EFAULT;
if (copy_from_user(&u.ps2, argp, sizeof(u.ps2)))
goto out;
mutex_lock(&kvm->lock);
r = -ENXIO;
if (!kvm->arch.vpit)
goto set_pit2_out;
r = kvm_vm_ioctl_set_pit2(kvm, &u.ps2);
set_pit2_out:
mutex_unlock(&kvm->lock);
break;
}
case KVM_REINJECT_CONTROL: {
struct kvm_reinject_control control;
r = -EFAULT;
if (copy_from_user(&control, argp, sizeof(control)))
goto out;
r = -ENXIO;
if (!kvm->arch.vpit)
goto out;
r = kvm_vm_ioctl_reinject(kvm, &control);
break;
}
case KVM_SET_BOOT_CPU_ID:
r = 0;
mutex_lock(&kvm->lock);
if (kvm->created_vcpus)
r = -EBUSY;
else if (arg > KVM_MAX_VCPU_IDS ||
(kvm->arch.max_vcpu_ids && arg > kvm->arch.max_vcpu_ids))
r = -EINVAL;
else
kvm->arch.bsp_vcpu_id = arg;
mutex_unlock(&kvm->lock);
break;
#ifdef CONFIG_KVM_XEN
case KVM_XEN_HVM_CONFIG: {
struct kvm_xen_hvm_config xhc;
r = -EFAULT;
if (copy_from_user(&xhc, argp, sizeof(xhc)))
goto out;
r = kvm_xen_hvm_config(kvm, &xhc);
break;
}
case KVM_XEN_HVM_GET_ATTR: {
struct kvm_xen_hvm_attr xha;
r = -EFAULT;
if (copy_from_user(&xha, argp, sizeof(xha)))
goto out;
r = kvm_xen_hvm_get_attr(kvm, &xha);
if (!r && copy_to_user(argp, &xha, sizeof(xha)))
r = -EFAULT;
break;
}
case KVM_XEN_HVM_SET_ATTR: {
struct kvm_xen_hvm_attr xha;
r = -EFAULT;
if (copy_from_user(&xha, argp, sizeof(xha)))
goto out;
r = kvm_xen_hvm_set_attr(kvm, &xha);
break;
}
case KVM_XEN_HVM_EVTCHN_SEND: {
struct kvm_irq_routing_xen_evtchn uxe;
r = -EFAULT;
if (copy_from_user(&uxe, argp, sizeof(uxe)))
goto out;
r = kvm_xen_hvm_evtchn_send(kvm, &uxe);
break;
}
#endif
case KVM_SET_CLOCK:
r = kvm_vm_ioctl_set_clock(kvm, argp);
break;
case KVM_GET_CLOCK:
r = kvm_vm_ioctl_get_clock(kvm, argp);
break;
case KVM_SET_TSC_KHZ: {
u32 user_tsc_khz;
r = -EINVAL;
user_tsc_khz = (u32)arg;
if (kvm_caps.has_tsc_control &&
user_tsc_khz >= kvm_caps.max_guest_tsc_khz)
goto out;
if (user_tsc_khz == 0)
user_tsc_khz = tsc_khz;
WRITE_ONCE(kvm->arch.default_tsc_khz, user_tsc_khz);
r = 0;
goto out;
}
case KVM_GET_TSC_KHZ: {
r = READ_ONCE(kvm->arch.default_tsc_khz);
goto out;
}
case KVM_MEMORY_ENCRYPT_OP: {
r = -ENOTTY;
if (!kvm_x86_ops.mem_enc_ioctl)
goto out;
r = kvm_x86_call(mem_enc_ioctl)(kvm, argp);
break;
}
case KVM_MEMORY_ENCRYPT_REG_REGION: {
struct kvm_enc_region region;
r = -EFAULT;
if (copy_from_user(&region, argp, sizeof(region)))
goto out;
r = -ENOTTY;
if (!kvm_x86_ops.mem_enc_register_region)
goto out;
r = kvm_x86_call(mem_enc_register_region)(kvm, &region);
break;
}
case KVM_MEMORY_ENCRYPT_UNREG_REGION: {
struct kvm_enc_region region;
r = -EFAULT;
if (copy_from_user(&region, argp, sizeof(region)))
goto out;
r = -ENOTTY;
if (!kvm_x86_ops.mem_enc_unregister_region)
goto out;
r = kvm_x86_call(mem_enc_unregister_region)(kvm, &region);
break;
}
#ifdef CONFIG_KVM_HYPERV
case KVM_HYPERV_EVENTFD: {
struct kvm_hyperv_eventfd hvevfd;
r = -EFAULT;
if (copy_from_user(&hvevfd, argp, sizeof(hvevfd)))
goto out;
r = kvm_vm_ioctl_hv_eventfd(kvm, &hvevfd);
break;
}
#endif
case KVM_SET_PMU_EVENT_FILTER:
r = kvm_vm_ioctl_set_pmu_event_filter(kvm, argp);
break;
case KVM_X86_SET_MSR_FILTER: {
struct kvm_msr_filter __user *user_msr_filter = argp;
struct kvm_msr_filter filter;
if (copy_from_user(&filter, user_msr_filter, sizeof(filter)))
return -EFAULT;
r = kvm_vm_ioctl_set_msr_filter(kvm, &filter);
break;
}
default:
r = -ENOTTY;
}
out:
return r;
}
static void kvm_probe_feature_msr(u32 msr_index)
{
u64 data;
if (kvm_get_feature_msr(NULL, msr_index, &data, true))
return;
msr_based_features[num_msr_based_features++] = msr_index;
}
static void kvm_probe_msr_to_save(u32 msr_index)
{
u32 dummy[2];
if (rdmsr_safe(msr_index, &dummy[0], &dummy[1]))
return;
/*
* Even MSRs that are valid in the host may not be exposed to guests in
* some cases.
*/
switch (msr_index) {
case MSR_IA32_BNDCFGS:
if (!kvm_mpx_supported())
return;
break;
case MSR_TSC_AUX:
if (!kvm_cpu_cap_has(X86_FEATURE_RDTSCP) &&
!kvm_cpu_cap_has(X86_FEATURE_RDPID))
return;
break;
case MSR_IA32_UMWAIT_CONTROL:
if (!kvm_cpu_cap_has(X86_FEATURE_WAITPKG))
return;
break;
case MSR_IA32_RTIT_CTL:
case MSR_IA32_RTIT_STATUS:
if (!kvm_cpu_cap_has(X86_FEATURE_INTEL_PT))
return;
break;
case MSR_IA32_RTIT_CR3_MATCH:
if (!kvm_cpu_cap_has(X86_FEATURE_INTEL_PT) ||
!intel_pt_validate_hw_cap(PT_CAP_cr3_filtering))
return;
break;
case MSR_IA32_RTIT_OUTPUT_BASE:
case MSR_IA32_RTIT_OUTPUT_MASK:
if (!kvm_cpu_cap_has(X86_FEATURE_INTEL_PT) ||
(!intel_pt_validate_hw_cap(PT_CAP_topa_output) &&
!intel_pt_validate_hw_cap(PT_CAP_single_range_output)))
return;
break;
case MSR_IA32_RTIT_ADDR0_A ... MSR_IA32_RTIT_ADDR3_B:
if (!kvm_cpu_cap_has(X86_FEATURE_INTEL_PT) ||
(msr_index - MSR_IA32_RTIT_ADDR0_A >=
intel_pt_validate_hw_cap(PT_CAP_num_address_ranges) * 2))
return;
break;
case MSR_ARCH_PERFMON_PERFCTR0 ...
MSR_ARCH_PERFMON_PERFCTR0 + KVM_MAX_NR_GP_COUNTERS - 1:
if (msr_index - MSR_ARCH_PERFMON_PERFCTR0 >=
kvm_pmu_cap.num_counters_gp)
return;
break;
case MSR_ARCH_PERFMON_EVENTSEL0 ...
MSR_ARCH_PERFMON_EVENTSEL0 + KVM_MAX_NR_GP_COUNTERS - 1:
if (msr_index - MSR_ARCH_PERFMON_EVENTSEL0 >=
kvm_pmu_cap.num_counters_gp)
return;
break;
case MSR_ARCH_PERFMON_FIXED_CTR0 ...
MSR_ARCH_PERFMON_FIXED_CTR0 + KVM_MAX_NR_FIXED_COUNTERS - 1:
if (msr_index - MSR_ARCH_PERFMON_FIXED_CTR0 >=
kvm_pmu_cap.num_counters_fixed)
return;
break;
case MSR_AMD64_PERF_CNTR_GLOBAL_CTL:
case MSR_AMD64_PERF_CNTR_GLOBAL_STATUS:
case MSR_AMD64_PERF_CNTR_GLOBAL_STATUS_CLR:
if (!kvm_cpu_cap_has(X86_FEATURE_PERFMON_V2))
return;
break;
case MSR_IA32_XFD:
case MSR_IA32_XFD_ERR:
if (!kvm_cpu_cap_has(X86_FEATURE_XFD))
return;
break;
case MSR_IA32_TSX_CTRL:
if (!(kvm_get_arch_capabilities() & ARCH_CAP_TSX_CTRL_MSR))
return;
break;
default:
break;
}
msrs_to_save[num_msrs_to_save++] = msr_index;
}
static void kvm_init_msr_lists(void)
{
unsigned i;
BUILD_BUG_ON_MSG(KVM_MAX_NR_FIXED_COUNTERS != 3,
"Please update the fixed PMCs in msrs_to_save_pmu[]");
num_msrs_to_save = 0;
num_emulated_msrs = 0;
num_msr_based_features = 0;
for (i = 0; i < ARRAY_SIZE(msrs_to_save_base); i++)
kvm_probe_msr_to_save(msrs_to_save_base[i]);
if (enable_pmu) {
for (i = 0; i < ARRAY_SIZE(msrs_to_save_pmu); i++)
kvm_probe_msr_to_save(msrs_to_save_pmu[i]);
}
for (i = 0; i < ARRAY_SIZE(emulated_msrs_all); i++) {
if (!kvm_x86_call(has_emulated_msr)(NULL,
emulated_msrs_all[i]))
continue;
emulated_msrs[num_emulated_msrs++] = emulated_msrs_all[i];
}
for (i = KVM_FIRST_EMULATED_VMX_MSR; i <= KVM_LAST_EMULATED_VMX_MSR; i++)
kvm_probe_feature_msr(i);
for (i = 0; i < ARRAY_SIZE(msr_based_features_all_except_vmx); i++)
kvm_probe_feature_msr(msr_based_features_all_except_vmx[i]);
}
static int vcpu_mmio_write(struct kvm_vcpu *vcpu, gpa_t addr, int len,
const void *v)
{
int handled = 0;
int n;
do {
n = min(len, 8);
if (!(lapic_in_kernel(vcpu) &&
!kvm_iodevice_write(vcpu, &vcpu->arch.apic->dev, addr, n, v))
&& kvm_io_bus_write(vcpu, KVM_MMIO_BUS, addr, n, v))
break;
handled += n;
addr += n;
len -= n;
v += n;
} while (len);
return handled;
}
static int vcpu_mmio_read(struct kvm_vcpu *vcpu, gpa_t addr, int len, void *v)
{
int handled = 0;
int n;
do {
n = min(len, 8);
if (!(lapic_in_kernel(vcpu) &&
!kvm_iodevice_read(vcpu, &vcpu->arch.apic->dev,
addr, n, v))
&& kvm_io_bus_read(vcpu, KVM_MMIO_BUS, addr, n, v))
break;
trace_kvm_mmio(KVM_TRACE_MMIO_READ, n, addr, v);
handled += n;
addr += n;
len -= n;
v += n;
} while (len);
return handled;
}
void kvm_set_segment(struct kvm_vcpu *vcpu,
struct kvm_segment *var, int seg)
{
kvm_x86_call(set_segment)(vcpu, var, seg);
}
void kvm_get_segment(struct kvm_vcpu *vcpu,
struct kvm_segment *var, int seg)
{
kvm_x86_call(get_segment)(vcpu, var, seg);
}
gpa_t translate_nested_gpa(struct kvm_vcpu *vcpu, gpa_t gpa, u64 access,
struct x86_exception *exception)
{
struct kvm_mmu *mmu = vcpu->arch.mmu;
gpa_t t_gpa;
BUG_ON(!mmu_is_nested(vcpu));
/* NPT walks are always user-walks */
access |= PFERR_USER_MASK;
t_gpa = mmu->gva_to_gpa(vcpu, mmu, gpa, access, exception);
return t_gpa;
}
gpa_t kvm_mmu_gva_to_gpa_read(struct kvm_vcpu *vcpu, gva_t gva,
struct x86_exception *exception)
{
struct kvm_mmu *mmu = vcpu->arch.walk_mmu;
u64 access = (kvm_x86_call(get_cpl)(vcpu) == 3) ? PFERR_USER_MASK : 0;
return mmu->gva_to_gpa(vcpu, mmu, gva, access, exception);
}
EXPORT_SYMBOL_GPL(kvm_mmu_gva_to_gpa_read);
gpa_t kvm_mmu_gva_to_gpa_write(struct kvm_vcpu *vcpu, gva_t gva,
struct x86_exception *exception)
{
struct kvm_mmu *mmu = vcpu->arch.walk_mmu;
u64 access = (kvm_x86_call(get_cpl)(vcpu) == 3) ? PFERR_USER_MASK : 0;
access |= PFERR_WRITE_MASK;
return mmu->gva_to_gpa(vcpu, mmu, gva, access, exception);
}
EXPORT_SYMBOL_GPL(kvm_mmu_gva_to_gpa_write);
/* uses this to access any guest's mapped memory without checking CPL */
gpa_t kvm_mmu_gva_to_gpa_system(struct kvm_vcpu *vcpu, gva_t gva,
struct x86_exception *exception)
{
struct kvm_mmu *mmu = vcpu->arch.walk_mmu;
return mmu->gva_to_gpa(vcpu, mmu, gva, 0, exception);
}
static int kvm_read_guest_virt_helper(gva_t addr, void *val, unsigned int bytes,
struct kvm_vcpu *vcpu, u64 access,
struct x86_exception *exception)
{
struct kvm_mmu *mmu = vcpu->arch.walk_mmu;
void *data = val;
int r = X86EMUL_CONTINUE;
while (bytes) {
gpa_t gpa = mmu->gva_to_gpa(vcpu, mmu, addr, access, exception);
unsigned offset = addr & (PAGE_SIZE-1);
unsigned toread = min(bytes, (unsigned)PAGE_SIZE - offset);
int ret;
if (gpa == INVALID_GPA)
return X86EMUL_PROPAGATE_FAULT;
ret = kvm_vcpu_read_guest_page(vcpu, gpa >> PAGE_SHIFT, data,
offset, toread);
if (ret < 0) {
r = X86EMUL_IO_NEEDED;
goto out;
}
bytes -= toread;
data += toread;
addr += toread;
}
out:
return r;
}
/* used for instruction fetching */
static int kvm_fetch_guest_virt(struct x86_emulate_ctxt *ctxt,
gva_t addr, void *val, unsigned int bytes,
struct x86_exception *exception)
{
struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
struct kvm_mmu *mmu = vcpu->arch.walk_mmu;
u64 access = (kvm_x86_call(get_cpl)(vcpu) == 3) ? PFERR_USER_MASK : 0;
unsigned offset;
int ret;
/* Inline kvm_read_guest_virt_helper for speed. */
gpa_t gpa = mmu->gva_to_gpa(vcpu, mmu, addr, access|PFERR_FETCH_MASK,
exception);
if (unlikely(gpa == INVALID_GPA))
return X86EMUL_PROPAGATE_FAULT;
offset = addr & (PAGE_SIZE-1);
if (WARN_ON(offset + bytes > PAGE_SIZE))
bytes = (unsigned)PAGE_SIZE - offset;
ret = kvm_vcpu_read_guest_page(vcpu, gpa >> PAGE_SHIFT, val,
offset, bytes);
if (unlikely(ret < 0))
return X86EMUL_IO_NEEDED;
return X86EMUL_CONTINUE;
}
int kvm_read_guest_virt(struct kvm_vcpu *vcpu,
gva_t addr, void *val, unsigned int bytes,
struct x86_exception *exception)
{
u64 access = (kvm_x86_call(get_cpl)(vcpu) == 3) ? PFERR_USER_MASK : 0;
/*
* FIXME: this should call handle_emulation_failure if X86EMUL_IO_NEEDED
* is returned, but our callers are not ready for that and they blindly
* call kvm_inject_page_fault. Ensure that they at least do not leak
* uninitialized kernel stack memory into cr2 and error code.
*/
memset(exception, 0, sizeof(*exception));
return kvm_read_guest_virt_helper(addr, val, bytes, vcpu, access,
exception);
}
EXPORT_SYMBOL_GPL(kvm_read_guest_virt);
static int emulator_read_std(struct x86_emulate_ctxt *ctxt,
gva_t addr, void *val, unsigned int bytes,
struct x86_exception *exception, bool system)
{
struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
u64 access = 0;
if (system)
access |= PFERR_IMPLICIT_ACCESS;
else if (kvm_x86_call(get_cpl)(vcpu) == 3)
access |= PFERR_USER_MASK;
return kvm_read_guest_virt_helper(addr, val, bytes, vcpu, access, exception);
}
static int kvm_write_guest_virt_helper(gva_t addr, void *val, unsigned int bytes,
struct kvm_vcpu *vcpu, u64 access,
struct x86_exception *exception)
{
struct kvm_mmu *mmu = vcpu->arch.walk_mmu;
void *data = val;
int r = X86EMUL_CONTINUE;
while (bytes) {
gpa_t gpa = mmu->gva_to_gpa(vcpu, mmu, addr, access, exception);
unsigned offset = addr & (PAGE_SIZE-1);
unsigned towrite = min(bytes, (unsigned)PAGE_SIZE - offset);
int ret;
if (gpa == INVALID_GPA)
return X86EMUL_PROPAGATE_FAULT;
ret = kvm_vcpu_write_guest(vcpu, gpa, data, towrite);
if (ret < 0) {
r = X86EMUL_IO_NEEDED;
goto out;
}
bytes -= towrite;
data += towrite;
addr += towrite;
}
out:
return r;
}
static int emulator_write_std(struct x86_emulate_ctxt *ctxt, gva_t addr, void *val,
unsigned int bytes, struct x86_exception *exception,
bool system)
{
struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
u64 access = PFERR_WRITE_MASK;
if (system)
access |= PFERR_IMPLICIT_ACCESS;
else if (kvm_x86_call(get_cpl)(vcpu) == 3)
access |= PFERR_USER_MASK;
return kvm_write_guest_virt_helper(addr, val, bytes, vcpu,
access, exception);
}
int kvm_write_guest_virt_system(struct kvm_vcpu *vcpu, gva_t addr, void *val,
unsigned int bytes, struct x86_exception *exception)
{
/* kvm_write_guest_virt_system can pull in tons of pages. */
vcpu->arch.l1tf_flush_l1d = true;
return kvm_write_guest_virt_helper(addr, val, bytes, vcpu,
PFERR_WRITE_MASK, exception);
}
EXPORT_SYMBOL_GPL(kvm_write_guest_virt_system);
static int kvm_check_emulate_insn(struct kvm_vcpu *vcpu, int emul_type,
void *insn, int insn_len)
{
return kvm_x86_call(check_emulate_instruction)(vcpu, emul_type,
insn, insn_len);
}
int handle_ud(struct kvm_vcpu *vcpu)
{
static const char kvm_emulate_prefix[] = { __KVM_EMULATE_PREFIX };
int fep_flags = READ_ONCE(force_emulation_prefix);
int emul_type = EMULTYPE_TRAP_UD;
char sig[5]; /* ud2; .ascii "kvm" */
struct x86_exception e;
int r;
r = kvm_check_emulate_insn(vcpu, emul_type, NULL, 0);
if (r != X86EMUL_CONTINUE)
return 1;
if (fep_flags &&
kvm_read_guest_virt(vcpu, kvm_get_linear_rip(vcpu),
sig, sizeof(sig), &e) == 0 &&
memcmp(sig, kvm_emulate_prefix, sizeof(sig)) == 0) {
if (fep_flags & KVM_FEP_CLEAR_RFLAGS_RF)
kvm_set_rflags(vcpu, kvm_get_rflags(vcpu) & ~X86_EFLAGS_RF);
kvm_rip_write(vcpu, kvm_rip_read(vcpu) + sizeof(sig));
emul_type = EMULTYPE_TRAP_UD_FORCED;
}
return kvm_emulate_instruction(vcpu, emul_type);
}
EXPORT_SYMBOL_GPL(handle_ud);
static int vcpu_is_mmio_gpa(struct kvm_vcpu *vcpu, unsigned long gva,
gpa_t gpa, bool write)
{
/* For APIC access vmexit */
if ((gpa & PAGE_MASK) == APIC_DEFAULT_PHYS_BASE)
return 1;
if (vcpu_match_mmio_gpa(vcpu, gpa)) {
trace_vcpu_match_mmio(gva, gpa, write, true);
return 1;
}
return 0;
}
static int vcpu_mmio_gva_to_gpa(struct kvm_vcpu *vcpu, unsigned long gva,
gpa_t *gpa, struct x86_exception *exception,
bool write)
{
struct kvm_mmu *mmu = vcpu->arch.walk_mmu;
u64 access = ((kvm_x86_call(get_cpl)(vcpu) == 3) ? PFERR_USER_MASK : 0)
| (write ? PFERR_WRITE_MASK : 0);
/*
* currently PKRU is only applied to ept enabled guest so
* there is no pkey in EPT page table for L1 guest or EPT
* shadow page table for L2 guest.
*/
if (vcpu_match_mmio_gva(vcpu, gva) && (!is_paging(vcpu) ||
!permission_fault(vcpu, vcpu->arch.walk_mmu,
vcpu->arch.mmio_access, 0, access))) {
*gpa = vcpu->arch.mmio_gfn << PAGE_SHIFT |
(gva & (PAGE_SIZE - 1));
trace_vcpu_match_mmio(gva, *gpa, write, false);
return 1;
}
*gpa = mmu->gva_to_gpa(vcpu, mmu, gva, access, exception);
if (*gpa == INVALID_GPA)
return -1;
return vcpu_is_mmio_gpa(vcpu, gva, *gpa, write);
}
int emulator_write_phys(struct kvm_vcpu *vcpu, gpa_t gpa,
const void *val, int bytes)
{
int ret;
ret = kvm_vcpu_write_guest(vcpu, gpa, val, bytes);
if (ret < 0)
return 0;
kvm_page_track_write(vcpu, gpa, val, bytes);
return 1;
}
struct read_write_emulator_ops {
int (*read_write_prepare)(struct kvm_vcpu *vcpu, void *val,
int bytes);
int (*read_write_emulate)(struct kvm_vcpu *vcpu, gpa_t gpa,
void *val, int bytes);
int (*read_write_mmio)(struct kvm_vcpu *vcpu, gpa_t gpa,
int bytes, void *val);
int (*read_write_exit_mmio)(struct kvm_vcpu *vcpu, gpa_t gpa,
void *val, int bytes);
bool write;
};
static int read_prepare(struct kvm_vcpu *vcpu, void *val, int bytes)
{
if (vcpu->mmio_read_completed) {
trace_kvm_mmio(KVM_TRACE_MMIO_READ, bytes,
vcpu->mmio_fragments[0].gpa, val);
vcpu->mmio_read_completed = 0;
return 1;
}
return 0;
}
static int read_emulate(struct kvm_vcpu *vcpu, gpa_t gpa,
void *val, int bytes)
{
return !kvm_vcpu_read_guest(vcpu, gpa, val, bytes);
}
static int write_emulate(struct kvm_vcpu *vcpu, gpa_t gpa,
void *val, int bytes)
{
return emulator_write_phys(vcpu, gpa, val, bytes);
}
static int write_mmio(struct kvm_vcpu *vcpu, gpa_t gpa, int bytes, void *val)
{
trace_kvm_mmio(KVM_TRACE_MMIO_WRITE, bytes, gpa, val);
return vcpu_mmio_write(vcpu, gpa, bytes, val);
}
static int read_exit_mmio(struct kvm_vcpu *vcpu, gpa_t gpa,
void *val, int bytes)
{
trace_kvm_mmio(KVM_TRACE_MMIO_READ_UNSATISFIED, bytes, gpa, NULL);
return X86EMUL_IO_NEEDED;
}
static int write_exit_mmio(struct kvm_vcpu *vcpu, gpa_t gpa,
void *val, int bytes)
{
struct kvm_mmio_fragment *frag = &vcpu->mmio_fragments[0];
memcpy(vcpu->run->mmio.data, frag->data, min(8u, frag->len));
return X86EMUL_CONTINUE;
}
static const struct read_write_emulator_ops read_emultor = {
.read_write_prepare = read_prepare,
.read_write_emulate = read_emulate,
.read_write_mmio = vcpu_mmio_read,
.read_write_exit_mmio = read_exit_mmio,
};
static const struct read_write_emulator_ops write_emultor = {
.read_write_emulate = write_emulate,
.read_write_mmio = write_mmio,
.read_write_exit_mmio = write_exit_mmio,
.write = true,
};
static int emulator_read_write_onepage(unsigned long addr, void *val,
unsigned int bytes,
struct x86_exception *exception,
struct kvm_vcpu *vcpu,
const struct read_write_emulator_ops *ops)
{
gpa_t gpa;
int handled, ret;
bool write = ops->write;
struct kvm_mmio_fragment *frag;
struct x86_emulate_ctxt *ctxt = vcpu->arch.emulate_ctxt;
/*
* If the exit was due to a NPF we may already have a GPA.
* If the GPA is present, use it to avoid the GVA to GPA table walk.
* Note, this cannot be used on string operations since string
* operation using rep will only have the initial GPA from the NPF
* occurred.
*/
if (ctxt->gpa_available && emulator_can_use_gpa(ctxt) &&
(addr & ~PAGE_MASK) == (ctxt->gpa_val & ~PAGE_MASK)) {
gpa = ctxt->gpa_val;
ret = vcpu_is_mmio_gpa(vcpu, addr, gpa, write);
} else {
ret = vcpu_mmio_gva_to_gpa(vcpu, addr, &gpa, exception, write);
if (ret < 0)
return X86EMUL_PROPAGATE_FAULT;
}
if (!ret && ops->read_write_emulate(vcpu, gpa, val, bytes))
return X86EMUL_CONTINUE;
/*
* Is this MMIO handled locally?
*/
handled = ops->read_write_mmio(vcpu, gpa, bytes, val);
if (handled == bytes)
return X86EMUL_CONTINUE;
gpa += handled;
bytes -= handled;
val += handled;
WARN_ON(vcpu->mmio_nr_fragments >= KVM_MAX_MMIO_FRAGMENTS);
frag = &vcpu->mmio_fragments[vcpu->mmio_nr_fragments++];
frag->gpa = gpa;
frag->data = val;
frag->len = bytes;
return X86EMUL_CONTINUE;
}
static int emulator_read_write(struct x86_emulate_ctxt *ctxt,
unsigned long addr,
void *val, unsigned int bytes,
struct x86_exception *exception,
const struct read_write_emulator_ops *ops)
{
struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
gpa_t gpa;
int rc;
if (ops->read_write_prepare &&
ops->read_write_prepare(vcpu, val, bytes))
return X86EMUL_CONTINUE;
vcpu->mmio_nr_fragments = 0;
/* Crossing a page boundary? */
if (((addr + bytes - 1) ^ addr) & PAGE_MASK) {
int now;
now = -addr & ~PAGE_MASK;
rc = emulator_read_write_onepage(addr, val, now, exception,
vcpu, ops);
if (rc != X86EMUL_CONTINUE)
return rc;
addr += now;
if (ctxt->mode != X86EMUL_MODE_PROT64)
addr = (u32)addr;
val += now;
bytes -= now;
}
rc = emulator_read_write_onepage(addr, val, bytes, exception,
vcpu, ops);
if (rc != X86EMUL_CONTINUE)
return rc;
if (!vcpu->mmio_nr_fragments)
return rc;
gpa = vcpu->mmio_fragments[0].gpa;
vcpu->mmio_needed = 1;
vcpu->mmio_cur_fragment = 0;
vcpu->run->mmio.len = min(8u, vcpu->mmio_fragments[0].len);
vcpu->run->mmio.is_write = vcpu->mmio_is_write = ops->write;
vcpu->run->exit_reason = KVM_EXIT_MMIO;
vcpu->run->mmio.phys_addr = gpa;
return ops->read_write_exit_mmio(vcpu, gpa, val, bytes);
}
static int emulator_read_emulated(struct x86_emulate_ctxt *ctxt,
unsigned long addr,
void *val,
unsigned int bytes,
struct x86_exception *exception)
{
return emulator_read_write(ctxt, addr, val, bytes,
exception, &read_emultor);
}
static int emulator_write_emulated(struct x86_emulate_ctxt *ctxt,
unsigned long addr,
const void *val,
unsigned int bytes,
struct x86_exception *exception)
{
return emulator_read_write(ctxt, addr, (void *)val, bytes,
exception, &write_emultor);
}
#define emulator_try_cmpxchg_user(t, ptr, old, new) \
(__try_cmpxchg_user((t __user *)(ptr), (t *)(old), *(t *)(new), efault ## t))
static int emulator_cmpxchg_emulated(struct x86_emulate_ctxt *ctxt,
unsigned long addr,
const void *old,
const void *new,
unsigned int bytes,
struct x86_exception *exception)
{
struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
u64 page_line_mask;
unsigned long hva;
gpa_t gpa;
int r;
/* guests cmpxchg8b have to be emulated atomically */
if (bytes > 8 || (bytes & (bytes - 1)))
goto emul_write;
gpa = kvm_mmu_gva_to_gpa_write(vcpu, addr, NULL);
if (gpa == INVALID_GPA ||
(gpa & PAGE_MASK) == APIC_DEFAULT_PHYS_BASE)
goto emul_write;
/*
* Emulate the atomic as a straight write to avoid #AC if SLD is
* enabled in the host and the access splits a cache line.
*/
if (boot_cpu_has(X86_FEATURE_SPLIT_LOCK_DETECT))
page_line_mask = ~(cache_line_size() - 1);
else
page_line_mask = PAGE_MASK;
if (((gpa + bytes - 1) & page_line_mask) != (gpa & page_line_mask))
goto emul_write;
hva = kvm_vcpu_gfn_to_hva(vcpu, gpa_to_gfn(gpa));
if (kvm_is_error_hva(hva))
goto emul_write;
hva += offset_in_page(gpa);
switch (bytes) {
case 1:
r = emulator_try_cmpxchg_user(u8, hva, old, new);
break;
case 2:
r = emulator_try_cmpxchg_user(u16, hva, old, new);
break;
case 4:
r = emulator_try_cmpxchg_user(u32, hva, old, new);
break;
case 8:
r = emulator_try_cmpxchg_user(u64, hva, old, new);
break;
default:
BUG();
}
if (r < 0)
return X86EMUL_UNHANDLEABLE;
/*
* Mark the page dirty _before_ checking whether or not the CMPXCHG was
* successful, as the old value is written back on failure. Note, for
* live migration, this is unnecessarily conservative as CMPXCHG writes
* back the original value and the access is atomic, but KVM's ABI is
* that all writes are dirty logged, regardless of the value written.
*/
kvm_vcpu_mark_page_dirty(vcpu, gpa_to_gfn(gpa));
if (r)
return X86EMUL_CMPXCHG_FAILED;
kvm_page_track_write(vcpu, gpa, new, bytes);
return X86EMUL_CONTINUE;
emul_write:
pr_warn_once("emulating exchange as write\n");
return emulator_write_emulated(ctxt, addr, new, bytes, exception);
}
static int emulator_pio_in_out(struct kvm_vcpu *vcpu, int size,
unsigned short port, void *data,
unsigned int count, bool in)
{
unsigned i;
int r;
WARN_ON_ONCE(vcpu->arch.pio.count);
for (i = 0; i < count; i++) {
if (in)
r = kvm_io_bus_read(vcpu, KVM_PIO_BUS, port, size, data);
else
r = kvm_io_bus_write(vcpu, KVM_PIO_BUS, port, size, data);
if (r) {
if (i == 0)
goto userspace_io;
/*
* Userspace must have unregistered the device while PIO
* was running. Drop writes / read as 0.
*/
if (in)
memset(data, 0, size * (count - i));
break;
}
data += size;
}
return 1;
userspace_io:
vcpu->arch.pio.port = port;
vcpu->arch.pio.in = in;
vcpu->arch.pio.count = count;
vcpu->arch.pio.size = size;
if (in)
memset(vcpu->arch.pio_data, 0, size * count);
else
memcpy(vcpu->arch.pio_data, data, size * count);
vcpu->run->exit_reason = KVM_EXIT_IO;
vcpu->run->io.direction = in ? KVM_EXIT_IO_IN : KVM_EXIT_IO_OUT;
vcpu->run->io.size = size;
vcpu->run->io.data_offset = KVM_PIO_PAGE_OFFSET * PAGE_SIZE;
vcpu->run->io.count = count;
vcpu->run->io.port = port;
return 0;
}
static int emulator_pio_in(struct kvm_vcpu *vcpu, int size,
unsigned short port, void *val, unsigned int count)
{
int r = emulator_pio_in_out(vcpu, size, port, val, count, true);
if (r)
trace_kvm_pio(KVM_PIO_IN, port, size, count, val);
return r;
}
static void complete_emulator_pio_in(struct kvm_vcpu *vcpu, void *val)
{
int size = vcpu->arch.pio.size;
unsigned int count = vcpu->arch.pio.count;
memcpy(val, vcpu->arch.pio_data, size * count);
trace_kvm_pio(KVM_PIO_IN, vcpu->arch.pio.port, size, count, vcpu->arch.pio_data);
vcpu->arch.pio.count = 0;
}
static int emulator_pio_in_emulated(struct x86_emulate_ctxt *ctxt,
int size, unsigned short port, void *val,
unsigned int count)
{
struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
if (vcpu->arch.pio.count) {
/*
* Complete a previous iteration that required userspace I/O.
* Note, @count isn't guaranteed to match pio.count as userspace
* can modify ECX before rerunning the vCPU. Ignore any such
* shenanigans as KVM doesn't support modifying the rep count,
* and the emulator ensures @count doesn't overflow the buffer.
*/
complete_emulator_pio_in(vcpu, val);
return 1;
}
return emulator_pio_in(vcpu, size, port, val, count);
}
static int emulator_pio_out(struct kvm_vcpu *vcpu, int size,
unsigned short port, const void *val,
unsigned int count)
{
trace_kvm_pio(KVM_PIO_OUT, port, size, count, val);
return emulator_pio_in_out(vcpu, size, port, (void *)val, count, false);
}
static int emulator_pio_out_emulated(struct x86_emulate_ctxt *ctxt,
int size, unsigned short port,
const void *val, unsigned int count)
{
return emulator_pio_out(emul_to_vcpu(ctxt), size, port, val, count);
}
static unsigned long get_segment_base(struct kvm_vcpu *vcpu, int seg)
{
return kvm_x86_call(get_segment_base)(vcpu, seg);
}
static void emulator_invlpg(struct x86_emulate_ctxt *ctxt, ulong address)
{
kvm_mmu_invlpg(emul_to_vcpu(ctxt), address);
}
static int kvm_emulate_wbinvd_noskip(struct kvm_vcpu *vcpu)
{
if (!need_emulate_wbinvd(vcpu))
return X86EMUL_CONTINUE;
if (kvm_x86_call(has_wbinvd_exit)()) {
int cpu = get_cpu();
cpumask_set_cpu(cpu, vcpu->arch.wbinvd_dirty_mask);
on_each_cpu_mask(vcpu->arch.wbinvd_dirty_mask,
wbinvd_ipi, NULL, 1);
put_cpu();
cpumask_clear(vcpu->arch.wbinvd_dirty_mask);
} else
wbinvd();
return X86EMUL_CONTINUE;
}
int kvm_emulate_wbinvd(struct kvm_vcpu *vcpu)
{
kvm_emulate_wbinvd_noskip(vcpu);
return kvm_skip_emulated_instruction(vcpu);
}
EXPORT_SYMBOL_GPL(kvm_emulate_wbinvd);
static void emulator_wbinvd(struct x86_emulate_ctxt *ctxt)
{
kvm_emulate_wbinvd_noskip(emul_to_vcpu(ctxt));
}
static unsigned long emulator_get_dr(struct x86_emulate_ctxt *ctxt, int dr)
{
return kvm_get_dr(emul_to_vcpu(ctxt), dr);
}
static int emulator_set_dr(struct x86_emulate_ctxt *ctxt, int dr,
unsigned long value)
{
return kvm_set_dr(emul_to_vcpu(ctxt), dr, value);
}
static u64 mk_cr_64(u64 curr_cr, u32 new_val)
{
return (curr_cr & ~((1ULL << 32) - 1)) | new_val;
}
static unsigned long emulator_get_cr(struct x86_emulate_ctxt *ctxt, int cr)
{
struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
unsigned long value;
switch (cr) {
case 0:
value = kvm_read_cr0(vcpu);
break;
case 2:
value = vcpu->arch.cr2;
break;
case 3:
value = kvm_read_cr3(vcpu);
break;
case 4:
value = kvm_read_cr4(vcpu);
break;
case 8:
value = kvm_get_cr8(vcpu);
break;
default:
kvm_err("%s: unexpected cr %u\n", __func__, cr);
return 0;
}
return value;
}
static int emulator_set_cr(struct x86_emulate_ctxt *ctxt, int cr, ulong val)
{
struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
int res = 0;
switch (cr) {
case 0:
res = kvm_set_cr0(vcpu, mk_cr_64(kvm_read_cr0(vcpu), val));
break;
case 2:
vcpu->arch.cr2 = val;
break;
case 3:
res = kvm_set_cr3(vcpu, val);
break;
case 4:
res = kvm_set_cr4(vcpu, mk_cr_64(kvm_read_cr4(vcpu), val));
break;
case 8:
res = kvm_set_cr8(vcpu, val);
break;
default:
kvm_err("%s: unexpected cr %u\n", __func__, cr);
res = -1;
}
return res;
}
static int emulator_get_cpl(struct x86_emulate_ctxt *ctxt)
{
return kvm_x86_call(get_cpl)(emul_to_vcpu(ctxt));
}
static void emulator_get_gdt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt)
{
kvm_x86_call(get_gdt)(emul_to_vcpu(ctxt), dt);
}
static void emulator_get_idt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt)
{
kvm_x86_call(get_idt)(emul_to_vcpu(ctxt), dt);
}
static void emulator_set_gdt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt)
{
kvm_x86_call(set_gdt)(emul_to_vcpu(ctxt), dt);
}
static void emulator_set_idt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt)
{
kvm_x86_call(set_idt)(emul_to_vcpu(ctxt), dt);
}
static unsigned long emulator_get_cached_segment_base(
struct x86_emulate_ctxt *ctxt, int seg)
{
return get_segment_base(emul_to_vcpu(ctxt), seg);
}
static bool emulator_get_segment(struct x86_emulate_ctxt *ctxt, u16 *selector,
struct desc_struct *desc, u32 *base3,
int seg)
{
struct kvm_segment var;
kvm_get_segment(emul_to_vcpu(ctxt), &var, seg);
*selector = var.selector;
if (var.unusable) {
memset(desc, 0, sizeof(*desc));
if (base3)
*base3 = 0;
return false;
}
if (var.g)
var.limit >>= 12;
set_desc_limit(desc, var.limit);
set_desc_base(desc, (unsigned long)var.base);
#ifdef CONFIG_X86_64
if (base3)
*base3 = var.base >> 32;
#endif
desc->type = var.type;
desc->s = var.s;
desc->dpl = var.dpl;
desc->p = var.present;
desc->avl = var.avl;
desc->l = var.l;
desc->d = var.db;
desc->g = var.g;
return true;
}
static void emulator_set_segment(struct x86_emulate_ctxt *ctxt, u16 selector,
struct desc_struct *desc, u32 base3,
int seg)
{
struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
struct kvm_segment var;
var.selector = selector;
var.base = get_desc_base(desc);
#ifdef CONFIG_X86_64
var.base |= ((u64)base3) << 32;
#endif
var.limit = get_desc_limit(desc);
if (desc->g)
var.limit = (var.limit << 12) | 0xfff;
var.type = desc->type;
var.dpl = desc->dpl;
var.db = desc->d;
var.s = desc->s;
var.l = desc->l;
var.g = desc->g;
var.avl = desc->avl;
var.present = desc->p;
var.unusable = !var.present;
var.padding = 0;
kvm_set_segment(vcpu, &var, seg);
return;
}
static int emulator_get_msr_with_filter(struct x86_emulate_ctxt *ctxt,
u32 msr_index, u64 *pdata)
{
struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
int r;
r = kvm_get_msr_with_filter(vcpu, msr_index, pdata);
if (r < 0)
return X86EMUL_UNHANDLEABLE;
if (r) {
if (kvm_msr_user_space(vcpu, msr_index, KVM_EXIT_X86_RDMSR, 0,
complete_emulated_rdmsr, r))
return X86EMUL_IO_NEEDED;
trace_kvm_msr_read_ex(msr_index);
return X86EMUL_PROPAGATE_FAULT;
}
trace_kvm_msr_read(msr_index, *pdata);
return X86EMUL_CONTINUE;
}
static int emulator_set_msr_with_filter(struct x86_emulate_ctxt *ctxt,
u32 msr_index, u64 data)
{
struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
int r;
r = kvm_set_msr_with_filter(vcpu, msr_index, data);
if (r < 0)
return X86EMUL_UNHANDLEABLE;
if (r) {
if (kvm_msr_user_space(vcpu, msr_index, KVM_EXIT_X86_WRMSR, data,
complete_emulated_msr_access, r))
return X86EMUL_IO_NEEDED;
trace_kvm_msr_write_ex(msr_index, data);
return X86EMUL_PROPAGATE_FAULT;
}
trace_kvm_msr_write(msr_index, data);
return X86EMUL_CONTINUE;
}
static int emulator_get_msr(struct x86_emulate_ctxt *ctxt,
u32 msr_index, u64 *pdata)
{
return kvm_get_msr(emul_to_vcpu(ctxt), msr_index, pdata);
}
static int emulator_check_rdpmc_early(struct x86_emulate_ctxt *ctxt, u32 pmc)
{
return kvm_pmu_check_rdpmc_early(emul_to_vcpu(ctxt), pmc);
}
static int emulator_read_pmc(struct x86_emulate_ctxt *ctxt,
u32 pmc, u64 *pdata)
{
return kvm_pmu_rdpmc(emul_to_vcpu(ctxt), pmc, pdata);
}
static void emulator_halt(struct x86_emulate_ctxt *ctxt)
{
emul_to_vcpu(ctxt)->arch.halt_request = 1;
}
static int emulator_intercept(struct x86_emulate_ctxt *ctxt,
struct x86_instruction_info *info,
enum x86_intercept_stage stage)
{
return kvm_x86_call(check_intercept)(emul_to_vcpu(ctxt), info, stage,
&ctxt->exception);
}
static bool emulator_get_cpuid(struct x86_emulate_ctxt *ctxt,
u32 *eax, u32 *ebx, u32 *ecx, u32 *edx,
bool exact_only)
{
return kvm_cpuid(emul_to_vcpu(ctxt), eax, ebx, ecx, edx, exact_only);
}
static bool emulator_guest_has_movbe(struct x86_emulate_ctxt *ctxt)
{
return guest_cpuid_has(emul_to_vcpu(ctxt), X86_FEATURE_MOVBE);
}
static bool emulator_guest_has_fxsr(struct x86_emulate_ctxt *ctxt)
{
return guest_cpuid_has(emul_to_vcpu(ctxt), X86_FEATURE_FXSR);
}
static bool emulator_guest_has_rdpid(struct x86_emulate_ctxt *ctxt)
{
return guest_cpuid_has(emul_to_vcpu(ctxt), X86_FEATURE_RDPID);
}
static bool emulator_guest_cpuid_is_intel_compatible(struct x86_emulate_ctxt *ctxt)
{
return guest_cpuid_is_intel_compatible(emul_to_vcpu(ctxt));
}
static ulong emulator_read_gpr(struct x86_emulate_ctxt *ctxt, unsigned reg)
{
return kvm_register_read_raw(emul_to_vcpu(ctxt), reg);
}
static void emulator_write_gpr(struct x86_emulate_ctxt *ctxt, unsigned reg, ulong val)
{
kvm_register_write_raw(emul_to_vcpu(ctxt), reg, val);
}
static void emulator_set_nmi_mask(struct x86_emulate_ctxt *ctxt, bool masked)
{
kvm_x86_call(set_nmi_mask)(emul_to_vcpu(ctxt), masked);
}
static bool emulator_is_smm(struct x86_emulate_ctxt *ctxt)
{
return is_smm(emul_to_vcpu(ctxt));
}
static bool emulator_is_guest_mode(struct x86_emulate_ctxt *ctxt)
{
return is_guest_mode(emul_to_vcpu(ctxt));
}
#ifndef CONFIG_KVM_SMM
static int emulator_leave_smm(struct x86_emulate_ctxt *ctxt)
{
WARN_ON_ONCE(1);
return X86EMUL_UNHANDLEABLE;
}
#endif
static void emulator_triple_fault(struct x86_emulate_ctxt *ctxt)
{
kvm_make_request(KVM_REQ_TRIPLE_FAULT, emul_to_vcpu(ctxt));
}
static int emulator_set_xcr(struct x86_emulate_ctxt *ctxt, u32 index, u64 xcr)
{
return __kvm_set_xcr(emul_to_vcpu(ctxt), index, xcr);
}
static void emulator_vm_bugged(struct x86_emulate_ctxt *ctxt)
{
struct kvm *kvm = emul_to_vcpu(ctxt)->kvm;
if (!kvm->vm_bugged)
kvm_vm_bugged(kvm);
}
static gva_t emulator_get_untagged_addr(struct x86_emulate_ctxt *ctxt,
gva_t addr, unsigned int flags)
{
if (!kvm_x86_ops.get_untagged_addr)
return addr;
return kvm_x86_call(get_untagged_addr)(emul_to_vcpu(ctxt),
addr, flags);
}
static const struct x86_emulate_ops emulate_ops = {
.vm_bugged = emulator_vm_bugged,
.read_gpr = emulator_read_gpr,
.write_gpr = emulator_write_gpr,
.read_std = emulator_read_std,
.write_std = emulator_write_std,
.fetch = kvm_fetch_guest_virt,
.read_emulated = emulator_read_emulated,
.write_emulated = emulator_write_emulated,
.cmpxchg_emulated = emulator_cmpxchg_emulated,
.invlpg = emulator_invlpg,
.pio_in_emulated = emulator_pio_in_emulated,
.pio_out_emulated = emulator_pio_out_emulated,
.get_segment = emulator_get_segment,
.set_segment = emulator_set_segment,
.get_cached_segment_base = emulator_get_cached_segment_base,
.get_gdt = emulator_get_gdt,
.get_idt = emulator_get_idt,
.set_gdt = emulator_set_gdt,
.set_idt = emulator_set_idt,
.get_cr = emulator_get_cr,
.set_cr = emulator_set_cr,
.cpl = emulator_get_cpl,
.get_dr = emulator_get_dr,
.set_dr = emulator_set_dr,
.set_msr_with_filter = emulator_set_msr_with_filter,
.get_msr_with_filter = emulator_get_msr_with_filter,
.get_msr = emulator_get_msr,
.check_rdpmc_early = emulator_check_rdpmc_early,
.read_pmc = emulator_read_pmc,
.halt = emulator_halt,
.wbinvd = emulator_wbinvd,
.fix_hypercall = emulator_fix_hypercall,
.intercept = emulator_intercept,
.get_cpuid = emulator_get_cpuid,
.guest_has_movbe = emulator_guest_has_movbe,
.guest_has_fxsr = emulator_guest_has_fxsr,
.guest_has_rdpid = emulator_guest_has_rdpid,
.guest_cpuid_is_intel_compatible = emulator_guest_cpuid_is_intel_compatible,
.set_nmi_mask = emulator_set_nmi_mask,
.is_smm = emulator_is_smm,
.is_guest_mode = emulator_is_guest_mode,
.leave_smm = emulator_leave_smm,
.triple_fault = emulator_triple_fault,
.set_xcr = emulator_set_xcr,
.get_untagged_addr = emulator_get_untagged_addr,
};
static void toggle_interruptibility(struct kvm_vcpu *vcpu, u32 mask)
{
u32 int_shadow = kvm_x86_call(get_interrupt_shadow)(vcpu);
/*
* an sti; sti; sequence only disable interrupts for the first
* instruction. So, if the last instruction, be it emulated or
* not, left the system with the INT_STI flag enabled, it
* means that the last instruction is an sti. We should not
* leave the flag on in this case. The same goes for mov ss
*/
if (int_shadow & mask)
mask = 0;
if (unlikely(int_shadow || mask)) {
kvm_x86_call(set_interrupt_shadow)(vcpu, mask);
if (!mask)
kvm_make_request(KVM_REQ_EVENT, vcpu);
}
}
static void inject_emulated_exception(struct kvm_vcpu *vcpu)
{
struct x86_emulate_ctxt *ctxt = vcpu->arch.emulate_ctxt;
if (ctxt->exception.vector == PF_VECTOR)
kvm_inject_emulated_page_fault(vcpu, &ctxt->exception);
else if (ctxt->exception.error_code_valid)
kvm_queue_exception_e(vcpu, ctxt->exception.vector,
ctxt->exception.error_code);
else
kvm_queue_exception(vcpu, ctxt->exception.vector);
}
static struct x86_emulate_ctxt *alloc_emulate_ctxt(struct kvm_vcpu *vcpu)
{
struct x86_emulate_ctxt *ctxt;
ctxt = kmem_cache_zalloc(x86_emulator_cache, GFP_KERNEL_ACCOUNT);
if (!ctxt) {
pr_err("failed to allocate vcpu's emulator\n");
return NULL;
}
ctxt->vcpu = vcpu;
ctxt->ops = &emulate_ops;
vcpu->arch.emulate_ctxt = ctxt;
return ctxt;
}
static void init_emulate_ctxt(struct kvm_vcpu *vcpu)
{
struct x86_emulate_ctxt *ctxt = vcpu->arch.emulate_ctxt;
int cs_db, cs_l;
kvm_x86_call(get_cs_db_l_bits)(vcpu, &cs_db, &cs_l);
ctxt->gpa_available = false;
ctxt->eflags = kvm_get_rflags(vcpu);
ctxt->tf = (ctxt->eflags & X86_EFLAGS_TF) != 0;
ctxt->eip = kvm_rip_read(vcpu);
ctxt->mode = (!is_protmode(vcpu)) ? X86EMUL_MODE_REAL :
(ctxt->eflags & X86_EFLAGS_VM) ? X86EMUL_MODE_VM86 :
(cs_l && is_long_mode(vcpu)) ? X86EMUL_MODE_PROT64 :
cs_db ? X86EMUL_MODE_PROT32 :
X86EMUL_MODE_PROT16;
ctxt->interruptibility = 0;
ctxt->have_exception = false;
ctxt->exception.vector = -1;
ctxt->perm_ok = false;
init_decode_cache(ctxt);
vcpu->arch.emulate_regs_need_sync_from_vcpu = false;
}
void kvm_inject_realmode_interrupt(struct kvm_vcpu *vcpu, int irq, int inc_eip)
{
struct x86_emulate_ctxt *ctxt = vcpu->arch.emulate_ctxt;
int ret;
init_emulate_ctxt(vcpu);
ctxt->op_bytes = 2;
ctxt->ad_bytes = 2;
ctxt->_eip = ctxt->eip + inc_eip;
ret = emulate_int_real(ctxt, irq);
if (ret != X86EMUL_CONTINUE) {
kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
} else {
ctxt->eip = ctxt->_eip;
kvm_rip_write(vcpu, ctxt->eip);
kvm_set_rflags(vcpu, ctxt->eflags);
}
}
EXPORT_SYMBOL_GPL(kvm_inject_realmode_interrupt);
static void prepare_emulation_failure_exit(struct kvm_vcpu *vcpu, u64 *data,
u8 ndata, u8 *insn_bytes, u8 insn_size)
{
struct kvm_run *run = vcpu->run;
u64 info[5];
u8 info_start;
/*
* Zero the whole array used to retrieve the exit info, as casting to
* u32 for select entries will leave some chunks uninitialized.
*/
memset(&info, 0, sizeof(info));
kvm_x86_call(get_exit_info)(vcpu, (u32 *)&info[0], &info[1], &info[2],
(u32 *)&info[3], (u32 *)&info[4]);
run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
run->emulation_failure.suberror = KVM_INTERNAL_ERROR_EMULATION;
/*
* There's currently space for 13 entries, but 5 are used for the exit
* reason and info. Restrict to 4 to reduce the maintenance burden
* when expanding kvm_run.emulation_failure in the future.
*/
if (WARN_ON_ONCE(ndata > 4))
ndata = 4;
/* Always include the flags as a 'data' entry. */
info_start = 1;
run->emulation_failure.flags = 0;
if (insn_size) {
BUILD_BUG_ON((sizeof(run->emulation_failure.insn_size) +
sizeof(run->emulation_failure.insn_bytes) != 16));
info_start += 2;
run->emulation_failure.flags |=
KVM_INTERNAL_ERROR_EMULATION_FLAG_INSTRUCTION_BYTES;
run->emulation_failure.insn_size = insn_size;
memset(run->emulation_failure.insn_bytes, 0x90,
sizeof(run->emulation_failure.insn_bytes));
memcpy(run->emulation_failure.insn_bytes, insn_bytes, insn_size);
}
memcpy(&run->internal.data[info_start], info, sizeof(info));
memcpy(&run->internal.data[info_start + ARRAY_SIZE(info)], data,
ndata * sizeof(data[0]));
run->emulation_failure.ndata = info_start + ARRAY_SIZE(info) + ndata;
}
static void prepare_emulation_ctxt_failure_exit(struct kvm_vcpu *vcpu)
{
struct x86_emulate_ctxt *ctxt = vcpu->arch.emulate_ctxt;
prepare_emulation_failure_exit(vcpu, NULL, 0, ctxt->fetch.data,
ctxt->fetch.end - ctxt->fetch.data);
}
void __kvm_prepare_emulation_failure_exit(struct kvm_vcpu *vcpu, u64 *data,
u8 ndata)
{
prepare_emulation_failure_exit(vcpu, data, ndata, NULL, 0);
}
EXPORT_SYMBOL_GPL(__kvm_prepare_emulation_failure_exit);
void kvm_prepare_emulation_failure_exit(struct kvm_vcpu *vcpu)
{
__kvm_prepare_emulation_failure_exit(vcpu, NULL, 0);
}
EXPORT_SYMBOL_GPL(kvm_prepare_emulation_failure_exit);
static int handle_emulation_failure(struct kvm_vcpu *vcpu, int emulation_type)
{
struct kvm *kvm = vcpu->kvm;
++vcpu->stat.insn_emulation_fail;
trace_kvm_emulate_insn_failed(vcpu);
if (emulation_type & EMULTYPE_VMWARE_GP) {
kvm_queue_exception_e(vcpu, GP_VECTOR, 0);
return 1;
}
if (kvm->arch.exit_on_emulation_error ||
(emulation_type & EMULTYPE_SKIP)) {
prepare_emulation_ctxt_failure_exit(vcpu);
return 0;
}
kvm_queue_exception(vcpu, UD_VECTOR);
if (!is_guest_mode(vcpu) && kvm_x86_call(get_cpl)(vcpu) == 0) {
prepare_emulation_ctxt_failure_exit(vcpu);
return 0;
}
return 1;
}
static bool kvm_unprotect_and_retry_on_failure(struct kvm_vcpu *vcpu,
gpa_t cr2_or_gpa,
int emulation_type)
{
if (!(emulation_type & EMULTYPE_ALLOW_RETRY_PF))
return false;
/*
* If the failed instruction faulted on an access to page tables that
* are used to translate any part of the instruction, KVM can't resolve
* the issue by unprotecting the gfn, as zapping the shadow page will
* result in the instruction taking a !PRESENT page fault and thus put
* the vCPU into an infinite loop of page faults. E.g. KVM will create
* a SPTE and write-protect the gfn to resolve the !PRESENT fault, and
* then zap the SPTE to unprotect the gfn, and then do it all over
* again. Report the error to userspace.
*/
if (emulation_type & EMULTYPE_WRITE_PF_TO_SP)
return false;
/*
* If emulation may have been triggered by a write to a shadowed page
* table, unprotect the gfn (zap any relevant SPTEs) and re-enter the
* guest to let the CPU re-execute the instruction in the hope that the
* CPU can cleanly execute the instruction that KVM failed to emulate.
*/
__kvm_mmu_unprotect_gfn_and_retry(vcpu, cr2_or_gpa, true);
/*
* Retry even if _this_ vCPU didn't unprotect the gfn, as it's possible
* all SPTEs were already zapped by a different task. The alternative
* is to report the error to userspace and likely terminate the guest,
* and the last_retry_{eip,addr} checks will prevent retrying the page
* fault indefinitely, i.e. there's nothing to lose by retrying.
*/
return true;
}
static int complete_emulated_mmio(struct kvm_vcpu *vcpu);
static int complete_emulated_pio(struct kvm_vcpu *vcpu);
static int kvm_vcpu_check_hw_bp(unsigned long addr, u32 type, u32 dr7,
unsigned long *db)
{
u32 dr6 = 0;
int i;
u32 enable, rwlen;
enable = dr7;
rwlen = dr7 >> 16;
for (i = 0; i < 4; i++, enable >>= 2, rwlen >>= 4)
if ((enable & 3) && (rwlen & 15) == type && db[i] == addr)
dr6 |= (1 << i);
return dr6;
}
static int kvm_vcpu_do_singlestep(struct kvm_vcpu *vcpu)
{
struct kvm_run *kvm_run = vcpu->run;
if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP) {
kvm_run->debug.arch.dr6 = DR6_BS | DR6_ACTIVE_LOW;
kvm_run->debug.arch.pc = kvm_get_linear_rip(vcpu);
kvm_run->debug.arch.exception = DB_VECTOR;
kvm_run->exit_reason = KVM_EXIT_DEBUG;
return 0;
}
kvm_queue_exception_p(vcpu, DB_VECTOR, DR6_BS);
return 1;
}
int kvm_skip_emulated_instruction(struct kvm_vcpu *vcpu)
{
unsigned long rflags = kvm_x86_call(get_rflags)(vcpu);
int r;
r = kvm_x86_call(skip_emulated_instruction)(vcpu);
if (unlikely(!r))
return 0;
kvm_pmu_trigger_event(vcpu, kvm_pmu_eventsel.INSTRUCTIONS_RETIRED);
/*
* rflags is the old, "raw" value of the flags. The new value has
* not been saved yet.
*
* This is correct even for TF set by the guest, because "the
* processor will not generate this exception after the instruction
* that sets the TF flag".
*/
if (unlikely(rflags & X86_EFLAGS_TF))
r = kvm_vcpu_do_singlestep(vcpu);
return r;
}
EXPORT_SYMBOL_GPL(kvm_skip_emulated_instruction);
static bool kvm_is_code_breakpoint_inhibited(struct kvm_vcpu *vcpu)
{
if (kvm_get_rflags(vcpu) & X86_EFLAGS_RF)
return true;
/*
* Intel compatible CPUs inhibit code #DBs when MOV/POP SS blocking is
* active, but AMD compatible CPUs do not.
*/
if (!guest_cpuid_is_intel_compatible(vcpu))
return false;
return kvm_x86_call(get_interrupt_shadow)(vcpu) & KVM_X86_SHADOW_INT_MOV_SS;
}
static bool kvm_vcpu_check_code_breakpoint(struct kvm_vcpu *vcpu,
int emulation_type, int *r)
{
WARN_ON_ONCE(emulation_type & EMULTYPE_NO_DECODE);
/*
* Do not check for code breakpoints if hardware has already done the
* checks, as inferred from the emulation type. On NO_DECODE and SKIP,
* the instruction has passed all exception checks, and all intercepted
* exceptions that trigger emulation have lower priority than code
* breakpoints, i.e. the fact that the intercepted exception occurred
* means any code breakpoints have already been serviced.
*
* Note, KVM needs to check for code #DBs on EMULTYPE_TRAP_UD_FORCED as
* hardware has checked the RIP of the magic prefix, but not the RIP of
* the instruction being emulated. The intent of forced emulation is
* to behave as if KVM intercepted the instruction without an exception
* and without a prefix.
*/
if (emulation_type & (EMULTYPE_NO_DECODE | EMULTYPE_SKIP |
EMULTYPE_TRAP_UD | EMULTYPE_VMWARE_GP | EMULTYPE_PF))
return false;
if (unlikely(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP) &&
(vcpu->arch.guest_debug_dr7 & DR7_BP_EN_MASK)) {
struct kvm_run *kvm_run = vcpu->run;
unsigned long eip = kvm_get_linear_rip(vcpu);
u32 dr6 = kvm_vcpu_check_hw_bp(eip, 0,
vcpu->arch.guest_debug_dr7,
vcpu->arch.eff_db);
if (dr6 != 0) {
kvm_run->debug.arch.dr6 = dr6 | DR6_ACTIVE_LOW;
kvm_run->debug.arch.pc = eip;
kvm_run->debug.arch.exception = DB_VECTOR;
kvm_run->exit_reason = KVM_EXIT_DEBUG;
*r = 0;
return true;
}
}
if (unlikely(vcpu->arch.dr7 & DR7_BP_EN_MASK) &&
!kvm_is_code_breakpoint_inhibited(vcpu)) {
unsigned long eip = kvm_get_linear_rip(vcpu);
u32 dr6 = kvm_vcpu_check_hw_bp(eip, 0,
vcpu->arch.dr7,
vcpu->arch.db);
if (dr6 != 0) {
kvm_queue_exception_p(vcpu, DB_VECTOR, dr6);
*r = 1;
return true;
}
}
return false;
}
static bool is_vmware_backdoor_opcode(struct x86_emulate_ctxt *ctxt)
{
switch (ctxt->opcode_len) {
case 1:
switch (ctxt->b) {
case 0xe4: /* IN */
case 0xe5:
case 0xec:
case 0xed:
case 0xe6: /* OUT */
case 0xe7:
case 0xee:
case 0xef:
case 0x6c: /* INS */
case 0x6d:
case 0x6e: /* OUTS */
case 0x6f:
return true;
}
break;
case 2:
switch (ctxt->b) {
case 0x33: /* RDPMC */
return true;
}
break;
}
return false;
}
/*
* Decode an instruction for emulation. The caller is responsible for handling
* code breakpoints. Note, manually detecting code breakpoints is unnecessary
* (and wrong) when emulating on an intercepted fault-like exception[*], as
* code breakpoints have higher priority and thus have already been done by
* hardware.
*
* [*] Except #MC, which is higher priority, but KVM should never emulate in
* response to a machine check.
*/
int x86_decode_emulated_instruction(struct kvm_vcpu *vcpu, int emulation_type,
void *insn, int insn_len)
{
struct x86_emulate_ctxt *ctxt = vcpu->arch.emulate_ctxt;
int r;
init_emulate_ctxt(vcpu);
r = x86_decode_insn(ctxt, insn, insn_len, emulation_type);
trace_kvm_emulate_insn_start(vcpu);
++vcpu->stat.insn_emulation;
return r;
}
EXPORT_SYMBOL_GPL(x86_decode_emulated_instruction);
int x86_emulate_instruction(struct kvm_vcpu *vcpu, gpa_t cr2_or_gpa,
int emulation_type, void *insn, int insn_len)
{
int r;
struct x86_emulate_ctxt *ctxt = vcpu->arch.emulate_ctxt;
bool writeback = true;
if ((emulation_type & EMULTYPE_ALLOW_RETRY_PF) &&
(WARN_ON_ONCE(is_guest_mode(vcpu)) ||
WARN_ON_ONCE(!(emulation_type & EMULTYPE_PF))))
emulation_type &= ~EMULTYPE_ALLOW_RETRY_PF;
r = kvm_check_emulate_insn(vcpu, emulation_type, insn, insn_len);
if (r != X86EMUL_CONTINUE) {
if (r == X86EMUL_RETRY_INSTR || r == X86EMUL_PROPAGATE_FAULT)
return 1;
WARN_ON_ONCE(r != X86EMUL_UNHANDLEABLE);
return handle_emulation_failure(vcpu, emulation_type);
}
vcpu->arch.l1tf_flush_l1d = true;
if (!(emulation_type & EMULTYPE_NO_DECODE)) {
kvm_clear_exception_queue(vcpu);
/*
* Return immediately if RIP hits a code breakpoint, such #DBs
* are fault-like and are higher priority than any faults on
* the code fetch itself.
*/
if (kvm_vcpu_check_code_breakpoint(vcpu, emulation_type, &r))
return r;
r = x86_decode_emulated_instruction(vcpu, emulation_type,
insn, insn_len);
if (r != EMULATION_OK) {
if ((emulation_type & EMULTYPE_TRAP_UD) ||
(emulation_type & EMULTYPE_TRAP_UD_FORCED)) {
kvm_queue_exception(vcpu, UD_VECTOR);
return 1;
}
if (kvm_unprotect_and_retry_on_failure(vcpu, cr2_or_gpa,
emulation_type))
return 1;
if (ctxt->have_exception &&
!(emulation_type & EMULTYPE_SKIP)) {
/*
* #UD should result in just EMULATION_FAILED, and trap-like
* exception should not be encountered during decode.
*/
WARN_ON_ONCE(ctxt->exception.vector == UD_VECTOR ||
exception_type(ctxt->exception.vector) == EXCPT_TRAP);
inject_emulated_exception(vcpu);
return 1;
}
return handle_emulation_failure(vcpu, emulation_type);
}
}
if ((emulation_type & EMULTYPE_VMWARE_GP) &&
!is_vmware_backdoor_opcode(ctxt)) {
kvm_queue_exception_e(vcpu, GP_VECTOR, 0);
return 1;
}
/*
* EMULTYPE_SKIP without EMULTYPE_COMPLETE_USER_EXIT is intended for
* use *only* by vendor callbacks for kvm_skip_emulated_instruction().
* The caller is responsible for updating interruptibility state and
* injecting single-step #DBs.
*/
if (emulation_type & EMULTYPE_SKIP) {
if (ctxt->mode != X86EMUL_MODE_PROT64)
ctxt->eip = (u32)ctxt->_eip;
else
ctxt->eip = ctxt->_eip;
if (emulation_type & EMULTYPE_COMPLETE_USER_EXIT) {
r = 1;
goto writeback;
}
kvm_rip_write(vcpu, ctxt->eip);
if (ctxt->eflags & X86_EFLAGS_RF)
kvm_set_rflags(vcpu, ctxt->eflags & ~X86_EFLAGS_RF);
return 1;
}
/*
* If emulation was caused by a write-protection #PF on a non-page_table
* writing instruction, try to unprotect the gfn, i.e. zap shadow pages,
* and retry the instruction, as the vCPU is likely no longer using the
* gfn as a page table.
*/
if ((emulation_type & EMULTYPE_ALLOW_RETRY_PF) &&
!x86_page_table_writing_insn(ctxt) &&
kvm_mmu_unprotect_gfn_and_retry(vcpu, cr2_or_gpa))
return 1;
/* this is needed for vmware backdoor interface to work since it
changes registers values during IO operation */
if (vcpu->arch.emulate_regs_need_sync_from_vcpu) {
vcpu->arch.emulate_regs_need_sync_from_vcpu = false;
emulator_invalidate_register_cache(ctxt);
}
restart:
if (emulation_type & EMULTYPE_PF) {
/* Save the faulting GPA (cr2) in the address field */
ctxt->exception.address = cr2_or_gpa;
/* With shadow page tables, cr2 contains a GVA or nGPA. */
if (vcpu->arch.mmu->root_role.direct) {
ctxt->gpa_available = true;
ctxt->gpa_val = cr2_or_gpa;
}
} else {
/* Sanitize the address out of an abundance of paranoia. */
ctxt->exception.address = 0;
}
r = x86_emulate_insn(ctxt);
if (r == EMULATION_INTERCEPTED)
return 1;
if (r == EMULATION_FAILED) {
if (kvm_unprotect_and_retry_on_failure(vcpu, cr2_or_gpa,
emulation_type))
return 1;
return handle_emulation_failure(vcpu, emulation_type);
}
if (ctxt->have_exception) {
WARN_ON_ONCE(vcpu->mmio_needed && !vcpu->mmio_is_write);
vcpu->mmio_needed = false;
r = 1;
inject_emulated_exception(vcpu);
} else if (vcpu->arch.pio.count) {
if (!vcpu->arch.pio.in) {
/* FIXME: return into emulator if single-stepping. */
vcpu->arch.pio.count = 0;
} else {
writeback = false;
vcpu->arch.complete_userspace_io = complete_emulated_pio;
}
r = 0;
} else if (vcpu->mmio_needed) {
++vcpu->stat.mmio_exits;
if (!vcpu->mmio_is_write)
writeback = false;
r = 0;
vcpu->arch.complete_userspace_io = complete_emulated_mmio;
} else if (vcpu->arch.complete_userspace_io) {
writeback = false;
r = 0;
} else if (r == EMULATION_RESTART)
goto restart;
else
r = 1;
writeback:
if (writeback) {
unsigned long rflags = kvm_x86_call(get_rflags)(vcpu);
toggle_interruptibility(vcpu, ctxt->interruptibility);
vcpu->arch.emulate_regs_need_sync_to_vcpu = false;
/*
* Note, EXCPT_DB is assumed to be fault-like as the emulator
* only supports code breakpoints and general detect #DB, both
* of which are fault-like.
*/
if (!ctxt->have_exception ||
exception_type(ctxt->exception.vector) == EXCPT_TRAP) {
kvm_pmu_trigger_event(vcpu, kvm_pmu_eventsel.INSTRUCTIONS_RETIRED);
if (ctxt->is_branch)
kvm_pmu_trigger_event(vcpu, kvm_pmu_eventsel.BRANCH_INSTRUCTIONS_RETIRED);
kvm_rip_write(vcpu, ctxt->eip);
if (r && (ctxt->tf || (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP)))
r = kvm_vcpu_do_singlestep(vcpu);
kvm_x86_call(update_emulated_instruction)(vcpu);
__kvm_set_rflags(vcpu, ctxt->eflags);
}
/*
* For STI, interrupts are shadowed; so KVM_REQ_EVENT will
* do nothing, and it will be requested again as soon as
* the shadow expires. But we still need to check here,
* because POPF has no interrupt shadow.
*/
if (unlikely((ctxt->eflags & ~rflags) & X86_EFLAGS_IF))
kvm_make_request(KVM_REQ_EVENT, vcpu);
} else
vcpu->arch.emulate_regs_need_sync_to_vcpu = true;
return r;
}
int kvm_emulate_instruction(struct kvm_vcpu *vcpu, int emulation_type)
{
return x86_emulate_instruction(vcpu, 0, emulation_type, NULL, 0);
}
EXPORT_SYMBOL_GPL(kvm_emulate_instruction);
int kvm_emulate_instruction_from_buffer(struct kvm_vcpu *vcpu,
void *insn, int insn_len)
{
return x86_emulate_instruction(vcpu, 0, 0, insn, insn_len);
}
EXPORT_SYMBOL_GPL(kvm_emulate_instruction_from_buffer);
static int complete_fast_pio_out_port_0x7e(struct kvm_vcpu *vcpu)
{
vcpu->arch.pio.count = 0;
return 1;
}
static int complete_fast_pio_out(struct kvm_vcpu *vcpu)
{
vcpu->arch.pio.count = 0;
if (unlikely(!kvm_is_linear_rip(vcpu, vcpu->arch.pio.linear_rip)))
return 1;
return kvm_skip_emulated_instruction(vcpu);
}
static int kvm_fast_pio_out(struct kvm_vcpu *vcpu, int size,
unsigned short port)
{
unsigned long val = kvm_rax_read(vcpu);
int ret = emulator_pio_out(vcpu, size, port, &val, 1);
if (ret)
return ret;
/*
* Workaround userspace that relies on old KVM behavior of %rip being
* incremented prior to exiting to userspace to handle "OUT 0x7e".
*/
if (port == 0x7e &&
kvm_check_has_quirk(vcpu->kvm, KVM_X86_QUIRK_OUT_7E_INC_RIP)) {
vcpu->arch.complete_userspace_io =
complete_fast_pio_out_port_0x7e;
kvm_skip_emulated_instruction(vcpu);
} else {
vcpu->arch.pio.linear_rip = kvm_get_linear_rip(vcpu);
vcpu->arch.complete_userspace_io = complete_fast_pio_out;
}
return 0;
}
static int complete_fast_pio_in(struct kvm_vcpu *vcpu)
{
unsigned long val;
/* We should only ever be called with arch.pio.count equal to 1 */
BUG_ON(vcpu->arch.pio.count != 1);
if (unlikely(!kvm_is_linear_rip(vcpu, vcpu->arch.pio.linear_rip))) {
vcpu->arch.pio.count = 0;
return 1;
}
/* For size less than 4 we merge, else we zero extend */
val = (vcpu->arch.pio.size < 4) ? kvm_rax_read(vcpu) : 0;
complete_emulator_pio_in(vcpu, &val);
kvm_rax_write(vcpu, val);
return kvm_skip_emulated_instruction(vcpu);
}
static int kvm_fast_pio_in(struct kvm_vcpu *vcpu, int size,
unsigned short port)
{
unsigned long val;
int ret;
/* For size less than 4 we merge, else we zero extend */
val = (size < 4) ? kvm_rax_read(vcpu) : 0;
ret = emulator_pio_in(vcpu, size, port, &val, 1);
if (ret) {
kvm_rax_write(vcpu, val);
return ret;
}
vcpu->arch.pio.linear_rip = kvm_get_linear_rip(vcpu);
vcpu->arch.complete_userspace_io = complete_fast_pio_in;
return 0;
}
int kvm_fast_pio(struct kvm_vcpu *vcpu, int size, unsigned short port, int in)
{
int ret;
if (in)
ret = kvm_fast_pio_in(vcpu, size, port);
else
ret = kvm_fast_pio_out(vcpu, size, port);
return ret && kvm_skip_emulated_instruction(vcpu);
}
EXPORT_SYMBOL_GPL(kvm_fast_pio);
static int kvmclock_cpu_down_prep(unsigned int cpu)
{
__this_cpu_write(cpu_tsc_khz, 0);
return 0;
}
static void tsc_khz_changed(void *data)
{
struct cpufreq_freqs *freq = data;
unsigned long khz;
WARN_ON_ONCE(boot_cpu_has(X86_FEATURE_CONSTANT_TSC));
if (data)
khz = freq->new;
else
khz = cpufreq_quick_get(raw_smp_processor_id());
if (!khz)
khz = tsc_khz;
__this_cpu_write(cpu_tsc_khz, khz);
}
#ifdef CONFIG_X86_64
static void kvm_hyperv_tsc_notifier(void)
{
struct kvm *kvm;
int cpu;
mutex_lock(&kvm_lock);
list_for_each_entry(kvm, &vm_list, vm_list)
kvm_make_mclock_inprogress_request(kvm);
/* no guest entries from this point */
hyperv_stop_tsc_emulation();
/* TSC frequency always matches when on Hyper-V */
if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC)) {
for_each_present_cpu(cpu)
per_cpu(cpu_tsc_khz, cpu) = tsc_khz;
}
kvm_caps.max_guest_tsc_khz = tsc_khz;
list_for_each_entry(kvm, &vm_list, vm_list) {
__kvm_start_pvclock_update(kvm);
pvclock_update_vm_gtod_copy(kvm);
kvm_end_pvclock_update(kvm);
}
mutex_unlock(&kvm_lock);
}
#endif
static void __kvmclock_cpufreq_notifier(struct cpufreq_freqs *freq, int cpu)
{
struct kvm *kvm;
struct kvm_vcpu *vcpu;
int send_ipi = 0;
unsigned long i;
/*
* We allow guests to temporarily run on slowing clocks,
* provided we notify them after, or to run on accelerating
* clocks, provided we notify them before. Thus time never
* goes backwards.
*
* However, we have a problem. We can't atomically update
* the frequency of a given CPU from this function; it is
* merely a notifier, which can be called from any CPU.
* Changing the TSC frequency at arbitrary points in time
* requires a recomputation of local variables related to
* the TSC for each VCPU. We must flag these local variables
* to be updated and be sure the update takes place with the
* new frequency before any guests proceed.
*
* Unfortunately, the combination of hotplug CPU and frequency
* change creates an intractable locking scenario; the order
* of when these callouts happen is undefined with respect to
* CPU hotplug, and they can race with each other. As such,
* merely setting per_cpu(cpu_tsc_khz) = X during a hotadd is
* undefined; you can actually have a CPU frequency change take
* place in between the computation of X and the setting of the
* variable. To protect against this problem, all updates of
* the per_cpu tsc_khz variable are done in an interrupt
* protected IPI, and all callers wishing to update the value
* must wait for a synchronous IPI to complete (which is trivial
* if the caller is on the CPU already). This establishes the
* necessary total order on variable updates.
*
* Note that because a guest time update may take place
* anytime after the setting of the VCPU's request bit, the
* correct TSC value must be set before the request. However,
* to ensure the update actually makes it to any guest which
* starts running in hardware virtualization between the set
* and the acquisition of the spinlock, we must also ping the
* CPU after setting the request bit.
*
*/
smp_call_function_single(cpu, tsc_khz_changed, freq, 1);
mutex_lock(&kvm_lock);
list_for_each_entry(kvm, &vm_list, vm_list) {
kvm_for_each_vcpu(i, vcpu, kvm) {
if (vcpu->cpu != cpu)
continue;
kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
if (vcpu->cpu != raw_smp_processor_id())
send_ipi = 1;
}
}
mutex_unlock(&kvm_lock);
if (freq->old < freq->new && send_ipi) {
/*
* We upscale the frequency. Must make the guest
* doesn't see old kvmclock values while running with
* the new frequency, otherwise we risk the guest sees
* time go backwards.
*
* In case we update the frequency for another cpu
* (which might be in guest context) send an interrupt
* to kick the cpu out of guest context. Next time
* guest context is entered kvmclock will be updated,
* so the guest will not see stale values.
*/
smp_call_function_single(cpu, tsc_khz_changed, freq, 1);
}
}
static int kvmclock_cpufreq_notifier(struct notifier_block *nb, unsigned long val,
void *data)
{
struct cpufreq_freqs *freq = data;
int cpu;
if (val == CPUFREQ_PRECHANGE && freq->old > freq->new)
return 0;
if (val == CPUFREQ_POSTCHANGE && freq->old < freq->new)
return 0;
for_each_cpu(cpu, freq->policy->cpus)
__kvmclock_cpufreq_notifier(freq, cpu);
return 0;
}
static struct notifier_block kvmclock_cpufreq_notifier_block = {
.notifier_call = kvmclock_cpufreq_notifier
};
static int kvmclock_cpu_online(unsigned int cpu)
{
tsc_khz_changed(NULL);
return 0;
}
static void kvm_timer_init(void)
{
if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC)) {
max_tsc_khz = tsc_khz;
if (IS_ENABLED(CONFIG_CPU_FREQ)) {
struct cpufreq_policy *policy;
int cpu;
cpu = get_cpu();
policy = cpufreq_cpu_get(cpu);
if (policy) {
if (policy->cpuinfo.max_freq)
max_tsc_khz = policy->cpuinfo.max_freq;
cpufreq_cpu_put(policy);
}
put_cpu();
}
cpufreq_register_notifier(&kvmclock_cpufreq_notifier_block,
CPUFREQ_TRANSITION_NOTIFIER);
cpuhp_setup_state(CPUHP_AP_X86_KVM_CLK_ONLINE, "x86/kvm/clk:online",
kvmclock_cpu_online, kvmclock_cpu_down_prep);
}
}
#ifdef CONFIG_X86_64
static void pvclock_gtod_update_fn(struct work_struct *work)
{
struct kvm *kvm;
struct kvm_vcpu *vcpu;
unsigned long i;
mutex_lock(&kvm_lock);
list_for_each_entry(kvm, &vm_list, vm_list)
kvm_for_each_vcpu(i, vcpu, kvm)
kvm_make_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu);
atomic_set(&kvm_guest_has_master_clock, 0);
mutex_unlock(&kvm_lock);
}
static DECLARE_WORK(pvclock_gtod_work, pvclock_gtod_update_fn);
/*
* Indirection to move queue_work() out of the tk_core.seq write held
* region to prevent possible deadlocks against time accessors which
* are invoked with work related locks held.
*/
static void pvclock_irq_work_fn(struct irq_work *w)
{
queue_work(system_long_wq, &pvclock_gtod_work);
}
static DEFINE_IRQ_WORK(pvclock_irq_work, pvclock_irq_work_fn);
/*
* Notification about pvclock gtod data update.
*/
static int pvclock_gtod_notify(struct notifier_block *nb, unsigned long unused,
void *priv)
{
struct pvclock_gtod_data *gtod = &pvclock_gtod_data;
struct timekeeper *tk = priv;
update_pvclock_gtod(tk);
/*
* Disable master clock if host does not trust, or does not use,
* TSC based clocksource. Delegate queue_work() to irq_work as
* this is invoked with tk_core.seq write held.
*/
if (!gtod_is_based_on_tsc(gtod->clock.vclock_mode) &&
atomic_read(&kvm_guest_has_master_clock) != 0)
irq_work_queue(&pvclock_irq_work);
return 0;
}
static struct notifier_block pvclock_gtod_notifier = {
.notifier_call = pvclock_gtod_notify,
};
#endif
static inline void kvm_ops_update(struct kvm_x86_init_ops *ops)
{
memcpy(&kvm_x86_ops, ops->runtime_ops, sizeof(kvm_x86_ops));
#define __KVM_X86_OP(func) \
static_call_update(kvm_x86_##func, kvm_x86_ops.func);
#define KVM_X86_OP(func) \
WARN_ON(!kvm_x86_ops.func); __KVM_X86_OP(func)
#define KVM_X86_OP_OPTIONAL __KVM_X86_OP
#define KVM_X86_OP_OPTIONAL_RET0(func) \
static_call_update(kvm_x86_##func, (void *)kvm_x86_ops.func ? : \
(void *)__static_call_return0);
#include <asm/kvm-x86-ops.h>
#undef __KVM_X86_OP
kvm_pmu_ops_update(ops->pmu_ops);
}
static int kvm_x86_check_processor_compatibility(void)
{
int cpu = smp_processor_id();
struct cpuinfo_x86 *c = &cpu_data(cpu);
/*
* Compatibility checks are done when loading KVM and when enabling
* hardware, e.g. during CPU hotplug, to ensure all online CPUs are
* compatible, i.e. KVM should never perform a compatibility check on
* an offline CPU.
*/
WARN_ON(!cpu_online(cpu));
if (__cr4_reserved_bits(cpu_has, c) !=
__cr4_reserved_bits(cpu_has, &boot_cpu_data))
return -EIO;
return kvm_x86_call(check_processor_compatibility)();
}
static void kvm_x86_check_cpu_compat(void *ret)
{
*(int *)ret = kvm_x86_check_processor_compatibility();
}
int kvm_x86_vendor_init(struct kvm_x86_init_ops *ops)
{
u64 host_pat;
int r, cpu;
guard(mutex)(&vendor_module_lock);
if (kvm_x86_ops.enable_virtualization_cpu) {
pr_err("already loaded vendor module '%s'\n", kvm_x86_ops.name);
return -EEXIST;
}
/*
* KVM explicitly assumes that the guest has an FPU and
* FXSAVE/FXRSTOR. For example, the KVM_GET_FPU explicitly casts the
* vCPU's FPU state as a fxregs_state struct.
*/
if (!boot_cpu_has(X86_FEATURE_FPU) || !boot_cpu_has(X86_FEATURE_FXSR)) {
pr_err("inadequate fpu\n");
return -EOPNOTSUPP;
}
if (IS_ENABLED(CONFIG_PREEMPT_RT) && !boot_cpu_has(X86_FEATURE_CONSTANT_TSC)) {
pr_err("RT requires X86_FEATURE_CONSTANT_TSC\n");
return -EOPNOTSUPP;
}
/*
* KVM assumes that PAT entry '0' encodes WB memtype and simply zeroes
* the PAT bits in SPTEs. Bail if PAT[0] is programmed to something
* other than WB. Note, EPT doesn't utilize the PAT, but don't bother
* with an exception. PAT[0] is set to WB on RESET and also by the
* kernel, i.e. failure indicates a kernel bug or broken firmware.
*/
if (rdmsrl_safe(MSR_IA32_CR_PAT, &host_pat) ||
(host_pat & GENMASK(2, 0)) != 6) {
pr_err("host PAT[0] is not WB\n");
return -EIO;
}
memset(&kvm_caps, 0, sizeof(kvm_caps));
x86_emulator_cache = kvm_alloc_emulator_cache();
if (!x86_emulator_cache) {
pr_err("failed to allocate cache for x86 emulator\n");
return -ENOMEM;
}
user_return_msrs = alloc_percpu(struct kvm_user_return_msrs);
if (!user_return_msrs) {
pr_err("failed to allocate percpu kvm_user_return_msrs\n");
r = -ENOMEM;
goto out_free_x86_emulator_cache;
}
kvm_nr_uret_msrs = 0;
r = kvm_mmu_vendor_module_init();
if (r)
goto out_free_percpu;
kvm_caps.supported_vm_types = BIT(KVM_X86_DEFAULT_VM);
kvm_caps.supported_mce_cap = MCG_CTL_P | MCG_SER_P;
if (boot_cpu_has(X86_FEATURE_XSAVE)) {
kvm_host.xcr0 = xgetbv(XCR_XFEATURE_ENABLED_MASK);
kvm_caps.supported_xcr0 = kvm_host.xcr0 & KVM_SUPPORTED_XCR0;
}
rdmsrl_safe(MSR_EFER, &kvm_host.efer);
if (boot_cpu_has(X86_FEATURE_XSAVES))
rdmsrl(MSR_IA32_XSS, kvm_host.xss);
kvm_init_pmu_capability(ops->pmu_ops);
if (boot_cpu_has(X86_FEATURE_ARCH_CAPABILITIES))
rdmsrl(MSR_IA32_ARCH_CAPABILITIES, kvm_host.arch_capabilities);
r = ops->hardware_setup();
if (r != 0)
goto out_mmu_exit;
kvm_ops_update(ops);
for_each_online_cpu(cpu) {
smp_call_function_single(cpu, kvm_x86_check_cpu_compat, &r, 1);
if (r < 0)
goto out_unwind_ops;
}
/*
* Point of no return! DO NOT add error paths below this point unless
* absolutely necessary, as most operations from this point forward
* require unwinding.
*/
kvm_timer_init();
if (pi_inject_timer == -1)
pi_inject_timer = housekeeping_enabled(HK_TYPE_TIMER);
#ifdef CONFIG_X86_64
pvclock_gtod_register_notifier(&pvclock_gtod_notifier);
if (hypervisor_is_type(X86_HYPER_MS_HYPERV))
set_hv_tscchange_cb(kvm_hyperv_tsc_notifier);
#endif
kvm_register_perf_callbacks(ops->handle_intel_pt_intr);
if (IS_ENABLED(CONFIG_KVM_SW_PROTECTED_VM) && tdp_mmu_enabled)
kvm_caps.supported_vm_types |= BIT(KVM_X86_SW_PROTECTED_VM);
if (!kvm_cpu_cap_has(X86_FEATURE_XSAVES))
kvm_caps.supported_xss = 0;
#define __kvm_cpu_cap_has(UNUSED_, f) kvm_cpu_cap_has(f)
cr4_reserved_bits = __cr4_reserved_bits(__kvm_cpu_cap_has, UNUSED_);
#undef __kvm_cpu_cap_has
if (kvm_caps.has_tsc_control) {
/*
* Make sure the user can only configure tsc_khz values that
* fit into a signed integer.
* A min value is not calculated because it will always
* be 1 on all machines.
*/
u64 max = min(0x7fffffffULL,
__scale_tsc(kvm_caps.max_tsc_scaling_ratio, tsc_khz));
kvm_caps.max_guest_tsc_khz = max;
}
kvm_caps.default_tsc_scaling_ratio = 1ULL << kvm_caps.tsc_scaling_ratio_frac_bits;
kvm_init_msr_lists();
return 0;
out_unwind_ops:
kvm_x86_ops.enable_virtualization_cpu = NULL;
kvm_x86_call(hardware_unsetup)();
out_mmu_exit:
kvm_mmu_vendor_module_exit();
out_free_percpu:
free_percpu(user_return_msrs);
out_free_x86_emulator_cache:
kmem_cache_destroy(x86_emulator_cache);
return r;
}
EXPORT_SYMBOL_GPL(kvm_x86_vendor_init);
void kvm_x86_vendor_exit(void)
{
kvm_unregister_perf_callbacks();
#ifdef CONFIG_X86_64
if (hypervisor_is_type(X86_HYPER_MS_HYPERV))
clear_hv_tscchange_cb();
#endif
kvm_lapic_exit();
if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC)) {
cpufreq_unregister_notifier(&kvmclock_cpufreq_notifier_block,
CPUFREQ_TRANSITION_NOTIFIER);
cpuhp_remove_state_nocalls(CPUHP_AP_X86_KVM_CLK_ONLINE);
}
#ifdef CONFIG_X86_64
pvclock_gtod_unregister_notifier(&pvclock_gtod_notifier);
irq_work_sync(&pvclock_irq_work);
cancel_work_sync(&pvclock_gtod_work);
#endif
kvm_x86_call(hardware_unsetup)();
kvm_mmu_vendor_module_exit();
free_percpu(user_return_msrs);
kmem_cache_destroy(x86_emulator_cache);
#ifdef CONFIG_KVM_XEN
static_key_deferred_flush(&kvm_xen_enabled);
WARN_ON(static_branch_unlikely(&kvm_xen_enabled.key));
#endif
mutex_lock(&vendor_module_lock);
kvm_x86_ops.enable_virtualization_cpu = NULL;
mutex_unlock(&vendor_module_lock);
}
EXPORT_SYMBOL_GPL(kvm_x86_vendor_exit);
#ifdef CONFIG_X86_64
static int kvm_pv_clock_pairing(struct kvm_vcpu *vcpu, gpa_t paddr,
unsigned long clock_type)
{
struct kvm_clock_pairing clock_pairing;
struct timespec64 ts;
u64 cycle;
int ret;
if (clock_type != KVM_CLOCK_PAIRING_WALLCLOCK)
return -KVM_EOPNOTSUPP;
/*
* When tsc is in permanent catchup mode guests won't be able to use
* pvclock_read_retry loop to get consistent view of pvclock
*/
if (vcpu->arch.tsc_always_catchup)
return -KVM_EOPNOTSUPP;
if (!kvm_get_walltime_and_clockread(&ts, &cycle))
return -KVM_EOPNOTSUPP;
clock_pairing.sec = ts.tv_sec;
clock_pairing.nsec = ts.tv_nsec;
clock_pairing.tsc = kvm_read_l1_tsc(vcpu, cycle);
clock_pairing.flags = 0;
memset(&clock_pairing.pad, 0, sizeof(clock_pairing.pad));
ret = 0;
if (kvm_write_guest(vcpu->kvm, paddr, &clock_pairing,
sizeof(struct kvm_clock_pairing)))
ret = -KVM_EFAULT;
return ret;
}
#endif
/*
* kvm_pv_kick_cpu_op: Kick a vcpu.
*
* @apicid - apicid of vcpu to be kicked.
*/
static void kvm_pv_kick_cpu_op(struct kvm *kvm, int apicid)
{
/*
* All other fields are unused for APIC_DM_REMRD, but may be consumed by
* common code, e.g. for tracing. Defer initialization to the compiler.
*/
struct kvm_lapic_irq lapic_irq = {
.delivery_mode = APIC_DM_REMRD,
.dest_mode = APIC_DEST_PHYSICAL,
.shorthand = APIC_DEST_NOSHORT,
.dest_id = apicid,
};
kvm_irq_delivery_to_apic(kvm, NULL, &lapic_irq, NULL);
}
bool kvm_apicv_activated(struct kvm *kvm)
{
return (READ_ONCE(kvm->arch.apicv_inhibit_reasons) == 0);
}
EXPORT_SYMBOL_GPL(kvm_apicv_activated);
bool kvm_vcpu_apicv_activated(struct kvm_vcpu *vcpu)
{
ulong vm_reasons = READ_ONCE(vcpu->kvm->arch.apicv_inhibit_reasons);
ulong vcpu_reasons =
kvm_x86_call(vcpu_get_apicv_inhibit_reasons)(vcpu);
return (vm_reasons | vcpu_reasons) == 0;
}
EXPORT_SYMBOL_GPL(kvm_vcpu_apicv_activated);
static void set_or_clear_apicv_inhibit(unsigned long *inhibits,
enum kvm_apicv_inhibit reason, bool set)
{
const struct trace_print_flags apicv_inhibits[] = { APICV_INHIBIT_REASONS };
BUILD_BUG_ON(ARRAY_SIZE(apicv_inhibits) != NR_APICV_INHIBIT_REASONS);
if (set)
__set_bit(reason, inhibits);
else
__clear_bit(reason, inhibits);
trace_kvm_apicv_inhibit_changed(reason, set, *inhibits);
}
static void kvm_apicv_init(struct kvm *kvm)
{
enum kvm_apicv_inhibit reason = enable_apicv ? APICV_INHIBIT_REASON_ABSENT :
APICV_INHIBIT_REASON_DISABLED;
set_or_clear_apicv_inhibit(&kvm->arch.apicv_inhibit_reasons, reason, true);
init_rwsem(&kvm->arch.apicv_update_lock);
}
static void kvm_sched_yield(struct kvm_vcpu *vcpu, unsigned long dest_id)
{
struct kvm_vcpu *target = NULL;
struct kvm_apic_map *map;
vcpu->stat.directed_yield_attempted++;
if (single_task_running())
goto no_yield;
rcu_read_lock();
map = rcu_dereference(vcpu->kvm->arch.apic_map);
if (likely(map) && dest_id <= map->max_apic_id && map->phys_map[dest_id])
target = map->phys_map[dest_id]->vcpu;
rcu_read_unlock();
if (!target || !READ_ONCE(target->ready))
goto no_yield;
/* Ignore requests to yield to self */
if (vcpu == target)
goto no_yield;
if (kvm_vcpu_yield_to(target) <= 0)
goto no_yield;
vcpu->stat.directed_yield_successful++;
no_yield:
return;
}
static int complete_hypercall_exit(struct kvm_vcpu *vcpu)
{
u64 ret = vcpu->run->hypercall.ret;
if (!is_64_bit_mode(vcpu))
ret = (u32)ret;
kvm_rax_write(vcpu, ret);
++vcpu->stat.hypercalls;
return kvm_skip_emulated_instruction(vcpu);
}
unsigned long __kvm_emulate_hypercall(struct kvm_vcpu *vcpu, unsigned long nr,
unsigned long a0, unsigned long a1,
unsigned long a2, unsigned long a3,
int op_64_bit, int cpl)
{
unsigned long ret;
trace_kvm_hypercall(nr, a0, a1, a2, a3);
if (!op_64_bit) {
nr &= 0xFFFFFFFF;
a0 &= 0xFFFFFFFF;
a1 &= 0xFFFFFFFF;
a2 &= 0xFFFFFFFF;
a3 &= 0xFFFFFFFF;
}
if (cpl) {
ret = -KVM_EPERM;
goto out;
}
ret = -KVM_ENOSYS;
switch (nr) {
case KVM_HC_VAPIC_POLL_IRQ:
ret = 0;
break;
case KVM_HC_KICK_CPU:
if (!guest_pv_has(vcpu, KVM_FEATURE_PV_UNHALT))
break;
kvm_pv_kick_cpu_op(vcpu->kvm, a1);
kvm_sched_yield(vcpu, a1);
ret = 0;
break;
#ifdef CONFIG_X86_64
case KVM_HC_CLOCK_PAIRING:
ret = kvm_pv_clock_pairing(vcpu, a0, a1);
break;
#endif
case KVM_HC_SEND_IPI:
if (!guest_pv_has(vcpu, KVM_FEATURE_PV_SEND_IPI))
break;
ret = kvm_pv_send_ipi(vcpu->kvm, a0, a1, a2, a3, op_64_bit);
break;
case KVM_HC_SCHED_YIELD:
if (!guest_pv_has(vcpu, KVM_FEATURE_PV_SCHED_YIELD))
break;
kvm_sched_yield(vcpu, a0);
ret = 0;
break;
case KVM_HC_MAP_GPA_RANGE: {
u64 gpa = a0, npages = a1, attrs = a2;
ret = -KVM_ENOSYS;
if (!(vcpu->kvm->arch.hypercall_exit_enabled & (1 << KVM_HC_MAP_GPA_RANGE)))
break;
if (!PAGE_ALIGNED(gpa) || !npages ||
gpa_to_gfn(gpa) + npages <= gpa_to_gfn(gpa)) {
ret = -KVM_EINVAL;
break;
}
vcpu->run->exit_reason = KVM_EXIT_HYPERCALL;
vcpu->run->hypercall.nr = KVM_HC_MAP_GPA_RANGE;
vcpu->run->hypercall.args[0] = gpa;
vcpu->run->hypercall.args[1] = npages;
vcpu->run->hypercall.args[2] = attrs;
vcpu->run->hypercall.flags = 0;
if (op_64_bit)
vcpu->run->hypercall.flags |= KVM_EXIT_HYPERCALL_LONG_MODE;
WARN_ON_ONCE(vcpu->run->hypercall.flags & KVM_EXIT_HYPERCALL_MBZ);
vcpu->arch.complete_userspace_io = complete_hypercall_exit;
/* stat is incremented on completion. */
return 0;
}
default:
ret = -KVM_ENOSYS;
break;
}
out:
++vcpu->stat.hypercalls;
return ret;
}
EXPORT_SYMBOL_GPL(__kvm_emulate_hypercall);
int kvm_emulate_hypercall(struct kvm_vcpu *vcpu)
{
unsigned long nr, a0, a1, a2, a3, ret;
int op_64_bit;
int cpl;
if (kvm_xen_hypercall_enabled(vcpu->kvm))
return kvm_xen_hypercall(vcpu);
if (kvm_hv_hypercall_enabled(vcpu))
return kvm_hv_hypercall(vcpu);
nr = kvm_rax_read(vcpu);
a0 = kvm_rbx_read(vcpu);
a1 = kvm_rcx_read(vcpu);
a2 = kvm_rdx_read(vcpu);
a3 = kvm_rsi_read(vcpu);
op_64_bit = is_64_bit_hypercall(vcpu);
cpl = kvm_x86_call(get_cpl)(vcpu);
ret = __kvm_emulate_hypercall(vcpu, nr, a0, a1, a2, a3, op_64_bit, cpl);
if (nr == KVM_HC_MAP_GPA_RANGE && !ret)
/* MAP_GPA tosses the request to the user space. */
return 0;
if (!op_64_bit)
ret = (u32)ret;
kvm_rax_write(vcpu, ret);
return kvm_skip_emulated_instruction(vcpu);
}
EXPORT_SYMBOL_GPL(kvm_emulate_hypercall);
static int emulator_fix_hypercall(struct x86_emulate_ctxt *ctxt)
{
struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
char instruction[3];
unsigned long rip = kvm_rip_read(vcpu);
/*
* If the quirk is disabled, synthesize a #UD and let the guest pick up
* the pieces.
*/
if (!kvm_check_has_quirk(vcpu->kvm, KVM_X86_QUIRK_FIX_HYPERCALL_INSN)) {
ctxt->exception.error_code_valid = false;
ctxt->exception.vector = UD_VECTOR;
ctxt->have_exception = true;
return X86EMUL_PROPAGATE_FAULT;
}
kvm_x86_call(patch_hypercall)(vcpu, instruction);
return emulator_write_emulated(ctxt, rip, instruction, 3,
&ctxt->exception);
}
static int dm_request_for_irq_injection(struct kvm_vcpu *vcpu)
{
return vcpu->run->request_interrupt_window &&
likely(!pic_in_kernel(vcpu->kvm));
}
/* Called within kvm->srcu read side. */
static void post_kvm_run_save(struct kvm_vcpu *vcpu)
{
struct kvm_run *kvm_run = vcpu->run;
kvm_run->if_flag = kvm_x86_call(get_if_flag)(vcpu);
kvm_run->cr8 = kvm_get_cr8(vcpu);
kvm_run->apic_base = kvm_get_apic_base(vcpu);
kvm_run->ready_for_interrupt_injection =
pic_in_kernel(vcpu->kvm) ||
kvm_vcpu_ready_for_interrupt_injection(vcpu);
if (is_smm(vcpu))
kvm_run->flags |= KVM_RUN_X86_SMM;
if (is_guest_mode(vcpu))
kvm_run->flags |= KVM_RUN_X86_GUEST_MODE;
}
static void update_cr8_intercept(struct kvm_vcpu *vcpu)
{
int max_irr, tpr;
if (!kvm_x86_ops.update_cr8_intercept)
return;
if (!lapic_in_kernel(vcpu))
return;
if (vcpu->arch.apic->apicv_active)
return;
if (!vcpu->arch.apic->vapic_addr)
max_irr = kvm_lapic_find_highest_irr(vcpu);
else
max_irr = -1;
if (max_irr != -1)
max_irr >>= 4;
tpr = kvm_lapic_get_cr8(vcpu);
kvm_x86_call(update_cr8_intercept)(vcpu, tpr, max_irr);
}
int kvm_check_nested_events(struct kvm_vcpu *vcpu)
{
if (kvm_test_request(KVM_REQ_TRIPLE_FAULT, vcpu)) {
kvm_x86_ops.nested_ops->triple_fault(vcpu);
return 1;
}
return kvm_x86_ops.nested_ops->check_events(vcpu);
}
static void kvm_inject_exception(struct kvm_vcpu *vcpu)
{
/*
* Suppress the error code if the vCPU is in Real Mode, as Real Mode
* exceptions don't report error codes. The presence of an error code
* is carried with the exception and only stripped when the exception
* is injected as intercepted #PF VM-Exits for AMD's Paged Real Mode do
* report an error code despite the CPU being in Real Mode.
*/
vcpu->arch.exception.has_error_code &= is_protmode(vcpu);
trace_kvm_inj_exception(vcpu->arch.exception.vector,
vcpu->arch.exception.has_error_code,
vcpu->arch.exception.error_code,
vcpu->arch.exception.injected);
kvm_x86_call(inject_exception)(vcpu);
}
/*
* Check for any event (interrupt or exception) that is ready to be injected,
* and if there is at least one event, inject the event with the highest
* priority. This handles both "pending" events, i.e. events that have never
* been injected into the guest, and "injected" events, i.e. events that were
* injected as part of a previous VM-Enter, but weren't successfully delivered
* and need to be re-injected.
*
* Note, this is not guaranteed to be invoked on a guest instruction boundary,
* i.e. doesn't guarantee that there's an event window in the guest. KVM must
* be able to inject exceptions in the "middle" of an instruction, and so must
* also be able to re-inject NMIs and IRQs in the middle of an instruction.
* I.e. for exceptions and re-injected events, NOT invoking this on instruction
* boundaries is necessary and correct.
*
* For simplicity, KVM uses a single path to inject all events (except events
* that are injected directly from L1 to L2) and doesn't explicitly track
* instruction boundaries for asynchronous events. However, because VM-Exits
* that can occur during instruction execution typically result in KVM skipping
* the instruction or injecting an exception, e.g. instruction and exception
* intercepts, and because pending exceptions have higher priority than pending
* interrupts, KVM still honors instruction boundaries in most scenarios.
*
* But, if a VM-Exit occurs during instruction execution, and KVM does NOT skip
* the instruction or inject an exception, then KVM can incorrecty inject a new
* asynchronous event if the event became pending after the CPU fetched the
* instruction (in the guest). E.g. if a page fault (#PF, #NPF, EPT violation)
* occurs and is resolved by KVM, a coincident NMI, SMI, IRQ, etc... can be
* injected on the restarted instruction instead of being deferred until the
* instruction completes.
*
* In practice, this virtualization hole is unlikely to be observed by the
* guest, and even less likely to cause functional problems. To detect the
* hole, the guest would have to trigger an event on a side effect of an early
* phase of instruction execution, e.g. on the instruction fetch from memory.
* And for it to be a functional problem, the guest would need to depend on the
* ordering between that side effect, the instruction completing, _and_ the
* delivery of the asynchronous event.
*/
static int kvm_check_and_inject_events(struct kvm_vcpu *vcpu,
bool *req_immediate_exit)
{
bool can_inject;
int r;
/*
* Process nested events first, as nested VM-Exit supersedes event
* re-injection. If there's an event queued for re-injection, it will
* be saved into the appropriate vmc{b,s}12 fields on nested VM-Exit.
*/
if (is_guest_mode(vcpu))
r = kvm_check_nested_events(vcpu);
else
r = 0;
/*
* Re-inject exceptions and events *especially* if immediate entry+exit
* to/from L2 is needed, as any event that has already been injected
* into L2 needs to complete its lifecycle before injecting a new event.
*
* Don't re-inject an NMI or interrupt if there is a pending exception.
* This collision arises if an exception occurred while vectoring the
* injected event, KVM intercepted said exception, and KVM ultimately
* determined the fault belongs to the guest and queues the exception
* for injection back into the guest.
*
* "Injected" interrupts can also collide with pending exceptions if
* userspace ignores the "ready for injection" flag and blindly queues
* an interrupt. In that case, prioritizing the exception is correct,
* as the exception "occurred" before the exit to userspace. Trap-like
* exceptions, e.g. most #DBs, have higher priority than interrupts.
* And while fault-like exceptions, e.g. #GP and #PF, are the lowest
* priority, they're only generated (pended) during instruction
* execution, and interrupts are recognized at instruction boundaries.
* Thus a pending fault-like exception means the fault occurred on the
* *previous* instruction and must be serviced prior to recognizing any
* new events in order to fully complete the previous instruction.
*/
if (vcpu->arch.exception.injected)
kvm_inject_exception(vcpu);
else if (kvm_is_exception_pending(vcpu))
; /* see above */
else if (vcpu->arch.nmi_injected)
kvm_x86_call(inject_nmi)(vcpu);
else if (vcpu->arch.interrupt.injected)
kvm_x86_call(inject_irq)(vcpu, true);
/*
* Exceptions that morph to VM-Exits are handled above, and pending
* exceptions on top of injected exceptions that do not VM-Exit should
* either morph to #DF or, sadly, override the injected exception.
*/
WARN_ON_ONCE(vcpu->arch.exception.injected &&
vcpu->arch.exception.pending);
/*
* Bail if immediate entry+exit to/from the guest is needed to complete
* nested VM-Enter or event re-injection so that a different pending
* event can be serviced (or if KVM needs to exit to userspace).
*
* Otherwise, continue processing events even if VM-Exit occurred. The
* VM-Exit will have cleared exceptions that were meant for L2, but
* there may now be events that can be injected into L1.
*/
if (r < 0)
goto out;
/*
* A pending exception VM-Exit should either result in nested VM-Exit
* or force an immediate re-entry and exit to/from L2, and exception
* VM-Exits cannot be injected (flag should _never_ be set).
*/
WARN_ON_ONCE(vcpu->arch.exception_vmexit.injected ||
vcpu->arch.exception_vmexit.pending);
/*
* New events, other than exceptions, cannot be injected if KVM needs
* to re-inject a previous event. See above comments on re-injecting
* for why pending exceptions get priority.
*/
can_inject = !kvm_event_needs_reinjection(vcpu);
if (vcpu->arch.exception.pending) {
/*
* Fault-class exceptions, except #DBs, set RF=1 in the RFLAGS
* value pushed on the stack. Trap-like exception and all #DBs
* leave RF as-is (KVM follows Intel's behavior in this regard;
* AMD states that code breakpoint #DBs excplitly clear RF=0).
*
* Note, most versions of Intel's SDM and AMD's APM incorrectly
* describe the behavior of General Detect #DBs, which are
* fault-like. They do _not_ set RF, a la code breakpoints.
*/
if (exception_type(vcpu->arch.exception.vector) == EXCPT_FAULT)
__kvm_set_rflags(vcpu, kvm_get_rflags(vcpu) |
X86_EFLAGS_RF);
if (vcpu->arch.exception.vector == DB_VECTOR) {
kvm_deliver_exception_payload(vcpu, &vcpu->arch.exception);
if (vcpu->arch.dr7 & DR7_GD) {
vcpu->arch.dr7 &= ~DR7_GD;
kvm_update_dr7(vcpu);
}
}
kvm_inject_exception(vcpu);
vcpu->arch.exception.pending = false;
vcpu->arch.exception.injected = true;
can_inject = false;
}
/* Don't inject interrupts if the user asked to avoid doing so */
if (vcpu->guest_debug & KVM_GUESTDBG_BLOCKIRQ)
return 0;
/*
* Finally, inject interrupt events. If an event cannot be injected
* due to architectural conditions (e.g. IF=0) a window-open exit
* will re-request KVM_REQ_EVENT. Sometimes however an event is pending
* and can architecturally be injected, but we cannot do it right now:
* an interrupt could have arrived just now and we have to inject it
* as a vmexit, or there could already an event in the queue, which is
* indicated by can_inject. In that case we request an immediate exit
* in order to make progress and get back here for another iteration.
* The kvm_x86_ops hooks communicate this by returning -EBUSY.
*/
#ifdef CONFIG_KVM_SMM
if (vcpu->arch.smi_pending) {
r = can_inject ? kvm_x86_call(smi_allowed)(vcpu, true) :
-EBUSY;
if (r < 0)
goto out;
if (r) {
vcpu->arch.smi_pending = false;
++vcpu->arch.smi_count;
enter_smm(vcpu);
can_inject = false;
} else
kvm_x86_call(enable_smi_window)(vcpu);
}
#endif
if (vcpu->arch.nmi_pending) {
r = can_inject ? kvm_x86_call(nmi_allowed)(vcpu, true) :
-EBUSY;
if (r < 0)
goto out;
if (r) {
--vcpu->arch.nmi_pending;
vcpu->arch.nmi_injected = true;
kvm_x86_call(inject_nmi)(vcpu);
can_inject = false;
WARN_ON(kvm_x86_call(nmi_allowed)(vcpu, true) < 0);
}
if (vcpu->arch.nmi_pending)
kvm_x86_call(enable_nmi_window)(vcpu);
}
if (kvm_cpu_has_injectable_intr(vcpu)) {
r = can_inject ? kvm_x86_call(interrupt_allowed)(vcpu, true) :
-EBUSY;
if (r < 0)
goto out;
if (r) {
int irq = kvm_cpu_get_interrupt(vcpu);
if (!WARN_ON_ONCE(irq == -1)) {
kvm_queue_interrupt(vcpu, irq, false);
kvm_x86_call(inject_irq)(vcpu, false);
WARN_ON(kvm_x86_call(interrupt_allowed)(vcpu, true) < 0);
}
}
if (kvm_cpu_has_injectable_intr(vcpu))
kvm_x86_call(enable_irq_window)(vcpu);
}
if (is_guest_mode(vcpu) &&
kvm_x86_ops.nested_ops->has_events &&
kvm_x86_ops.nested_ops->has_events(vcpu, true))
*req_immediate_exit = true;
/*
* KVM must never queue a new exception while injecting an event; KVM
* is done emulating and should only propagate the to-be-injected event
* to the VMCS/VMCB. Queueing a new exception can put the vCPU into an
* infinite loop as KVM will bail from VM-Enter to inject the pending
* exception and start the cycle all over.
*
* Exempt triple faults as they have special handling and won't put the
* vCPU into an infinite loop. Triple fault can be queued when running
* VMX without unrestricted guest, as that requires KVM to emulate Real
* Mode events (see kvm_inject_realmode_interrupt()).
*/
WARN_ON_ONCE(vcpu->arch.exception.pending ||
vcpu->arch.exception_vmexit.pending);
return 0;
out:
if (r == -EBUSY) {
*req_immediate_exit = true;
r = 0;
}
return r;
}
static void process_nmi(struct kvm_vcpu *vcpu)
{
unsigned int limit;
/*
* x86 is limited to one NMI pending, but because KVM can't react to
* incoming NMIs as quickly as bare metal, e.g. if the vCPU is
* scheduled out, KVM needs to play nice with two queued NMIs showing
* up at the same time. To handle this scenario, allow two NMIs to be
* (temporarily) pending so long as NMIs are not blocked and KVM is not
* waiting for a previous NMI injection to complete (which effectively
* blocks NMIs). KVM will immediately inject one of the two NMIs, and
* will request an NMI window to handle the second NMI.
*/
if (kvm_x86_call(get_nmi_mask)(vcpu) || vcpu->arch.nmi_injected)
limit = 1;
else
limit = 2;
/*
* Adjust the limit to account for pending virtual NMIs, which aren't
* tracked in vcpu->arch.nmi_pending.
*/
if (kvm_x86_call(is_vnmi_pending)(vcpu))
limit--;
vcpu->arch.nmi_pending += atomic_xchg(&vcpu->arch.nmi_queued, 0);
vcpu->arch.nmi_pending = min(vcpu->arch.nmi_pending, limit);
if (vcpu->arch.nmi_pending &&
(kvm_x86_call(set_vnmi_pending)(vcpu)))
vcpu->arch.nmi_pending--;
if (vcpu->arch.nmi_pending)
kvm_make_request(KVM_REQ_EVENT, vcpu);
}
/* Return total number of NMIs pending injection to the VM */
int kvm_get_nr_pending_nmis(struct kvm_vcpu *vcpu)
{
return vcpu->arch.nmi_pending +
kvm_x86_call(is_vnmi_pending)(vcpu);
}
void kvm_make_scan_ioapic_request_mask(struct kvm *kvm,
unsigned long *vcpu_bitmap)
{
kvm_make_vcpus_request_mask(kvm, KVM_REQ_SCAN_IOAPIC, vcpu_bitmap);
}
void kvm_make_scan_ioapic_request(struct kvm *kvm)
{
kvm_make_all_cpus_request(kvm, KVM_REQ_SCAN_IOAPIC);
}
void __kvm_vcpu_update_apicv(struct kvm_vcpu *vcpu)
{
struct kvm_lapic *apic = vcpu->arch.apic;
bool activate;
if (!lapic_in_kernel(vcpu))
return;
down_read(&vcpu->kvm->arch.apicv_update_lock);
preempt_disable();
/* Do not activate APICV when APIC is disabled */
activate = kvm_vcpu_apicv_activated(vcpu) &&
(kvm_get_apic_mode(vcpu) != LAPIC_MODE_DISABLED);
if (apic->apicv_active == activate)
goto out;
apic->apicv_active = activate;
kvm_apic_update_apicv(vcpu);
kvm_x86_call(refresh_apicv_exec_ctrl)(vcpu);
/*
* When APICv gets disabled, we may still have injected interrupts
* pending. At the same time, KVM_REQ_EVENT may not be set as APICv was
* still active when the interrupt got accepted. Make sure
* kvm_check_and_inject_events() is called to check for that.
*/
if (!apic->apicv_active)
kvm_make_request(KVM_REQ_EVENT, vcpu);
out:
preempt_enable();
up_read(&vcpu->kvm->arch.apicv_update_lock);
}
EXPORT_SYMBOL_GPL(__kvm_vcpu_update_apicv);
static void kvm_vcpu_update_apicv(struct kvm_vcpu *vcpu)
{
if (!lapic_in_kernel(vcpu))
return;
/*
* Due to sharing page tables across vCPUs, the xAPIC memslot must be
* deleted if any vCPU has xAPIC virtualization and x2APIC enabled, but
* and hardware doesn't support x2APIC virtualization. E.g. some AMD
* CPUs support AVIC but not x2APIC. KVM still allows enabling AVIC in
* this case so that KVM can the AVIC doorbell to inject interrupts to
* running vCPUs, but KVM must not create SPTEs for the APIC base as
* the vCPU would incorrectly be able to access the vAPIC page via MMIO
* despite being in x2APIC mode. For simplicity, inhibiting the APIC
* access page is sticky.
*/
if (apic_x2apic_mode(vcpu->arch.apic) &&
kvm_x86_ops.allow_apicv_in_x2apic_without_x2apic_virtualization)
kvm_inhibit_apic_access_page(vcpu);
__kvm_vcpu_update_apicv(vcpu);
}
void __kvm_set_or_clear_apicv_inhibit(struct kvm *kvm,
enum kvm_apicv_inhibit reason, bool set)
{
unsigned long old, new;
lockdep_assert_held_write(&kvm->arch.apicv_update_lock);
if (!(kvm_x86_ops.required_apicv_inhibits & BIT(reason)))
return;
old = new = kvm->arch.apicv_inhibit_reasons;
set_or_clear_apicv_inhibit(&new, reason, set);
if (!!old != !!new) {
/*
* Kick all vCPUs before setting apicv_inhibit_reasons to avoid
* false positives in the sanity check WARN in svm_vcpu_run().
* This task will wait for all vCPUs to ack the kick IRQ before
* updating apicv_inhibit_reasons, and all other vCPUs will
* block on acquiring apicv_update_lock so that vCPUs can't
* redo svm_vcpu_run() without seeing the new inhibit state.
*
* Note, holding apicv_update_lock and taking it in the read
* side (handling the request) also prevents other vCPUs from
* servicing the request with a stale apicv_inhibit_reasons.
*/
kvm_make_all_cpus_request(kvm, KVM_REQ_APICV_UPDATE);
kvm->arch.apicv_inhibit_reasons = new;
if (new) {
unsigned long gfn = gpa_to_gfn(APIC_DEFAULT_PHYS_BASE);
int idx = srcu_read_lock(&kvm->srcu);
kvm_zap_gfn_range(kvm, gfn, gfn+1);
srcu_read_unlock(&kvm->srcu, idx);
}
} else {
kvm->arch.apicv_inhibit_reasons = new;
}
}
void kvm_set_or_clear_apicv_inhibit(struct kvm *kvm,
enum kvm_apicv_inhibit reason, bool set)
{
if (!enable_apicv)
return;
down_write(&kvm->arch.apicv_update_lock);
__kvm_set_or_clear_apicv_inhibit(kvm, reason, set);
up_write(&kvm->arch.apicv_update_lock);
}
EXPORT_SYMBOL_GPL(kvm_set_or_clear_apicv_inhibit);
static void vcpu_scan_ioapic(struct kvm_vcpu *vcpu)
{
if (!kvm_apic_present(vcpu))
return;
bitmap_zero(vcpu->arch.ioapic_handled_vectors, 256);
kvm_x86_call(sync_pir_to_irr)(vcpu);
if (irqchip_split(vcpu->kvm))
kvm_scan_ioapic_routes(vcpu, vcpu->arch.ioapic_handled_vectors);
else if (ioapic_in_kernel(vcpu->kvm))
kvm_ioapic_scan_entry(vcpu, vcpu->arch.ioapic_handled_vectors);
if (is_guest_mode(vcpu))
vcpu->arch.load_eoi_exitmap_pending = true;
else
kvm_make_request(KVM_REQ_LOAD_EOI_EXITMAP, vcpu);
}
static void vcpu_load_eoi_exitmap(struct kvm_vcpu *vcpu)
{
if (!kvm_apic_hw_enabled(vcpu->arch.apic))
return;
#ifdef CONFIG_KVM_HYPERV
if (to_hv_vcpu(vcpu)) {
u64 eoi_exit_bitmap[4];
bitmap_or((ulong *)eoi_exit_bitmap,
vcpu->arch.ioapic_handled_vectors,
to_hv_synic(vcpu)->vec_bitmap, 256);
kvm_x86_call(load_eoi_exitmap)(vcpu, eoi_exit_bitmap);
return;
}
#endif
kvm_x86_call(load_eoi_exitmap)(
vcpu, (u64 *)vcpu->arch.ioapic_handled_vectors);
}
void kvm_arch_guest_memory_reclaimed(struct kvm *kvm)
{
kvm_x86_call(guest_memory_reclaimed)(kvm);
}
static void kvm_vcpu_reload_apic_access_page(struct kvm_vcpu *vcpu)
{
if (!lapic_in_kernel(vcpu))
return;
kvm_x86_call(set_apic_access_page_addr)(vcpu);
}
/*
* Called within kvm->srcu read side.
* Returns 1 to let vcpu_run() continue the guest execution loop without
* exiting to the userspace. Otherwise, the value will be returned to the
* userspace.
*/
static int vcpu_enter_guest(struct kvm_vcpu *vcpu)
{
int r;
bool req_int_win =
dm_request_for_irq_injection(vcpu) &&
kvm_cpu_accept_dm_intr(vcpu);
fastpath_t exit_fastpath;
bool req_immediate_exit = false;
if (kvm_request_pending(vcpu)) {
if (kvm_check_request(KVM_REQ_VM_DEAD, vcpu)) {
r = -EIO;
goto out;
}
if (kvm_dirty_ring_check_request(vcpu)) {
r = 0;
goto out;
}
if (kvm_check_request(KVM_REQ_GET_NESTED_STATE_PAGES, vcpu)) {
if (unlikely(!kvm_x86_ops.nested_ops->get_nested_state_pages(vcpu))) {
r = 0;
goto out;
}
}
if (kvm_check_request(KVM_REQ_MMU_FREE_OBSOLETE_ROOTS, vcpu))
kvm_mmu_free_obsolete_roots(vcpu);
if (kvm_check_request(KVM_REQ_MIGRATE_TIMER, vcpu))
__kvm_migrate_timers(vcpu);
if (kvm_check_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu))
kvm_update_masterclock(vcpu->kvm);
if (kvm_check_request(KVM_REQ_GLOBAL_CLOCK_UPDATE, vcpu))
kvm_gen_kvmclock_update(vcpu);
if (kvm_check_request(KVM_REQ_CLOCK_UPDATE, vcpu)) {
r = kvm_guest_time_update(vcpu);
if (unlikely(r))
goto out;
}
if (kvm_check_request(KVM_REQ_MMU_SYNC, vcpu))
kvm_mmu_sync_roots(vcpu);
if (kvm_check_request(KVM_REQ_LOAD_MMU_PGD, vcpu))
kvm_mmu_load_pgd(vcpu);
/*
* Note, the order matters here, as flushing "all" TLB entries
* also flushes the "current" TLB entries, i.e. servicing the
* flush "all" will clear any request to flush "current".
*/
if (kvm_check_request(KVM_REQ_TLB_FLUSH, vcpu))
kvm_vcpu_flush_tlb_all(vcpu);
kvm_service_local_tlb_flush_requests(vcpu);
/*
* Fall back to a "full" guest flush if Hyper-V's precise
* flushing fails. Note, Hyper-V's flushing is per-vCPU, but
* the flushes are considered "remote" and not "local" because
* the requests can be initiated from other vCPUs.
*/
#ifdef CONFIG_KVM_HYPERV
if (kvm_check_request(KVM_REQ_HV_TLB_FLUSH, vcpu) &&
kvm_hv_vcpu_flush_tlb(vcpu))
kvm_vcpu_flush_tlb_guest(vcpu);
#endif
if (kvm_check_request(KVM_REQ_REPORT_TPR_ACCESS, vcpu)) {
vcpu->run->exit_reason = KVM_EXIT_TPR_ACCESS;
r = 0;
goto out;
}
if (kvm_test_request(KVM_REQ_TRIPLE_FAULT, vcpu)) {
if (is_guest_mode(vcpu))
kvm_x86_ops.nested_ops->triple_fault(vcpu);
if (kvm_check_request(KVM_REQ_TRIPLE_FAULT, vcpu)) {
vcpu->run->exit_reason = KVM_EXIT_SHUTDOWN;
vcpu->mmio_needed = 0;
r = 0;
goto out;
}
}
if (kvm_check_request(KVM_REQ_APF_HALT, vcpu)) {
/* Page is swapped out. Do synthetic halt */
vcpu->arch.apf.halted = true;
r = 1;
goto out;
}
if (kvm_check_request(KVM_REQ_STEAL_UPDATE, vcpu))
record_steal_time(vcpu);
if (kvm_check_request(KVM_REQ_PMU, vcpu))
kvm_pmu_handle_event(vcpu);
if (kvm_check_request(KVM_REQ_PMI, vcpu))
kvm_pmu_deliver_pmi(vcpu);
#ifdef CONFIG_KVM_SMM
if (kvm_check_request(KVM_REQ_SMI, vcpu))
process_smi(vcpu);
#endif
if (kvm_check_request(KVM_REQ_NMI, vcpu))
process_nmi(vcpu);
if (kvm_check_request(KVM_REQ_IOAPIC_EOI_EXIT, vcpu)) {
BUG_ON(vcpu->arch.pending_ioapic_eoi > 255);
if (test_bit(vcpu->arch.pending_ioapic_eoi,
vcpu->arch.ioapic_handled_vectors)) {
vcpu->run->exit_reason = KVM_EXIT_IOAPIC_EOI;
vcpu->run->eoi.vector =
vcpu->arch.pending_ioapic_eoi;
r = 0;
goto out;
}
}
if (kvm_check_request(KVM_REQ_SCAN_IOAPIC, vcpu))
vcpu_scan_ioapic(vcpu);
if (kvm_check_request(KVM_REQ_LOAD_EOI_EXITMAP, vcpu))
vcpu_load_eoi_exitmap(vcpu);
if (kvm_check_request(KVM_REQ_APIC_PAGE_RELOAD, vcpu))
kvm_vcpu_reload_apic_access_page(vcpu);
#ifdef CONFIG_KVM_HYPERV
if (kvm_check_request(KVM_REQ_HV_CRASH, vcpu)) {
vcpu->run->exit_reason = KVM_EXIT_SYSTEM_EVENT;
vcpu->run->system_event.type = KVM_SYSTEM_EVENT_CRASH;
vcpu->run->system_event.ndata = 0;
r = 0;
goto out;
}
if (kvm_check_request(KVM_REQ_HV_RESET, vcpu)) {
vcpu->run->exit_reason = KVM_EXIT_SYSTEM_EVENT;
vcpu->run->system_event.type = KVM_SYSTEM_EVENT_RESET;
vcpu->run->system_event.ndata = 0;
r = 0;
goto out;
}
if (kvm_check_request(KVM_REQ_HV_EXIT, vcpu)) {
struct kvm_vcpu_hv *hv_vcpu = to_hv_vcpu(vcpu);
vcpu->run->exit_reason = KVM_EXIT_HYPERV;
vcpu->run->hyperv = hv_vcpu->exit;
r = 0;
goto out;
}
/*
* KVM_REQ_HV_STIMER has to be processed after
* KVM_REQ_CLOCK_UPDATE, because Hyper-V SynIC timers
* depend on the guest clock being up-to-date
*/
if (kvm_check_request(KVM_REQ_HV_STIMER, vcpu))
kvm_hv_process_stimers(vcpu);
#endif
if (kvm_check_request(KVM_REQ_APICV_UPDATE, vcpu))
kvm_vcpu_update_apicv(vcpu);
if (kvm_check_request(KVM_REQ_APF_READY, vcpu))
kvm_check_async_pf_completion(vcpu);
if (kvm_check_request(KVM_REQ_MSR_FILTER_CHANGED, vcpu))
kvm_x86_call(msr_filter_changed)(vcpu);
if (kvm_check_request(KVM_REQ_UPDATE_CPU_DIRTY_LOGGING, vcpu))
kvm_x86_call(update_cpu_dirty_logging)(vcpu);
if (kvm_check_request(KVM_REQ_UPDATE_PROTECTED_GUEST_STATE, vcpu)) {
kvm_vcpu_reset(vcpu, true);
if (vcpu->arch.mp_state != KVM_MP_STATE_RUNNABLE) {
r = 1;
goto out;
}
}
}
if (kvm_check_request(KVM_REQ_EVENT, vcpu) || req_int_win ||
kvm_xen_has_interrupt(vcpu)) {
++vcpu->stat.req_event;
r = kvm_apic_accept_events(vcpu);
if (r < 0) {
r = 0;
goto out;
}
if (vcpu->arch.mp_state == KVM_MP_STATE_INIT_RECEIVED) {
r = 1;
goto out;
}
r = kvm_check_and_inject_events(vcpu, &req_immediate_exit);
if (r < 0) {
r = 0;
goto out;
}
if (req_int_win)
kvm_x86_call(enable_irq_window)(vcpu);
if (kvm_lapic_enabled(vcpu)) {
update_cr8_intercept(vcpu);
kvm_lapic_sync_to_vapic(vcpu);
}
}
r = kvm_mmu_reload(vcpu);
if (unlikely(r)) {
goto cancel_injection;
}
preempt_disable();
kvm_x86_call(prepare_switch_to_guest)(vcpu);
/*
* Disable IRQs before setting IN_GUEST_MODE. Posted interrupt
* IPI are then delayed after guest entry, which ensures that they
* result in virtual interrupt delivery.
*/
local_irq_disable();
/* Store vcpu->apicv_active before vcpu->mode. */
smp_store_release(&vcpu->mode, IN_GUEST_MODE);
kvm_vcpu_srcu_read_unlock(vcpu);
/*
* 1) We should set ->mode before checking ->requests. Please see
* the comment in kvm_vcpu_exiting_guest_mode().
*
* 2) For APICv, we should set ->mode before checking PID.ON. This
* pairs with the memory barrier implicit in pi_test_and_set_on
* (see vmx_deliver_posted_interrupt).
*
* 3) This also orders the write to mode from any reads to the page
* tables done while the VCPU is running. Please see the comment
* in kvm_flush_remote_tlbs.
*/
smp_mb__after_srcu_read_unlock();
/*
* Process pending posted interrupts to handle the case where the
* notification IRQ arrived in the host, or was never sent (because the
* target vCPU wasn't running). Do this regardless of the vCPU's APICv
* status, KVM doesn't update assigned devices when APICv is inhibited,
* i.e. they can post interrupts even if APICv is temporarily disabled.
*/
if (kvm_lapic_enabled(vcpu))
kvm_x86_call(sync_pir_to_irr)(vcpu);
if (kvm_vcpu_exit_request(vcpu)) {
vcpu->mode = OUTSIDE_GUEST_MODE;
smp_wmb();
local_irq_enable();
preempt_enable();
kvm_vcpu_srcu_read_lock(vcpu);
r = 1;
goto cancel_injection;
}
if (req_immediate_exit)
kvm_make_request(KVM_REQ_EVENT, vcpu);
fpregs_assert_state_consistent();
if (test_thread_flag(TIF_NEED_FPU_LOAD))
switch_fpu_return();
if (vcpu->arch.guest_fpu.xfd_err)
wrmsrl(MSR_IA32_XFD_ERR, vcpu->arch.guest_fpu.xfd_err);
if (unlikely(vcpu->arch.switch_db_regs)) {
set_debugreg(0, 7);
set_debugreg(vcpu->arch.eff_db[0], 0);
set_debugreg(vcpu->arch.eff_db[1], 1);
set_debugreg(vcpu->arch.eff_db[2], 2);
set_debugreg(vcpu->arch.eff_db[3], 3);
} else if (unlikely(hw_breakpoint_active())) {
set_debugreg(0, 7);
}
guest_timing_enter_irqoff();
for (;;) {
/*
* Assert that vCPU vs. VM APICv state is consistent. An APICv
* update must kick and wait for all vCPUs before toggling the
* per-VM state, and responding vCPUs must wait for the update
* to complete before servicing KVM_REQ_APICV_UPDATE.
*/
WARN_ON_ONCE((kvm_vcpu_apicv_activated(vcpu) != kvm_vcpu_apicv_active(vcpu)) &&
(kvm_get_apic_mode(vcpu) != LAPIC_MODE_DISABLED));
exit_fastpath = kvm_x86_call(vcpu_run)(vcpu,
req_immediate_exit);
if (likely(exit_fastpath != EXIT_FASTPATH_REENTER_GUEST))
break;
if (kvm_lapic_enabled(vcpu))
kvm_x86_call(sync_pir_to_irr)(vcpu);
if (unlikely(kvm_vcpu_exit_request(vcpu))) {
exit_fastpath = EXIT_FASTPATH_EXIT_HANDLED;
break;
}
/* Note, VM-Exits that go down the "slow" path are accounted below. */
++vcpu->stat.exits;
}
/*
* Do this here before restoring debug registers on the host. And
* since we do this before handling the vmexit, a DR access vmexit
* can (a) read the correct value of the debug registers, (b) set
* KVM_DEBUGREG_WONT_EXIT again.
*/
if (unlikely(vcpu->arch.switch_db_regs & KVM_DEBUGREG_WONT_EXIT)) {
WARN_ON(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP);
kvm_x86_call(sync_dirty_debug_regs)(vcpu);
kvm_update_dr0123(vcpu);
kvm_update_dr7(vcpu);
}
/*
* If the guest has used debug registers, at least dr7
* will be disabled while returning to the host.
* If we don't have active breakpoints in the host, we don't
* care about the messed up debug address registers. But if
* we have some of them active, restore the old state.
*/
if (hw_breakpoint_active())
hw_breakpoint_restore();
vcpu->arch.last_vmentry_cpu = vcpu->cpu;
vcpu->arch.last_guest_tsc = kvm_read_l1_tsc(vcpu, rdtsc());
vcpu->mode = OUTSIDE_GUEST_MODE;
smp_wmb();
/*
* Sync xfd before calling handle_exit_irqoff() which may
* rely on the fact that guest_fpu::xfd is up-to-date (e.g.
* in #NM irqoff handler).
*/
if (vcpu->arch.xfd_no_write_intercept)
fpu_sync_guest_vmexit_xfd_state();
kvm_x86_call(handle_exit_irqoff)(vcpu);
if (vcpu->arch.guest_fpu.xfd_err)
wrmsrl(MSR_IA32_XFD_ERR, 0);
/*
* Consume any pending interrupts, including the possible source of
* VM-Exit on SVM and any ticks that occur between VM-Exit and now.
* An instruction is required after local_irq_enable() to fully unblock
* interrupts on processors that implement an interrupt shadow, the
* stat.exits increment will do nicely.
*/
kvm_before_interrupt(vcpu, KVM_HANDLING_IRQ);
local_irq_enable();
++vcpu->stat.exits;
local_irq_disable();
kvm_after_interrupt(vcpu);
/*
* Wait until after servicing IRQs to account guest time so that any
* ticks that occurred while running the guest are properly accounted
* to the guest. Waiting until IRQs are enabled degrades the accuracy
* of accounting via context tracking, but the loss of accuracy is
* acceptable for all known use cases.
*/
guest_timing_exit_irqoff();
local_irq_enable();
preempt_enable();
kvm_vcpu_srcu_read_lock(vcpu);
/*
* Call this to ensure WC buffers in guest are evicted after each VM
* Exit, so that the evicted WC writes can be snooped across all cpus
*/
smp_mb__after_srcu_read_lock();
/*
* Profile KVM exit RIPs:
*/
if (unlikely(prof_on == KVM_PROFILING)) {
unsigned long rip = kvm_rip_read(vcpu);
profile_hit(KVM_PROFILING, (void *)rip);
}
if (unlikely(vcpu->arch.tsc_always_catchup))
kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
if (vcpu->arch.apic_attention)
kvm_lapic_sync_from_vapic(vcpu);
if (unlikely(exit_fastpath == EXIT_FASTPATH_EXIT_USERSPACE))
return 0;
r = kvm_x86_call(handle_exit)(vcpu, exit_fastpath);
return r;
cancel_injection:
if (req_immediate_exit)
kvm_make_request(KVM_REQ_EVENT, vcpu);
kvm_x86_call(cancel_injection)(vcpu);
if (unlikely(vcpu->arch.apic_attention))
kvm_lapic_sync_from_vapic(vcpu);
out:
return r;
}
static bool kvm_vcpu_running(struct kvm_vcpu *vcpu)
{
return (vcpu->arch.mp_state == KVM_MP_STATE_RUNNABLE &&
!vcpu->arch.apf.halted);
}
static bool kvm_vcpu_has_events(struct kvm_vcpu *vcpu)
{
if (!list_empty_careful(&vcpu->async_pf.done))
return true;
if (kvm_apic_has_pending_init_or_sipi(vcpu) &&
kvm_apic_init_sipi_allowed(vcpu))
return true;
if (vcpu->arch.pv.pv_unhalted)
return true;
if (kvm_is_exception_pending(vcpu))
return true;
if (kvm_test_request(KVM_REQ_NMI, vcpu) ||
(vcpu->arch.nmi_pending &&
kvm_x86_call(nmi_allowed)(vcpu, false)))
return true;
#ifdef CONFIG_KVM_SMM
if (kvm_test_request(KVM_REQ_SMI, vcpu) ||
(vcpu->arch.smi_pending &&
kvm_x86_call(smi_allowed)(vcpu, false)))
return true;
#endif
if (kvm_test_request(KVM_REQ_PMI, vcpu))
return true;
if (kvm_test_request(KVM_REQ_UPDATE_PROTECTED_GUEST_STATE, vcpu))
return true;
if (kvm_arch_interrupt_allowed(vcpu) && kvm_cpu_has_interrupt(vcpu))
return true;
if (kvm_hv_has_stimer_pending(vcpu))
return true;
if (is_guest_mode(vcpu) &&
kvm_x86_ops.nested_ops->has_events &&
kvm_x86_ops.nested_ops->has_events(vcpu, false))
return true;
if (kvm_xen_has_pending_events(vcpu))
return true;
return false;
}
int kvm_arch_vcpu_runnable(struct kvm_vcpu *vcpu)
{
return kvm_vcpu_running(vcpu) || kvm_vcpu_has_events(vcpu);
}
/* Called within kvm->srcu read side. */
static inline int vcpu_block(struct kvm_vcpu *vcpu)
{
bool hv_timer;
if (!kvm_arch_vcpu_runnable(vcpu)) {
/*
* Switch to the software timer before halt-polling/blocking as
* the guest's timer may be a break event for the vCPU, and the
* hypervisor timer runs only when the CPU is in guest mode.
* Switch before halt-polling so that KVM recognizes an expired
* timer before blocking.
*/
hv_timer = kvm_lapic_hv_timer_in_use(vcpu);
if (hv_timer)
kvm_lapic_switch_to_sw_timer(vcpu);
kvm_vcpu_srcu_read_unlock(vcpu);
if (vcpu->arch.mp_state == KVM_MP_STATE_HALTED)
kvm_vcpu_halt(vcpu);
else
kvm_vcpu_block(vcpu);
kvm_vcpu_srcu_read_lock(vcpu);
if (hv_timer)
kvm_lapic_switch_to_hv_timer(vcpu);
/*
* If the vCPU is not runnable, a signal or another host event
* of some kind is pending; service it without changing the
* vCPU's activity state.
*/
if (!kvm_arch_vcpu_runnable(vcpu))
return 1;
}
/*
* Evaluate nested events before exiting the halted state. This allows
* the halt state to be recorded properly in the VMCS12's activity
* state field (AMD does not have a similar field and a VM-Exit always
* causes a spurious wakeup from HLT).
*/
if (is_guest_mode(vcpu)) {
int r = kvm_check_nested_events(vcpu);
WARN_ON_ONCE(r == -EBUSY);
if (r < 0)
return 0;
}
if (kvm_apic_accept_events(vcpu) < 0)
return 0;
switch(vcpu->arch.mp_state) {
case KVM_MP_STATE_HALTED:
case KVM_MP_STATE_AP_RESET_HOLD:
vcpu->arch.pv.pv_unhalted = false;
vcpu->arch.mp_state =
KVM_MP_STATE_RUNNABLE;
fallthrough;
case KVM_MP_STATE_RUNNABLE:
vcpu->arch.apf.halted = false;
break;
case KVM_MP_STATE_INIT_RECEIVED:
break;
default:
WARN_ON_ONCE(1);
break;
}
return 1;
}
/* Called within kvm->srcu read side. */
static int vcpu_run(struct kvm_vcpu *vcpu)
{
int r;
vcpu->run->exit_reason = KVM_EXIT_UNKNOWN;
for (;;) {
/*
* If another guest vCPU requests a PV TLB flush in the middle
* of instruction emulation, the rest of the emulation could
* use a stale page translation. Assume that any code after
* this point can start executing an instruction.
*/
vcpu->arch.at_instruction_boundary = false;
if (kvm_vcpu_running(vcpu)) {
r = vcpu_enter_guest(vcpu);
} else {
r = vcpu_block(vcpu);
}
if (r <= 0)
break;
kvm_clear_request(KVM_REQ_UNBLOCK, vcpu);
if (kvm_xen_has_pending_events(vcpu))
kvm_xen_inject_pending_events(vcpu);
if (kvm_cpu_has_pending_timer(vcpu))
kvm_inject_pending_timer_irqs(vcpu);
if (dm_request_for_irq_injection(vcpu) &&
kvm_vcpu_ready_for_interrupt_injection(vcpu)) {
r = 0;
vcpu->run->exit_reason = KVM_EXIT_IRQ_WINDOW_OPEN;
++vcpu->stat.request_irq_exits;
break;
}
if (__xfer_to_guest_mode_work_pending()) {
kvm_vcpu_srcu_read_unlock(vcpu);
r = xfer_to_guest_mode_handle_work(vcpu);
kvm_vcpu_srcu_read_lock(vcpu);
if (r)
return r;
}
}
return r;
}
static int __kvm_emulate_halt(struct kvm_vcpu *vcpu, int state, int reason)
{
/*
* The vCPU has halted, e.g. executed HLT. Update the run state if the
* local APIC is in-kernel, the run loop will detect the non-runnable
* state and halt the vCPU. Exit to userspace if the local APIC is
* managed by userspace, in which case userspace is responsible for
* handling wake events.
*/
++vcpu->stat.halt_exits;
if (lapic_in_kernel(vcpu)) {
if (kvm_vcpu_has_events(vcpu))
vcpu->arch.pv.pv_unhalted = false;
else
vcpu->arch.mp_state = state;
return 1;
} else {
vcpu->run->exit_reason = reason;
return 0;
}
}
int kvm_emulate_halt_noskip(struct kvm_vcpu *vcpu)
{
return __kvm_emulate_halt(vcpu, KVM_MP_STATE_HALTED, KVM_EXIT_HLT);
}
EXPORT_SYMBOL_GPL(kvm_emulate_halt_noskip);
int kvm_emulate_halt(struct kvm_vcpu *vcpu)
{
int ret = kvm_skip_emulated_instruction(vcpu);
/*
* TODO: we might be squashing a GUESTDBG_SINGLESTEP-triggered
* KVM_EXIT_DEBUG here.
*/
return kvm_emulate_halt_noskip(vcpu) && ret;
}
EXPORT_SYMBOL_GPL(kvm_emulate_halt);
fastpath_t handle_fastpath_hlt(struct kvm_vcpu *vcpu)
{
int ret;
kvm_vcpu_srcu_read_lock(vcpu);
ret = kvm_emulate_halt(vcpu);
kvm_vcpu_srcu_read_unlock(vcpu);
if (!ret)
return EXIT_FASTPATH_EXIT_USERSPACE;
if (kvm_vcpu_running(vcpu))
return EXIT_FASTPATH_REENTER_GUEST;
return EXIT_FASTPATH_EXIT_HANDLED;
}
EXPORT_SYMBOL_GPL(handle_fastpath_hlt);
int kvm_emulate_ap_reset_hold(struct kvm_vcpu *vcpu)
{
int ret = kvm_skip_emulated_instruction(vcpu);
return __kvm_emulate_halt(vcpu, KVM_MP_STATE_AP_RESET_HOLD,
KVM_EXIT_AP_RESET_HOLD) && ret;
}
EXPORT_SYMBOL_GPL(kvm_emulate_ap_reset_hold);
bool kvm_arch_dy_has_pending_interrupt(struct kvm_vcpu *vcpu)
{
return kvm_vcpu_apicv_active(vcpu) &&
kvm_x86_call(dy_apicv_has_pending_interrupt)(vcpu);
}
bool kvm_arch_vcpu_preempted_in_kernel(struct kvm_vcpu *vcpu)
{
return vcpu->arch.preempted_in_kernel;
}
bool kvm_arch_dy_runnable(struct kvm_vcpu *vcpu)
{
if (READ_ONCE(vcpu->arch.pv.pv_unhalted))
return true;
if (kvm_test_request(KVM_REQ_NMI, vcpu) ||
#ifdef CONFIG_KVM_SMM
kvm_test_request(KVM_REQ_SMI, vcpu) ||
#endif
kvm_test_request(KVM_REQ_EVENT, vcpu))
return true;
return kvm_arch_dy_has_pending_interrupt(vcpu);
}
static inline int complete_emulated_io(struct kvm_vcpu *vcpu)
{
return kvm_emulate_instruction(vcpu, EMULTYPE_NO_DECODE);
}
static int complete_emulated_pio(struct kvm_vcpu *vcpu)
{
BUG_ON(!vcpu->arch.pio.count);
return complete_emulated_io(vcpu);
}
/*
* Implements the following, as a state machine:
*
* read:
* for each fragment
* for each mmio piece in the fragment
* write gpa, len
* exit
* copy data
* execute insn
*
* write:
* for each fragment
* for each mmio piece in the fragment
* write gpa, len
* copy data
* exit
*/
static int complete_emulated_mmio(struct kvm_vcpu *vcpu)
{
struct kvm_run *run = vcpu->run;
struct kvm_mmio_fragment *frag;
unsigned len;
BUG_ON(!vcpu->mmio_needed);
/* Complete previous fragment */
frag = &vcpu->mmio_fragments[vcpu->mmio_cur_fragment];
len = min(8u, frag->len);
if (!vcpu->mmio_is_write)
memcpy(frag->data, run->mmio.data, len);
if (frag->len <= 8) {
/* Switch to the next fragment. */
frag++;
vcpu->mmio_cur_fragment++;
} else {
/* Go forward to the next mmio piece. */
frag->data += len;
frag->gpa += len;
frag->len -= len;
}
if (vcpu->mmio_cur_fragment >= vcpu->mmio_nr_fragments) {
vcpu->mmio_needed = 0;
/* FIXME: return into emulator if single-stepping. */
if (vcpu->mmio_is_write)
return 1;
vcpu->mmio_read_completed = 1;
return complete_emulated_io(vcpu);
}
run->exit_reason = KVM_EXIT_MMIO;
run->mmio.phys_addr = frag->gpa;
if (vcpu->mmio_is_write)
memcpy(run->mmio.data, frag->data, min(8u, frag->len));
run->mmio.len = min(8u, frag->len);
run->mmio.is_write = vcpu->mmio_is_write;
vcpu->arch.complete_userspace_io = complete_emulated_mmio;
return 0;
}
/* Swap (qemu) user FPU context for the guest FPU context. */
static void kvm_load_guest_fpu(struct kvm_vcpu *vcpu)
{
/* Exclude PKRU, it's restored separately immediately after VM-Exit. */
fpu_swap_kvm_fpstate(&vcpu->arch.guest_fpu, true);
trace_kvm_fpu(1);
}
/* When vcpu_run ends, restore user space FPU context. */
static void kvm_put_guest_fpu(struct kvm_vcpu *vcpu)
{
fpu_swap_kvm_fpstate(&vcpu->arch.guest_fpu, false);
++vcpu->stat.fpu_reload;
trace_kvm_fpu(0);
}
int kvm_arch_vcpu_ioctl_run(struct kvm_vcpu *vcpu)
{
struct kvm_queued_exception *ex = &vcpu->arch.exception;
struct kvm_run *kvm_run = vcpu->run;
int r;
vcpu_load(vcpu);
kvm_sigset_activate(vcpu);
kvm_run->flags = 0;
kvm_load_guest_fpu(vcpu);
kvm_vcpu_srcu_read_lock(vcpu);
if (unlikely(vcpu->arch.mp_state == KVM_MP_STATE_UNINITIALIZED)) {
if (!vcpu->wants_to_run) {
r = -EINTR;
goto out;
}
/*
* Don't bother switching APIC timer emulation from the
* hypervisor timer to the software timer, the only way for the
* APIC timer to be active is if userspace stuffed vCPU state,
* i.e. put the vCPU into a nonsensical state. Only an INIT
* will transition the vCPU out of UNINITIALIZED (without more
* state stuffing from userspace), which will reset the local
* APIC and thus cancel the timer or drop the IRQ (if the timer
* already expired).
*/
kvm_vcpu_srcu_read_unlock(vcpu);
kvm_vcpu_block(vcpu);
kvm_vcpu_srcu_read_lock(vcpu);
if (kvm_apic_accept_events(vcpu) < 0) {
r = 0;
goto out;
}
r = -EAGAIN;
if (signal_pending(current)) {
r = -EINTR;
kvm_run->exit_reason = KVM_EXIT_INTR;
++vcpu->stat.signal_exits;
}
goto out;
}
if ((kvm_run->kvm_valid_regs & ~KVM_SYNC_X86_VALID_FIELDS) ||
(kvm_run->kvm_dirty_regs & ~KVM_SYNC_X86_VALID_FIELDS)) {
r = -EINVAL;
goto out;
}
if (kvm_run->kvm_dirty_regs) {
r = sync_regs(vcpu);
if (r != 0)
goto out;
}
/* re-sync apic's tpr */
if (!lapic_in_kernel(vcpu)) {
if (kvm_set_cr8(vcpu, kvm_run->cr8) != 0) {
r = -EINVAL;
goto out;
}
}
/*
* If userspace set a pending exception and L2 is active, convert it to
* a pending VM-Exit if L1 wants to intercept the exception.
*/
if (vcpu->arch.exception_from_userspace && is_guest_mode(vcpu) &&
kvm_x86_ops.nested_ops->is_exception_vmexit(vcpu, ex->vector,
ex->error_code)) {
kvm_queue_exception_vmexit(vcpu, ex->vector,
ex->has_error_code, ex->error_code,
ex->has_payload, ex->payload);
ex->injected = false;
ex->pending = false;
}
vcpu->arch.exception_from_userspace = false;
if (unlikely(vcpu->arch.complete_userspace_io)) {
int (*cui)(struct kvm_vcpu *) = vcpu->arch.complete_userspace_io;
vcpu->arch.complete_userspace_io = NULL;
r = cui(vcpu);
if (r <= 0)
goto out;
} else {
WARN_ON_ONCE(vcpu->arch.pio.count);
WARN_ON_ONCE(vcpu->mmio_needed);
}
if (!vcpu->wants_to_run) {
r = -EINTR;
goto out;
}
r = kvm_x86_call(vcpu_pre_run)(vcpu);
if (r <= 0)
goto out;
r = vcpu_run(vcpu);
out:
kvm_put_guest_fpu(vcpu);
if (kvm_run->kvm_valid_regs)
store_regs(vcpu);
post_kvm_run_save(vcpu);
kvm_vcpu_srcu_read_unlock(vcpu);
kvm_sigset_deactivate(vcpu);
vcpu_put(vcpu);
return r;
}
static void __get_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
{
if (vcpu->arch.emulate_regs_need_sync_to_vcpu) {
/*
* We are here if userspace calls get_regs() in the middle of
* instruction emulation. Registers state needs to be copied
* back from emulation context to vcpu. Userspace shouldn't do
* that usually, but some bad designed PV devices (vmware
* backdoor interface) need this to work
*/
emulator_writeback_register_cache(vcpu->arch.emulate_ctxt);
vcpu->arch.emulate_regs_need_sync_to_vcpu = false;
}
regs->rax = kvm_rax_read(vcpu);
regs->rbx = kvm_rbx_read(vcpu);
regs->rcx = kvm_rcx_read(vcpu);
regs->rdx = kvm_rdx_read(vcpu);
regs->rsi = kvm_rsi_read(vcpu);
regs->rdi = kvm_rdi_read(vcpu);
regs->rsp = kvm_rsp_read(vcpu);
regs->rbp = kvm_rbp_read(vcpu);
#ifdef CONFIG_X86_64
regs->r8 = kvm_r8_read(vcpu);
regs->r9 = kvm_r9_read(vcpu);
regs->r10 = kvm_r10_read(vcpu);
regs->r11 = kvm_r11_read(vcpu);
regs->r12 = kvm_r12_read(vcpu);
regs->r13 = kvm_r13_read(vcpu);
regs->r14 = kvm_r14_read(vcpu);
regs->r15 = kvm_r15_read(vcpu);
#endif
regs->rip = kvm_rip_read(vcpu);
regs->rflags = kvm_get_rflags(vcpu);
}
int kvm_arch_vcpu_ioctl_get_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
{
if (vcpu->kvm->arch.has_protected_state &&
vcpu->arch.guest_state_protected)
return -EINVAL;
vcpu_load(vcpu);
__get_regs(vcpu, regs);
vcpu_put(vcpu);
return 0;
}
static void __set_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
{
vcpu->arch.emulate_regs_need_sync_from_vcpu = true;
vcpu->arch.emulate_regs_need_sync_to_vcpu = false;
kvm_rax_write(vcpu, regs->rax);
kvm_rbx_write(vcpu, regs->rbx);
kvm_rcx_write(vcpu, regs->rcx);
kvm_rdx_write(vcpu, regs->rdx);
kvm_rsi_write(vcpu, regs->rsi);
kvm_rdi_write(vcpu, regs->rdi);
kvm_rsp_write(vcpu, regs->rsp);
kvm_rbp_write(vcpu, regs->rbp);
#ifdef CONFIG_X86_64
kvm_r8_write(vcpu, regs->r8);
kvm_r9_write(vcpu, regs->r9);
kvm_r10_write(vcpu, regs->r10);
kvm_r11_write(vcpu, regs->r11);
kvm_r12_write(vcpu, regs->r12);
kvm_r13_write(vcpu, regs->r13);
kvm_r14_write(vcpu, regs->r14);
kvm_r15_write(vcpu, regs->r15);
#endif
kvm_rip_write(vcpu, regs->rip);
kvm_set_rflags(vcpu, regs->rflags | X86_EFLAGS_FIXED);
vcpu->arch.exception.pending = false;
vcpu->arch.exception_vmexit.pending = false;
kvm_make_request(KVM_REQ_EVENT, vcpu);
}
int kvm_arch_vcpu_ioctl_set_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
{
if (vcpu->kvm->arch.has_protected_state &&
vcpu->arch.guest_state_protected)
return -EINVAL;
vcpu_load(vcpu);
__set_regs(vcpu, regs);
vcpu_put(vcpu);
return 0;
}
static void __get_sregs_common(struct kvm_vcpu *vcpu, struct kvm_sregs *sregs)
{
struct desc_ptr dt;
if (vcpu->arch.guest_state_protected)
goto skip_protected_regs;
kvm_get_segment(vcpu, &sregs->cs, VCPU_SREG_CS);
kvm_get_segment(vcpu, &sregs->ds, VCPU_SREG_DS);
kvm_get_segment(vcpu, &sregs->es, VCPU_SREG_ES);
kvm_get_segment(vcpu, &sregs->fs, VCPU_SREG_FS);
kvm_get_segment(vcpu, &sregs->gs, VCPU_SREG_GS);
kvm_get_segment(vcpu, &sregs->ss, VCPU_SREG_SS);
kvm_get_segment(vcpu, &sregs->tr, VCPU_SREG_TR);
kvm_get_segment(vcpu, &sregs->ldt, VCPU_SREG_LDTR);
kvm_x86_call(get_idt)(vcpu, &dt);
sregs->idt.limit = dt.size;
sregs->idt.base = dt.address;
kvm_x86_call(get_gdt)(vcpu, &dt);
sregs->gdt.limit = dt.size;
sregs->gdt.base = dt.address;
sregs->cr2 = vcpu->arch.cr2;
sregs->cr3 = kvm_read_cr3(vcpu);
skip_protected_regs:
sregs->cr0 = kvm_read_cr0(vcpu);
sregs->cr4 = kvm_read_cr4(vcpu);
sregs->cr8 = kvm_get_cr8(vcpu);
sregs->efer = vcpu->arch.efer;
sregs->apic_base = kvm_get_apic_base(vcpu);
}
static void __get_sregs(struct kvm_vcpu *vcpu, struct kvm_sregs *sregs)
{
__get_sregs_common(vcpu, sregs);
if (vcpu->arch.guest_state_protected)
return;
if (vcpu->arch.interrupt.injected && !vcpu->arch.interrupt.soft)
set_bit(vcpu->arch.interrupt.nr,
(unsigned long *)sregs->interrupt_bitmap);
}
static void __get_sregs2(struct kvm_vcpu *vcpu, struct kvm_sregs2 *sregs2)
{
int i;
__get_sregs_common(vcpu, (struct kvm_sregs *)sregs2);
if (vcpu->arch.guest_state_protected)
return;
if (is_pae_paging(vcpu)) {
for (i = 0 ; i < 4 ; i++)
sregs2->pdptrs[i] = kvm_pdptr_read(vcpu, i);
sregs2->flags |= KVM_SREGS2_FLAGS_PDPTRS_VALID;
}
}
int kvm_arch_vcpu_ioctl_get_sregs(struct kvm_vcpu *vcpu,
struct kvm_sregs *sregs)
{
if (vcpu->kvm->arch.has_protected_state &&
vcpu->arch.guest_state_protected)
return -EINVAL;
vcpu_load(vcpu);
__get_sregs(vcpu, sregs);
vcpu_put(vcpu);
return 0;
}
int kvm_arch_vcpu_ioctl_get_mpstate(struct kvm_vcpu *vcpu,
struct kvm_mp_state *mp_state)
{
int r;
vcpu_load(vcpu);
if (kvm_mpx_supported())
kvm_load_guest_fpu(vcpu);
r = kvm_apic_accept_events(vcpu);
if (r < 0)
goto out;
r = 0;
if ((vcpu->arch.mp_state == KVM_MP_STATE_HALTED ||
vcpu->arch.mp_state == KVM_MP_STATE_AP_RESET_HOLD) &&
vcpu->arch.pv.pv_unhalted)
mp_state->mp_state = KVM_MP_STATE_RUNNABLE;
else
mp_state->mp_state = vcpu->arch.mp_state;
out:
if (kvm_mpx_supported())
kvm_put_guest_fpu(vcpu);
vcpu_put(vcpu);
return r;
}
int kvm_arch_vcpu_ioctl_set_mpstate(struct kvm_vcpu *vcpu,
struct kvm_mp_state *mp_state)
{
int ret = -EINVAL;
vcpu_load(vcpu);
switch (mp_state->mp_state) {
case KVM_MP_STATE_UNINITIALIZED:
case KVM_MP_STATE_HALTED:
case KVM_MP_STATE_AP_RESET_HOLD:
case KVM_MP_STATE_INIT_RECEIVED:
case KVM_MP_STATE_SIPI_RECEIVED:
if (!lapic_in_kernel(vcpu))
goto out;
break;
case KVM_MP_STATE_RUNNABLE:
break;
default:
goto out;
}
/*
* Pending INITs are reported using KVM_SET_VCPU_EVENTS, disallow
* forcing the guest into INIT/SIPI if those events are supposed to be
* blocked. KVM prioritizes SMI over INIT, so reject INIT/SIPI state
* if an SMI is pending as well.
*/
if ((!kvm_apic_init_sipi_allowed(vcpu) || vcpu->arch.smi_pending) &&
(mp_state->mp_state == KVM_MP_STATE_SIPI_RECEIVED ||
mp_state->mp_state == KVM_MP_STATE_INIT_RECEIVED))
goto out;
if (mp_state->mp_state == KVM_MP_STATE_SIPI_RECEIVED) {
vcpu->arch.mp_state = KVM_MP_STATE_INIT_RECEIVED;
set_bit(KVM_APIC_SIPI, &vcpu->arch.apic->pending_events);
} else
vcpu->arch.mp_state = mp_state->mp_state;
kvm_make_request(KVM_REQ_EVENT, vcpu);
ret = 0;
out:
vcpu_put(vcpu);
return ret;
}
int kvm_task_switch(struct kvm_vcpu *vcpu, u16 tss_selector, int idt_index,
int reason, bool has_error_code, u32 error_code)
{
struct x86_emulate_ctxt *ctxt = vcpu->arch.emulate_ctxt;
int ret;
init_emulate_ctxt(vcpu);
ret = emulator_task_switch(ctxt, tss_selector, idt_index, reason,
has_error_code, error_code);
/*
* Report an error userspace if MMIO is needed, as KVM doesn't support
* MMIO during a task switch (or any other complex operation).
*/
if (ret || vcpu->mmio_needed) {
vcpu->mmio_needed = false;
vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
vcpu->run->internal.suberror = KVM_INTERNAL_ERROR_EMULATION;
vcpu->run->internal.ndata = 0;
return 0;
}
kvm_rip_write(vcpu, ctxt->eip);
kvm_set_rflags(vcpu, ctxt->eflags);
return 1;
}
EXPORT_SYMBOL_GPL(kvm_task_switch);
static bool kvm_is_valid_sregs(struct kvm_vcpu *vcpu, struct kvm_sregs *sregs)
{
if ((sregs->efer & EFER_LME) && (sregs->cr0 & X86_CR0_PG)) {
/*
* When EFER.LME and CR0.PG are set, the processor is in
* 64-bit mode (though maybe in a 32-bit code segment).
* CR4.PAE and EFER.LMA must be set.
*/
if (!(sregs->cr4 & X86_CR4_PAE) || !(sregs->efer & EFER_LMA))
return false;
if (!kvm_vcpu_is_legal_cr3(vcpu, sregs->cr3))
return false;
} else {
/*
* Not in 64-bit mode: EFER.LMA is clear and the code
* segment cannot be 64-bit.
*/
if (sregs->efer & EFER_LMA || sregs->cs.l)
return false;
}
return kvm_is_valid_cr4(vcpu, sregs->cr4) &&
kvm_is_valid_cr0(vcpu, sregs->cr0);
}
static int __set_sregs_common(struct kvm_vcpu *vcpu, struct kvm_sregs *sregs,
int *mmu_reset_needed, bool update_pdptrs)
{
struct msr_data apic_base_msr;
int idx;
struct desc_ptr dt;
if (!kvm_is_valid_sregs(vcpu, sregs))
return -EINVAL;
apic_base_msr.data = sregs->apic_base;
apic_base_msr.host_initiated = true;
if (kvm_set_apic_base(vcpu, &apic_base_msr))
return -EINVAL;
if (vcpu->arch.guest_state_protected)
return 0;
dt.size = sregs->idt.limit;
dt.address = sregs->idt.base;
kvm_x86_call(set_idt)(vcpu, &dt);
dt.size = sregs->gdt.limit;
dt.address = sregs->gdt.base;
kvm_x86_call(set_gdt)(vcpu, &dt);
vcpu->arch.cr2 = sregs->cr2;
*mmu_reset_needed |= kvm_read_cr3(vcpu) != sregs->cr3;
vcpu->arch.cr3 = sregs->cr3;
kvm_register_mark_dirty(vcpu, VCPU_EXREG_CR3);
kvm_x86_call(post_set_cr3)(vcpu, sregs->cr3);
kvm_set_cr8(vcpu, sregs->cr8);
*mmu_reset_needed |= vcpu->arch.efer != sregs->efer;
kvm_x86_call(set_efer)(vcpu, sregs->efer);
*mmu_reset_needed |= kvm_read_cr0(vcpu) != sregs->cr0;
kvm_x86_call(set_cr0)(vcpu, sregs->cr0);
*mmu_reset_needed |= kvm_read_cr4(vcpu) != sregs->cr4;
kvm_x86_call(set_cr4)(vcpu, sregs->cr4);
if (update_pdptrs) {
idx = srcu_read_lock(&vcpu->kvm->srcu);
if (is_pae_paging(vcpu)) {
load_pdptrs(vcpu, kvm_read_cr3(vcpu));
*mmu_reset_needed = 1;
}
srcu_read_unlock(&vcpu->kvm->srcu, idx);
}
kvm_set_segment(vcpu, &sregs->cs, VCPU_SREG_CS);
kvm_set_segment(vcpu, &sregs->ds, VCPU_SREG_DS);
kvm_set_segment(vcpu, &sregs->es, VCPU_SREG_ES);
kvm_set_segment(vcpu, &sregs->fs, VCPU_SREG_FS);
kvm_set_segment(vcpu, &sregs->gs, VCPU_SREG_GS);
kvm_set_segment(vcpu, &sregs->ss, VCPU_SREG_SS);
kvm_set_segment(vcpu, &sregs->tr, VCPU_SREG_TR);
kvm_set_segment(vcpu, &sregs->ldt, VCPU_SREG_LDTR);
update_cr8_intercept(vcpu);
/* Older userspace won't unhalt the vcpu on reset. */
if (kvm_vcpu_is_bsp(vcpu) && kvm_rip_read(vcpu) == 0xfff0 &&
sregs->cs.selector == 0xf000 && sregs->cs.base == 0xffff0000 &&
!is_protmode(vcpu))
vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
return 0;
}
static int __set_sregs(struct kvm_vcpu *vcpu, struct kvm_sregs *sregs)
{
int pending_vec, max_bits;
int mmu_reset_needed = 0;
int ret = __set_sregs_common(vcpu, sregs, &mmu_reset_needed, true);
if (ret)
return ret;
if (mmu_reset_needed) {
kvm_mmu_reset_context(vcpu);
kvm_make_request(KVM_REQ_TLB_FLUSH_GUEST, vcpu);
}
max_bits = KVM_NR_INTERRUPTS;
pending_vec = find_first_bit(
(const unsigned long *)sregs->interrupt_bitmap, max_bits);
if (pending_vec < max_bits) {
kvm_queue_interrupt(vcpu, pending_vec, false);
pr_debug("Set back pending irq %d\n", pending_vec);
kvm_make_request(KVM_REQ_EVENT, vcpu);
}
return 0;
}
static int __set_sregs2(struct kvm_vcpu *vcpu, struct kvm_sregs2 *sregs2)
{
int mmu_reset_needed = 0;
bool valid_pdptrs = sregs2->flags & KVM_SREGS2_FLAGS_PDPTRS_VALID;
bool pae = (sregs2->cr0 & X86_CR0_PG) && (sregs2->cr4 & X86_CR4_PAE) &&
!(sregs2->efer & EFER_LMA);
int i, ret;
if (sregs2->flags & ~KVM_SREGS2_FLAGS_PDPTRS_VALID)
return -EINVAL;
if (valid_pdptrs && (!pae || vcpu->arch.guest_state_protected))
return -EINVAL;
ret = __set_sregs_common(vcpu, (struct kvm_sregs *)sregs2,
&mmu_reset_needed, !valid_pdptrs);
if (ret)
return ret;
if (valid_pdptrs) {
for (i = 0; i < 4 ; i++)
kvm_pdptr_write(vcpu, i, sregs2->pdptrs[i]);
kvm_register_mark_dirty(vcpu, VCPU_EXREG_PDPTR);
mmu_reset_needed = 1;
vcpu->arch.pdptrs_from_userspace = true;
}
if (mmu_reset_needed) {
kvm_mmu_reset_context(vcpu);
kvm_make_request(KVM_REQ_TLB_FLUSH_GUEST, vcpu);
}
return 0;
}
int kvm_arch_vcpu_ioctl_set_sregs(struct kvm_vcpu *vcpu,
struct kvm_sregs *sregs)
{
int ret;
if (vcpu->kvm->arch.has_protected_state &&
vcpu->arch.guest_state_protected)
return -EINVAL;
vcpu_load(vcpu);
ret = __set_sregs(vcpu, sregs);
vcpu_put(vcpu);
return ret;
}
static void kvm_arch_vcpu_guestdbg_update_apicv_inhibit(struct kvm *kvm)
{
bool set = false;
struct kvm_vcpu *vcpu;
unsigned long i;
if (!enable_apicv)
return;
down_write(&kvm->arch.apicv_update_lock);
kvm_for_each_vcpu(i, vcpu, kvm) {
if (vcpu->guest_debug & KVM_GUESTDBG_BLOCKIRQ) {
set = true;
break;
}
}
__kvm_set_or_clear_apicv_inhibit(kvm, APICV_INHIBIT_REASON_BLOCKIRQ, set);
up_write(&kvm->arch.apicv_update_lock);
}
int kvm_arch_vcpu_ioctl_set_guest_debug(struct kvm_vcpu *vcpu,
struct kvm_guest_debug *dbg)
{
unsigned long rflags;
int i, r;
if (vcpu->arch.guest_state_protected)
return -EINVAL;
vcpu_load(vcpu);
if (dbg->control & (KVM_GUESTDBG_INJECT_DB | KVM_GUESTDBG_INJECT_BP)) {
r = -EBUSY;
if (kvm_is_exception_pending(vcpu))
goto out;
if (dbg->control & KVM_GUESTDBG_INJECT_DB)
kvm_queue_exception(vcpu, DB_VECTOR);
else
kvm_queue_exception(vcpu, BP_VECTOR);
}
/*
* Read rflags as long as potentially injected trace flags are still
* filtered out.
*/
rflags = kvm_get_rflags(vcpu);
vcpu->guest_debug = dbg->control;
if (!(vcpu->guest_debug & KVM_GUESTDBG_ENABLE))
vcpu->guest_debug = 0;
if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP) {
for (i = 0; i < KVM_NR_DB_REGS; ++i)
vcpu->arch.eff_db[i] = dbg->arch.debugreg[i];
vcpu->arch.guest_debug_dr7 = dbg->arch.debugreg[7];
} else {
for (i = 0; i < KVM_NR_DB_REGS; i++)
vcpu->arch.eff_db[i] = vcpu->arch.db[i];
}
kvm_update_dr7(vcpu);
if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP)
vcpu->arch.singlestep_rip = kvm_get_linear_rip(vcpu);
/*
* Trigger an rflags update that will inject or remove the trace
* flags.
*/
kvm_set_rflags(vcpu, rflags);
kvm_x86_call(update_exception_bitmap)(vcpu);
kvm_arch_vcpu_guestdbg_update_apicv_inhibit(vcpu->kvm);
r = 0;
out:
vcpu_put(vcpu);
return r;
}
/*
* Translate a guest virtual address to a guest physical address.
*/
int kvm_arch_vcpu_ioctl_translate(struct kvm_vcpu *vcpu,
struct kvm_translation *tr)
{
unsigned long vaddr = tr->linear_address;
gpa_t gpa;
int idx;
vcpu_load(vcpu);
idx = srcu_read_lock(&vcpu->kvm->srcu);
gpa = kvm_mmu_gva_to_gpa_system(vcpu, vaddr, NULL);
srcu_read_unlock(&vcpu->kvm->srcu, idx);
tr->physical_address = gpa;
tr->valid = gpa != INVALID_GPA;
tr->writeable = 1;
tr->usermode = 0;
vcpu_put(vcpu);
return 0;
}
int kvm_arch_vcpu_ioctl_get_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu)
{
struct fxregs_state *fxsave;
if (fpstate_is_confidential(&vcpu->arch.guest_fpu))
return vcpu->kvm->arch.has_protected_state ? -EINVAL : 0;
vcpu_load(vcpu);
fxsave = &vcpu->arch.guest_fpu.fpstate->regs.fxsave;
memcpy(fpu->fpr, fxsave->st_space, 128);
fpu->fcw = fxsave->cwd;
fpu->fsw = fxsave->swd;
fpu->ftwx = fxsave->twd;
fpu->last_opcode = fxsave->fop;
fpu->last_ip = fxsave->rip;
fpu->last_dp = fxsave->rdp;
memcpy(fpu->xmm, fxsave->xmm_space, sizeof(fxsave->xmm_space));
vcpu_put(vcpu);
return 0;
}
int kvm_arch_vcpu_ioctl_set_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu)
{
struct fxregs_state *fxsave;
if (fpstate_is_confidential(&vcpu->arch.guest_fpu))
return vcpu->kvm->arch.has_protected_state ? -EINVAL : 0;
vcpu_load(vcpu);
fxsave = &vcpu->arch.guest_fpu.fpstate->regs.fxsave;
memcpy(fxsave->st_space, fpu->fpr, 128);
fxsave->cwd = fpu->fcw;
fxsave->swd = fpu->fsw;
fxsave->twd = fpu->ftwx;
fxsave->fop = fpu->last_opcode;
fxsave->rip = fpu->last_ip;
fxsave->rdp = fpu->last_dp;
memcpy(fxsave->xmm_space, fpu->xmm, sizeof(fxsave->xmm_space));
vcpu_put(vcpu);
return 0;
}
static void store_regs(struct kvm_vcpu *vcpu)
{
BUILD_BUG_ON(sizeof(struct kvm_sync_regs) > SYNC_REGS_SIZE_BYTES);
if (vcpu->run->kvm_valid_regs & KVM_SYNC_X86_REGS)
__get_regs(vcpu, &vcpu->run->s.regs.regs);
if (vcpu->run->kvm_valid_regs & KVM_SYNC_X86_SREGS)
__get_sregs(vcpu, &vcpu->run->s.regs.sregs);
if (vcpu->run->kvm_valid_regs & KVM_SYNC_X86_EVENTS)
kvm_vcpu_ioctl_x86_get_vcpu_events(
vcpu, &vcpu->run->s.regs.events);
}
static int sync_regs(struct kvm_vcpu *vcpu)
{
if (vcpu->run->kvm_dirty_regs & KVM_SYNC_X86_REGS) {
__set_regs(vcpu, &vcpu->run->s.regs.regs);
vcpu->run->kvm_dirty_regs &= ~KVM_SYNC_X86_REGS;
}
if (vcpu->run->kvm_dirty_regs & KVM_SYNC_X86_SREGS) {
struct kvm_sregs sregs = vcpu->run->s.regs.sregs;
if (__set_sregs(vcpu, &sregs))
return -EINVAL;
vcpu->run->kvm_dirty_regs &= ~KVM_SYNC_X86_SREGS;
}
if (vcpu->run->kvm_dirty_regs & KVM_SYNC_X86_EVENTS) {
struct kvm_vcpu_events events = vcpu->run->s.regs.events;
if (kvm_vcpu_ioctl_x86_set_vcpu_events(vcpu, &events))
return -EINVAL;
vcpu->run->kvm_dirty_regs &= ~KVM_SYNC_X86_EVENTS;
}
return 0;
}
int kvm_arch_vcpu_precreate(struct kvm *kvm, unsigned int id)
{
if (kvm_check_tsc_unstable() && kvm->created_vcpus)
pr_warn_once("SMP vm created on host with unstable TSC; "
"guest TSC will not be reliable\n");
if (!kvm->arch.max_vcpu_ids)
kvm->arch.max_vcpu_ids = KVM_MAX_VCPU_IDS;
if (id >= kvm->arch.max_vcpu_ids)
return -EINVAL;
return kvm_x86_call(vcpu_precreate)(kvm);
}
int kvm_arch_vcpu_create(struct kvm_vcpu *vcpu)
{
struct page *page;
int r;
vcpu->arch.last_vmentry_cpu = -1;
vcpu->arch.regs_avail = ~0;
vcpu->arch.regs_dirty = ~0;
kvm_gpc_init(&vcpu->arch.pv_time, vcpu->kvm);
if (!irqchip_in_kernel(vcpu->kvm) || kvm_vcpu_is_reset_bsp(vcpu))
vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
else
vcpu->arch.mp_state = KVM_MP_STATE_UNINITIALIZED;
r = kvm_mmu_create(vcpu);
if (r < 0)
return r;
r = kvm_create_lapic(vcpu);
if (r < 0)
goto fail_mmu_destroy;
r = -ENOMEM;
page = alloc_page(GFP_KERNEL_ACCOUNT | __GFP_ZERO);
if (!page)
goto fail_free_lapic;
vcpu->arch.pio_data = page_address(page);
vcpu->arch.mce_banks = kcalloc(KVM_MAX_MCE_BANKS * 4, sizeof(u64),
GFP_KERNEL_ACCOUNT);
vcpu->arch.mci_ctl2_banks = kcalloc(KVM_MAX_MCE_BANKS, sizeof(u64),
GFP_KERNEL_ACCOUNT);
if (!vcpu->arch.mce_banks || !vcpu->arch.mci_ctl2_banks)
goto fail_free_mce_banks;
vcpu->arch.mcg_cap = KVM_MAX_MCE_BANKS;
if (!zalloc_cpumask_var(&vcpu->arch.wbinvd_dirty_mask,
GFP_KERNEL_ACCOUNT))
goto fail_free_mce_banks;
if (!alloc_emulate_ctxt(vcpu))
goto free_wbinvd_dirty_mask;
if (!fpu_alloc_guest_fpstate(&vcpu->arch.guest_fpu)) {
pr_err("failed to allocate vcpu's fpu\n");
goto free_emulate_ctxt;
}
vcpu->arch.maxphyaddr = cpuid_query_maxphyaddr(vcpu);
vcpu->arch.reserved_gpa_bits = kvm_vcpu_reserved_gpa_bits_raw(vcpu);
kvm_async_pf_hash_reset(vcpu);
vcpu->arch.perf_capabilities = kvm_caps.supported_perf_cap;
kvm_pmu_init(vcpu);
vcpu->arch.pending_external_vector = -1;
vcpu->arch.preempted_in_kernel = false;
#if IS_ENABLED(CONFIG_HYPERV)
vcpu->arch.hv_root_tdp = INVALID_PAGE;
#endif
r = kvm_x86_call(vcpu_create)(vcpu);
if (r)
goto free_guest_fpu;
vcpu->arch.arch_capabilities = kvm_get_arch_capabilities();
vcpu->arch.msr_platform_info = MSR_PLATFORM_INFO_CPUID_FAULT;
kvm_xen_init_vcpu(vcpu);
vcpu_load(vcpu);
kvm_set_tsc_khz(vcpu, vcpu->kvm->arch.default_tsc_khz);
kvm_vcpu_reset(vcpu, false);
kvm_init_mmu(vcpu);
vcpu_put(vcpu);
return 0;
free_guest_fpu:
fpu_free_guest_fpstate(&vcpu->arch.guest_fpu);
free_emulate_ctxt:
kmem_cache_free(x86_emulator_cache, vcpu->arch.emulate_ctxt);
free_wbinvd_dirty_mask:
free_cpumask_var(vcpu->arch.wbinvd_dirty_mask);
fail_free_mce_banks:
kfree(vcpu->arch.mce_banks);
kfree(vcpu->arch.mci_ctl2_banks);
free_page((unsigned long)vcpu->arch.pio_data);
fail_free_lapic:
kvm_free_lapic(vcpu);
fail_mmu_destroy:
kvm_mmu_destroy(vcpu);
return r;
}
void kvm_arch_vcpu_postcreate(struct kvm_vcpu *vcpu)
{
struct kvm *kvm = vcpu->kvm;
if (mutex_lock_killable(&vcpu->mutex))
return;
vcpu_load(vcpu);
kvm_synchronize_tsc(vcpu, NULL);
vcpu_put(vcpu);
/* poll control enabled by default */
vcpu->arch.msr_kvm_poll_control = 1;
mutex_unlock(&vcpu->mutex);
if (kvmclock_periodic_sync && vcpu->vcpu_idx == 0)
schedule_delayed_work(&kvm->arch.kvmclock_sync_work,
KVMCLOCK_SYNC_PERIOD);
}
void kvm_arch_vcpu_destroy(struct kvm_vcpu *vcpu)
{
int idx;
kvmclock_reset(vcpu);
kvm_x86_call(vcpu_free)(vcpu);
kmem_cache_free(x86_emulator_cache, vcpu->arch.emulate_ctxt);
free_cpumask_var(vcpu->arch.wbinvd_dirty_mask);
fpu_free_guest_fpstate(&vcpu->arch.guest_fpu);
kvm_xen_destroy_vcpu(vcpu);
kvm_hv_vcpu_uninit(vcpu);
kvm_pmu_destroy(vcpu);
kfree(vcpu->arch.mce_banks);
kfree(vcpu->arch.mci_ctl2_banks);
kvm_free_lapic(vcpu);
idx = srcu_read_lock(&vcpu->kvm->srcu);
kvm_mmu_destroy(vcpu);
srcu_read_unlock(&vcpu->kvm->srcu, idx);
free_page((unsigned long)vcpu->arch.pio_data);
kvfree(vcpu->arch.cpuid_entries);
}
void kvm_vcpu_reset(struct kvm_vcpu *vcpu, bool init_event)
{
struct kvm_cpuid_entry2 *cpuid_0x1;
unsigned long old_cr0 = kvm_read_cr0(vcpu);
unsigned long new_cr0;
/*
* Several of the "set" flows, e.g. ->set_cr0(), read other registers
* to handle side effects. RESET emulation hits those flows and relies
* on emulated/virtualized registers, including those that are loaded
* into hardware, to be zeroed at vCPU creation. Use CRs as a sentinel
* to detect improper or missing initialization.
*/
WARN_ON_ONCE(!init_event &&
(old_cr0 || kvm_read_cr3(vcpu) || kvm_read_cr4(vcpu)));
/*
* SVM doesn't unconditionally VM-Exit on INIT and SHUTDOWN, thus it's
* possible to INIT the vCPU while L2 is active. Force the vCPU back
* into L1 as EFER.SVME is cleared on INIT (along with all other EFER
* bits), i.e. virtualization is disabled.
*/
if (is_guest_mode(vcpu))
kvm_leave_nested(vcpu);
kvm_lapic_reset(vcpu, init_event);
WARN_ON_ONCE(is_guest_mode(vcpu) || is_smm(vcpu));
vcpu->arch.hflags = 0;
vcpu->arch.smi_pending = 0;
vcpu->arch.smi_count = 0;
atomic_set(&vcpu->arch.nmi_queued, 0);
vcpu->arch.nmi_pending = 0;
vcpu->arch.nmi_injected = false;
kvm_clear_interrupt_queue(vcpu);
kvm_clear_exception_queue(vcpu);
memset(vcpu->arch.db, 0, sizeof(vcpu->arch.db));
kvm_update_dr0123(vcpu);
vcpu->arch.dr6 = DR6_ACTIVE_LOW;
vcpu->arch.dr7 = DR7_FIXED_1;
kvm_update_dr7(vcpu);
vcpu->arch.cr2 = 0;
kvm_make_request(KVM_REQ_EVENT, vcpu);
vcpu->arch.apf.msr_en_val = 0;
vcpu->arch.apf.msr_int_val = 0;
vcpu->arch.st.msr_val = 0;
kvmclock_reset(vcpu);
kvm_clear_async_pf_completion_queue(vcpu);
kvm_async_pf_hash_reset(vcpu);
vcpu->arch.apf.halted = false;
if (vcpu->arch.guest_fpu.fpstate && kvm_mpx_supported()) {
struct fpstate *fpstate = vcpu->arch.guest_fpu.fpstate;
/*
* All paths that lead to INIT are required to load the guest's
* FPU state (because most paths are buried in KVM_RUN).
*/
if (init_event)
kvm_put_guest_fpu(vcpu);
fpstate_clear_xstate_component(fpstate, XFEATURE_BNDREGS);
fpstate_clear_xstate_component(fpstate, XFEATURE_BNDCSR);
if (init_event)
kvm_load_guest_fpu(vcpu);
}
if (!init_event) {
vcpu->arch.smbase = 0x30000;
vcpu->arch.pat = MSR_IA32_CR_PAT_DEFAULT;
vcpu->arch.msr_misc_features_enables = 0;
vcpu->arch.ia32_misc_enable_msr = MSR_IA32_MISC_ENABLE_PEBS_UNAVAIL |
MSR_IA32_MISC_ENABLE_BTS_UNAVAIL;
__kvm_set_xcr(vcpu, 0, XFEATURE_MASK_FP);
__kvm_set_msr(vcpu, MSR_IA32_XSS, 0, true);
}
/* All GPRs except RDX (handled below) are zeroed on RESET/INIT. */
memset(vcpu->arch.regs, 0, sizeof(vcpu->arch.regs));
kvm_register_mark_dirty(vcpu, VCPU_REGS_RSP);
/*
* Fall back to KVM's default Family/Model/Stepping of 0x600 (P6/Athlon)
* if no CPUID match is found. Note, it's impossible to get a match at
* RESET since KVM emulates RESET before exposing the vCPU to userspace,
* i.e. it's impossible for kvm_find_cpuid_entry() to find a valid entry
* on RESET. But, go through the motions in case that's ever remedied.
*/
cpuid_0x1 = kvm_find_cpuid_entry(vcpu, 1);
kvm_rdx_write(vcpu, cpuid_0x1 ? cpuid_0x1->eax : 0x600);
kvm_x86_call(vcpu_reset)(vcpu, init_event);
kvm_set_rflags(vcpu, X86_EFLAGS_FIXED);
kvm_rip_write(vcpu, 0xfff0);
vcpu->arch.cr3 = 0;
kvm_register_mark_dirty(vcpu, VCPU_EXREG_CR3);
/*
* CR0.CD/NW are set on RESET, preserved on INIT. Note, some versions
* of Intel's SDM list CD/NW as being set on INIT, but they contradict
* (or qualify) that with a footnote stating that CD/NW are preserved.
*/
new_cr0 = X86_CR0_ET;
if (init_event)
new_cr0 |= (old_cr0 & (X86_CR0_NW | X86_CR0_CD));
else
new_cr0 |= X86_CR0_NW | X86_CR0_CD;
kvm_x86_call(set_cr0)(vcpu, new_cr0);
kvm_x86_call(set_cr4)(vcpu, 0);
kvm_x86_call(set_efer)(vcpu, 0);
kvm_x86_call(update_exception_bitmap)(vcpu);
/*
* On the standard CR0/CR4/EFER modification paths, there are several
* complex conditions determining whether the MMU has to be reset and/or
* which PCIDs have to be flushed. However, CR0.WP and the paging-related
* bits in CR4 and EFER are irrelevant if CR0.PG was '0'; and a reset+flush
* is needed anyway if CR0.PG was '1' (which can only happen for INIT, as
* CR0 will be '0' prior to RESET). So we only need to check CR0.PG here.
*/
if (old_cr0 & X86_CR0_PG) {
kvm_make_request(KVM_REQ_TLB_FLUSH_GUEST, vcpu);
kvm_mmu_reset_context(vcpu);
}
/*
* Intel's SDM states that all TLB entries are flushed on INIT. AMD's
* APM states the TLBs are untouched by INIT, but it also states that
* the TLBs are flushed on "External initialization of the processor."
* Flush the guest TLB regardless of vendor, there is no meaningful
* benefit in relying on the guest to flush the TLB immediately after
* INIT. A spurious TLB flush is benign and likely negligible from a
* performance perspective.
*/
if (init_event)
kvm_make_request(KVM_REQ_TLB_FLUSH_GUEST, vcpu);
}
EXPORT_SYMBOL_GPL(kvm_vcpu_reset);
void kvm_vcpu_deliver_sipi_vector(struct kvm_vcpu *vcpu, u8 vector)
{
struct kvm_segment cs;
kvm_get_segment(vcpu, &cs, VCPU_SREG_CS);
cs.selector = vector << 8;
cs.base = vector << 12;
kvm_set_segment(vcpu, &cs, VCPU_SREG_CS);
kvm_rip_write(vcpu, 0);
}
EXPORT_SYMBOL_GPL(kvm_vcpu_deliver_sipi_vector);
void kvm_arch_enable_virtualization(void)
{
cpu_emergency_register_virt_callback(kvm_x86_ops.emergency_disable_virtualization_cpu);
}
void kvm_arch_disable_virtualization(void)
{
cpu_emergency_unregister_virt_callback(kvm_x86_ops.emergency_disable_virtualization_cpu);
}
int kvm_arch_enable_virtualization_cpu(void)
{
struct kvm *kvm;
struct kvm_vcpu *vcpu;
unsigned long i;
int ret;
u64 local_tsc;
u64 max_tsc = 0;
bool stable, backwards_tsc = false;
kvm_user_return_msr_cpu_online();
ret = kvm_x86_check_processor_compatibility();
if (ret)
return ret;
ret = kvm_x86_call(enable_virtualization_cpu)();
if (ret != 0)
return ret;
local_tsc = rdtsc();
stable = !kvm_check_tsc_unstable();
list_for_each_entry(kvm, &vm_list, vm_list) {
kvm_for_each_vcpu(i, vcpu, kvm) {
if (!stable && vcpu->cpu == smp_processor_id())
kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
if (stable && vcpu->arch.last_host_tsc > local_tsc) {
backwards_tsc = true;
if (vcpu->arch.last_host_tsc > max_tsc)
max_tsc = vcpu->arch.last_host_tsc;
}
}
}
/*
* Sometimes, even reliable TSCs go backwards. This happens on
* platforms that reset TSC during suspend or hibernate actions, but
* maintain synchronization. We must compensate. Fortunately, we can
* detect that condition here, which happens early in CPU bringup,
* before any KVM threads can be running. Unfortunately, we can't
* bring the TSCs fully up to date with real time, as we aren't yet far
* enough into CPU bringup that we know how much real time has actually
* elapsed; our helper function, ktime_get_boottime_ns() will be using boot
* variables that haven't been updated yet.
*
* So we simply find the maximum observed TSC above, then record the
* adjustment to TSC in each VCPU. When the VCPU later gets loaded,
* the adjustment will be applied. Note that we accumulate
* adjustments, in case multiple suspend cycles happen before some VCPU
* gets a chance to run again. In the event that no KVM threads get a
* chance to run, we will miss the entire elapsed period, as we'll have
* reset last_host_tsc, so VCPUs will not have the TSC adjusted and may
* loose cycle time. This isn't too big a deal, since the loss will be
* uniform across all VCPUs (not to mention the scenario is extremely
* unlikely). It is possible that a second hibernate recovery happens
* much faster than a first, causing the observed TSC here to be
* smaller; this would require additional padding adjustment, which is
* why we set last_host_tsc to the local tsc observed here.
*
* N.B. - this code below runs only on platforms with reliable TSC,
* as that is the only way backwards_tsc is set above. Also note
* that this runs for ALL vcpus, which is not a bug; all VCPUs should
* have the same delta_cyc adjustment applied if backwards_tsc
* is detected. Note further, this adjustment is only done once,
* as we reset last_host_tsc on all VCPUs to stop this from being
* called multiple times (one for each physical CPU bringup).
*
* Platforms with unreliable TSCs don't have to deal with this, they
* will be compensated by the logic in vcpu_load, which sets the TSC to
* catchup mode. This will catchup all VCPUs to real time, but cannot
* guarantee that they stay in perfect synchronization.
*/
if (backwards_tsc) {
u64 delta_cyc = max_tsc - local_tsc;
list_for_each_entry(kvm, &vm_list, vm_list) {
kvm->arch.backwards_tsc_observed = true;
kvm_for_each_vcpu(i, vcpu, kvm) {
vcpu->arch.tsc_offset_adjustment += delta_cyc;
vcpu->arch.last_host_tsc = local_tsc;
kvm_make_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu);
}
/*
* We have to disable TSC offset matching.. if you were
* booting a VM while issuing an S4 host suspend....
* you may have some problem. Solving this issue is
* left as an exercise to the reader.
*/
kvm->arch.last_tsc_nsec = 0;
kvm->arch.last_tsc_write = 0;
}
}
return 0;
}
void kvm_arch_disable_virtualization_cpu(void)
{
kvm_x86_call(disable_virtualization_cpu)();
drop_user_return_notifiers();
}
bool kvm_vcpu_is_reset_bsp(struct kvm_vcpu *vcpu)
{
return vcpu->kvm->arch.bsp_vcpu_id == vcpu->vcpu_id;
}
bool kvm_vcpu_is_bsp(struct kvm_vcpu *vcpu)
{
return (vcpu->arch.apic_base & MSR_IA32_APICBASE_BSP) != 0;
}
void kvm_arch_free_vm(struct kvm *kvm)
{
#if IS_ENABLED(CONFIG_HYPERV)
kfree(kvm->arch.hv_pa_pg);
#endif
__kvm_arch_free_vm(kvm);
}
int kvm_arch_init_vm(struct kvm *kvm, unsigned long type)
{
int ret;
unsigned long flags;
if (!kvm_is_vm_type_supported(type))
return -EINVAL;
kvm->arch.vm_type = type;
kvm->arch.has_private_mem =
(type == KVM_X86_SW_PROTECTED_VM);
/* Decided by the vendor code for other VM types. */
kvm->arch.pre_fault_allowed =
type == KVM_X86_DEFAULT_VM || type == KVM_X86_SW_PROTECTED_VM;
ret = kvm_page_track_init(kvm);
if (ret)
goto out;
kvm_mmu_init_vm(kvm);
ret = kvm_x86_call(vm_init)(kvm);
if (ret)
goto out_uninit_mmu;
INIT_HLIST_HEAD(&kvm->arch.mask_notifier_list);
atomic_set(&kvm->arch.noncoherent_dma_count, 0);
/* Reserve bit 0 of irq_sources_bitmap for userspace irq source */
set_bit(KVM_USERSPACE_IRQ_SOURCE_ID, &kvm->arch.irq_sources_bitmap);
/* Reserve bit 1 of irq_sources_bitmap for irqfd-resampler */
set_bit(KVM_IRQFD_RESAMPLE_IRQ_SOURCE_ID,
&kvm->arch.irq_sources_bitmap);
raw_spin_lock_init(&kvm->arch.tsc_write_lock);
mutex_init(&kvm->arch.apic_map_lock);
seqcount_raw_spinlock_init(&kvm->arch.pvclock_sc, &kvm->arch.tsc_write_lock);
kvm->arch.kvmclock_offset = -get_kvmclock_base_ns();
raw_spin_lock_irqsave(&kvm->arch.tsc_write_lock, flags);
pvclock_update_vm_gtod_copy(kvm);
raw_spin_unlock_irqrestore(&kvm->arch.tsc_write_lock, flags);
kvm->arch.default_tsc_khz = max_tsc_khz ? : tsc_khz;
kvm->arch.apic_bus_cycle_ns = APIC_BUS_CYCLE_NS_DEFAULT;
kvm->arch.guest_can_read_msr_platform_info = true;
kvm->arch.enable_pmu = enable_pmu;
#if IS_ENABLED(CONFIG_HYPERV)
spin_lock_init(&kvm->arch.hv_root_tdp_lock);
kvm->arch.hv_root_tdp = INVALID_PAGE;
#endif
INIT_DELAYED_WORK(&kvm->arch.kvmclock_update_work, kvmclock_update_fn);
INIT_DELAYED_WORK(&kvm->arch.kvmclock_sync_work, kvmclock_sync_fn);
kvm_apicv_init(kvm);
kvm_hv_init_vm(kvm);
kvm_xen_init_vm(kvm);
return 0;
out_uninit_mmu:
kvm_mmu_uninit_vm(kvm);
kvm_page_track_cleanup(kvm);
out:
return ret;
}
int kvm_arch_post_init_vm(struct kvm *kvm)
{
return kvm_mmu_post_init_vm(kvm);
}
static void kvm_unload_vcpu_mmu(struct kvm_vcpu *vcpu)
{
vcpu_load(vcpu);
kvm_mmu_unload(vcpu);
vcpu_put(vcpu);
}
static void kvm_unload_vcpu_mmus(struct kvm *kvm)
{
unsigned long i;
struct kvm_vcpu *vcpu;
kvm_for_each_vcpu(i, vcpu, kvm) {
kvm_clear_async_pf_completion_queue(vcpu);
kvm_unload_vcpu_mmu(vcpu);
}
}
void kvm_arch_sync_events(struct kvm *kvm)
{
cancel_delayed_work_sync(&kvm->arch.kvmclock_sync_work);
cancel_delayed_work_sync(&kvm->arch.kvmclock_update_work);
kvm_free_pit(kvm);
}
/**
* __x86_set_memory_region: Setup KVM internal memory slot
*
* @kvm: the kvm pointer to the VM.
* @id: the slot ID to setup.
* @gpa: the GPA to install the slot (unused when @size == 0).
* @size: the size of the slot. Set to zero to uninstall a slot.
*
* This function helps to setup a KVM internal memory slot. Specify
* @size > 0 to install a new slot, while @size == 0 to uninstall a
* slot. The return code can be one of the following:
*
* HVA: on success (uninstall will return a bogus HVA)
* -errno: on error
*
* The caller should always use IS_ERR() to check the return value
* before use. Note, the KVM internal memory slots are guaranteed to
* remain valid and unchanged until the VM is destroyed, i.e., the
* GPA->HVA translation will not change. However, the HVA is a user
* address, i.e. its accessibility is not guaranteed, and must be
* accessed via __copy_{to,from}_user().
*/
void __user * __x86_set_memory_region(struct kvm *kvm, int id, gpa_t gpa,
u32 size)
{
int i, r;
unsigned long hva, old_npages;
struct kvm_memslots *slots = kvm_memslots(kvm);
struct kvm_memory_slot *slot;
/* Called with kvm->slots_lock held. */
if (WARN_ON(id >= KVM_MEM_SLOTS_NUM))
return ERR_PTR_USR(-EINVAL);
slot = id_to_memslot(slots, id);
if (size) {
if (slot && slot->npages)
return ERR_PTR_USR(-EEXIST);
/*
* MAP_SHARED to prevent internal slot pages from being moved
* by fork()/COW.
*/
hva = vm_mmap(NULL, 0, size, PROT_READ | PROT_WRITE,
MAP_SHARED | MAP_ANONYMOUS, 0);
if (IS_ERR_VALUE(hva))
return (void __user *)hva;
} else {
if (!slot || !slot->npages)
return NULL;
old_npages = slot->npages;
hva = slot->userspace_addr;
}
for (i = 0; i < kvm_arch_nr_memslot_as_ids(kvm); i++) {
struct kvm_userspace_memory_region2 m;
m.slot = id | (i << 16);
m.flags = 0;
m.guest_phys_addr = gpa;
m.userspace_addr = hva;
m.memory_size = size;
r = __kvm_set_memory_region(kvm, &m);
if (r < 0)
return ERR_PTR_USR(r);
}
if (!size)
vm_munmap(hva, old_npages * PAGE_SIZE);
return (void __user *)hva;
}
EXPORT_SYMBOL_GPL(__x86_set_memory_region);
void kvm_arch_pre_destroy_vm(struct kvm *kvm)
{
kvm_mmu_pre_destroy_vm(kvm);
}
void kvm_arch_destroy_vm(struct kvm *kvm)
{
if (current->mm == kvm->mm) {
/*
* Free memory regions allocated on behalf of userspace,
* unless the memory map has changed due to process exit
* or fd copying.
*/
mutex_lock(&kvm->slots_lock);
__x86_set_memory_region(kvm, APIC_ACCESS_PAGE_PRIVATE_MEMSLOT,
0, 0);
__x86_set_memory_region(kvm, IDENTITY_PAGETABLE_PRIVATE_MEMSLOT,
0, 0);
__x86_set_memory_region(kvm, TSS_PRIVATE_MEMSLOT, 0, 0);
mutex_unlock(&kvm->slots_lock);
}
kvm_unload_vcpu_mmus(kvm);
kvm_x86_call(vm_destroy)(kvm);
kvm_free_msr_filter(srcu_dereference_check(kvm->arch.msr_filter, &kvm->srcu, 1));
kvm_pic_destroy(kvm);
kvm_ioapic_destroy(kvm);
kvm_destroy_vcpus(kvm);
kvfree(rcu_dereference_check(kvm->arch.apic_map, 1));
kfree(srcu_dereference_check(kvm->arch.pmu_event_filter, &kvm->srcu, 1));
kvm_mmu_uninit_vm(kvm);
kvm_page_track_cleanup(kvm);
kvm_xen_destroy_vm(kvm);
kvm_hv_destroy_vm(kvm);
}
static void memslot_rmap_free(struct kvm_memory_slot *slot)
{
int i;
for (i = 0; i < KVM_NR_PAGE_SIZES; ++i) {
vfree(slot->arch.rmap[i]);
slot->arch.rmap[i] = NULL;
}
}
void kvm_arch_free_memslot(struct kvm *kvm, struct kvm_memory_slot *slot)
{
int i;
memslot_rmap_free(slot);
for (i = 1; i < KVM_NR_PAGE_SIZES; ++i) {
vfree(slot->arch.lpage_info[i - 1]);
slot->arch.lpage_info[i - 1] = NULL;
}
kvm_page_track_free_memslot(slot);
}
int memslot_rmap_alloc(struct kvm_memory_slot *slot, unsigned long npages)
{
const int sz = sizeof(*slot->arch.rmap[0]);
int i;
for (i = 0; i < KVM_NR_PAGE_SIZES; ++i) {
int level = i + 1;
int lpages = __kvm_mmu_slot_lpages(slot, npages, level);
if (slot->arch.rmap[i])
continue;
slot->arch.rmap[i] = __vcalloc(lpages, sz, GFP_KERNEL_ACCOUNT);
if (!slot->arch.rmap[i]) {
memslot_rmap_free(slot);
return -ENOMEM;
}
}
return 0;
}
static int kvm_alloc_memslot_metadata(struct kvm *kvm,
struct kvm_memory_slot *slot)
{
unsigned long npages = slot->npages;
int i, r;
/*
* Clear out the previous array pointers for the KVM_MR_MOVE case. The
* old arrays will be freed by __kvm_set_memory_region() if installing
* the new memslot is successful.
*/
memset(&slot->arch, 0, sizeof(slot->arch));
if (kvm_memslots_have_rmaps(kvm)) {
r = memslot_rmap_alloc(slot, npages);
if (r)
return r;
}
for (i = 1; i < KVM_NR_PAGE_SIZES; ++i) {
struct kvm_lpage_info *linfo;
unsigned long ugfn;
int lpages;
int level = i + 1;
lpages = __kvm_mmu_slot_lpages(slot, npages, level);
linfo = __vcalloc(lpages, sizeof(*linfo), GFP_KERNEL_ACCOUNT);
if (!linfo)
goto out_free;
slot->arch.lpage_info[i - 1] = linfo;
if (slot->base_gfn & (KVM_PAGES_PER_HPAGE(level) - 1))
linfo[0].disallow_lpage = 1;
if ((slot->base_gfn + npages) & (KVM_PAGES_PER_HPAGE(level) - 1))
linfo[lpages - 1].disallow_lpage = 1;
ugfn = slot->userspace_addr >> PAGE_SHIFT;
/*
* If the gfn and userspace address are not aligned wrt each
* other, disable large page support for this slot.
*/
if ((slot->base_gfn ^ ugfn) & (KVM_PAGES_PER_HPAGE(level) - 1)) {
unsigned long j;
for (j = 0; j < lpages; ++j)
linfo[j].disallow_lpage = 1;
}
}
#ifdef CONFIG_KVM_GENERIC_MEMORY_ATTRIBUTES
kvm_mmu_init_memslot_memory_attributes(kvm, slot);
#endif
if (kvm_page_track_create_memslot(kvm, slot, npages))
goto out_free;
return 0;
out_free:
memslot_rmap_free(slot);
for (i = 1; i < KVM_NR_PAGE_SIZES; ++i) {
vfree(slot->arch.lpage_info[i - 1]);
slot->arch.lpage_info[i - 1] = NULL;
}
return -ENOMEM;
}
void kvm_arch_memslots_updated(struct kvm *kvm, u64 gen)
{
struct kvm_vcpu *vcpu;
unsigned long i;
/*
* memslots->generation has been incremented.
* mmio generation may have reached its maximum value.
*/
kvm_mmu_invalidate_mmio_sptes(kvm, gen);
/* Force re-initialization of steal_time cache */
kvm_for_each_vcpu(i, vcpu, kvm)
kvm_vcpu_kick(vcpu);
}
int kvm_arch_prepare_memory_region(struct kvm *kvm,
const struct kvm_memory_slot *old,
struct kvm_memory_slot *new,
enum kvm_mr_change change)
{
/*
* KVM doesn't support moving memslots when there are external page
* trackers attached to the VM, i.e. if KVMGT is in use.
*/
if (change == KVM_MR_MOVE && kvm_page_track_has_external_user(kvm))
return -EINVAL;
if (change == KVM_MR_CREATE || change == KVM_MR_MOVE) {
if ((new->base_gfn + new->npages - 1) > kvm_mmu_max_gfn())
return -EINVAL;
return kvm_alloc_memslot_metadata(kvm, new);
}
if (change == KVM_MR_FLAGS_ONLY)
memcpy(&new->arch, &old->arch, sizeof(old->arch));
else if (WARN_ON_ONCE(change != KVM_MR_DELETE))
return -EIO;
return 0;
}
static void kvm_mmu_update_cpu_dirty_logging(struct kvm *kvm, bool enable)
{
int nr_slots;
if (!kvm_x86_ops.cpu_dirty_log_size)
return;
nr_slots = atomic_read(&kvm->nr_memslots_dirty_logging);
if ((enable && nr_slots == 1) || !nr_slots)
kvm_make_all_cpus_request(kvm, KVM_REQ_UPDATE_CPU_DIRTY_LOGGING);
}
static void kvm_mmu_slot_apply_flags(struct kvm *kvm,
struct kvm_memory_slot *old,
const struct kvm_memory_slot *new,
enum kvm_mr_change change)
{
u32 old_flags = old ? old->flags : 0;
u32 new_flags = new ? new->flags : 0;
bool log_dirty_pages = new_flags & KVM_MEM_LOG_DIRTY_PAGES;
/*
* Update CPU dirty logging if dirty logging is being toggled. This
* applies to all operations.
*/
if ((old_flags ^ new_flags) & KVM_MEM_LOG_DIRTY_PAGES)
kvm_mmu_update_cpu_dirty_logging(kvm, log_dirty_pages);
/*
* Nothing more to do for RO slots (which can't be dirtied and can't be
* made writable) or CREATE/MOVE/DELETE of a slot.
*
* For a memslot with dirty logging disabled:
* CREATE: No dirty mappings will already exist.
* MOVE/DELETE: The old mappings will already have been cleaned up by
* kvm_arch_flush_shadow_memslot()
*
* For a memslot with dirty logging enabled:
* CREATE: No shadow pages exist, thus nothing to write-protect
* and no dirty bits to clear.
* MOVE/DELETE: The old mappings will already have been cleaned up by
* kvm_arch_flush_shadow_memslot().
*/
if ((change != KVM_MR_FLAGS_ONLY) || (new_flags & KVM_MEM_READONLY))
return;
/*
* READONLY and non-flags changes were filtered out above, and the only
* other flag is LOG_DIRTY_PAGES, i.e. something is wrong if dirty
* logging isn't being toggled on or off.
*/
if (WARN_ON_ONCE(!((old_flags ^ new_flags) & KVM_MEM_LOG_DIRTY_PAGES)))
return;
if (!log_dirty_pages) {
/*
* Dirty logging tracks sptes in 4k granularity, meaning that
* large sptes have to be split. If live migration succeeds,
* the guest in the source machine will be destroyed and large
* sptes will be created in the destination. However, if the
* guest continues to run in the source machine (for example if
* live migration fails), small sptes will remain around and
* cause bad performance.
*
* Scan sptes if dirty logging has been stopped, dropping those
* which can be collapsed into a single large-page spte. Later
* page faults will create the large-page sptes.
*/
kvm_mmu_zap_collapsible_sptes(kvm, new);
} else {
/*
* Initially-all-set does not require write protecting any page,
* because they're all assumed to be dirty.
*/
if (kvm_dirty_log_manual_protect_and_init_set(kvm))
return;
if (READ_ONCE(eager_page_split))
kvm_mmu_slot_try_split_huge_pages(kvm, new, PG_LEVEL_4K);
if (kvm_x86_ops.cpu_dirty_log_size) {
kvm_mmu_slot_leaf_clear_dirty(kvm, new);
kvm_mmu_slot_remove_write_access(kvm, new, PG_LEVEL_2M);
} else {
kvm_mmu_slot_remove_write_access(kvm, new, PG_LEVEL_4K);
}
/*
* Unconditionally flush the TLBs after enabling dirty logging.
* A flush is almost always going to be necessary (see below),
* and unconditionally flushing allows the helpers to omit
* the subtly complex checks when removing write access.
*
* Do the flush outside of mmu_lock to reduce the amount of
* time mmu_lock is held. Flushing after dropping mmu_lock is
* safe as KVM only needs to guarantee the slot is fully
* write-protected before returning to userspace, i.e. before
* userspace can consume the dirty status.
*
* Flushing outside of mmu_lock requires KVM to be careful when
* making decisions based on writable status of an SPTE, e.g. a
* !writable SPTE doesn't guarantee a CPU can't perform writes.
*
* Specifically, KVM also write-protects guest page tables to
* monitor changes when using shadow paging, and must guarantee
* no CPUs can write to those page before mmu_lock is dropped.
* Because CPUs may have stale TLB entries at this point, a
* !writable SPTE doesn't guarantee CPUs can't perform writes.
*
* KVM also allows making SPTES writable outside of mmu_lock,
* e.g. to allow dirty logging without taking mmu_lock.
*
* To handle these scenarios, KVM uses a separate software-only
* bit (MMU-writable) to track if a SPTE is !writable due to
* a guest page table being write-protected (KVM clears the
* MMU-writable flag when write-protecting for shadow paging).
*
* The use of MMU-writable is also the primary motivation for
* the unconditional flush. Because KVM must guarantee that a
* CPU doesn't contain stale, writable TLB entries for a
* !MMU-writable SPTE, KVM must flush if it encounters any
* MMU-writable SPTE regardless of whether the actual hardware
* writable bit was set. I.e. KVM is almost guaranteed to need
* to flush, while unconditionally flushing allows the "remove
* write access" helpers to ignore MMU-writable entirely.
*
* See is_writable_pte() for more details (the case involving
* access-tracked SPTEs is particularly relevant).
*/
kvm_flush_remote_tlbs_memslot(kvm, new);
}
}
void kvm_arch_commit_memory_region(struct kvm *kvm,
struct kvm_memory_slot *old,
const struct kvm_memory_slot *new,
enum kvm_mr_change change)
{
if (change == KVM_MR_DELETE)
kvm_page_track_delete_slot(kvm, old);
if (!kvm->arch.n_requested_mmu_pages &&
(change == KVM_MR_CREATE || change == KVM_MR_DELETE)) {
unsigned long nr_mmu_pages;
nr_mmu_pages = kvm->nr_memslot_pages / KVM_MEMSLOT_PAGES_TO_MMU_PAGES_RATIO;
nr_mmu_pages = max(nr_mmu_pages, KVM_MIN_ALLOC_MMU_PAGES);
kvm_mmu_change_mmu_pages(kvm, nr_mmu_pages);
}
kvm_mmu_slot_apply_flags(kvm, old, new, change);
/* Free the arrays associated with the old memslot. */
if (change == KVM_MR_MOVE)
kvm_arch_free_memslot(kvm, old);
}
bool kvm_arch_vcpu_in_kernel(struct kvm_vcpu *vcpu)
{
if (vcpu->arch.guest_state_protected)
return true;
return kvm_x86_call(get_cpl)(vcpu) == 0;
}
unsigned long kvm_arch_vcpu_get_ip(struct kvm_vcpu *vcpu)
{
return kvm_rip_read(vcpu);
}
int kvm_arch_vcpu_should_kick(struct kvm_vcpu *vcpu)
{
return kvm_vcpu_exiting_guest_mode(vcpu) == IN_GUEST_MODE;
}
int kvm_arch_interrupt_allowed(struct kvm_vcpu *vcpu)
{
return kvm_x86_call(interrupt_allowed)(vcpu, false);
}
unsigned long kvm_get_linear_rip(struct kvm_vcpu *vcpu)
{
/* Can't read the RIP when guest state is protected, just return 0 */
if (vcpu->arch.guest_state_protected)
return 0;
if (is_64_bit_mode(vcpu))
return kvm_rip_read(vcpu);
return (u32)(get_segment_base(vcpu, VCPU_SREG_CS) +
kvm_rip_read(vcpu));
}
EXPORT_SYMBOL_GPL(kvm_get_linear_rip);
bool kvm_is_linear_rip(struct kvm_vcpu *vcpu, unsigned long linear_rip)
{
return kvm_get_linear_rip(vcpu) == linear_rip;
}
EXPORT_SYMBOL_GPL(kvm_is_linear_rip);
unsigned long kvm_get_rflags(struct kvm_vcpu *vcpu)
{
unsigned long rflags;
rflags = kvm_x86_call(get_rflags)(vcpu);
if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP)
rflags &= ~X86_EFLAGS_TF;
return rflags;
}
EXPORT_SYMBOL_GPL(kvm_get_rflags);
static void __kvm_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags)
{
if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP &&
kvm_is_linear_rip(vcpu, vcpu->arch.singlestep_rip))
rflags |= X86_EFLAGS_TF;
kvm_x86_call(set_rflags)(vcpu, rflags);
}
void kvm_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags)
{
__kvm_set_rflags(vcpu, rflags);
kvm_make_request(KVM_REQ_EVENT, vcpu);
}
EXPORT_SYMBOL_GPL(kvm_set_rflags);
static inline u32 kvm_async_pf_hash_fn(gfn_t gfn)
{
BUILD_BUG_ON(!is_power_of_2(ASYNC_PF_PER_VCPU));
return hash_32(gfn & 0xffffffff, order_base_2(ASYNC_PF_PER_VCPU));
}
static inline u32 kvm_async_pf_next_probe(u32 key)
{
return (key + 1) & (ASYNC_PF_PER_VCPU - 1);
}
static void kvm_add_async_pf_gfn(struct kvm_vcpu *vcpu, gfn_t gfn)
{
u32 key = kvm_async_pf_hash_fn(gfn);
while (vcpu->arch.apf.gfns[key] != ~0)
key = kvm_async_pf_next_probe(key);
vcpu->arch.apf.gfns[key] = gfn;
}
static u32 kvm_async_pf_gfn_slot(struct kvm_vcpu *vcpu, gfn_t gfn)
{
int i;
u32 key = kvm_async_pf_hash_fn(gfn);
for (i = 0; i < ASYNC_PF_PER_VCPU &&
(vcpu->arch.apf.gfns[key] != gfn &&
vcpu->arch.apf.gfns[key] != ~0); i++)
key = kvm_async_pf_next_probe(key);
return key;
}
bool kvm_find_async_pf_gfn(struct kvm_vcpu *vcpu, gfn_t gfn)
{
return vcpu->arch.apf.gfns[kvm_async_pf_gfn_slot(vcpu, gfn)] == gfn;
}
static void kvm_del_async_pf_gfn(struct kvm_vcpu *vcpu, gfn_t gfn)
{
u32 i, j, k;
i = j = kvm_async_pf_gfn_slot(vcpu, gfn);
if (WARN_ON_ONCE(vcpu->arch.apf.gfns[i] != gfn))
return;
while (true) {
vcpu->arch.apf.gfns[i] = ~0;
do {
j = kvm_async_pf_next_probe(j);
if (vcpu->arch.apf.gfns[j] == ~0)
return;
k = kvm_async_pf_hash_fn(vcpu->arch.apf.gfns[j]);
/*
* k lies cyclically in ]i,j]
* | i.k.j |
* |....j i.k.| or |.k..j i...|
*/
} while ((i <= j) ? (i < k && k <= j) : (i < k || k <= j));
vcpu->arch.apf.gfns[i] = vcpu->arch.apf.gfns[j];
i = j;
}
}
static inline int apf_put_user_notpresent(struct kvm_vcpu *vcpu)
{
u32 reason = KVM_PV_REASON_PAGE_NOT_PRESENT;
return kvm_write_guest_cached(vcpu->kvm, &vcpu->arch.apf.data, &reason,
sizeof(reason));
}
static inline int apf_put_user_ready(struct kvm_vcpu *vcpu, u32 token)
{
unsigned int offset = offsetof(struct kvm_vcpu_pv_apf_data, token);
return kvm_write_guest_offset_cached(vcpu->kvm, &vcpu->arch.apf.data,
&token, offset, sizeof(token));
}
static inline bool apf_pageready_slot_free(struct kvm_vcpu *vcpu)
{
unsigned int offset = offsetof(struct kvm_vcpu_pv_apf_data, token);
u32 val;
if (kvm_read_guest_offset_cached(vcpu->kvm, &vcpu->arch.apf.data,
&val, offset, sizeof(val)))
return false;
return !val;
}
static bool kvm_can_deliver_async_pf(struct kvm_vcpu *vcpu)
{
if (!kvm_pv_async_pf_enabled(vcpu))
return false;
if (vcpu->arch.apf.send_user_only &&
kvm_x86_call(get_cpl)(vcpu) == 0)
return false;
if (is_guest_mode(vcpu)) {
/*
* L1 needs to opt into the special #PF vmexits that are
* used to deliver async page faults.
*/
return vcpu->arch.apf.delivery_as_pf_vmexit;
} else {
/*
* Play it safe in case the guest temporarily disables paging.
* The real mode IDT in particular is unlikely to have a #PF
* exception setup.
*/
return is_paging(vcpu);
}
}
bool kvm_can_do_async_pf(struct kvm_vcpu *vcpu)
{
if (unlikely(!lapic_in_kernel(vcpu) ||
kvm_event_needs_reinjection(vcpu) ||
kvm_is_exception_pending(vcpu)))
return false;
if (kvm_hlt_in_guest(vcpu->kvm) && !kvm_can_deliver_async_pf(vcpu))
return false;
/*
* If interrupts are off we cannot even use an artificial
* halt state.
*/
return kvm_arch_interrupt_allowed(vcpu);
}
bool kvm_arch_async_page_not_present(struct kvm_vcpu *vcpu,
struct kvm_async_pf *work)
{
struct x86_exception fault;
trace_kvm_async_pf_not_present(work->arch.token, work->cr2_or_gpa);
kvm_add_async_pf_gfn(vcpu, work->arch.gfn);
if (kvm_can_deliver_async_pf(vcpu) &&
!apf_put_user_notpresent(vcpu)) {
fault.vector = PF_VECTOR;
fault.error_code_valid = true;
fault.error_code = 0;
fault.nested_page_fault = false;
fault.address = work->arch.token;
fault.async_page_fault = true;
kvm_inject_page_fault(vcpu, &fault);
return true;
} else {
/*
* It is not possible to deliver a paravirtualized asynchronous
* page fault, but putting the guest in an artificial halt state
* can be beneficial nevertheless: if an interrupt arrives, we
* can deliver it timely and perhaps the guest will schedule
* another process. When the instruction that triggered a page
* fault is retried, hopefully the page will be ready in the host.
*/
kvm_make_request(KVM_REQ_APF_HALT, vcpu);
return false;
}
}
void kvm_arch_async_page_present(struct kvm_vcpu *vcpu,
struct kvm_async_pf *work)
{
struct kvm_lapic_irq irq = {
.delivery_mode = APIC_DM_FIXED,
.vector = vcpu->arch.apf.vec
};
if (work->wakeup_all)
work->arch.token = ~0; /* broadcast wakeup */
else
kvm_del_async_pf_gfn(vcpu, work->arch.gfn);
trace_kvm_async_pf_ready(work->arch.token, work->cr2_or_gpa);
if ((work->wakeup_all || work->notpresent_injected) &&
kvm_pv_async_pf_enabled(vcpu) &&
!apf_put_user_ready(vcpu, work->arch.token)) {
vcpu->arch.apf.pageready_pending = true;
kvm_apic_set_irq(vcpu, &irq, NULL);
}
vcpu->arch.apf.halted = false;
vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
}
void kvm_arch_async_page_present_queued(struct kvm_vcpu *vcpu)
{
kvm_make_request(KVM_REQ_APF_READY, vcpu);
if (!vcpu->arch.apf.pageready_pending)
kvm_vcpu_kick(vcpu);
}
bool kvm_arch_can_dequeue_async_page_present(struct kvm_vcpu *vcpu)
{
if (!kvm_pv_async_pf_enabled(vcpu))
return true;
else
return kvm_lapic_enabled(vcpu) && apf_pageready_slot_free(vcpu);
}
void kvm_arch_start_assignment(struct kvm *kvm)
{
if (atomic_inc_return(&kvm->arch.assigned_device_count) == 1)
kvm_x86_call(pi_start_assignment)(kvm);
}
EXPORT_SYMBOL_GPL(kvm_arch_start_assignment);
void kvm_arch_end_assignment(struct kvm *kvm)
{
atomic_dec(&kvm->arch.assigned_device_count);
}
EXPORT_SYMBOL_GPL(kvm_arch_end_assignment);
bool noinstr kvm_arch_has_assigned_device(struct kvm *kvm)
{
return raw_atomic_read(&kvm->arch.assigned_device_count);
}
EXPORT_SYMBOL_GPL(kvm_arch_has_assigned_device);
static void kvm_noncoherent_dma_assignment_start_or_stop(struct kvm *kvm)
{
/*
* Non-coherent DMA assignment and de-assignment may affect whether or
* not KVM honors guest PAT, and thus may cause changes in EPT SPTEs
* due to toggling the "ignore PAT" bit. Zap all SPTEs when the first
* (or last) non-coherent device is (un)registered to so that new SPTEs
* with the correct "ignore guest PAT" setting are created.
*/
if (kvm_mmu_may_ignore_guest_pat())
kvm_zap_gfn_range(kvm, gpa_to_gfn(0), gpa_to_gfn(~0ULL));
}
void kvm_arch_register_noncoherent_dma(struct kvm *kvm)
{
if (atomic_inc_return(&kvm->arch.noncoherent_dma_count) == 1)
kvm_noncoherent_dma_assignment_start_or_stop(kvm);
}
EXPORT_SYMBOL_GPL(kvm_arch_register_noncoherent_dma);
void kvm_arch_unregister_noncoherent_dma(struct kvm *kvm)
{
if (!atomic_dec_return(&kvm->arch.noncoherent_dma_count))
kvm_noncoherent_dma_assignment_start_or_stop(kvm);
}
EXPORT_SYMBOL_GPL(kvm_arch_unregister_noncoherent_dma);
bool kvm_arch_has_noncoherent_dma(struct kvm *kvm)
{
return atomic_read(&kvm->arch.noncoherent_dma_count);
}
EXPORT_SYMBOL_GPL(kvm_arch_has_noncoherent_dma);
bool kvm_arch_has_irq_bypass(void)
{
return enable_apicv && irq_remapping_cap(IRQ_POSTING_CAP);
}
int kvm_arch_irq_bypass_add_producer(struct irq_bypass_consumer *cons,
struct irq_bypass_producer *prod)
{
struct kvm_kernel_irqfd *irqfd =
container_of(cons, struct kvm_kernel_irqfd, consumer);
int ret;
irqfd->producer = prod;
kvm_arch_start_assignment(irqfd->kvm);
ret = kvm_x86_call(pi_update_irte)(irqfd->kvm,
prod->irq, irqfd->gsi, 1);
if (ret)
kvm_arch_end_assignment(irqfd->kvm);
return ret;
}
void kvm_arch_irq_bypass_del_producer(struct irq_bypass_consumer *cons,
struct irq_bypass_producer *prod)
{
int ret;
struct kvm_kernel_irqfd *irqfd =
container_of(cons, struct kvm_kernel_irqfd, consumer);
WARN_ON(irqfd->producer != prod);
irqfd->producer = NULL;
/*
* When producer of consumer is unregistered, we change back to
* remapped mode, so we can re-use the current implementation
* when the irq is masked/disabled or the consumer side (KVM
* int this case doesn't want to receive the interrupts.
*/
ret = kvm_x86_call(pi_update_irte)(irqfd->kvm,
prod->irq, irqfd->gsi, 0);
if (ret)
printk(KERN_INFO "irq bypass consumer (token %p) unregistration"
" fails: %d\n", irqfd->consumer.token, ret);
kvm_arch_end_assignment(irqfd->kvm);
}
int kvm_arch_update_irqfd_routing(struct kvm *kvm, unsigned int host_irq,
uint32_t guest_irq, bool set)
{
return kvm_x86_call(pi_update_irte)(kvm, host_irq, guest_irq, set);
}
bool kvm_arch_irqfd_route_changed(struct kvm_kernel_irq_routing_entry *old,
struct kvm_kernel_irq_routing_entry *new)
{
if (new->type != KVM_IRQ_ROUTING_MSI)
return true;
return !!memcmp(&old->msi, &new->msi, sizeof(new->msi));
}
bool kvm_vector_hashing_enabled(void)
{
return vector_hashing;
}
bool kvm_arch_no_poll(struct kvm_vcpu *vcpu)
{
return (vcpu->arch.msr_kvm_poll_control & 1) == 0;
}
EXPORT_SYMBOL_GPL(kvm_arch_no_poll);
#ifdef CONFIG_HAVE_KVM_ARCH_GMEM_PREPARE
int kvm_arch_gmem_prepare(struct kvm *kvm, gfn_t gfn, kvm_pfn_t pfn, int max_order)
{
return kvm_x86_call(gmem_prepare)(kvm, pfn, gfn, max_order);
}
#endif
#ifdef CONFIG_HAVE_KVM_ARCH_GMEM_INVALIDATE
void kvm_arch_gmem_invalidate(kvm_pfn_t start, kvm_pfn_t end)
{
kvm_x86_call(gmem_invalidate)(start, end);
}
#endif
int kvm_spec_ctrl_test_value(u64 value)
{
/*
* test that setting IA32_SPEC_CTRL to given value
* is allowed by the host processor
*/
u64 saved_value;
unsigned long flags;
int ret = 0;
local_irq_save(flags);
if (rdmsrl_safe(MSR_IA32_SPEC_CTRL, &saved_value))
ret = 1;
else if (wrmsrl_safe(MSR_IA32_SPEC_CTRL, value))
ret = 1;
else
wrmsrl(MSR_IA32_SPEC_CTRL, saved_value);
local_irq_restore(flags);
return ret;
}
EXPORT_SYMBOL_GPL(kvm_spec_ctrl_test_value);
void kvm_fixup_and_inject_pf_error(struct kvm_vcpu *vcpu, gva_t gva, u16 error_code)
{
struct kvm_mmu *mmu = vcpu->arch.walk_mmu;
struct x86_exception fault;
u64 access = error_code &
(PFERR_WRITE_MASK | PFERR_FETCH_MASK | PFERR_USER_MASK);
if (!(error_code & PFERR_PRESENT_MASK) ||
mmu->gva_to_gpa(vcpu, mmu, gva, access, &fault) != INVALID_GPA) {
/*
* If vcpu->arch.walk_mmu->gva_to_gpa succeeded, the page
* tables probably do not match the TLB. Just proceed
* with the error code that the processor gave.
*/
fault.vector = PF_VECTOR;
fault.error_code_valid = true;
fault.error_code = error_code;
fault.nested_page_fault = false;
fault.address = gva;
fault.async_page_fault = false;
}
vcpu->arch.walk_mmu->inject_page_fault(vcpu, &fault);
}
EXPORT_SYMBOL_GPL(kvm_fixup_and_inject_pf_error);
/*
* Handles kvm_read/write_guest_virt*() result and either injects #PF or returns
* KVM_EXIT_INTERNAL_ERROR for cases not currently handled by KVM. Return value
* indicates whether exit to userspace is needed.
*/
int kvm_handle_memory_failure(struct kvm_vcpu *vcpu, int r,
struct x86_exception *e)
{
if (r == X86EMUL_PROPAGATE_FAULT) {
if (KVM_BUG_ON(!e, vcpu->kvm))
return -EIO;
kvm_inject_emulated_page_fault(vcpu, e);
return 1;
}
/*
* In case kvm_read/write_guest_virt*() failed with X86EMUL_IO_NEEDED
* while handling a VMX instruction KVM could've handled the request
* correctly by exiting to userspace and performing I/O but there
* doesn't seem to be a real use-case behind such requests, just return
* KVM_EXIT_INTERNAL_ERROR for now.
*/
kvm_prepare_emulation_failure_exit(vcpu);
return 0;
}
EXPORT_SYMBOL_GPL(kvm_handle_memory_failure);
int kvm_handle_invpcid(struct kvm_vcpu *vcpu, unsigned long type, gva_t gva)
{
bool pcid_enabled;
struct x86_exception e;
struct {
u64 pcid;
u64 gla;
} operand;
int r;
r = kvm_read_guest_virt(vcpu, gva, &operand, sizeof(operand), &e);
if (r != X86EMUL_CONTINUE)
return kvm_handle_memory_failure(vcpu, r, &e);
if (operand.pcid >> 12 != 0) {
kvm_inject_gp(vcpu, 0);
return 1;
}
pcid_enabled = kvm_is_cr4_bit_set(vcpu, X86_CR4_PCIDE);
switch (type) {
case INVPCID_TYPE_INDIV_ADDR:
/*
* LAM doesn't apply to addresses that are inputs to TLB
* invalidation.
*/
if ((!pcid_enabled && (operand.pcid != 0)) ||
is_noncanonical_address(operand.gla, vcpu)) {
kvm_inject_gp(vcpu, 0);
return 1;
}
kvm_mmu_invpcid_gva(vcpu, operand.gla, operand.pcid);
return kvm_skip_emulated_instruction(vcpu);
case INVPCID_TYPE_SINGLE_CTXT:
if (!pcid_enabled && (operand.pcid != 0)) {
kvm_inject_gp(vcpu, 0);
return 1;
}
kvm_invalidate_pcid(vcpu, operand.pcid);
return kvm_skip_emulated_instruction(vcpu);
case INVPCID_TYPE_ALL_NON_GLOBAL:
/*
* Currently, KVM doesn't mark global entries in the shadow
* page tables, so a non-global flush just degenerates to a
* global flush. If needed, we could optimize this later by
* keeping track of global entries in shadow page tables.
*/
fallthrough;
case INVPCID_TYPE_ALL_INCL_GLOBAL:
kvm_make_request(KVM_REQ_TLB_FLUSH_GUEST, vcpu);
return kvm_skip_emulated_instruction(vcpu);
default:
kvm_inject_gp(vcpu, 0);
return 1;
}
}
EXPORT_SYMBOL_GPL(kvm_handle_invpcid);
static int complete_sev_es_emulated_mmio(struct kvm_vcpu *vcpu)
{
struct kvm_run *run = vcpu->run;
struct kvm_mmio_fragment *frag;
unsigned int len;
BUG_ON(!vcpu->mmio_needed);
/* Complete previous fragment */
frag = &vcpu->mmio_fragments[vcpu->mmio_cur_fragment];
len = min(8u, frag->len);
if (!vcpu->mmio_is_write)
memcpy(frag->data, run->mmio.data, len);
if (frag->len <= 8) {
/* Switch to the next fragment. */
frag++;
vcpu->mmio_cur_fragment++;
} else {
/* Go forward to the next mmio piece. */
frag->data += len;
frag->gpa += len;
frag->len -= len;
}
if (vcpu->mmio_cur_fragment >= vcpu->mmio_nr_fragments) {
vcpu->mmio_needed = 0;
// VMG change, at this point, we're always done
// RIP has already been advanced
return 1;
}
// More MMIO is needed
run->mmio.phys_addr = frag->gpa;
run->mmio.len = min(8u, frag->len);
run->mmio.is_write = vcpu->mmio_is_write;
if (run->mmio.is_write)
memcpy(run->mmio.data, frag->data, min(8u, frag->len));
run->exit_reason = KVM_EXIT_MMIO;
vcpu->arch.complete_userspace_io = complete_sev_es_emulated_mmio;
return 0;
}
int kvm_sev_es_mmio_write(struct kvm_vcpu *vcpu, gpa_t gpa, unsigned int bytes,
void *data)
{
int handled;
struct kvm_mmio_fragment *frag;
if (!data)
return -EINVAL;
handled = write_emultor.read_write_mmio(vcpu, gpa, bytes, data);
if (handled == bytes)
return 1;
bytes -= handled;
gpa += handled;
data += handled;
/*TODO: Check if need to increment number of frags */
frag = vcpu->mmio_fragments;
vcpu->mmio_nr_fragments = 1;
frag->len = bytes;
frag->gpa = gpa;
frag->data = data;
vcpu->mmio_needed = 1;
vcpu->mmio_cur_fragment = 0;
vcpu->run->mmio.phys_addr = gpa;
vcpu->run->mmio.len = min(8u, frag->len);
vcpu->run->mmio.is_write = 1;
memcpy(vcpu->run->mmio.data, frag->data, min(8u, frag->len));
vcpu->run->exit_reason = KVM_EXIT_MMIO;
vcpu->arch.complete_userspace_io = complete_sev_es_emulated_mmio;
return 0;
}
EXPORT_SYMBOL_GPL(kvm_sev_es_mmio_write);
int kvm_sev_es_mmio_read(struct kvm_vcpu *vcpu, gpa_t gpa, unsigned int bytes,
void *data)
{
int handled;
struct kvm_mmio_fragment *frag;
if (!data)
return -EINVAL;
handled = read_emultor.read_write_mmio(vcpu, gpa, bytes, data);
if (handled == bytes)
return 1;
bytes -= handled;
gpa += handled;
data += handled;
/*TODO: Check if need to increment number of frags */
frag = vcpu->mmio_fragments;
vcpu->mmio_nr_fragments = 1;
frag->len = bytes;
frag->gpa = gpa;
frag->data = data;
vcpu->mmio_needed = 1;
vcpu->mmio_cur_fragment = 0;
vcpu->run->mmio.phys_addr = gpa;
vcpu->run->mmio.len = min(8u, frag->len);
vcpu->run->mmio.is_write = 0;
vcpu->run->exit_reason = KVM_EXIT_MMIO;
vcpu->arch.complete_userspace_io = complete_sev_es_emulated_mmio;
return 0;
}
EXPORT_SYMBOL_GPL(kvm_sev_es_mmio_read);
static void advance_sev_es_emulated_pio(struct kvm_vcpu *vcpu, unsigned count, int size)
{
vcpu->arch.sev_pio_count -= count;
vcpu->arch.sev_pio_data += count * size;
}
static int kvm_sev_es_outs(struct kvm_vcpu *vcpu, unsigned int size,
unsigned int port);
static int complete_sev_es_emulated_outs(struct kvm_vcpu *vcpu)
{
int size = vcpu->arch.pio.size;
int port = vcpu->arch.pio.port;
vcpu->arch.pio.count = 0;
if (vcpu->arch.sev_pio_count)
return kvm_sev_es_outs(vcpu, size, port);
return 1;
}
static int kvm_sev_es_outs(struct kvm_vcpu *vcpu, unsigned int size,
unsigned int port)
{
for (;;) {
unsigned int count =
min_t(unsigned int, PAGE_SIZE / size, vcpu->arch.sev_pio_count);
int ret = emulator_pio_out(vcpu, size, port, vcpu->arch.sev_pio_data, count);
/* memcpy done already by emulator_pio_out. */
advance_sev_es_emulated_pio(vcpu, count, size);
if (!ret)
break;
/* Emulation done by the kernel. */
if (!vcpu->arch.sev_pio_count)
return 1;
}
vcpu->arch.complete_userspace_io = complete_sev_es_emulated_outs;
return 0;
}
static int kvm_sev_es_ins(struct kvm_vcpu *vcpu, unsigned int size,
unsigned int port);
static int complete_sev_es_emulated_ins(struct kvm_vcpu *vcpu)
{
unsigned count = vcpu->arch.pio.count;
int size = vcpu->arch.pio.size;
int port = vcpu->arch.pio.port;
complete_emulator_pio_in(vcpu, vcpu->arch.sev_pio_data);
advance_sev_es_emulated_pio(vcpu, count, size);
if (vcpu->arch.sev_pio_count)
return kvm_sev_es_ins(vcpu, size, port);
return 1;
}
static int kvm_sev_es_ins(struct kvm_vcpu *vcpu, unsigned int size,
unsigned int port)
{
for (;;) {
unsigned int count =
min_t(unsigned int, PAGE_SIZE / size, vcpu->arch.sev_pio_count);
if (!emulator_pio_in(vcpu, size, port, vcpu->arch.sev_pio_data, count))
break;
/* Emulation done by the kernel. */
advance_sev_es_emulated_pio(vcpu, count, size);
if (!vcpu->arch.sev_pio_count)
return 1;
}
vcpu->arch.complete_userspace_io = complete_sev_es_emulated_ins;
return 0;
}
int kvm_sev_es_string_io(struct kvm_vcpu *vcpu, unsigned int size,
unsigned int port, void *data, unsigned int count,
int in)
{
vcpu->arch.sev_pio_data = data;
vcpu->arch.sev_pio_count = count;
return in ? kvm_sev_es_ins(vcpu, size, port)
: kvm_sev_es_outs(vcpu, size, port);
}
EXPORT_SYMBOL_GPL(kvm_sev_es_string_io);
EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_entry);
EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_exit);
EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_fast_mmio);
EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_inj_virq);
EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_page_fault);
EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_msr);
EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_cr);
EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmenter);
EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmexit);
EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmexit_inject);
EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_intr_vmexit);
EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmenter_failed);
EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_invlpga);
EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_skinit);
EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_intercepts);
EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_write_tsc_offset);
EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_ple_window_update);
EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_pml_full);
EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_pi_irte_update);
EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_avic_unaccelerated_access);
EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_avic_incomplete_ipi);
EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_avic_ga_log);
EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_avic_kick_vcpu_slowpath);
EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_avic_doorbell);
EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_apicv_accept_irq);
EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_vmgexit_enter);
EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_vmgexit_exit);
EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_vmgexit_msr_protocol_enter);
EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_vmgexit_msr_protocol_exit);
EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_rmp_fault);
static int __init kvm_x86_init(void)
{
kvm_mmu_x86_module_init();
mitigate_smt_rsb &= boot_cpu_has_bug(X86_BUG_SMT_RSB) && cpu_smt_possible();
return 0;
}
module_init(kvm_x86_init);
static void __exit kvm_x86_exit(void)
{
WARN_ON_ONCE(static_branch_unlikely(&kvm_has_noapic_vcpu));
}
module_exit(kvm_x86_exit);