5d31174f3c
The assembly snippet in restore_fpregs_from_fpstate() that implements X86_BUG_FXSAVE_LEAK fixup loads the value from a random variable, preferably the one that is already in the L1 cache. However, the access to fpinit_state via *fpstate pointer is not implemented correctly. The "m" asm constraint requires dereferenced pointer variable, otherwise the compiler just reloads the value via temporary stack slot. The current asm code reflects this: mov %rdi,(%rsp) ... fildl (%rsp) With dereferenced pointer variable, the code does what the comment above the asm snippet says: fildl (%rdi) Also, remove the pointless %P operand modifier. The modifier is ineffective on non-symbolic references - it was used to prevent %rip-relative addresses in .altinstr sections, but FILDL in the .text section can use %rip-relative addresses without problems. Signed-off-by: Uros Bizjak <ubizjak@gmail.com> Signed-off-by: Ingo Molnar <mingo@kernel.org> Cc: Andy Lutomirski <luto@kernel.org> Cc: H. Peter Anvin <hpa@zytor.com> Cc: Linus Torvalds <torvalds@linux-foundation.org> Link: https://lore.kernel.org/r/20240315081849.5187-1-ubizjak@gmail.com
918 lines
25 KiB
C
918 lines
25 KiB
C
// SPDX-License-Identifier: GPL-2.0-only
|
|
/*
|
|
* Copyright (C) 1994 Linus Torvalds
|
|
*
|
|
* Pentium III FXSR, SSE support
|
|
* General FPU state handling cleanups
|
|
* Gareth Hughes <gareth@valinux.com>, May 2000
|
|
*/
|
|
#include <asm/fpu/api.h>
|
|
#include <asm/fpu/regset.h>
|
|
#include <asm/fpu/sched.h>
|
|
#include <asm/fpu/signal.h>
|
|
#include <asm/fpu/types.h>
|
|
#include <asm/traps.h>
|
|
#include <asm/irq_regs.h>
|
|
|
|
#include <uapi/asm/kvm.h>
|
|
|
|
#include <linux/hardirq.h>
|
|
#include <linux/pkeys.h>
|
|
#include <linux/vmalloc.h>
|
|
|
|
#include "context.h"
|
|
#include "internal.h"
|
|
#include "legacy.h"
|
|
#include "xstate.h"
|
|
|
|
#define CREATE_TRACE_POINTS
|
|
#include <asm/trace/fpu.h>
|
|
|
|
#ifdef CONFIG_X86_64
|
|
DEFINE_STATIC_KEY_FALSE(__fpu_state_size_dynamic);
|
|
DEFINE_PER_CPU(u64, xfd_state);
|
|
#endif
|
|
|
|
/* The FPU state configuration data for kernel and user space */
|
|
struct fpu_state_config fpu_kernel_cfg __ro_after_init;
|
|
struct fpu_state_config fpu_user_cfg __ro_after_init;
|
|
|
|
/*
|
|
* Represents the initial FPU state. It's mostly (but not completely) zeroes,
|
|
* depending on the FPU hardware format:
|
|
*/
|
|
struct fpstate init_fpstate __ro_after_init;
|
|
|
|
/* Track in-kernel FPU usage */
|
|
static DEFINE_PER_CPU(bool, in_kernel_fpu);
|
|
|
|
/*
|
|
* Track which context is using the FPU on the CPU:
|
|
*/
|
|
DEFINE_PER_CPU(struct fpu *, fpu_fpregs_owner_ctx);
|
|
|
|
/*
|
|
* Can we use the FPU in kernel mode with the
|
|
* whole "kernel_fpu_begin/end()" sequence?
|
|
*/
|
|
bool irq_fpu_usable(void)
|
|
{
|
|
if (WARN_ON_ONCE(in_nmi()))
|
|
return false;
|
|
|
|
/* In kernel FPU usage already active? */
|
|
if (this_cpu_read(in_kernel_fpu))
|
|
return false;
|
|
|
|
/*
|
|
* When not in NMI or hard interrupt context, FPU can be used in:
|
|
*
|
|
* - Task context except from within fpregs_lock()'ed critical
|
|
* regions.
|
|
*
|
|
* - Soft interrupt processing context which cannot happen
|
|
* while in a fpregs_lock()'ed critical region.
|
|
*/
|
|
if (!in_hardirq())
|
|
return true;
|
|
|
|
/*
|
|
* In hard interrupt context it's safe when soft interrupts
|
|
* are enabled, which means the interrupt did not hit in
|
|
* a fpregs_lock()'ed critical region.
|
|
*/
|
|
return !softirq_count();
|
|
}
|
|
EXPORT_SYMBOL(irq_fpu_usable);
|
|
|
|
/*
|
|
* Track AVX512 state use because it is known to slow the max clock
|
|
* speed of the core.
|
|
*/
|
|
static void update_avx_timestamp(struct fpu *fpu)
|
|
{
|
|
|
|
#define AVX512_TRACKING_MASK (XFEATURE_MASK_ZMM_Hi256 | XFEATURE_MASK_Hi16_ZMM)
|
|
|
|
if (fpu->fpstate->regs.xsave.header.xfeatures & AVX512_TRACKING_MASK)
|
|
fpu->avx512_timestamp = jiffies;
|
|
}
|
|
|
|
/*
|
|
* Save the FPU register state in fpu->fpstate->regs. The register state is
|
|
* preserved.
|
|
*
|
|
* Must be called with fpregs_lock() held.
|
|
*
|
|
* The legacy FNSAVE instruction clears all FPU state unconditionally, so
|
|
* register state has to be reloaded. That might be a pointless exercise
|
|
* when the FPU is going to be used by another task right after that. But
|
|
* this only affects 20+ years old 32bit systems and avoids conditionals all
|
|
* over the place.
|
|
*
|
|
* FXSAVE and all XSAVE variants preserve the FPU register state.
|
|
*/
|
|
void save_fpregs_to_fpstate(struct fpu *fpu)
|
|
{
|
|
if (likely(use_xsave())) {
|
|
os_xsave(fpu->fpstate);
|
|
update_avx_timestamp(fpu);
|
|
return;
|
|
}
|
|
|
|
if (likely(use_fxsr())) {
|
|
fxsave(&fpu->fpstate->regs.fxsave);
|
|
return;
|
|
}
|
|
|
|
/*
|
|
* Legacy FPU register saving, FNSAVE always clears FPU registers,
|
|
* so we have to reload them from the memory state.
|
|
*/
|
|
asm volatile("fnsave %[fp]; fwait" : [fp] "=m" (fpu->fpstate->regs.fsave));
|
|
frstor(&fpu->fpstate->regs.fsave);
|
|
}
|
|
|
|
void restore_fpregs_from_fpstate(struct fpstate *fpstate, u64 mask)
|
|
{
|
|
/*
|
|
* AMD K7/K8 and later CPUs up to Zen don't save/restore
|
|
* FDP/FIP/FOP unless an exception is pending. Clear the x87 state
|
|
* here by setting it to fixed values. "m" is a random variable
|
|
* that should be in L1.
|
|
*/
|
|
if (unlikely(static_cpu_has_bug(X86_BUG_FXSAVE_LEAK))) {
|
|
asm volatile(
|
|
"fnclex\n\t"
|
|
"emms\n\t"
|
|
"fildl %[addr]" /* set F?P to defined value */
|
|
: : [addr] "m" (*fpstate));
|
|
}
|
|
|
|
if (use_xsave()) {
|
|
/*
|
|
* Dynamically enabled features are enabled in XCR0, but
|
|
* usage requires also that the corresponding bits in XFD
|
|
* are cleared. If the bits are set then using a related
|
|
* instruction will raise #NM. This allows to do the
|
|
* allocation of the larger FPU buffer lazy from #NM or if
|
|
* the task has no permission to kill it which would happen
|
|
* via #UD if the feature is disabled in XCR0.
|
|
*
|
|
* XFD state is following the same life time rules as
|
|
* XSTATE and to restore state correctly XFD has to be
|
|
* updated before XRSTORS otherwise the component would
|
|
* stay in or go into init state even if the bits are set
|
|
* in fpstate::regs::xsave::xfeatures.
|
|
*/
|
|
xfd_update_state(fpstate);
|
|
|
|
/*
|
|
* Restoring state always needs to modify all features
|
|
* which are in @mask even if the current task cannot use
|
|
* extended features.
|
|
*
|
|
* So fpstate->xfeatures cannot be used here, because then
|
|
* a feature for which the task has no permission but was
|
|
* used by the previous task would not go into init state.
|
|
*/
|
|
mask = fpu_kernel_cfg.max_features & mask;
|
|
|
|
os_xrstor(fpstate, mask);
|
|
} else {
|
|
if (use_fxsr())
|
|
fxrstor(&fpstate->regs.fxsave);
|
|
else
|
|
frstor(&fpstate->regs.fsave);
|
|
}
|
|
}
|
|
|
|
void fpu_reset_from_exception_fixup(void)
|
|
{
|
|
restore_fpregs_from_fpstate(&init_fpstate, XFEATURE_MASK_FPSTATE);
|
|
}
|
|
|
|
#if IS_ENABLED(CONFIG_KVM)
|
|
static void __fpstate_reset(struct fpstate *fpstate, u64 xfd);
|
|
|
|
static void fpu_init_guest_permissions(struct fpu_guest *gfpu)
|
|
{
|
|
struct fpu_state_perm *fpuperm;
|
|
u64 perm;
|
|
|
|
if (!IS_ENABLED(CONFIG_X86_64))
|
|
return;
|
|
|
|
spin_lock_irq(¤t->sighand->siglock);
|
|
fpuperm = ¤t->group_leader->thread.fpu.guest_perm;
|
|
perm = fpuperm->__state_perm;
|
|
|
|
/* First fpstate allocation locks down permissions. */
|
|
WRITE_ONCE(fpuperm->__state_perm, perm | FPU_GUEST_PERM_LOCKED);
|
|
|
|
spin_unlock_irq(¤t->sighand->siglock);
|
|
|
|
gfpu->perm = perm & ~FPU_GUEST_PERM_LOCKED;
|
|
}
|
|
|
|
bool fpu_alloc_guest_fpstate(struct fpu_guest *gfpu)
|
|
{
|
|
struct fpstate *fpstate;
|
|
unsigned int size;
|
|
|
|
size = fpu_user_cfg.default_size + ALIGN(offsetof(struct fpstate, regs), 64);
|
|
fpstate = vzalloc(size);
|
|
if (!fpstate)
|
|
return false;
|
|
|
|
/* Leave xfd to 0 (the reset value defined by spec) */
|
|
__fpstate_reset(fpstate, 0);
|
|
fpstate_init_user(fpstate);
|
|
fpstate->is_valloc = true;
|
|
fpstate->is_guest = true;
|
|
|
|
gfpu->fpstate = fpstate;
|
|
gfpu->xfeatures = fpu_user_cfg.default_features;
|
|
gfpu->perm = fpu_user_cfg.default_features;
|
|
|
|
/*
|
|
* KVM sets the FP+SSE bits in the XSAVE header when copying FPU state
|
|
* to userspace, even when XSAVE is unsupported, so that restoring FPU
|
|
* state on a different CPU that does support XSAVE can cleanly load
|
|
* the incoming state using its natural XSAVE. In other words, KVM's
|
|
* uABI size may be larger than this host's default size. Conversely,
|
|
* the default size should never be larger than KVM's base uABI size;
|
|
* all features that can expand the uABI size must be opt-in.
|
|
*/
|
|
gfpu->uabi_size = sizeof(struct kvm_xsave);
|
|
if (WARN_ON_ONCE(fpu_user_cfg.default_size > gfpu->uabi_size))
|
|
gfpu->uabi_size = fpu_user_cfg.default_size;
|
|
|
|
fpu_init_guest_permissions(gfpu);
|
|
|
|
return true;
|
|
}
|
|
EXPORT_SYMBOL_GPL(fpu_alloc_guest_fpstate);
|
|
|
|
void fpu_free_guest_fpstate(struct fpu_guest *gfpu)
|
|
{
|
|
struct fpstate *fps = gfpu->fpstate;
|
|
|
|
if (!fps)
|
|
return;
|
|
|
|
if (WARN_ON_ONCE(!fps->is_valloc || !fps->is_guest || fps->in_use))
|
|
return;
|
|
|
|
gfpu->fpstate = NULL;
|
|
vfree(fps);
|
|
}
|
|
EXPORT_SYMBOL_GPL(fpu_free_guest_fpstate);
|
|
|
|
/*
|
|
* fpu_enable_guest_xfd_features - Check xfeatures against guest perm and enable
|
|
* @guest_fpu: Pointer to the guest FPU container
|
|
* @xfeatures: Features requested by guest CPUID
|
|
*
|
|
* Enable all dynamic xfeatures according to guest perm and requested CPUID.
|
|
*
|
|
* Return: 0 on success, error code otherwise
|
|
*/
|
|
int fpu_enable_guest_xfd_features(struct fpu_guest *guest_fpu, u64 xfeatures)
|
|
{
|
|
lockdep_assert_preemption_enabled();
|
|
|
|
/* Nothing to do if all requested features are already enabled. */
|
|
xfeatures &= ~guest_fpu->xfeatures;
|
|
if (!xfeatures)
|
|
return 0;
|
|
|
|
return __xfd_enable_feature(xfeatures, guest_fpu);
|
|
}
|
|
EXPORT_SYMBOL_GPL(fpu_enable_guest_xfd_features);
|
|
|
|
#ifdef CONFIG_X86_64
|
|
void fpu_update_guest_xfd(struct fpu_guest *guest_fpu, u64 xfd)
|
|
{
|
|
fpregs_lock();
|
|
guest_fpu->fpstate->xfd = xfd;
|
|
if (guest_fpu->fpstate->in_use)
|
|
xfd_update_state(guest_fpu->fpstate);
|
|
fpregs_unlock();
|
|
}
|
|
EXPORT_SYMBOL_GPL(fpu_update_guest_xfd);
|
|
|
|
/**
|
|
* fpu_sync_guest_vmexit_xfd_state - Synchronize XFD MSR and software state
|
|
*
|
|
* Must be invoked from KVM after a VMEXIT before enabling interrupts when
|
|
* XFD write emulation is disabled. This is required because the guest can
|
|
* freely modify XFD and the state at VMEXIT is not guaranteed to be the
|
|
* same as the state on VMENTER. So software state has to be updated before
|
|
* any operation which depends on it can take place.
|
|
*
|
|
* Note: It can be invoked unconditionally even when write emulation is
|
|
* enabled for the price of a then pointless MSR read.
|
|
*/
|
|
void fpu_sync_guest_vmexit_xfd_state(void)
|
|
{
|
|
struct fpstate *fps = current->thread.fpu.fpstate;
|
|
|
|
lockdep_assert_irqs_disabled();
|
|
if (fpu_state_size_dynamic()) {
|
|
rdmsrl(MSR_IA32_XFD, fps->xfd);
|
|
__this_cpu_write(xfd_state, fps->xfd);
|
|
}
|
|
}
|
|
EXPORT_SYMBOL_GPL(fpu_sync_guest_vmexit_xfd_state);
|
|
#endif /* CONFIG_X86_64 */
|
|
|
|
int fpu_swap_kvm_fpstate(struct fpu_guest *guest_fpu, bool enter_guest)
|
|
{
|
|
struct fpstate *guest_fps = guest_fpu->fpstate;
|
|
struct fpu *fpu = ¤t->thread.fpu;
|
|
struct fpstate *cur_fps = fpu->fpstate;
|
|
|
|
fpregs_lock();
|
|
if (!cur_fps->is_confidential && !test_thread_flag(TIF_NEED_FPU_LOAD))
|
|
save_fpregs_to_fpstate(fpu);
|
|
|
|
/* Swap fpstate */
|
|
if (enter_guest) {
|
|
fpu->__task_fpstate = cur_fps;
|
|
fpu->fpstate = guest_fps;
|
|
guest_fps->in_use = true;
|
|
} else {
|
|
guest_fps->in_use = false;
|
|
fpu->fpstate = fpu->__task_fpstate;
|
|
fpu->__task_fpstate = NULL;
|
|
}
|
|
|
|
cur_fps = fpu->fpstate;
|
|
|
|
if (!cur_fps->is_confidential) {
|
|
/* Includes XFD update */
|
|
restore_fpregs_from_fpstate(cur_fps, XFEATURE_MASK_FPSTATE);
|
|
} else {
|
|
/*
|
|
* XSTATE is restored by firmware from encrypted
|
|
* memory. Make sure XFD state is correct while
|
|
* running with guest fpstate
|
|
*/
|
|
xfd_update_state(cur_fps);
|
|
}
|
|
|
|
fpregs_mark_activate();
|
|
fpregs_unlock();
|
|
return 0;
|
|
}
|
|
EXPORT_SYMBOL_GPL(fpu_swap_kvm_fpstate);
|
|
|
|
void fpu_copy_guest_fpstate_to_uabi(struct fpu_guest *gfpu, void *buf,
|
|
unsigned int size, u64 xfeatures, u32 pkru)
|
|
{
|
|
struct fpstate *kstate = gfpu->fpstate;
|
|
union fpregs_state *ustate = buf;
|
|
struct membuf mb = { .p = buf, .left = size };
|
|
|
|
if (cpu_feature_enabled(X86_FEATURE_XSAVE)) {
|
|
__copy_xstate_to_uabi_buf(mb, kstate, xfeatures, pkru,
|
|
XSTATE_COPY_XSAVE);
|
|
} else {
|
|
memcpy(&ustate->fxsave, &kstate->regs.fxsave,
|
|
sizeof(ustate->fxsave));
|
|
/* Make it restorable on a XSAVE enabled host */
|
|
ustate->xsave.header.xfeatures = XFEATURE_MASK_FPSSE;
|
|
}
|
|
}
|
|
EXPORT_SYMBOL_GPL(fpu_copy_guest_fpstate_to_uabi);
|
|
|
|
int fpu_copy_uabi_to_guest_fpstate(struct fpu_guest *gfpu, const void *buf,
|
|
u64 xcr0, u32 *vpkru)
|
|
{
|
|
struct fpstate *kstate = gfpu->fpstate;
|
|
const union fpregs_state *ustate = buf;
|
|
|
|
if (!cpu_feature_enabled(X86_FEATURE_XSAVE)) {
|
|
if (ustate->xsave.header.xfeatures & ~XFEATURE_MASK_FPSSE)
|
|
return -EINVAL;
|
|
if (ustate->fxsave.mxcsr & ~mxcsr_feature_mask)
|
|
return -EINVAL;
|
|
memcpy(&kstate->regs.fxsave, &ustate->fxsave, sizeof(ustate->fxsave));
|
|
return 0;
|
|
}
|
|
|
|
if (ustate->xsave.header.xfeatures & ~xcr0)
|
|
return -EINVAL;
|
|
|
|
/*
|
|
* Nullify @vpkru to preserve its current value if PKRU's bit isn't set
|
|
* in the header. KVM's odd ABI is to leave PKRU untouched in this
|
|
* case (all other components are eventually re-initialized).
|
|
*/
|
|
if (!(ustate->xsave.header.xfeatures & XFEATURE_MASK_PKRU))
|
|
vpkru = NULL;
|
|
|
|
return copy_uabi_from_kernel_to_xstate(kstate, ustate, vpkru);
|
|
}
|
|
EXPORT_SYMBOL_GPL(fpu_copy_uabi_to_guest_fpstate);
|
|
#endif /* CONFIG_KVM */
|
|
|
|
void kernel_fpu_begin_mask(unsigned int kfpu_mask)
|
|
{
|
|
preempt_disable();
|
|
|
|
WARN_ON_FPU(!irq_fpu_usable());
|
|
WARN_ON_FPU(this_cpu_read(in_kernel_fpu));
|
|
|
|
this_cpu_write(in_kernel_fpu, true);
|
|
|
|
if (!(current->flags & (PF_KTHREAD | PF_USER_WORKER)) &&
|
|
!test_thread_flag(TIF_NEED_FPU_LOAD)) {
|
|
set_thread_flag(TIF_NEED_FPU_LOAD);
|
|
save_fpregs_to_fpstate(¤t->thread.fpu);
|
|
}
|
|
__cpu_invalidate_fpregs_state();
|
|
|
|
/* Put sane initial values into the control registers. */
|
|
if (likely(kfpu_mask & KFPU_MXCSR) && boot_cpu_has(X86_FEATURE_XMM))
|
|
ldmxcsr(MXCSR_DEFAULT);
|
|
|
|
if (unlikely(kfpu_mask & KFPU_387) && boot_cpu_has(X86_FEATURE_FPU))
|
|
asm volatile ("fninit");
|
|
}
|
|
EXPORT_SYMBOL_GPL(kernel_fpu_begin_mask);
|
|
|
|
void kernel_fpu_end(void)
|
|
{
|
|
WARN_ON_FPU(!this_cpu_read(in_kernel_fpu));
|
|
|
|
this_cpu_write(in_kernel_fpu, false);
|
|
preempt_enable();
|
|
}
|
|
EXPORT_SYMBOL_GPL(kernel_fpu_end);
|
|
|
|
/*
|
|
* Sync the FPU register state to current's memory register state when the
|
|
* current task owns the FPU. The hardware register state is preserved.
|
|
*/
|
|
void fpu_sync_fpstate(struct fpu *fpu)
|
|
{
|
|
WARN_ON_FPU(fpu != ¤t->thread.fpu);
|
|
|
|
fpregs_lock();
|
|
trace_x86_fpu_before_save(fpu);
|
|
|
|
if (!test_thread_flag(TIF_NEED_FPU_LOAD))
|
|
save_fpregs_to_fpstate(fpu);
|
|
|
|
trace_x86_fpu_after_save(fpu);
|
|
fpregs_unlock();
|
|
}
|
|
|
|
static inline unsigned int init_fpstate_copy_size(void)
|
|
{
|
|
if (!use_xsave())
|
|
return fpu_kernel_cfg.default_size;
|
|
|
|
/* XSAVE(S) just needs the legacy and the xstate header part */
|
|
return sizeof(init_fpstate.regs.xsave);
|
|
}
|
|
|
|
static inline void fpstate_init_fxstate(struct fpstate *fpstate)
|
|
{
|
|
fpstate->regs.fxsave.cwd = 0x37f;
|
|
fpstate->regs.fxsave.mxcsr = MXCSR_DEFAULT;
|
|
}
|
|
|
|
/*
|
|
* Legacy x87 fpstate state init:
|
|
*/
|
|
static inline void fpstate_init_fstate(struct fpstate *fpstate)
|
|
{
|
|
fpstate->regs.fsave.cwd = 0xffff037fu;
|
|
fpstate->regs.fsave.swd = 0xffff0000u;
|
|
fpstate->regs.fsave.twd = 0xffffffffu;
|
|
fpstate->regs.fsave.fos = 0xffff0000u;
|
|
}
|
|
|
|
/*
|
|
* Used in two places:
|
|
* 1) Early boot to setup init_fpstate for non XSAVE systems
|
|
* 2) fpu_init_fpstate_user() which is invoked from KVM
|
|
*/
|
|
void fpstate_init_user(struct fpstate *fpstate)
|
|
{
|
|
if (!cpu_feature_enabled(X86_FEATURE_FPU)) {
|
|
fpstate_init_soft(&fpstate->regs.soft);
|
|
return;
|
|
}
|
|
|
|
xstate_init_xcomp_bv(&fpstate->regs.xsave, fpstate->xfeatures);
|
|
|
|
if (cpu_feature_enabled(X86_FEATURE_FXSR))
|
|
fpstate_init_fxstate(fpstate);
|
|
else
|
|
fpstate_init_fstate(fpstate);
|
|
}
|
|
|
|
static void __fpstate_reset(struct fpstate *fpstate, u64 xfd)
|
|
{
|
|
/* Initialize sizes and feature masks */
|
|
fpstate->size = fpu_kernel_cfg.default_size;
|
|
fpstate->user_size = fpu_user_cfg.default_size;
|
|
fpstate->xfeatures = fpu_kernel_cfg.default_features;
|
|
fpstate->user_xfeatures = fpu_user_cfg.default_features;
|
|
fpstate->xfd = xfd;
|
|
}
|
|
|
|
void fpstate_reset(struct fpu *fpu)
|
|
{
|
|
/* Set the fpstate pointer to the default fpstate */
|
|
fpu->fpstate = &fpu->__fpstate;
|
|
__fpstate_reset(fpu->fpstate, init_fpstate.xfd);
|
|
|
|
/* Initialize the permission related info in fpu */
|
|
fpu->perm.__state_perm = fpu_kernel_cfg.default_features;
|
|
fpu->perm.__state_size = fpu_kernel_cfg.default_size;
|
|
fpu->perm.__user_state_size = fpu_user_cfg.default_size;
|
|
/* Same defaults for guests */
|
|
fpu->guest_perm = fpu->perm;
|
|
}
|
|
|
|
static inline void fpu_inherit_perms(struct fpu *dst_fpu)
|
|
{
|
|
if (fpu_state_size_dynamic()) {
|
|
struct fpu *src_fpu = ¤t->group_leader->thread.fpu;
|
|
|
|
spin_lock_irq(¤t->sighand->siglock);
|
|
/* Fork also inherits the permissions of the parent */
|
|
dst_fpu->perm = src_fpu->perm;
|
|
dst_fpu->guest_perm = src_fpu->guest_perm;
|
|
spin_unlock_irq(¤t->sighand->siglock);
|
|
}
|
|
}
|
|
|
|
/* A passed ssp of zero will not cause any update */
|
|
static int update_fpu_shstk(struct task_struct *dst, unsigned long ssp)
|
|
{
|
|
#ifdef CONFIG_X86_USER_SHADOW_STACK
|
|
struct cet_user_state *xstate;
|
|
|
|
/* If ssp update is not needed. */
|
|
if (!ssp)
|
|
return 0;
|
|
|
|
xstate = get_xsave_addr(&dst->thread.fpu.fpstate->regs.xsave,
|
|
XFEATURE_CET_USER);
|
|
|
|
/*
|
|
* If there is a non-zero ssp, then 'dst' must be configured with a shadow
|
|
* stack and the fpu state should be up to date since it was just copied
|
|
* from the parent in fpu_clone(). So there must be a valid non-init CET
|
|
* state location in the buffer.
|
|
*/
|
|
if (WARN_ON_ONCE(!xstate))
|
|
return 1;
|
|
|
|
xstate->user_ssp = (u64)ssp;
|
|
#endif
|
|
return 0;
|
|
}
|
|
|
|
/* Clone current's FPU state on fork */
|
|
int fpu_clone(struct task_struct *dst, unsigned long clone_flags, bool minimal,
|
|
unsigned long ssp)
|
|
{
|
|
struct fpu *src_fpu = ¤t->thread.fpu;
|
|
struct fpu *dst_fpu = &dst->thread.fpu;
|
|
|
|
/* The new task's FPU state cannot be valid in the hardware. */
|
|
dst_fpu->last_cpu = -1;
|
|
|
|
fpstate_reset(dst_fpu);
|
|
|
|
if (!cpu_feature_enabled(X86_FEATURE_FPU))
|
|
return 0;
|
|
|
|
/*
|
|
* Enforce reload for user space tasks and prevent kernel threads
|
|
* from trying to save the FPU registers on context switch.
|
|
*/
|
|
set_tsk_thread_flag(dst, TIF_NEED_FPU_LOAD);
|
|
|
|
/*
|
|
* No FPU state inheritance for kernel threads and IO
|
|
* worker threads.
|
|
*/
|
|
if (minimal) {
|
|
/* Clear out the minimal state */
|
|
memcpy(&dst_fpu->fpstate->regs, &init_fpstate.regs,
|
|
init_fpstate_copy_size());
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* If a new feature is added, ensure all dynamic features are
|
|
* caller-saved from here!
|
|
*/
|
|
BUILD_BUG_ON(XFEATURE_MASK_USER_DYNAMIC != XFEATURE_MASK_XTILE_DATA);
|
|
|
|
/*
|
|
* Save the default portion of the current FPU state into the
|
|
* clone. Assume all dynamic features to be defined as caller-
|
|
* saved, which enables skipping both the expansion of fpstate
|
|
* and the copying of any dynamic state.
|
|
*
|
|
* Do not use memcpy() when TIF_NEED_FPU_LOAD is set because
|
|
* copying is not valid when current uses non-default states.
|
|
*/
|
|
fpregs_lock();
|
|
if (test_thread_flag(TIF_NEED_FPU_LOAD))
|
|
fpregs_restore_userregs();
|
|
save_fpregs_to_fpstate(dst_fpu);
|
|
fpregs_unlock();
|
|
if (!(clone_flags & CLONE_THREAD))
|
|
fpu_inherit_perms(dst_fpu);
|
|
|
|
/*
|
|
* Children never inherit PASID state.
|
|
* Force it to have its init value:
|
|
*/
|
|
if (use_xsave())
|
|
dst_fpu->fpstate->regs.xsave.header.xfeatures &= ~XFEATURE_MASK_PASID;
|
|
|
|
/*
|
|
* Update shadow stack pointer, in case it changed during clone.
|
|
*/
|
|
if (update_fpu_shstk(dst, ssp))
|
|
return 1;
|
|
|
|
trace_x86_fpu_copy_src(src_fpu);
|
|
trace_x86_fpu_copy_dst(dst_fpu);
|
|
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* Whitelist the FPU register state embedded into task_struct for hardened
|
|
* usercopy.
|
|
*/
|
|
void fpu_thread_struct_whitelist(unsigned long *offset, unsigned long *size)
|
|
{
|
|
*offset = offsetof(struct thread_struct, fpu.__fpstate.regs);
|
|
*size = fpu_kernel_cfg.default_size;
|
|
}
|
|
|
|
/*
|
|
* Drops current FPU state: deactivates the fpregs and
|
|
* the fpstate. NOTE: it still leaves previous contents
|
|
* in the fpregs in the eager-FPU case.
|
|
*
|
|
* This function can be used in cases where we know that
|
|
* a state-restore is coming: either an explicit one,
|
|
* or a reschedule.
|
|
*/
|
|
void fpu__drop(struct fpu *fpu)
|
|
{
|
|
preempt_disable();
|
|
|
|
if (fpu == ¤t->thread.fpu) {
|
|
/* Ignore delayed exceptions from user space */
|
|
asm volatile("1: fwait\n"
|
|
"2:\n"
|
|
_ASM_EXTABLE(1b, 2b));
|
|
fpregs_deactivate(fpu);
|
|
}
|
|
|
|
trace_x86_fpu_dropped(fpu);
|
|
|
|
preempt_enable();
|
|
}
|
|
|
|
/*
|
|
* Clear FPU registers by setting them up from the init fpstate.
|
|
* Caller must do fpregs_[un]lock() around it.
|
|
*/
|
|
static inline void restore_fpregs_from_init_fpstate(u64 features_mask)
|
|
{
|
|
if (use_xsave())
|
|
os_xrstor(&init_fpstate, features_mask);
|
|
else if (use_fxsr())
|
|
fxrstor(&init_fpstate.regs.fxsave);
|
|
else
|
|
frstor(&init_fpstate.regs.fsave);
|
|
|
|
pkru_write_default();
|
|
}
|
|
|
|
/*
|
|
* Reset current->fpu memory state to the init values.
|
|
*/
|
|
static void fpu_reset_fpregs(void)
|
|
{
|
|
struct fpu *fpu = ¤t->thread.fpu;
|
|
|
|
fpregs_lock();
|
|
__fpu_invalidate_fpregs_state(fpu);
|
|
/*
|
|
* This does not change the actual hardware registers. It just
|
|
* resets the memory image and sets TIF_NEED_FPU_LOAD so a
|
|
* subsequent return to usermode will reload the registers from the
|
|
* task's memory image.
|
|
*
|
|
* Do not use fpstate_init() here. Just copy init_fpstate which has
|
|
* the correct content already except for PKRU.
|
|
*
|
|
* PKRU handling does not rely on the xstate when restoring for
|
|
* user space as PKRU is eagerly written in switch_to() and
|
|
* flush_thread().
|
|
*/
|
|
memcpy(&fpu->fpstate->regs, &init_fpstate.regs, init_fpstate_copy_size());
|
|
set_thread_flag(TIF_NEED_FPU_LOAD);
|
|
fpregs_unlock();
|
|
}
|
|
|
|
/*
|
|
* Reset current's user FPU states to the init states. current's
|
|
* supervisor states, if any, are not modified by this function. The
|
|
* caller guarantees that the XSTATE header in memory is intact.
|
|
*/
|
|
void fpu__clear_user_states(struct fpu *fpu)
|
|
{
|
|
WARN_ON_FPU(fpu != ¤t->thread.fpu);
|
|
|
|
fpregs_lock();
|
|
if (!cpu_feature_enabled(X86_FEATURE_FPU)) {
|
|
fpu_reset_fpregs();
|
|
fpregs_unlock();
|
|
return;
|
|
}
|
|
|
|
/*
|
|
* Ensure that current's supervisor states are loaded into their
|
|
* corresponding registers.
|
|
*/
|
|
if (xfeatures_mask_supervisor() &&
|
|
!fpregs_state_valid(fpu, smp_processor_id()))
|
|
os_xrstor_supervisor(fpu->fpstate);
|
|
|
|
/* Reset user states in registers. */
|
|
restore_fpregs_from_init_fpstate(XFEATURE_MASK_USER_RESTORE);
|
|
|
|
/*
|
|
* Now all FPU registers have their desired values. Inform the FPU
|
|
* state machine that current's FPU registers are in the hardware
|
|
* registers. The memory image does not need to be updated because
|
|
* any operation relying on it has to save the registers first when
|
|
* current's FPU is marked active.
|
|
*/
|
|
fpregs_mark_activate();
|
|
fpregs_unlock();
|
|
}
|
|
|
|
void fpu_flush_thread(void)
|
|
{
|
|
fpstate_reset(¤t->thread.fpu);
|
|
fpu_reset_fpregs();
|
|
}
|
|
/*
|
|
* Load FPU context before returning to userspace.
|
|
*/
|
|
void switch_fpu_return(void)
|
|
{
|
|
if (!static_cpu_has(X86_FEATURE_FPU))
|
|
return;
|
|
|
|
fpregs_restore_userregs();
|
|
}
|
|
EXPORT_SYMBOL_GPL(switch_fpu_return);
|
|
|
|
void fpregs_lock_and_load(void)
|
|
{
|
|
/*
|
|
* fpregs_lock() only disables preemption (mostly). So modifying state
|
|
* in an interrupt could screw up some in progress fpregs operation.
|
|
* Warn about it.
|
|
*/
|
|
WARN_ON_ONCE(!irq_fpu_usable());
|
|
WARN_ON_ONCE(current->flags & PF_KTHREAD);
|
|
|
|
fpregs_lock();
|
|
|
|
fpregs_assert_state_consistent();
|
|
|
|
if (test_thread_flag(TIF_NEED_FPU_LOAD))
|
|
fpregs_restore_userregs();
|
|
}
|
|
|
|
#ifdef CONFIG_X86_DEBUG_FPU
|
|
/*
|
|
* If current FPU state according to its tracking (loaded FPU context on this
|
|
* CPU) is not valid then we must have TIF_NEED_FPU_LOAD set so the context is
|
|
* loaded on return to userland.
|
|
*/
|
|
void fpregs_assert_state_consistent(void)
|
|
{
|
|
struct fpu *fpu = ¤t->thread.fpu;
|
|
|
|
if (test_thread_flag(TIF_NEED_FPU_LOAD))
|
|
return;
|
|
|
|
WARN_ON_FPU(!fpregs_state_valid(fpu, smp_processor_id()));
|
|
}
|
|
EXPORT_SYMBOL_GPL(fpregs_assert_state_consistent);
|
|
#endif
|
|
|
|
void fpregs_mark_activate(void)
|
|
{
|
|
struct fpu *fpu = ¤t->thread.fpu;
|
|
|
|
fpregs_activate(fpu);
|
|
fpu->last_cpu = smp_processor_id();
|
|
clear_thread_flag(TIF_NEED_FPU_LOAD);
|
|
}
|
|
|
|
/*
|
|
* x87 math exception handling:
|
|
*/
|
|
|
|
int fpu__exception_code(struct fpu *fpu, int trap_nr)
|
|
{
|
|
int err;
|
|
|
|
if (trap_nr == X86_TRAP_MF) {
|
|
unsigned short cwd, swd;
|
|
/*
|
|
* (~cwd & swd) will mask out exceptions that are not set to unmasked
|
|
* status. 0x3f is the exception bits in these regs, 0x200 is the
|
|
* C1 reg you need in case of a stack fault, 0x040 is the stack
|
|
* fault bit. We should only be taking one exception at a time,
|
|
* so if this combination doesn't produce any single exception,
|
|
* then we have a bad program that isn't synchronizing its FPU usage
|
|
* and it will suffer the consequences since we won't be able to
|
|
* fully reproduce the context of the exception.
|
|
*/
|
|
if (boot_cpu_has(X86_FEATURE_FXSR)) {
|
|
cwd = fpu->fpstate->regs.fxsave.cwd;
|
|
swd = fpu->fpstate->regs.fxsave.swd;
|
|
} else {
|
|
cwd = (unsigned short)fpu->fpstate->regs.fsave.cwd;
|
|
swd = (unsigned short)fpu->fpstate->regs.fsave.swd;
|
|
}
|
|
|
|
err = swd & ~cwd;
|
|
} else {
|
|
/*
|
|
* The SIMD FPU exceptions are handled a little differently, as there
|
|
* is only a single status/control register. Thus, to determine which
|
|
* unmasked exception was caught we must mask the exception mask bits
|
|
* at 0x1f80, and then use these to mask the exception bits at 0x3f.
|
|
*/
|
|
unsigned short mxcsr = MXCSR_DEFAULT;
|
|
|
|
if (boot_cpu_has(X86_FEATURE_XMM))
|
|
mxcsr = fpu->fpstate->regs.fxsave.mxcsr;
|
|
|
|
err = ~(mxcsr >> 7) & mxcsr;
|
|
}
|
|
|
|
if (err & 0x001) { /* Invalid op */
|
|
/*
|
|
* swd & 0x240 == 0x040: Stack Underflow
|
|
* swd & 0x240 == 0x240: Stack Overflow
|
|
* User must clear the SF bit (0x40) if set
|
|
*/
|
|
return FPE_FLTINV;
|
|
} else if (err & 0x004) { /* Divide by Zero */
|
|
return FPE_FLTDIV;
|
|
} else if (err & 0x008) { /* Overflow */
|
|
return FPE_FLTOVF;
|
|
} else if (err & 0x012) { /* Denormal, Underflow */
|
|
return FPE_FLTUND;
|
|
} else if (err & 0x020) { /* Precision */
|
|
return FPE_FLTRES;
|
|
}
|
|
|
|
/*
|
|
* If we're using IRQ 13, or supposedly even some trap
|
|
* X86_TRAP_MF implementations, it's possible
|
|
* we get a spurious trap, which is not an error.
|
|
*/
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* Initialize register state that may prevent from entering low-power idle.
|
|
* This function will be invoked from the cpuidle driver only when needed.
|
|
*/
|
|
noinstr void fpu_idle_fpregs(void)
|
|
{
|
|
/* Note: AMX_TILE being enabled implies XGETBV1 support */
|
|
if (cpu_feature_enabled(X86_FEATURE_AMX_TILE) &&
|
|
(xfeatures_in_use() & XFEATURE_MASK_XTILE)) {
|
|
tile_release();
|
|
__this_cpu_write(fpu_fpregs_owner_ctx, NULL);
|
|
}
|
|
}
|