577c134d31
GCC and Clang both implement stack protector support based on Thread Local
Storage (TLS) variables, and this is used in the kernel to implement per-task
stack cookies, by copying a task's stack cookie into a per-CPU variable every
time it is scheduled in.
Both now also implement -mstack-protector-guard-symbol=, which permits the TLS
variable to be specified directly. This is useful because it will allow to
move away from using a fixed offset of 40 bytes into the per-CPU area on
x86_64, which requires a lot of special handling in the per-CPU code and the
runtime relocation code.
However, while GCC is rather lax in its implementation of this command line
option, Clang actually requires that the provided symbol name refers to a TLS
variable (i.e., one declared with __thread), although it also permits the
variable to be undeclared entirely, in which case it will use an implicit
declaration of the right type.
The upshot of this is that Clang will emit the correct references to the stack
cookie variable in most cases, e.g.,
10d: 64 a1 00 00 00 00 mov %fs:0x0,%eax
10f: R_386_32 __stack_chk_guard
However, if a non-TLS definition of the symbol in question is visible in the
same compilation unit (which amounts to the whole of vmlinux if LTO is
enabled), it will drop the per-CPU prefix and emit a load from a bogus
address.
Work around this by using a symbol name that never occurs in C code, and emit
it as an alias in the linker script.
Fixes: 3fb0fdb3bb
("x86/stackprotector/32: Make the canary into a regular percpu variable")
Signed-off-by: Ard Biesheuvel <ardb@kernel.org>
Signed-off-by: Brian Gerst <brgerst@gmail.com>
Signed-off-by: Borislav Petkov (AMD) <bp@alien8.de>
Reviewed-by: Nathan Chancellor <nathan@kernel.org>
Tested-by: Nathan Chancellor <nathan@kernel.org>
Cc: stable@vger.kernel.org
Link: https://github.com/ClangBuiltLinux/linux/issues/1854
Link: https://lore.kernel.org/r/20241105155801.1779119-2-brgerst@gmail.com
2428 lines
67 KiB
C
2428 lines
67 KiB
C
// SPDX-License-Identifier: GPL-2.0-only
|
|
/* cpu_feature_enabled() cannot be used this early */
|
|
#define USE_EARLY_PGTABLE_L5
|
|
|
|
#include <linux/memblock.h>
|
|
#include <linux/linkage.h>
|
|
#include <linux/bitops.h>
|
|
#include <linux/kernel.h>
|
|
#include <linux/export.h>
|
|
#include <linux/percpu.h>
|
|
#include <linux/string.h>
|
|
#include <linux/ctype.h>
|
|
#include <linux/delay.h>
|
|
#include <linux/sched/mm.h>
|
|
#include <linux/sched/clock.h>
|
|
#include <linux/sched/task.h>
|
|
#include <linux/sched/smt.h>
|
|
#include <linux/init.h>
|
|
#include <linux/kprobes.h>
|
|
#include <linux/kgdb.h>
|
|
#include <linux/mem_encrypt.h>
|
|
#include <linux/smp.h>
|
|
#include <linux/cpu.h>
|
|
#include <linux/io.h>
|
|
#include <linux/syscore_ops.h>
|
|
#include <linux/pgtable.h>
|
|
#include <linux/stackprotector.h>
|
|
#include <linux/utsname.h>
|
|
|
|
#include <asm/alternative.h>
|
|
#include <asm/cmdline.h>
|
|
#include <asm/perf_event.h>
|
|
#include <asm/mmu_context.h>
|
|
#include <asm/doublefault.h>
|
|
#include <asm/archrandom.h>
|
|
#include <asm/hypervisor.h>
|
|
#include <asm/processor.h>
|
|
#include <asm/tlbflush.h>
|
|
#include <asm/debugreg.h>
|
|
#include <asm/sections.h>
|
|
#include <asm/vsyscall.h>
|
|
#include <linux/topology.h>
|
|
#include <linux/cpumask.h>
|
|
#include <linux/atomic.h>
|
|
#include <asm/proto.h>
|
|
#include <asm/setup.h>
|
|
#include <asm/apic.h>
|
|
#include <asm/desc.h>
|
|
#include <asm/fpu/api.h>
|
|
#include <asm/mtrr.h>
|
|
#include <asm/hwcap2.h>
|
|
#include <linux/numa.h>
|
|
#include <asm/numa.h>
|
|
#include <asm/asm.h>
|
|
#include <asm/bugs.h>
|
|
#include <asm/cpu.h>
|
|
#include <asm/mce.h>
|
|
#include <asm/msr.h>
|
|
#include <asm/cacheinfo.h>
|
|
#include <asm/memtype.h>
|
|
#include <asm/microcode.h>
|
|
#include <asm/intel-family.h>
|
|
#include <asm/cpu_device_id.h>
|
|
#include <asm/fred.h>
|
|
#include <asm/uv/uv.h>
|
|
#include <asm/ia32.h>
|
|
#include <asm/set_memory.h>
|
|
#include <asm/traps.h>
|
|
#include <asm/sev.h>
|
|
#include <asm/tdx.h>
|
|
#include <asm/posted_intr.h>
|
|
#include <asm/runtime-const.h>
|
|
|
|
#include "cpu.h"
|
|
|
|
DEFINE_PER_CPU_READ_MOSTLY(struct cpuinfo_x86, cpu_info);
|
|
EXPORT_PER_CPU_SYMBOL(cpu_info);
|
|
|
|
u32 elf_hwcap2 __read_mostly;
|
|
|
|
/* Number of siblings per CPU package */
|
|
unsigned int __max_threads_per_core __ro_after_init = 1;
|
|
EXPORT_SYMBOL(__max_threads_per_core);
|
|
|
|
unsigned int __max_dies_per_package __ro_after_init = 1;
|
|
EXPORT_SYMBOL(__max_dies_per_package);
|
|
|
|
unsigned int __max_logical_packages __ro_after_init = 1;
|
|
EXPORT_SYMBOL(__max_logical_packages);
|
|
|
|
unsigned int __num_cores_per_package __ro_after_init = 1;
|
|
EXPORT_SYMBOL(__num_cores_per_package);
|
|
|
|
unsigned int __num_threads_per_package __ro_after_init = 1;
|
|
EXPORT_SYMBOL(__num_threads_per_package);
|
|
|
|
static struct ppin_info {
|
|
int feature;
|
|
int msr_ppin_ctl;
|
|
int msr_ppin;
|
|
} ppin_info[] = {
|
|
[X86_VENDOR_INTEL] = {
|
|
.feature = X86_FEATURE_INTEL_PPIN,
|
|
.msr_ppin_ctl = MSR_PPIN_CTL,
|
|
.msr_ppin = MSR_PPIN
|
|
},
|
|
[X86_VENDOR_AMD] = {
|
|
.feature = X86_FEATURE_AMD_PPIN,
|
|
.msr_ppin_ctl = MSR_AMD_PPIN_CTL,
|
|
.msr_ppin = MSR_AMD_PPIN
|
|
},
|
|
};
|
|
|
|
static const struct x86_cpu_id ppin_cpuids[] = {
|
|
X86_MATCH_FEATURE(X86_FEATURE_AMD_PPIN, &ppin_info[X86_VENDOR_AMD]),
|
|
X86_MATCH_FEATURE(X86_FEATURE_INTEL_PPIN, &ppin_info[X86_VENDOR_INTEL]),
|
|
|
|
/* Legacy models without CPUID enumeration */
|
|
X86_MATCH_VFM(INTEL_IVYBRIDGE_X, &ppin_info[X86_VENDOR_INTEL]),
|
|
X86_MATCH_VFM(INTEL_HASWELL_X, &ppin_info[X86_VENDOR_INTEL]),
|
|
X86_MATCH_VFM(INTEL_BROADWELL_D, &ppin_info[X86_VENDOR_INTEL]),
|
|
X86_MATCH_VFM(INTEL_BROADWELL_X, &ppin_info[X86_VENDOR_INTEL]),
|
|
X86_MATCH_VFM(INTEL_SKYLAKE_X, &ppin_info[X86_VENDOR_INTEL]),
|
|
X86_MATCH_VFM(INTEL_ICELAKE_X, &ppin_info[X86_VENDOR_INTEL]),
|
|
X86_MATCH_VFM(INTEL_ICELAKE_D, &ppin_info[X86_VENDOR_INTEL]),
|
|
X86_MATCH_VFM(INTEL_SAPPHIRERAPIDS_X, &ppin_info[X86_VENDOR_INTEL]),
|
|
X86_MATCH_VFM(INTEL_EMERALDRAPIDS_X, &ppin_info[X86_VENDOR_INTEL]),
|
|
X86_MATCH_VFM(INTEL_XEON_PHI_KNL, &ppin_info[X86_VENDOR_INTEL]),
|
|
X86_MATCH_VFM(INTEL_XEON_PHI_KNM, &ppin_info[X86_VENDOR_INTEL]),
|
|
|
|
{}
|
|
};
|
|
|
|
static void ppin_init(struct cpuinfo_x86 *c)
|
|
{
|
|
const struct x86_cpu_id *id;
|
|
unsigned long long val;
|
|
struct ppin_info *info;
|
|
|
|
id = x86_match_cpu(ppin_cpuids);
|
|
if (!id)
|
|
return;
|
|
|
|
/*
|
|
* Testing the presence of the MSR is not enough. Need to check
|
|
* that the PPIN_CTL allows reading of the PPIN.
|
|
*/
|
|
info = (struct ppin_info *)id->driver_data;
|
|
|
|
if (rdmsrl_safe(info->msr_ppin_ctl, &val))
|
|
goto clear_ppin;
|
|
|
|
if ((val & 3UL) == 1UL) {
|
|
/* PPIN locked in disabled mode */
|
|
goto clear_ppin;
|
|
}
|
|
|
|
/* If PPIN is disabled, try to enable */
|
|
if (!(val & 2UL)) {
|
|
wrmsrl_safe(info->msr_ppin_ctl, val | 2UL);
|
|
rdmsrl_safe(info->msr_ppin_ctl, &val);
|
|
}
|
|
|
|
/* Is the enable bit set? */
|
|
if (val & 2UL) {
|
|
c->ppin = __rdmsr(info->msr_ppin);
|
|
set_cpu_cap(c, info->feature);
|
|
return;
|
|
}
|
|
|
|
clear_ppin:
|
|
clear_cpu_cap(c, info->feature);
|
|
}
|
|
|
|
static void default_init(struct cpuinfo_x86 *c)
|
|
{
|
|
#ifdef CONFIG_X86_64
|
|
cpu_detect_cache_sizes(c);
|
|
#else
|
|
/* Not much we can do here... */
|
|
/* Check if at least it has cpuid */
|
|
if (c->cpuid_level == -1) {
|
|
/* No cpuid. It must be an ancient CPU */
|
|
if (c->x86 == 4)
|
|
strcpy(c->x86_model_id, "486");
|
|
else if (c->x86 == 3)
|
|
strcpy(c->x86_model_id, "386");
|
|
}
|
|
#endif
|
|
}
|
|
|
|
static const struct cpu_dev default_cpu = {
|
|
.c_init = default_init,
|
|
.c_vendor = "Unknown",
|
|
.c_x86_vendor = X86_VENDOR_UNKNOWN,
|
|
};
|
|
|
|
static const struct cpu_dev *this_cpu = &default_cpu;
|
|
|
|
DEFINE_PER_CPU_PAGE_ALIGNED(struct gdt_page, gdt_page) = { .gdt = {
|
|
#ifdef CONFIG_X86_64
|
|
/*
|
|
* We need valid kernel segments for data and code in long mode too
|
|
* IRET will check the segment types kkeil 2000/10/28
|
|
* Also sysret mandates a special GDT layout
|
|
*
|
|
* TLS descriptors are currently at a different place compared to i386.
|
|
* Hopefully nobody expects them at a fixed place (Wine?)
|
|
*/
|
|
[GDT_ENTRY_KERNEL32_CS] = GDT_ENTRY_INIT(DESC_CODE32, 0, 0xfffff),
|
|
[GDT_ENTRY_KERNEL_CS] = GDT_ENTRY_INIT(DESC_CODE64, 0, 0xfffff),
|
|
[GDT_ENTRY_KERNEL_DS] = GDT_ENTRY_INIT(DESC_DATA64, 0, 0xfffff),
|
|
[GDT_ENTRY_DEFAULT_USER32_CS] = GDT_ENTRY_INIT(DESC_CODE32 | DESC_USER, 0, 0xfffff),
|
|
[GDT_ENTRY_DEFAULT_USER_DS] = GDT_ENTRY_INIT(DESC_DATA64 | DESC_USER, 0, 0xfffff),
|
|
[GDT_ENTRY_DEFAULT_USER_CS] = GDT_ENTRY_INIT(DESC_CODE64 | DESC_USER, 0, 0xfffff),
|
|
#else
|
|
[GDT_ENTRY_KERNEL_CS] = GDT_ENTRY_INIT(DESC_CODE32, 0, 0xfffff),
|
|
[GDT_ENTRY_KERNEL_DS] = GDT_ENTRY_INIT(DESC_DATA32, 0, 0xfffff),
|
|
[GDT_ENTRY_DEFAULT_USER_CS] = GDT_ENTRY_INIT(DESC_CODE32 | DESC_USER, 0, 0xfffff),
|
|
[GDT_ENTRY_DEFAULT_USER_DS] = GDT_ENTRY_INIT(DESC_DATA32 | DESC_USER, 0, 0xfffff),
|
|
/*
|
|
* Segments used for calling PnP BIOS have byte granularity.
|
|
* They code segments and data segments have fixed 64k limits,
|
|
* the transfer segment sizes are set at run time.
|
|
*/
|
|
[GDT_ENTRY_PNPBIOS_CS32] = GDT_ENTRY_INIT(DESC_CODE32_BIOS, 0, 0xffff),
|
|
[GDT_ENTRY_PNPBIOS_CS16] = GDT_ENTRY_INIT(DESC_CODE16, 0, 0xffff),
|
|
[GDT_ENTRY_PNPBIOS_DS] = GDT_ENTRY_INIT(DESC_DATA16, 0, 0xffff),
|
|
[GDT_ENTRY_PNPBIOS_TS1] = GDT_ENTRY_INIT(DESC_DATA16, 0, 0),
|
|
[GDT_ENTRY_PNPBIOS_TS2] = GDT_ENTRY_INIT(DESC_DATA16, 0, 0),
|
|
/*
|
|
* The APM segments have byte granularity and their bases
|
|
* are set at run time. All have 64k limits.
|
|
*/
|
|
[GDT_ENTRY_APMBIOS_BASE] = GDT_ENTRY_INIT(DESC_CODE32_BIOS, 0, 0xffff),
|
|
[GDT_ENTRY_APMBIOS_BASE+1] = GDT_ENTRY_INIT(DESC_CODE16, 0, 0xffff),
|
|
[GDT_ENTRY_APMBIOS_BASE+2] = GDT_ENTRY_INIT(DESC_DATA32_BIOS, 0, 0xffff),
|
|
|
|
[GDT_ENTRY_ESPFIX_SS] = GDT_ENTRY_INIT(DESC_DATA32, 0, 0xfffff),
|
|
[GDT_ENTRY_PERCPU] = GDT_ENTRY_INIT(DESC_DATA32, 0, 0xfffff),
|
|
#endif
|
|
} };
|
|
EXPORT_PER_CPU_SYMBOL_GPL(gdt_page);
|
|
|
|
#ifdef CONFIG_X86_64
|
|
static int __init x86_nopcid_setup(char *s)
|
|
{
|
|
/* nopcid doesn't accept parameters */
|
|
if (s)
|
|
return -EINVAL;
|
|
|
|
/* do not emit a message if the feature is not present */
|
|
if (!boot_cpu_has(X86_FEATURE_PCID))
|
|
return 0;
|
|
|
|
setup_clear_cpu_cap(X86_FEATURE_PCID);
|
|
pr_info("nopcid: PCID feature disabled\n");
|
|
return 0;
|
|
}
|
|
early_param("nopcid", x86_nopcid_setup);
|
|
#endif
|
|
|
|
static int __init x86_noinvpcid_setup(char *s)
|
|
{
|
|
/* noinvpcid doesn't accept parameters */
|
|
if (s)
|
|
return -EINVAL;
|
|
|
|
/* do not emit a message if the feature is not present */
|
|
if (!boot_cpu_has(X86_FEATURE_INVPCID))
|
|
return 0;
|
|
|
|
setup_clear_cpu_cap(X86_FEATURE_INVPCID);
|
|
pr_info("noinvpcid: INVPCID feature disabled\n");
|
|
return 0;
|
|
}
|
|
early_param("noinvpcid", x86_noinvpcid_setup);
|
|
|
|
#ifdef CONFIG_X86_32
|
|
static int cachesize_override = -1;
|
|
static int disable_x86_serial_nr = 1;
|
|
|
|
static int __init cachesize_setup(char *str)
|
|
{
|
|
get_option(&str, &cachesize_override);
|
|
return 1;
|
|
}
|
|
__setup("cachesize=", cachesize_setup);
|
|
|
|
/* Standard macro to see if a specific flag is changeable */
|
|
static inline int flag_is_changeable_p(u32 flag)
|
|
{
|
|
u32 f1, f2;
|
|
|
|
/*
|
|
* Cyrix and IDT cpus allow disabling of CPUID
|
|
* so the code below may return different results
|
|
* when it is executed before and after enabling
|
|
* the CPUID. Add "volatile" to not allow gcc to
|
|
* optimize the subsequent calls to this function.
|
|
*/
|
|
asm volatile ("pushfl \n\t"
|
|
"pushfl \n\t"
|
|
"popl %0 \n\t"
|
|
"movl %0, %1 \n\t"
|
|
"xorl %2, %0 \n\t"
|
|
"pushl %0 \n\t"
|
|
"popfl \n\t"
|
|
"pushfl \n\t"
|
|
"popl %0 \n\t"
|
|
"popfl \n\t"
|
|
|
|
: "=&r" (f1), "=&r" (f2)
|
|
: "ir" (flag));
|
|
|
|
return ((f1^f2) & flag) != 0;
|
|
}
|
|
|
|
/* Probe for the CPUID instruction */
|
|
int have_cpuid_p(void)
|
|
{
|
|
return flag_is_changeable_p(X86_EFLAGS_ID);
|
|
}
|
|
|
|
static void squash_the_stupid_serial_number(struct cpuinfo_x86 *c)
|
|
{
|
|
unsigned long lo, hi;
|
|
|
|
if (!cpu_has(c, X86_FEATURE_PN) || !disable_x86_serial_nr)
|
|
return;
|
|
|
|
/* Disable processor serial number: */
|
|
|
|
rdmsr(MSR_IA32_BBL_CR_CTL, lo, hi);
|
|
lo |= 0x200000;
|
|
wrmsr(MSR_IA32_BBL_CR_CTL, lo, hi);
|
|
|
|
pr_notice("CPU serial number disabled.\n");
|
|
clear_cpu_cap(c, X86_FEATURE_PN);
|
|
|
|
/* Disabling the serial number may affect the cpuid level */
|
|
c->cpuid_level = cpuid_eax(0);
|
|
}
|
|
|
|
static int __init x86_serial_nr_setup(char *s)
|
|
{
|
|
disable_x86_serial_nr = 0;
|
|
return 1;
|
|
}
|
|
__setup("serialnumber", x86_serial_nr_setup);
|
|
#else
|
|
static inline int flag_is_changeable_p(u32 flag)
|
|
{
|
|
return 1;
|
|
}
|
|
static inline void squash_the_stupid_serial_number(struct cpuinfo_x86 *c)
|
|
{
|
|
}
|
|
#endif
|
|
|
|
static __always_inline void setup_smep(struct cpuinfo_x86 *c)
|
|
{
|
|
if (cpu_has(c, X86_FEATURE_SMEP))
|
|
cr4_set_bits(X86_CR4_SMEP);
|
|
}
|
|
|
|
static __always_inline void setup_smap(struct cpuinfo_x86 *c)
|
|
{
|
|
unsigned long eflags = native_save_fl();
|
|
|
|
/* This should have been cleared long ago */
|
|
BUG_ON(eflags & X86_EFLAGS_AC);
|
|
|
|
if (cpu_has(c, X86_FEATURE_SMAP))
|
|
cr4_set_bits(X86_CR4_SMAP);
|
|
}
|
|
|
|
static __always_inline void setup_umip(struct cpuinfo_x86 *c)
|
|
{
|
|
/* Check the boot processor, plus build option for UMIP. */
|
|
if (!cpu_feature_enabled(X86_FEATURE_UMIP))
|
|
goto out;
|
|
|
|
/* Check the current processor's cpuid bits. */
|
|
if (!cpu_has(c, X86_FEATURE_UMIP))
|
|
goto out;
|
|
|
|
cr4_set_bits(X86_CR4_UMIP);
|
|
|
|
pr_info_once("x86/cpu: User Mode Instruction Prevention (UMIP) activated\n");
|
|
|
|
return;
|
|
|
|
out:
|
|
/*
|
|
* Make sure UMIP is disabled in case it was enabled in a
|
|
* previous boot (e.g., via kexec).
|
|
*/
|
|
cr4_clear_bits(X86_CR4_UMIP);
|
|
}
|
|
|
|
/* These bits should not change their value after CPU init is finished. */
|
|
static const unsigned long cr4_pinned_mask = X86_CR4_SMEP | X86_CR4_SMAP | X86_CR4_UMIP |
|
|
X86_CR4_FSGSBASE | X86_CR4_CET | X86_CR4_FRED;
|
|
static DEFINE_STATIC_KEY_FALSE_RO(cr_pinning);
|
|
static unsigned long cr4_pinned_bits __ro_after_init;
|
|
|
|
void native_write_cr0(unsigned long val)
|
|
{
|
|
unsigned long bits_missing = 0;
|
|
|
|
set_register:
|
|
asm volatile("mov %0,%%cr0": "+r" (val) : : "memory");
|
|
|
|
if (static_branch_likely(&cr_pinning)) {
|
|
if (unlikely((val & X86_CR0_WP) != X86_CR0_WP)) {
|
|
bits_missing = X86_CR0_WP;
|
|
val |= bits_missing;
|
|
goto set_register;
|
|
}
|
|
/* Warn after we've set the missing bits. */
|
|
WARN_ONCE(bits_missing, "CR0 WP bit went missing!?\n");
|
|
}
|
|
}
|
|
EXPORT_SYMBOL(native_write_cr0);
|
|
|
|
void __no_profile native_write_cr4(unsigned long val)
|
|
{
|
|
unsigned long bits_changed = 0;
|
|
|
|
set_register:
|
|
asm volatile("mov %0,%%cr4": "+r" (val) : : "memory");
|
|
|
|
if (static_branch_likely(&cr_pinning)) {
|
|
if (unlikely((val & cr4_pinned_mask) != cr4_pinned_bits)) {
|
|
bits_changed = (val & cr4_pinned_mask) ^ cr4_pinned_bits;
|
|
val = (val & ~cr4_pinned_mask) | cr4_pinned_bits;
|
|
goto set_register;
|
|
}
|
|
/* Warn after we've corrected the changed bits. */
|
|
WARN_ONCE(bits_changed, "pinned CR4 bits changed: 0x%lx!?\n",
|
|
bits_changed);
|
|
}
|
|
}
|
|
#if IS_MODULE(CONFIG_LKDTM)
|
|
EXPORT_SYMBOL_GPL(native_write_cr4);
|
|
#endif
|
|
|
|
void cr4_update_irqsoff(unsigned long set, unsigned long clear)
|
|
{
|
|
unsigned long newval, cr4 = this_cpu_read(cpu_tlbstate.cr4);
|
|
|
|
lockdep_assert_irqs_disabled();
|
|
|
|
newval = (cr4 & ~clear) | set;
|
|
if (newval != cr4) {
|
|
this_cpu_write(cpu_tlbstate.cr4, newval);
|
|
__write_cr4(newval);
|
|
}
|
|
}
|
|
EXPORT_SYMBOL(cr4_update_irqsoff);
|
|
|
|
/* Read the CR4 shadow. */
|
|
unsigned long cr4_read_shadow(void)
|
|
{
|
|
return this_cpu_read(cpu_tlbstate.cr4);
|
|
}
|
|
EXPORT_SYMBOL_GPL(cr4_read_shadow);
|
|
|
|
void cr4_init(void)
|
|
{
|
|
unsigned long cr4 = __read_cr4();
|
|
|
|
if (boot_cpu_has(X86_FEATURE_PCID))
|
|
cr4 |= X86_CR4_PCIDE;
|
|
if (static_branch_likely(&cr_pinning))
|
|
cr4 = (cr4 & ~cr4_pinned_mask) | cr4_pinned_bits;
|
|
|
|
__write_cr4(cr4);
|
|
|
|
/* Initialize cr4 shadow for this CPU. */
|
|
this_cpu_write(cpu_tlbstate.cr4, cr4);
|
|
}
|
|
|
|
/*
|
|
* Once CPU feature detection is finished (and boot params have been
|
|
* parsed), record any of the sensitive CR bits that are set, and
|
|
* enable CR pinning.
|
|
*/
|
|
static void __init setup_cr_pinning(void)
|
|
{
|
|
cr4_pinned_bits = this_cpu_read(cpu_tlbstate.cr4) & cr4_pinned_mask;
|
|
static_key_enable(&cr_pinning.key);
|
|
}
|
|
|
|
static __init int x86_nofsgsbase_setup(char *arg)
|
|
{
|
|
/* Require an exact match without trailing characters. */
|
|
if (strlen(arg))
|
|
return 0;
|
|
|
|
/* Do not emit a message if the feature is not present. */
|
|
if (!boot_cpu_has(X86_FEATURE_FSGSBASE))
|
|
return 1;
|
|
|
|
setup_clear_cpu_cap(X86_FEATURE_FSGSBASE);
|
|
pr_info("FSGSBASE disabled via kernel command line\n");
|
|
return 1;
|
|
}
|
|
__setup("nofsgsbase", x86_nofsgsbase_setup);
|
|
|
|
/*
|
|
* Protection Keys are not available in 32-bit mode.
|
|
*/
|
|
static bool pku_disabled;
|
|
|
|
static __always_inline void setup_pku(struct cpuinfo_x86 *c)
|
|
{
|
|
if (c == &boot_cpu_data) {
|
|
if (pku_disabled || !cpu_feature_enabled(X86_FEATURE_PKU))
|
|
return;
|
|
/*
|
|
* Setting CR4.PKE will cause the X86_FEATURE_OSPKE cpuid
|
|
* bit to be set. Enforce it.
|
|
*/
|
|
setup_force_cpu_cap(X86_FEATURE_OSPKE);
|
|
|
|
} else if (!cpu_feature_enabled(X86_FEATURE_OSPKE)) {
|
|
return;
|
|
}
|
|
|
|
cr4_set_bits(X86_CR4_PKE);
|
|
/* Load the default PKRU value */
|
|
pkru_write_default();
|
|
}
|
|
|
|
#ifdef CONFIG_X86_INTEL_MEMORY_PROTECTION_KEYS
|
|
static __init int setup_disable_pku(char *arg)
|
|
{
|
|
/*
|
|
* Do not clear the X86_FEATURE_PKU bit. All of the
|
|
* runtime checks are against OSPKE so clearing the
|
|
* bit does nothing.
|
|
*
|
|
* This way, we will see "pku" in cpuinfo, but not
|
|
* "ospke", which is exactly what we want. It shows
|
|
* that the CPU has PKU, but the OS has not enabled it.
|
|
* This happens to be exactly how a system would look
|
|
* if we disabled the config option.
|
|
*/
|
|
pr_info("x86: 'nopku' specified, disabling Memory Protection Keys\n");
|
|
pku_disabled = true;
|
|
return 1;
|
|
}
|
|
__setup("nopku", setup_disable_pku);
|
|
#endif
|
|
|
|
#ifdef CONFIG_X86_KERNEL_IBT
|
|
|
|
__noendbr u64 ibt_save(bool disable)
|
|
{
|
|
u64 msr = 0;
|
|
|
|
if (cpu_feature_enabled(X86_FEATURE_IBT)) {
|
|
rdmsrl(MSR_IA32_S_CET, msr);
|
|
if (disable)
|
|
wrmsrl(MSR_IA32_S_CET, msr & ~CET_ENDBR_EN);
|
|
}
|
|
|
|
return msr;
|
|
}
|
|
|
|
__noendbr void ibt_restore(u64 save)
|
|
{
|
|
u64 msr;
|
|
|
|
if (cpu_feature_enabled(X86_FEATURE_IBT)) {
|
|
rdmsrl(MSR_IA32_S_CET, msr);
|
|
msr &= ~CET_ENDBR_EN;
|
|
msr |= (save & CET_ENDBR_EN);
|
|
wrmsrl(MSR_IA32_S_CET, msr);
|
|
}
|
|
}
|
|
|
|
#endif
|
|
|
|
static __always_inline void setup_cet(struct cpuinfo_x86 *c)
|
|
{
|
|
bool user_shstk, kernel_ibt;
|
|
|
|
if (!IS_ENABLED(CONFIG_X86_CET))
|
|
return;
|
|
|
|
kernel_ibt = HAS_KERNEL_IBT && cpu_feature_enabled(X86_FEATURE_IBT);
|
|
user_shstk = cpu_feature_enabled(X86_FEATURE_SHSTK) &&
|
|
IS_ENABLED(CONFIG_X86_USER_SHADOW_STACK);
|
|
|
|
if (!kernel_ibt && !user_shstk)
|
|
return;
|
|
|
|
if (user_shstk)
|
|
set_cpu_cap(c, X86_FEATURE_USER_SHSTK);
|
|
|
|
if (kernel_ibt)
|
|
wrmsrl(MSR_IA32_S_CET, CET_ENDBR_EN);
|
|
else
|
|
wrmsrl(MSR_IA32_S_CET, 0);
|
|
|
|
cr4_set_bits(X86_CR4_CET);
|
|
|
|
if (kernel_ibt && ibt_selftest()) {
|
|
pr_err("IBT selftest: Failed!\n");
|
|
wrmsrl(MSR_IA32_S_CET, 0);
|
|
setup_clear_cpu_cap(X86_FEATURE_IBT);
|
|
}
|
|
}
|
|
|
|
__noendbr void cet_disable(void)
|
|
{
|
|
if (!(cpu_feature_enabled(X86_FEATURE_IBT) ||
|
|
cpu_feature_enabled(X86_FEATURE_SHSTK)))
|
|
return;
|
|
|
|
wrmsrl(MSR_IA32_S_CET, 0);
|
|
wrmsrl(MSR_IA32_U_CET, 0);
|
|
}
|
|
|
|
/*
|
|
* Some CPU features depend on higher CPUID levels, which may not always
|
|
* be available due to CPUID level capping or broken virtualization
|
|
* software. Add those features to this table to auto-disable them.
|
|
*/
|
|
struct cpuid_dependent_feature {
|
|
u32 feature;
|
|
u32 level;
|
|
};
|
|
|
|
static const struct cpuid_dependent_feature
|
|
cpuid_dependent_features[] = {
|
|
{ X86_FEATURE_MWAIT, 0x00000005 },
|
|
{ X86_FEATURE_DCA, 0x00000009 },
|
|
{ X86_FEATURE_XSAVE, 0x0000000d },
|
|
{ 0, 0 }
|
|
};
|
|
|
|
static void filter_cpuid_features(struct cpuinfo_x86 *c, bool warn)
|
|
{
|
|
const struct cpuid_dependent_feature *df;
|
|
|
|
for (df = cpuid_dependent_features; df->feature; df++) {
|
|
|
|
if (!cpu_has(c, df->feature))
|
|
continue;
|
|
/*
|
|
* Note: cpuid_level is set to -1 if unavailable, but
|
|
* extended_extended_level is set to 0 if unavailable
|
|
* and the legitimate extended levels are all negative
|
|
* when signed; hence the weird messing around with
|
|
* signs here...
|
|
*/
|
|
if (!((s32)df->level < 0 ?
|
|
(u32)df->level > (u32)c->extended_cpuid_level :
|
|
(s32)df->level > (s32)c->cpuid_level))
|
|
continue;
|
|
|
|
clear_cpu_cap(c, df->feature);
|
|
if (!warn)
|
|
continue;
|
|
|
|
pr_warn("CPU: CPU feature " X86_CAP_FMT " disabled, no CPUID level 0x%x\n",
|
|
x86_cap_flag(df->feature), df->level);
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Naming convention should be: <Name> [(<Codename>)]
|
|
* This table only is used unless init_<vendor>() below doesn't set it;
|
|
* in particular, if CPUID levels 0x80000002..4 are supported, this
|
|
* isn't used
|
|
*/
|
|
|
|
/* Look up CPU names by table lookup. */
|
|
static const char *table_lookup_model(struct cpuinfo_x86 *c)
|
|
{
|
|
#ifdef CONFIG_X86_32
|
|
const struct legacy_cpu_model_info *info;
|
|
|
|
if (c->x86_model >= 16)
|
|
return NULL; /* Range check */
|
|
|
|
if (!this_cpu)
|
|
return NULL;
|
|
|
|
info = this_cpu->legacy_models;
|
|
|
|
while (info->family) {
|
|
if (info->family == c->x86)
|
|
return info->model_names[c->x86_model];
|
|
info++;
|
|
}
|
|
#endif
|
|
return NULL; /* Not found */
|
|
}
|
|
|
|
/* Aligned to unsigned long to avoid split lock in atomic bitmap ops */
|
|
__u32 cpu_caps_cleared[NCAPINTS + NBUGINTS] __aligned(sizeof(unsigned long));
|
|
__u32 cpu_caps_set[NCAPINTS + NBUGINTS] __aligned(sizeof(unsigned long));
|
|
|
|
#ifdef CONFIG_X86_32
|
|
/* The 32-bit entry code needs to find cpu_entry_area. */
|
|
DEFINE_PER_CPU(struct cpu_entry_area *, cpu_entry_area);
|
|
#endif
|
|
|
|
/* Load the original GDT from the per-cpu structure */
|
|
void load_direct_gdt(int cpu)
|
|
{
|
|
struct desc_ptr gdt_descr;
|
|
|
|
gdt_descr.address = (long)get_cpu_gdt_rw(cpu);
|
|
gdt_descr.size = GDT_SIZE - 1;
|
|
load_gdt(&gdt_descr);
|
|
}
|
|
EXPORT_SYMBOL_GPL(load_direct_gdt);
|
|
|
|
/* Load a fixmap remapping of the per-cpu GDT */
|
|
void load_fixmap_gdt(int cpu)
|
|
{
|
|
struct desc_ptr gdt_descr;
|
|
|
|
gdt_descr.address = (long)get_cpu_gdt_ro(cpu);
|
|
gdt_descr.size = GDT_SIZE - 1;
|
|
load_gdt(&gdt_descr);
|
|
}
|
|
EXPORT_SYMBOL_GPL(load_fixmap_gdt);
|
|
|
|
/**
|
|
* switch_gdt_and_percpu_base - Switch to direct GDT and runtime per CPU base
|
|
* @cpu: The CPU number for which this is invoked
|
|
*
|
|
* Invoked during early boot to switch from early GDT and early per CPU to
|
|
* the direct GDT and the runtime per CPU area. On 32-bit the percpu base
|
|
* switch is implicit by loading the direct GDT. On 64bit this requires
|
|
* to update GSBASE.
|
|
*/
|
|
void __init switch_gdt_and_percpu_base(int cpu)
|
|
{
|
|
load_direct_gdt(cpu);
|
|
|
|
#ifdef CONFIG_X86_64
|
|
/*
|
|
* No need to load %gs. It is already correct.
|
|
*
|
|
* Writing %gs on 64bit would zero GSBASE which would make any per
|
|
* CPU operation up to the point of the wrmsrl() fault.
|
|
*
|
|
* Set GSBASE to the new offset. Until the wrmsrl() happens the
|
|
* early mapping is still valid. That means the GSBASE update will
|
|
* lose any prior per CPU data which was not copied over in
|
|
* setup_per_cpu_areas().
|
|
*
|
|
* This works even with stackprotector enabled because the
|
|
* per CPU stack canary is 0 in both per CPU areas.
|
|
*/
|
|
wrmsrl(MSR_GS_BASE, cpu_kernelmode_gs_base(cpu));
|
|
#else
|
|
/*
|
|
* %fs is already set to __KERNEL_PERCPU, but after switching GDT
|
|
* it is required to load FS again so that the 'hidden' part is
|
|
* updated from the new GDT. Up to this point the early per CPU
|
|
* translation is active. Any content of the early per CPU data
|
|
* which was not copied over in setup_per_cpu_areas() is lost.
|
|
*/
|
|
loadsegment(fs, __KERNEL_PERCPU);
|
|
#endif
|
|
}
|
|
|
|
static const struct cpu_dev *cpu_devs[X86_VENDOR_NUM] = {};
|
|
|
|
static void get_model_name(struct cpuinfo_x86 *c)
|
|
{
|
|
unsigned int *v;
|
|
char *p, *q, *s;
|
|
|
|
if (c->extended_cpuid_level < 0x80000004)
|
|
return;
|
|
|
|
v = (unsigned int *)c->x86_model_id;
|
|
cpuid(0x80000002, &v[0], &v[1], &v[2], &v[3]);
|
|
cpuid(0x80000003, &v[4], &v[5], &v[6], &v[7]);
|
|
cpuid(0x80000004, &v[8], &v[9], &v[10], &v[11]);
|
|
c->x86_model_id[48] = 0;
|
|
|
|
/* Trim whitespace */
|
|
p = q = s = &c->x86_model_id[0];
|
|
|
|
while (*p == ' ')
|
|
p++;
|
|
|
|
while (*p) {
|
|
/* Note the last non-whitespace index */
|
|
if (!isspace(*p))
|
|
s = q;
|
|
|
|
*q++ = *p++;
|
|
}
|
|
|
|
*(s + 1) = '\0';
|
|
}
|
|
|
|
void cpu_detect_cache_sizes(struct cpuinfo_x86 *c)
|
|
{
|
|
unsigned int n, dummy, ebx, ecx, edx, l2size;
|
|
|
|
n = c->extended_cpuid_level;
|
|
|
|
if (n >= 0x80000005) {
|
|
cpuid(0x80000005, &dummy, &ebx, &ecx, &edx);
|
|
c->x86_cache_size = (ecx>>24) + (edx>>24);
|
|
#ifdef CONFIG_X86_64
|
|
/* On K8 L1 TLB is inclusive, so don't count it */
|
|
c->x86_tlbsize = 0;
|
|
#endif
|
|
}
|
|
|
|
if (n < 0x80000006) /* Some chips just has a large L1. */
|
|
return;
|
|
|
|
cpuid(0x80000006, &dummy, &ebx, &ecx, &edx);
|
|
l2size = ecx >> 16;
|
|
|
|
#ifdef CONFIG_X86_64
|
|
c->x86_tlbsize += ((ebx >> 16) & 0xfff) + (ebx & 0xfff);
|
|
#else
|
|
/* do processor-specific cache resizing */
|
|
if (this_cpu->legacy_cache_size)
|
|
l2size = this_cpu->legacy_cache_size(c, l2size);
|
|
|
|
/* Allow user to override all this if necessary. */
|
|
if (cachesize_override != -1)
|
|
l2size = cachesize_override;
|
|
|
|
if (l2size == 0)
|
|
return; /* Again, no L2 cache is possible */
|
|
#endif
|
|
|
|
c->x86_cache_size = l2size;
|
|
}
|
|
|
|
u16 __read_mostly tlb_lli_4k[NR_INFO];
|
|
u16 __read_mostly tlb_lli_2m[NR_INFO];
|
|
u16 __read_mostly tlb_lli_4m[NR_INFO];
|
|
u16 __read_mostly tlb_lld_4k[NR_INFO];
|
|
u16 __read_mostly tlb_lld_2m[NR_INFO];
|
|
u16 __read_mostly tlb_lld_4m[NR_INFO];
|
|
u16 __read_mostly tlb_lld_1g[NR_INFO];
|
|
|
|
static void cpu_detect_tlb(struct cpuinfo_x86 *c)
|
|
{
|
|
if (this_cpu->c_detect_tlb)
|
|
this_cpu->c_detect_tlb(c);
|
|
|
|
pr_info("Last level iTLB entries: 4KB %d, 2MB %d, 4MB %d\n",
|
|
tlb_lli_4k[ENTRIES], tlb_lli_2m[ENTRIES],
|
|
tlb_lli_4m[ENTRIES]);
|
|
|
|
pr_info("Last level dTLB entries: 4KB %d, 2MB %d, 4MB %d, 1GB %d\n",
|
|
tlb_lld_4k[ENTRIES], tlb_lld_2m[ENTRIES],
|
|
tlb_lld_4m[ENTRIES], tlb_lld_1g[ENTRIES]);
|
|
}
|
|
|
|
static void get_cpu_vendor(struct cpuinfo_x86 *c)
|
|
{
|
|
char *v = c->x86_vendor_id;
|
|
int i;
|
|
|
|
for (i = 0; i < X86_VENDOR_NUM; i++) {
|
|
if (!cpu_devs[i])
|
|
break;
|
|
|
|
if (!strcmp(v, cpu_devs[i]->c_ident[0]) ||
|
|
(cpu_devs[i]->c_ident[1] &&
|
|
!strcmp(v, cpu_devs[i]->c_ident[1]))) {
|
|
|
|
this_cpu = cpu_devs[i];
|
|
c->x86_vendor = this_cpu->c_x86_vendor;
|
|
return;
|
|
}
|
|
}
|
|
|
|
pr_err_once("CPU: vendor_id '%s' unknown, using generic init.\n" \
|
|
"CPU: Your system may be unstable.\n", v);
|
|
|
|
c->x86_vendor = X86_VENDOR_UNKNOWN;
|
|
this_cpu = &default_cpu;
|
|
}
|
|
|
|
void cpu_detect(struct cpuinfo_x86 *c)
|
|
{
|
|
/* Get vendor name */
|
|
cpuid(0x00000000, (unsigned int *)&c->cpuid_level,
|
|
(unsigned int *)&c->x86_vendor_id[0],
|
|
(unsigned int *)&c->x86_vendor_id[8],
|
|
(unsigned int *)&c->x86_vendor_id[4]);
|
|
|
|
c->x86 = 4;
|
|
/* Intel-defined flags: level 0x00000001 */
|
|
if (c->cpuid_level >= 0x00000001) {
|
|
u32 junk, tfms, cap0, misc;
|
|
|
|
cpuid(0x00000001, &tfms, &misc, &junk, &cap0);
|
|
c->x86 = x86_family(tfms);
|
|
c->x86_model = x86_model(tfms);
|
|
c->x86_stepping = x86_stepping(tfms);
|
|
|
|
if (cap0 & (1<<19)) {
|
|
c->x86_clflush_size = ((misc >> 8) & 0xff) * 8;
|
|
c->x86_cache_alignment = c->x86_clflush_size;
|
|
}
|
|
}
|
|
}
|
|
|
|
static void apply_forced_caps(struct cpuinfo_x86 *c)
|
|
{
|
|
int i;
|
|
|
|
for (i = 0; i < NCAPINTS + NBUGINTS; i++) {
|
|
c->x86_capability[i] &= ~cpu_caps_cleared[i];
|
|
c->x86_capability[i] |= cpu_caps_set[i];
|
|
}
|
|
}
|
|
|
|
static void init_speculation_control(struct cpuinfo_x86 *c)
|
|
{
|
|
/*
|
|
* The Intel SPEC_CTRL CPUID bit implies IBRS and IBPB support,
|
|
* and they also have a different bit for STIBP support. Also,
|
|
* a hypervisor might have set the individual AMD bits even on
|
|
* Intel CPUs, for finer-grained selection of what's available.
|
|
*/
|
|
if (cpu_has(c, X86_FEATURE_SPEC_CTRL)) {
|
|
set_cpu_cap(c, X86_FEATURE_IBRS);
|
|
set_cpu_cap(c, X86_FEATURE_IBPB);
|
|
set_cpu_cap(c, X86_FEATURE_MSR_SPEC_CTRL);
|
|
}
|
|
|
|
if (cpu_has(c, X86_FEATURE_INTEL_STIBP))
|
|
set_cpu_cap(c, X86_FEATURE_STIBP);
|
|
|
|
if (cpu_has(c, X86_FEATURE_SPEC_CTRL_SSBD) ||
|
|
cpu_has(c, X86_FEATURE_VIRT_SSBD))
|
|
set_cpu_cap(c, X86_FEATURE_SSBD);
|
|
|
|
if (cpu_has(c, X86_FEATURE_AMD_IBRS)) {
|
|
set_cpu_cap(c, X86_FEATURE_IBRS);
|
|
set_cpu_cap(c, X86_FEATURE_MSR_SPEC_CTRL);
|
|
}
|
|
|
|
if (cpu_has(c, X86_FEATURE_AMD_IBPB))
|
|
set_cpu_cap(c, X86_FEATURE_IBPB);
|
|
|
|
if (cpu_has(c, X86_FEATURE_AMD_STIBP)) {
|
|
set_cpu_cap(c, X86_FEATURE_STIBP);
|
|
set_cpu_cap(c, X86_FEATURE_MSR_SPEC_CTRL);
|
|
}
|
|
|
|
if (cpu_has(c, X86_FEATURE_AMD_SSBD)) {
|
|
set_cpu_cap(c, X86_FEATURE_SSBD);
|
|
set_cpu_cap(c, X86_FEATURE_MSR_SPEC_CTRL);
|
|
clear_cpu_cap(c, X86_FEATURE_VIRT_SSBD);
|
|
}
|
|
}
|
|
|
|
void get_cpu_cap(struct cpuinfo_x86 *c)
|
|
{
|
|
u32 eax, ebx, ecx, edx;
|
|
|
|
/* Intel-defined flags: level 0x00000001 */
|
|
if (c->cpuid_level >= 0x00000001) {
|
|
cpuid(0x00000001, &eax, &ebx, &ecx, &edx);
|
|
|
|
c->x86_capability[CPUID_1_ECX] = ecx;
|
|
c->x86_capability[CPUID_1_EDX] = edx;
|
|
}
|
|
|
|
/* Thermal and Power Management Leaf: level 0x00000006 (eax) */
|
|
if (c->cpuid_level >= 0x00000006)
|
|
c->x86_capability[CPUID_6_EAX] = cpuid_eax(0x00000006);
|
|
|
|
/* Additional Intel-defined flags: level 0x00000007 */
|
|
if (c->cpuid_level >= 0x00000007) {
|
|
cpuid_count(0x00000007, 0, &eax, &ebx, &ecx, &edx);
|
|
c->x86_capability[CPUID_7_0_EBX] = ebx;
|
|
c->x86_capability[CPUID_7_ECX] = ecx;
|
|
c->x86_capability[CPUID_7_EDX] = edx;
|
|
|
|
/* Check valid sub-leaf index before accessing it */
|
|
if (eax >= 1) {
|
|
cpuid_count(0x00000007, 1, &eax, &ebx, &ecx, &edx);
|
|
c->x86_capability[CPUID_7_1_EAX] = eax;
|
|
}
|
|
}
|
|
|
|
/* Extended state features: level 0x0000000d */
|
|
if (c->cpuid_level >= 0x0000000d) {
|
|
cpuid_count(0x0000000d, 1, &eax, &ebx, &ecx, &edx);
|
|
|
|
c->x86_capability[CPUID_D_1_EAX] = eax;
|
|
}
|
|
|
|
/* AMD-defined flags: level 0x80000001 */
|
|
eax = cpuid_eax(0x80000000);
|
|
c->extended_cpuid_level = eax;
|
|
|
|
if ((eax & 0xffff0000) == 0x80000000) {
|
|
if (eax >= 0x80000001) {
|
|
cpuid(0x80000001, &eax, &ebx, &ecx, &edx);
|
|
|
|
c->x86_capability[CPUID_8000_0001_ECX] = ecx;
|
|
c->x86_capability[CPUID_8000_0001_EDX] = edx;
|
|
}
|
|
}
|
|
|
|
if (c->extended_cpuid_level >= 0x80000007) {
|
|
cpuid(0x80000007, &eax, &ebx, &ecx, &edx);
|
|
|
|
c->x86_capability[CPUID_8000_0007_EBX] = ebx;
|
|
c->x86_power = edx;
|
|
}
|
|
|
|
if (c->extended_cpuid_level >= 0x80000008) {
|
|
cpuid(0x80000008, &eax, &ebx, &ecx, &edx);
|
|
c->x86_capability[CPUID_8000_0008_EBX] = ebx;
|
|
}
|
|
|
|
if (c->extended_cpuid_level >= 0x8000000a)
|
|
c->x86_capability[CPUID_8000_000A_EDX] = cpuid_edx(0x8000000a);
|
|
|
|
if (c->extended_cpuid_level >= 0x8000001f)
|
|
c->x86_capability[CPUID_8000_001F_EAX] = cpuid_eax(0x8000001f);
|
|
|
|
if (c->extended_cpuid_level >= 0x80000021)
|
|
c->x86_capability[CPUID_8000_0021_EAX] = cpuid_eax(0x80000021);
|
|
|
|
init_scattered_cpuid_features(c);
|
|
init_speculation_control(c);
|
|
|
|
/*
|
|
* Clear/Set all flags overridden by options, after probe.
|
|
* This needs to happen each time we re-probe, which may happen
|
|
* several times during CPU initialization.
|
|
*/
|
|
apply_forced_caps(c);
|
|
}
|
|
|
|
void get_cpu_address_sizes(struct cpuinfo_x86 *c)
|
|
{
|
|
u32 eax, ebx, ecx, edx;
|
|
|
|
if (!cpu_has(c, X86_FEATURE_CPUID) ||
|
|
(c->extended_cpuid_level < 0x80000008)) {
|
|
if (IS_ENABLED(CONFIG_X86_64)) {
|
|
c->x86_clflush_size = 64;
|
|
c->x86_phys_bits = 36;
|
|
c->x86_virt_bits = 48;
|
|
} else {
|
|
c->x86_clflush_size = 32;
|
|
c->x86_virt_bits = 32;
|
|
c->x86_phys_bits = 32;
|
|
|
|
if (cpu_has(c, X86_FEATURE_PAE) ||
|
|
cpu_has(c, X86_FEATURE_PSE36))
|
|
c->x86_phys_bits = 36;
|
|
}
|
|
} else {
|
|
cpuid(0x80000008, &eax, &ebx, &ecx, &edx);
|
|
|
|
c->x86_virt_bits = (eax >> 8) & 0xff;
|
|
c->x86_phys_bits = eax & 0xff;
|
|
|
|
/* Provide a sane default if not enumerated: */
|
|
if (!c->x86_clflush_size)
|
|
c->x86_clflush_size = 32;
|
|
}
|
|
|
|
c->x86_cache_bits = c->x86_phys_bits;
|
|
c->x86_cache_alignment = c->x86_clflush_size;
|
|
}
|
|
|
|
static void identify_cpu_without_cpuid(struct cpuinfo_x86 *c)
|
|
{
|
|
#ifdef CONFIG_X86_32
|
|
int i;
|
|
|
|
/*
|
|
* First of all, decide if this is a 486 or higher
|
|
* It's a 486 if we can modify the AC flag
|
|
*/
|
|
if (flag_is_changeable_p(X86_EFLAGS_AC))
|
|
c->x86 = 4;
|
|
else
|
|
c->x86 = 3;
|
|
|
|
for (i = 0; i < X86_VENDOR_NUM; i++)
|
|
if (cpu_devs[i] && cpu_devs[i]->c_identify) {
|
|
c->x86_vendor_id[0] = 0;
|
|
cpu_devs[i]->c_identify(c);
|
|
if (c->x86_vendor_id[0]) {
|
|
get_cpu_vendor(c);
|
|
break;
|
|
}
|
|
}
|
|
#endif
|
|
}
|
|
|
|
#define NO_SPECULATION BIT(0)
|
|
#define NO_MELTDOWN BIT(1)
|
|
#define NO_SSB BIT(2)
|
|
#define NO_L1TF BIT(3)
|
|
#define NO_MDS BIT(4)
|
|
#define MSBDS_ONLY BIT(5)
|
|
#define NO_SWAPGS BIT(6)
|
|
#define NO_ITLB_MULTIHIT BIT(7)
|
|
#define NO_SPECTRE_V2 BIT(8)
|
|
#define NO_MMIO BIT(9)
|
|
#define NO_EIBRS_PBRSB BIT(10)
|
|
#define NO_BHI BIT(11)
|
|
|
|
#define VULNWL(vendor, family, model, whitelist) \
|
|
X86_MATCH_VENDOR_FAM_MODEL(vendor, family, model, whitelist)
|
|
|
|
#define VULNWL_INTEL(vfm, whitelist) \
|
|
X86_MATCH_VFM(vfm, whitelist)
|
|
|
|
#define VULNWL_AMD(family, whitelist) \
|
|
VULNWL(AMD, family, X86_MODEL_ANY, whitelist)
|
|
|
|
#define VULNWL_HYGON(family, whitelist) \
|
|
VULNWL(HYGON, family, X86_MODEL_ANY, whitelist)
|
|
|
|
static const __initconst struct x86_cpu_id cpu_vuln_whitelist[] = {
|
|
VULNWL(ANY, 4, X86_MODEL_ANY, NO_SPECULATION),
|
|
VULNWL(CENTAUR, 5, X86_MODEL_ANY, NO_SPECULATION),
|
|
VULNWL(INTEL, 5, X86_MODEL_ANY, NO_SPECULATION),
|
|
VULNWL(NSC, 5, X86_MODEL_ANY, NO_SPECULATION),
|
|
VULNWL(VORTEX, 5, X86_MODEL_ANY, NO_SPECULATION),
|
|
VULNWL(VORTEX, 6, X86_MODEL_ANY, NO_SPECULATION),
|
|
|
|
/* Intel Family 6 */
|
|
VULNWL_INTEL(INTEL_TIGERLAKE, NO_MMIO),
|
|
VULNWL_INTEL(INTEL_TIGERLAKE_L, NO_MMIO),
|
|
VULNWL_INTEL(INTEL_ALDERLAKE, NO_MMIO),
|
|
VULNWL_INTEL(INTEL_ALDERLAKE_L, NO_MMIO),
|
|
|
|
VULNWL_INTEL(INTEL_ATOM_SALTWELL, NO_SPECULATION | NO_ITLB_MULTIHIT),
|
|
VULNWL_INTEL(INTEL_ATOM_SALTWELL_TABLET, NO_SPECULATION | NO_ITLB_MULTIHIT),
|
|
VULNWL_INTEL(INTEL_ATOM_SALTWELL_MID, NO_SPECULATION | NO_ITLB_MULTIHIT),
|
|
VULNWL_INTEL(INTEL_ATOM_BONNELL, NO_SPECULATION | NO_ITLB_MULTIHIT),
|
|
VULNWL_INTEL(INTEL_ATOM_BONNELL_MID, NO_SPECULATION | NO_ITLB_MULTIHIT),
|
|
|
|
VULNWL_INTEL(INTEL_ATOM_SILVERMONT, NO_SSB | NO_L1TF | MSBDS_ONLY | NO_SWAPGS | NO_ITLB_MULTIHIT),
|
|
VULNWL_INTEL(INTEL_ATOM_SILVERMONT_D, NO_SSB | NO_L1TF | MSBDS_ONLY | NO_SWAPGS | NO_ITLB_MULTIHIT),
|
|
VULNWL_INTEL(INTEL_ATOM_SILVERMONT_MID, NO_SSB | NO_L1TF | MSBDS_ONLY | NO_SWAPGS | NO_ITLB_MULTIHIT),
|
|
VULNWL_INTEL(INTEL_ATOM_AIRMONT, NO_SSB | NO_L1TF | MSBDS_ONLY | NO_SWAPGS | NO_ITLB_MULTIHIT),
|
|
VULNWL_INTEL(INTEL_XEON_PHI_KNL, NO_SSB | NO_L1TF | MSBDS_ONLY | NO_SWAPGS | NO_ITLB_MULTIHIT),
|
|
VULNWL_INTEL(INTEL_XEON_PHI_KNM, NO_SSB | NO_L1TF | MSBDS_ONLY | NO_SWAPGS | NO_ITLB_MULTIHIT),
|
|
|
|
VULNWL_INTEL(INTEL_CORE_YONAH, NO_SSB),
|
|
|
|
VULNWL_INTEL(INTEL_ATOM_AIRMONT_MID, NO_SSB | NO_L1TF | NO_SWAPGS | NO_ITLB_MULTIHIT | MSBDS_ONLY),
|
|
VULNWL_INTEL(INTEL_ATOM_AIRMONT_NP, NO_SSB | NO_L1TF | NO_SWAPGS | NO_ITLB_MULTIHIT),
|
|
|
|
VULNWL_INTEL(INTEL_ATOM_GOLDMONT, NO_MDS | NO_L1TF | NO_SWAPGS | NO_ITLB_MULTIHIT | NO_MMIO),
|
|
VULNWL_INTEL(INTEL_ATOM_GOLDMONT_D, NO_MDS | NO_L1TF | NO_SWAPGS | NO_ITLB_MULTIHIT | NO_MMIO),
|
|
VULNWL_INTEL(INTEL_ATOM_GOLDMONT_PLUS, NO_MDS | NO_L1TF | NO_SWAPGS | NO_ITLB_MULTIHIT | NO_MMIO | NO_EIBRS_PBRSB),
|
|
|
|
/*
|
|
* Technically, swapgs isn't serializing on AMD (despite it previously
|
|
* being documented as such in the APM). But according to AMD, %gs is
|
|
* updated non-speculatively, and the issuing of %gs-relative memory
|
|
* operands will be blocked until the %gs update completes, which is
|
|
* good enough for our purposes.
|
|
*/
|
|
|
|
VULNWL_INTEL(INTEL_ATOM_TREMONT, NO_EIBRS_PBRSB),
|
|
VULNWL_INTEL(INTEL_ATOM_TREMONT_L, NO_EIBRS_PBRSB),
|
|
VULNWL_INTEL(INTEL_ATOM_TREMONT_D, NO_ITLB_MULTIHIT | NO_EIBRS_PBRSB),
|
|
|
|
/* AMD Family 0xf - 0x12 */
|
|
VULNWL_AMD(0x0f, NO_MELTDOWN | NO_SSB | NO_L1TF | NO_MDS | NO_SWAPGS | NO_ITLB_MULTIHIT | NO_MMIO | NO_BHI),
|
|
VULNWL_AMD(0x10, NO_MELTDOWN | NO_SSB | NO_L1TF | NO_MDS | NO_SWAPGS | NO_ITLB_MULTIHIT | NO_MMIO | NO_BHI),
|
|
VULNWL_AMD(0x11, NO_MELTDOWN | NO_SSB | NO_L1TF | NO_MDS | NO_SWAPGS | NO_ITLB_MULTIHIT | NO_MMIO | NO_BHI),
|
|
VULNWL_AMD(0x12, NO_MELTDOWN | NO_SSB | NO_L1TF | NO_MDS | NO_SWAPGS | NO_ITLB_MULTIHIT | NO_MMIO | NO_BHI),
|
|
|
|
/* FAMILY_ANY must be last, otherwise 0x0f - 0x12 matches won't work */
|
|
VULNWL_AMD(X86_FAMILY_ANY, NO_MELTDOWN | NO_L1TF | NO_MDS | NO_SWAPGS | NO_ITLB_MULTIHIT | NO_MMIO | NO_EIBRS_PBRSB | NO_BHI),
|
|
VULNWL_HYGON(X86_FAMILY_ANY, NO_MELTDOWN | NO_L1TF | NO_MDS | NO_SWAPGS | NO_ITLB_MULTIHIT | NO_MMIO | NO_EIBRS_PBRSB | NO_BHI),
|
|
|
|
/* Zhaoxin Family 7 */
|
|
VULNWL(CENTAUR, 7, X86_MODEL_ANY, NO_SPECTRE_V2 | NO_SWAPGS | NO_MMIO | NO_BHI),
|
|
VULNWL(ZHAOXIN, 7, X86_MODEL_ANY, NO_SPECTRE_V2 | NO_SWAPGS | NO_MMIO | NO_BHI),
|
|
{}
|
|
};
|
|
|
|
#define VULNBL(vendor, family, model, blacklist) \
|
|
X86_MATCH_VENDOR_FAM_MODEL(vendor, family, model, blacklist)
|
|
|
|
#define VULNBL_INTEL_STEPPINGS(vfm, steppings, issues) \
|
|
X86_MATCH_VFM_STEPPINGS(vfm, steppings, issues)
|
|
|
|
#define VULNBL_AMD(family, blacklist) \
|
|
VULNBL(AMD, family, X86_MODEL_ANY, blacklist)
|
|
|
|
#define VULNBL_HYGON(family, blacklist) \
|
|
VULNBL(HYGON, family, X86_MODEL_ANY, blacklist)
|
|
|
|
#define SRBDS BIT(0)
|
|
/* CPU is affected by X86_BUG_MMIO_STALE_DATA */
|
|
#define MMIO BIT(1)
|
|
/* CPU is affected by Shared Buffers Data Sampling (SBDS), a variant of X86_BUG_MMIO_STALE_DATA */
|
|
#define MMIO_SBDS BIT(2)
|
|
/* CPU is affected by RETbleed, speculating where you would not expect it */
|
|
#define RETBLEED BIT(3)
|
|
/* CPU is affected by SMT (cross-thread) return predictions */
|
|
#define SMT_RSB BIT(4)
|
|
/* CPU is affected by SRSO */
|
|
#define SRSO BIT(5)
|
|
/* CPU is affected by GDS */
|
|
#define GDS BIT(6)
|
|
/* CPU is affected by Register File Data Sampling */
|
|
#define RFDS BIT(7)
|
|
|
|
static const struct x86_cpu_id cpu_vuln_blacklist[] __initconst = {
|
|
VULNBL_INTEL_STEPPINGS(INTEL_IVYBRIDGE, X86_STEPPING_ANY, SRBDS),
|
|
VULNBL_INTEL_STEPPINGS(INTEL_HASWELL, X86_STEPPING_ANY, SRBDS),
|
|
VULNBL_INTEL_STEPPINGS(INTEL_HASWELL_L, X86_STEPPING_ANY, SRBDS),
|
|
VULNBL_INTEL_STEPPINGS(INTEL_HASWELL_G, X86_STEPPING_ANY, SRBDS),
|
|
VULNBL_INTEL_STEPPINGS(INTEL_HASWELL_X, X86_STEPPING_ANY, MMIO),
|
|
VULNBL_INTEL_STEPPINGS(INTEL_BROADWELL_D, X86_STEPPING_ANY, MMIO),
|
|
VULNBL_INTEL_STEPPINGS(INTEL_BROADWELL_G, X86_STEPPING_ANY, SRBDS),
|
|
VULNBL_INTEL_STEPPINGS(INTEL_BROADWELL_X, X86_STEPPING_ANY, MMIO),
|
|
VULNBL_INTEL_STEPPINGS(INTEL_BROADWELL, X86_STEPPING_ANY, SRBDS),
|
|
VULNBL_INTEL_STEPPINGS(INTEL_SKYLAKE_X, X86_STEPPING_ANY, MMIO | RETBLEED | GDS),
|
|
VULNBL_INTEL_STEPPINGS(INTEL_SKYLAKE_L, X86_STEPPING_ANY, MMIO | RETBLEED | GDS | SRBDS),
|
|
VULNBL_INTEL_STEPPINGS(INTEL_SKYLAKE, X86_STEPPING_ANY, MMIO | RETBLEED | GDS | SRBDS),
|
|
VULNBL_INTEL_STEPPINGS(INTEL_KABYLAKE_L, X86_STEPPING_ANY, MMIO | RETBLEED | GDS | SRBDS),
|
|
VULNBL_INTEL_STEPPINGS(INTEL_KABYLAKE, X86_STEPPING_ANY, MMIO | RETBLEED | GDS | SRBDS),
|
|
VULNBL_INTEL_STEPPINGS(INTEL_CANNONLAKE_L, X86_STEPPING_ANY, RETBLEED),
|
|
VULNBL_INTEL_STEPPINGS(INTEL_ICELAKE_L, X86_STEPPING_ANY, MMIO | MMIO_SBDS | RETBLEED | GDS),
|
|
VULNBL_INTEL_STEPPINGS(INTEL_ICELAKE_D, X86_STEPPING_ANY, MMIO | GDS),
|
|
VULNBL_INTEL_STEPPINGS(INTEL_ICELAKE_X, X86_STEPPING_ANY, MMIO | GDS),
|
|
VULNBL_INTEL_STEPPINGS(INTEL_COMETLAKE, X86_STEPPING_ANY, MMIO | MMIO_SBDS | RETBLEED | GDS),
|
|
VULNBL_INTEL_STEPPINGS(INTEL_COMETLAKE_L, X86_STEPPINGS(0x0, 0x0), MMIO | RETBLEED),
|
|
VULNBL_INTEL_STEPPINGS(INTEL_COMETLAKE_L, X86_STEPPING_ANY, MMIO | MMIO_SBDS | RETBLEED | GDS),
|
|
VULNBL_INTEL_STEPPINGS(INTEL_TIGERLAKE_L, X86_STEPPING_ANY, GDS),
|
|
VULNBL_INTEL_STEPPINGS(INTEL_TIGERLAKE, X86_STEPPING_ANY, GDS),
|
|
VULNBL_INTEL_STEPPINGS(INTEL_LAKEFIELD, X86_STEPPING_ANY, MMIO | MMIO_SBDS | RETBLEED),
|
|
VULNBL_INTEL_STEPPINGS(INTEL_ROCKETLAKE, X86_STEPPING_ANY, MMIO | RETBLEED | GDS),
|
|
VULNBL_INTEL_STEPPINGS(INTEL_ALDERLAKE, X86_STEPPING_ANY, RFDS),
|
|
VULNBL_INTEL_STEPPINGS(INTEL_ALDERLAKE_L, X86_STEPPING_ANY, RFDS),
|
|
VULNBL_INTEL_STEPPINGS(INTEL_RAPTORLAKE, X86_STEPPING_ANY, RFDS),
|
|
VULNBL_INTEL_STEPPINGS(INTEL_RAPTORLAKE_P, X86_STEPPING_ANY, RFDS),
|
|
VULNBL_INTEL_STEPPINGS(INTEL_RAPTORLAKE_S, X86_STEPPING_ANY, RFDS),
|
|
VULNBL_INTEL_STEPPINGS(INTEL_ATOM_GRACEMONT, X86_STEPPING_ANY, RFDS),
|
|
VULNBL_INTEL_STEPPINGS(INTEL_ATOM_TREMONT, X86_STEPPING_ANY, MMIO | MMIO_SBDS | RFDS),
|
|
VULNBL_INTEL_STEPPINGS(INTEL_ATOM_TREMONT_D, X86_STEPPING_ANY, MMIO | RFDS),
|
|
VULNBL_INTEL_STEPPINGS(INTEL_ATOM_TREMONT_L, X86_STEPPING_ANY, MMIO | MMIO_SBDS | RFDS),
|
|
VULNBL_INTEL_STEPPINGS(INTEL_ATOM_GOLDMONT, X86_STEPPING_ANY, RFDS),
|
|
VULNBL_INTEL_STEPPINGS(INTEL_ATOM_GOLDMONT_D, X86_STEPPING_ANY, RFDS),
|
|
VULNBL_INTEL_STEPPINGS(INTEL_ATOM_GOLDMONT_PLUS, X86_STEPPING_ANY, RFDS),
|
|
|
|
VULNBL_AMD(0x15, RETBLEED),
|
|
VULNBL_AMD(0x16, RETBLEED),
|
|
VULNBL_AMD(0x17, RETBLEED | SMT_RSB | SRSO),
|
|
VULNBL_HYGON(0x18, RETBLEED | SMT_RSB | SRSO),
|
|
VULNBL_AMD(0x19, SRSO),
|
|
{}
|
|
};
|
|
|
|
static bool __init cpu_matches(const struct x86_cpu_id *table, unsigned long which)
|
|
{
|
|
const struct x86_cpu_id *m = x86_match_cpu(table);
|
|
|
|
return m && !!(m->driver_data & which);
|
|
}
|
|
|
|
u64 x86_read_arch_cap_msr(void)
|
|
{
|
|
u64 x86_arch_cap_msr = 0;
|
|
|
|
if (boot_cpu_has(X86_FEATURE_ARCH_CAPABILITIES))
|
|
rdmsrl(MSR_IA32_ARCH_CAPABILITIES, x86_arch_cap_msr);
|
|
|
|
return x86_arch_cap_msr;
|
|
}
|
|
|
|
static bool arch_cap_mmio_immune(u64 x86_arch_cap_msr)
|
|
{
|
|
return (x86_arch_cap_msr & ARCH_CAP_FBSDP_NO &&
|
|
x86_arch_cap_msr & ARCH_CAP_PSDP_NO &&
|
|
x86_arch_cap_msr & ARCH_CAP_SBDR_SSDP_NO);
|
|
}
|
|
|
|
static bool __init vulnerable_to_rfds(u64 x86_arch_cap_msr)
|
|
{
|
|
/* The "immunity" bit trumps everything else: */
|
|
if (x86_arch_cap_msr & ARCH_CAP_RFDS_NO)
|
|
return false;
|
|
|
|
/*
|
|
* VMMs set ARCH_CAP_RFDS_CLEAR for processors not in the blacklist to
|
|
* indicate that mitigation is needed because guest is running on a
|
|
* vulnerable hardware or may migrate to such hardware:
|
|
*/
|
|
if (x86_arch_cap_msr & ARCH_CAP_RFDS_CLEAR)
|
|
return true;
|
|
|
|
/* Only consult the blacklist when there is no enumeration: */
|
|
return cpu_matches(cpu_vuln_blacklist, RFDS);
|
|
}
|
|
|
|
static void __init cpu_set_bug_bits(struct cpuinfo_x86 *c)
|
|
{
|
|
u64 x86_arch_cap_msr = x86_read_arch_cap_msr();
|
|
|
|
/* Set ITLB_MULTIHIT bug if cpu is not in the whitelist and not mitigated */
|
|
if (!cpu_matches(cpu_vuln_whitelist, NO_ITLB_MULTIHIT) &&
|
|
!(x86_arch_cap_msr & ARCH_CAP_PSCHANGE_MC_NO))
|
|
setup_force_cpu_bug(X86_BUG_ITLB_MULTIHIT);
|
|
|
|
if (cpu_matches(cpu_vuln_whitelist, NO_SPECULATION))
|
|
return;
|
|
|
|
setup_force_cpu_bug(X86_BUG_SPECTRE_V1);
|
|
|
|
if (!cpu_matches(cpu_vuln_whitelist, NO_SPECTRE_V2))
|
|
setup_force_cpu_bug(X86_BUG_SPECTRE_V2);
|
|
|
|
if (!cpu_matches(cpu_vuln_whitelist, NO_SSB) &&
|
|
!(x86_arch_cap_msr & ARCH_CAP_SSB_NO) &&
|
|
!cpu_has(c, X86_FEATURE_AMD_SSB_NO))
|
|
setup_force_cpu_bug(X86_BUG_SPEC_STORE_BYPASS);
|
|
|
|
/*
|
|
* AMD's AutoIBRS is equivalent to Intel's eIBRS - use the Intel feature
|
|
* flag and protect from vendor-specific bugs via the whitelist.
|
|
*
|
|
* Don't use AutoIBRS when SNP is enabled because it degrades host
|
|
* userspace indirect branch performance.
|
|
*/
|
|
if ((x86_arch_cap_msr & ARCH_CAP_IBRS_ALL) ||
|
|
(cpu_has(c, X86_FEATURE_AUTOIBRS) &&
|
|
!cpu_feature_enabled(X86_FEATURE_SEV_SNP))) {
|
|
setup_force_cpu_cap(X86_FEATURE_IBRS_ENHANCED);
|
|
if (!cpu_matches(cpu_vuln_whitelist, NO_EIBRS_PBRSB) &&
|
|
!(x86_arch_cap_msr & ARCH_CAP_PBRSB_NO))
|
|
setup_force_cpu_bug(X86_BUG_EIBRS_PBRSB);
|
|
}
|
|
|
|
if (!cpu_matches(cpu_vuln_whitelist, NO_MDS) &&
|
|
!(x86_arch_cap_msr & ARCH_CAP_MDS_NO)) {
|
|
setup_force_cpu_bug(X86_BUG_MDS);
|
|
if (cpu_matches(cpu_vuln_whitelist, MSBDS_ONLY))
|
|
setup_force_cpu_bug(X86_BUG_MSBDS_ONLY);
|
|
}
|
|
|
|
if (!cpu_matches(cpu_vuln_whitelist, NO_SWAPGS))
|
|
setup_force_cpu_bug(X86_BUG_SWAPGS);
|
|
|
|
/*
|
|
* When the CPU is not mitigated for TAA (TAA_NO=0) set TAA bug when:
|
|
* - TSX is supported or
|
|
* - TSX_CTRL is present
|
|
*
|
|
* TSX_CTRL check is needed for cases when TSX could be disabled before
|
|
* the kernel boot e.g. kexec.
|
|
* TSX_CTRL check alone is not sufficient for cases when the microcode
|
|
* update is not present or running as guest that don't get TSX_CTRL.
|
|
*/
|
|
if (!(x86_arch_cap_msr & ARCH_CAP_TAA_NO) &&
|
|
(cpu_has(c, X86_FEATURE_RTM) ||
|
|
(x86_arch_cap_msr & ARCH_CAP_TSX_CTRL_MSR)))
|
|
setup_force_cpu_bug(X86_BUG_TAA);
|
|
|
|
/*
|
|
* SRBDS affects CPUs which support RDRAND or RDSEED and are listed
|
|
* in the vulnerability blacklist.
|
|
*
|
|
* Some of the implications and mitigation of Shared Buffers Data
|
|
* Sampling (SBDS) are similar to SRBDS. Give SBDS same treatment as
|
|
* SRBDS.
|
|
*/
|
|
if ((cpu_has(c, X86_FEATURE_RDRAND) ||
|
|
cpu_has(c, X86_FEATURE_RDSEED)) &&
|
|
cpu_matches(cpu_vuln_blacklist, SRBDS | MMIO_SBDS))
|
|
setup_force_cpu_bug(X86_BUG_SRBDS);
|
|
|
|
/*
|
|
* Processor MMIO Stale Data bug enumeration
|
|
*
|
|
* Affected CPU list is generally enough to enumerate the vulnerability,
|
|
* but for virtualization case check for ARCH_CAP MSR bits also, VMM may
|
|
* not want the guest to enumerate the bug.
|
|
*
|
|
* Set X86_BUG_MMIO_UNKNOWN for CPUs that are neither in the blacklist,
|
|
* nor in the whitelist and also don't enumerate MSR ARCH_CAP MMIO bits.
|
|
*/
|
|
if (!arch_cap_mmio_immune(x86_arch_cap_msr)) {
|
|
if (cpu_matches(cpu_vuln_blacklist, MMIO))
|
|
setup_force_cpu_bug(X86_BUG_MMIO_STALE_DATA);
|
|
else if (!cpu_matches(cpu_vuln_whitelist, NO_MMIO))
|
|
setup_force_cpu_bug(X86_BUG_MMIO_UNKNOWN);
|
|
}
|
|
|
|
if (!cpu_has(c, X86_FEATURE_BTC_NO)) {
|
|
if (cpu_matches(cpu_vuln_blacklist, RETBLEED) || (x86_arch_cap_msr & ARCH_CAP_RSBA))
|
|
setup_force_cpu_bug(X86_BUG_RETBLEED);
|
|
}
|
|
|
|
if (cpu_matches(cpu_vuln_blacklist, SMT_RSB))
|
|
setup_force_cpu_bug(X86_BUG_SMT_RSB);
|
|
|
|
if (!cpu_has(c, X86_FEATURE_SRSO_NO)) {
|
|
if (cpu_matches(cpu_vuln_blacklist, SRSO))
|
|
setup_force_cpu_bug(X86_BUG_SRSO);
|
|
}
|
|
|
|
/*
|
|
* Check if CPU is vulnerable to GDS. If running in a virtual machine on
|
|
* an affected processor, the VMM may have disabled the use of GATHER by
|
|
* disabling AVX2. The only way to do this in HW is to clear XCR0[2],
|
|
* which means that AVX will be disabled.
|
|
*/
|
|
if (cpu_matches(cpu_vuln_blacklist, GDS) && !(x86_arch_cap_msr & ARCH_CAP_GDS_NO) &&
|
|
boot_cpu_has(X86_FEATURE_AVX))
|
|
setup_force_cpu_bug(X86_BUG_GDS);
|
|
|
|
if (vulnerable_to_rfds(x86_arch_cap_msr))
|
|
setup_force_cpu_bug(X86_BUG_RFDS);
|
|
|
|
/* When virtualized, eIBRS could be hidden, assume vulnerable */
|
|
if (!(x86_arch_cap_msr & ARCH_CAP_BHI_NO) &&
|
|
!cpu_matches(cpu_vuln_whitelist, NO_BHI) &&
|
|
(boot_cpu_has(X86_FEATURE_IBRS_ENHANCED) ||
|
|
boot_cpu_has(X86_FEATURE_HYPERVISOR)))
|
|
setup_force_cpu_bug(X86_BUG_BHI);
|
|
|
|
if (cpu_has(c, X86_FEATURE_AMD_IBPB) && !cpu_has(c, X86_FEATURE_AMD_IBPB_RET))
|
|
setup_force_cpu_bug(X86_BUG_IBPB_NO_RET);
|
|
|
|
if (cpu_matches(cpu_vuln_whitelist, NO_MELTDOWN))
|
|
return;
|
|
|
|
/* Rogue Data Cache Load? No! */
|
|
if (x86_arch_cap_msr & ARCH_CAP_RDCL_NO)
|
|
return;
|
|
|
|
setup_force_cpu_bug(X86_BUG_CPU_MELTDOWN);
|
|
|
|
if (cpu_matches(cpu_vuln_whitelist, NO_L1TF))
|
|
return;
|
|
|
|
setup_force_cpu_bug(X86_BUG_L1TF);
|
|
}
|
|
|
|
/*
|
|
* The NOPL instruction is supposed to exist on all CPUs of family >= 6;
|
|
* unfortunately, that's not true in practice because of early VIA
|
|
* chips and (more importantly) broken virtualizers that are not easy
|
|
* to detect. In the latter case it doesn't even *fail* reliably, so
|
|
* probing for it doesn't even work. Disable it completely on 32-bit
|
|
* unless we can find a reliable way to detect all the broken cases.
|
|
* Enable it explicitly on 64-bit for non-constant inputs of cpu_has().
|
|
*/
|
|
static void detect_nopl(void)
|
|
{
|
|
#ifdef CONFIG_X86_32
|
|
setup_clear_cpu_cap(X86_FEATURE_NOPL);
|
|
#else
|
|
setup_force_cpu_cap(X86_FEATURE_NOPL);
|
|
#endif
|
|
}
|
|
|
|
/*
|
|
* We parse cpu parameters early because fpu__init_system() is executed
|
|
* before parse_early_param().
|
|
*/
|
|
static void __init cpu_parse_early_param(void)
|
|
{
|
|
char arg[128];
|
|
char *argptr = arg, *opt;
|
|
int arglen, taint = 0;
|
|
|
|
#ifdef CONFIG_X86_32
|
|
if (cmdline_find_option_bool(boot_command_line, "no387"))
|
|
#ifdef CONFIG_MATH_EMULATION
|
|
setup_clear_cpu_cap(X86_FEATURE_FPU);
|
|
#else
|
|
pr_err("Option 'no387' required CONFIG_MATH_EMULATION enabled.\n");
|
|
#endif
|
|
|
|
if (cmdline_find_option_bool(boot_command_line, "nofxsr"))
|
|
setup_clear_cpu_cap(X86_FEATURE_FXSR);
|
|
#endif
|
|
|
|
if (cmdline_find_option_bool(boot_command_line, "noxsave"))
|
|
setup_clear_cpu_cap(X86_FEATURE_XSAVE);
|
|
|
|
if (cmdline_find_option_bool(boot_command_line, "noxsaveopt"))
|
|
setup_clear_cpu_cap(X86_FEATURE_XSAVEOPT);
|
|
|
|
if (cmdline_find_option_bool(boot_command_line, "noxsaves"))
|
|
setup_clear_cpu_cap(X86_FEATURE_XSAVES);
|
|
|
|
if (cmdline_find_option_bool(boot_command_line, "nousershstk"))
|
|
setup_clear_cpu_cap(X86_FEATURE_USER_SHSTK);
|
|
|
|
/* Minimize the gap between FRED is available and available but disabled. */
|
|
arglen = cmdline_find_option(boot_command_line, "fred", arg, sizeof(arg));
|
|
if (arglen != 2 || strncmp(arg, "on", 2))
|
|
setup_clear_cpu_cap(X86_FEATURE_FRED);
|
|
|
|
arglen = cmdline_find_option(boot_command_line, "clearcpuid", arg, sizeof(arg));
|
|
if (arglen <= 0)
|
|
return;
|
|
|
|
pr_info("Clearing CPUID bits:");
|
|
|
|
while (argptr) {
|
|
bool found __maybe_unused = false;
|
|
unsigned int bit;
|
|
|
|
opt = strsep(&argptr, ",");
|
|
|
|
/*
|
|
* Handle naked numbers first for feature flags which don't
|
|
* have names.
|
|
*/
|
|
if (!kstrtouint(opt, 10, &bit)) {
|
|
if (bit < NCAPINTS * 32) {
|
|
|
|
/* empty-string, i.e., ""-defined feature flags */
|
|
if (!x86_cap_flags[bit])
|
|
pr_cont(" " X86_CAP_FMT_NUM, x86_cap_flag_num(bit));
|
|
else
|
|
pr_cont(" " X86_CAP_FMT, x86_cap_flag(bit));
|
|
|
|
setup_clear_cpu_cap(bit);
|
|
taint++;
|
|
}
|
|
/*
|
|
* The assumption is that there are no feature names with only
|
|
* numbers in the name thus go to the next argument.
|
|
*/
|
|
continue;
|
|
}
|
|
|
|
for (bit = 0; bit < 32 * NCAPINTS; bit++) {
|
|
if (!x86_cap_flag(bit))
|
|
continue;
|
|
|
|
if (strcmp(x86_cap_flag(bit), opt))
|
|
continue;
|
|
|
|
pr_cont(" %s", opt);
|
|
setup_clear_cpu_cap(bit);
|
|
taint++;
|
|
found = true;
|
|
break;
|
|
}
|
|
|
|
if (!found)
|
|
pr_cont(" (unknown: %s)", opt);
|
|
}
|
|
pr_cont("\n");
|
|
|
|
if (taint)
|
|
add_taint(TAINT_CPU_OUT_OF_SPEC, LOCKDEP_STILL_OK);
|
|
}
|
|
|
|
/*
|
|
* Do minimum CPU detection early.
|
|
* Fields really needed: vendor, cpuid_level, family, model, mask,
|
|
* cache alignment.
|
|
* The others are not touched to avoid unwanted side effects.
|
|
*
|
|
* WARNING: this function is only called on the boot CPU. Don't add code
|
|
* here that is supposed to run on all CPUs.
|
|
*/
|
|
static void __init early_identify_cpu(struct cpuinfo_x86 *c)
|
|
{
|
|
memset(&c->x86_capability, 0, sizeof(c->x86_capability));
|
|
c->extended_cpuid_level = 0;
|
|
|
|
if (!have_cpuid_p())
|
|
identify_cpu_without_cpuid(c);
|
|
|
|
/* cyrix could have cpuid enabled via c_identify()*/
|
|
if (have_cpuid_p()) {
|
|
cpu_detect(c);
|
|
get_cpu_vendor(c);
|
|
intel_unlock_cpuid_leafs(c);
|
|
get_cpu_cap(c);
|
|
setup_force_cpu_cap(X86_FEATURE_CPUID);
|
|
get_cpu_address_sizes(c);
|
|
cpu_parse_early_param();
|
|
|
|
cpu_init_topology(c);
|
|
|
|
if (this_cpu->c_early_init)
|
|
this_cpu->c_early_init(c);
|
|
|
|
c->cpu_index = 0;
|
|
filter_cpuid_features(c, false);
|
|
|
|
if (this_cpu->c_bsp_init)
|
|
this_cpu->c_bsp_init(c);
|
|
} else {
|
|
setup_clear_cpu_cap(X86_FEATURE_CPUID);
|
|
get_cpu_address_sizes(c);
|
|
cpu_init_topology(c);
|
|
}
|
|
|
|
setup_force_cpu_cap(X86_FEATURE_ALWAYS);
|
|
|
|
cpu_set_bug_bits(c);
|
|
|
|
sld_setup(c);
|
|
|
|
#ifdef CONFIG_X86_32
|
|
/*
|
|
* Regardless of whether PCID is enumerated, the SDM says
|
|
* that it can't be enabled in 32-bit mode.
|
|
*/
|
|
setup_clear_cpu_cap(X86_FEATURE_PCID);
|
|
#endif
|
|
|
|
/*
|
|
* Later in the boot process pgtable_l5_enabled() relies on
|
|
* cpu_feature_enabled(X86_FEATURE_LA57). If 5-level paging is not
|
|
* enabled by this point we need to clear the feature bit to avoid
|
|
* false-positives at the later stage.
|
|
*
|
|
* pgtable_l5_enabled() can be false here for several reasons:
|
|
* - 5-level paging is disabled compile-time;
|
|
* - it's 32-bit kernel;
|
|
* - machine doesn't support 5-level paging;
|
|
* - user specified 'no5lvl' in kernel command line.
|
|
*/
|
|
if (!pgtable_l5_enabled())
|
|
setup_clear_cpu_cap(X86_FEATURE_LA57);
|
|
|
|
detect_nopl();
|
|
}
|
|
|
|
void __init early_cpu_init(void)
|
|
{
|
|
const struct cpu_dev *const *cdev;
|
|
int count = 0;
|
|
|
|
#ifdef CONFIG_PROCESSOR_SELECT
|
|
pr_info("KERNEL supported cpus:\n");
|
|
#endif
|
|
|
|
for (cdev = __x86_cpu_dev_start; cdev < __x86_cpu_dev_end; cdev++) {
|
|
const struct cpu_dev *cpudev = *cdev;
|
|
|
|
if (count >= X86_VENDOR_NUM)
|
|
break;
|
|
cpu_devs[count] = cpudev;
|
|
count++;
|
|
|
|
#ifdef CONFIG_PROCESSOR_SELECT
|
|
{
|
|
unsigned int j;
|
|
|
|
for (j = 0; j < 2; j++) {
|
|
if (!cpudev->c_ident[j])
|
|
continue;
|
|
pr_info(" %s %s\n", cpudev->c_vendor,
|
|
cpudev->c_ident[j]);
|
|
}
|
|
}
|
|
#endif
|
|
}
|
|
early_identify_cpu(&boot_cpu_data);
|
|
}
|
|
|
|
static bool detect_null_seg_behavior(void)
|
|
{
|
|
/*
|
|
* Empirically, writing zero to a segment selector on AMD does
|
|
* not clear the base, whereas writing zero to a segment
|
|
* selector on Intel does clear the base. Intel's behavior
|
|
* allows slightly faster context switches in the common case
|
|
* where GS is unused by the prev and next threads.
|
|
*
|
|
* Since neither vendor documents this anywhere that I can see,
|
|
* detect it directly instead of hard-coding the choice by
|
|
* vendor.
|
|
*
|
|
* I've designated AMD's behavior as the "bug" because it's
|
|
* counterintuitive and less friendly.
|
|
*/
|
|
|
|
unsigned long old_base, tmp;
|
|
rdmsrl(MSR_FS_BASE, old_base);
|
|
wrmsrl(MSR_FS_BASE, 1);
|
|
loadsegment(fs, 0);
|
|
rdmsrl(MSR_FS_BASE, tmp);
|
|
wrmsrl(MSR_FS_BASE, old_base);
|
|
return tmp == 0;
|
|
}
|
|
|
|
void check_null_seg_clears_base(struct cpuinfo_x86 *c)
|
|
{
|
|
/* BUG_NULL_SEG is only relevant with 64bit userspace */
|
|
if (!IS_ENABLED(CONFIG_X86_64))
|
|
return;
|
|
|
|
if (cpu_has(c, X86_FEATURE_NULL_SEL_CLR_BASE))
|
|
return;
|
|
|
|
/*
|
|
* CPUID bit above wasn't set. If this kernel is still running
|
|
* as a HV guest, then the HV has decided not to advertize
|
|
* that CPUID bit for whatever reason. For example, one
|
|
* member of the migration pool might be vulnerable. Which
|
|
* means, the bug is present: set the BUG flag and return.
|
|
*/
|
|
if (cpu_has(c, X86_FEATURE_HYPERVISOR)) {
|
|
set_cpu_bug(c, X86_BUG_NULL_SEG);
|
|
return;
|
|
}
|
|
|
|
/*
|
|
* Zen2 CPUs also have this behaviour, but no CPUID bit.
|
|
* 0x18 is the respective family for Hygon.
|
|
*/
|
|
if ((c->x86 == 0x17 || c->x86 == 0x18) &&
|
|
detect_null_seg_behavior())
|
|
return;
|
|
|
|
/* All the remaining ones are affected */
|
|
set_cpu_bug(c, X86_BUG_NULL_SEG);
|
|
}
|
|
|
|
static void generic_identify(struct cpuinfo_x86 *c)
|
|
{
|
|
c->extended_cpuid_level = 0;
|
|
|
|
if (!have_cpuid_p())
|
|
identify_cpu_without_cpuid(c);
|
|
|
|
/* cyrix could have cpuid enabled via c_identify()*/
|
|
if (!have_cpuid_p())
|
|
return;
|
|
|
|
cpu_detect(c);
|
|
|
|
get_cpu_vendor(c);
|
|
intel_unlock_cpuid_leafs(c);
|
|
get_cpu_cap(c);
|
|
|
|
get_cpu_address_sizes(c);
|
|
|
|
get_model_name(c); /* Default name */
|
|
|
|
/*
|
|
* ESPFIX is a strange bug. All real CPUs have it. Paravirt
|
|
* systems that run Linux at CPL > 0 may or may not have the
|
|
* issue, but, even if they have the issue, there's absolutely
|
|
* nothing we can do about it because we can't use the real IRET
|
|
* instruction.
|
|
*
|
|
* NB: For the time being, only 32-bit kernels support
|
|
* X86_BUG_ESPFIX as such. 64-bit kernels directly choose
|
|
* whether to apply espfix using paravirt hooks. If any
|
|
* non-paravirt system ever shows up that does *not* have the
|
|
* ESPFIX issue, we can change this.
|
|
*/
|
|
#ifdef CONFIG_X86_32
|
|
set_cpu_bug(c, X86_BUG_ESPFIX);
|
|
#endif
|
|
}
|
|
|
|
/*
|
|
* This does the hard work of actually picking apart the CPU stuff...
|
|
*/
|
|
static void identify_cpu(struct cpuinfo_x86 *c)
|
|
{
|
|
int i;
|
|
|
|
c->loops_per_jiffy = loops_per_jiffy;
|
|
c->x86_cache_size = 0;
|
|
c->x86_vendor = X86_VENDOR_UNKNOWN;
|
|
c->x86_model = c->x86_stepping = 0; /* So far unknown... */
|
|
c->x86_vendor_id[0] = '\0'; /* Unset */
|
|
c->x86_model_id[0] = '\0'; /* Unset */
|
|
#ifdef CONFIG_X86_64
|
|
c->x86_clflush_size = 64;
|
|
c->x86_phys_bits = 36;
|
|
c->x86_virt_bits = 48;
|
|
#else
|
|
c->cpuid_level = -1; /* CPUID not detected */
|
|
c->x86_clflush_size = 32;
|
|
c->x86_phys_bits = 32;
|
|
c->x86_virt_bits = 32;
|
|
#endif
|
|
c->x86_cache_alignment = c->x86_clflush_size;
|
|
memset(&c->x86_capability, 0, sizeof(c->x86_capability));
|
|
#ifdef CONFIG_X86_VMX_FEATURE_NAMES
|
|
memset(&c->vmx_capability, 0, sizeof(c->vmx_capability));
|
|
#endif
|
|
|
|
generic_identify(c);
|
|
|
|
cpu_parse_topology(c);
|
|
|
|
if (this_cpu->c_identify)
|
|
this_cpu->c_identify(c);
|
|
|
|
/* Clear/Set all flags overridden by options, after probe */
|
|
apply_forced_caps(c);
|
|
|
|
/*
|
|
* Set default APIC and TSC_DEADLINE MSR fencing flag. AMD and
|
|
* Hygon will clear it in ->c_init() below.
|
|
*/
|
|
set_cpu_cap(c, X86_FEATURE_APIC_MSRS_FENCE);
|
|
|
|
/*
|
|
* Vendor-specific initialization. In this section we
|
|
* canonicalize the feature flags, meaning if there are
|
|
* features a certain CPU supports which CPUID doesn't
|
|
* tell us, CPUID claiming incorrect flags, or other bugs,
|
|
* we handle them here.
|
|
*
|
|
* At the end of this section, c->x86_capability better
|
|
* indicate the features this CPU genuinely supports!
|
|
*/
|
|
if (this_cpu->c_init)
|
|
this_cpu->c_init(c);
|
|
|
|
/* Disable the PN if appropriate */
|
|
squash_the_stupid_serial_number(c);
|
|
|
|
/* Set up SMEP/SMAP/UMIP */
|
|
setup_smep(c);
|
|
setup_smap(c);
|
|
setup_umip(c);
|
|
|
|
/* Enable FSGSBASE instructions if available. */
|
|
if (cpu_has(c, X86_FEATURE_FSGSBASE)) {
|
|
cr4_set_bits(X86_CR4_FSGSBASE);
|
|
elf_hwcap2 |= HWCAP2_FSGSBASE;
|
|
}
|
|
|
|
/*
|
|
* The vendor-specific functions might have changed features.
|
|
* Now we do "generic changes."
|
|
*/
|
|
|
|
/* Filter out anything that depends on CPUID levels we don't have */
|
|
filter_cpuid_features(c, true);
|
|
|
|
/* If the model name is still unset, do table lookup. */
|
|
if (!c->x86_model_id[0]) {
|
|
const char *p;
|
|
p = table_lookup_model(c);
|
|
if (p)
|
|
strcpy(c->x86_model_id, p);
|
|
else
|
|
/* Last resort... */
|
|
sprintf(c->x86_model_id, "%02x/%02x",
|
|
c->x86, c->x86_model);
|
|
}
|
|
|
|
x86_init_rdrand(c);
|
|
setup_pku(c);
|
|
setup_cet(c);
|
|
|
|
/*
|
|
* Clear/Set all flags overridden by options, need do it
|
|
* before following smp all cpus cap AND.
|
|
*/
|
|
apply_forced_caps(c);
|
|
|
|
/*
|
|
* On SMP, boot_cpu_data holds the common feature set between
|
|
* all CPUs; so make sure that we indicate which features are
|
|
* common between the CPUs. The first time this routine gets
|
|
* executed, c == &boot_cpu_data.
|
|
*/
|
|
if (c != &boot_cpu_data) {
|
|
/* AND the already accumulated flags with these */
|
|
for (i = 0; i < NCAPINTS; i++)
|
|
boot_cpu_data.x86_capability[i] &= c->x86_capability[i];
|
|
|
|
/* OR, i.e. replicate the bug flags */
|
|
for (i = NCAPINTS; i < NCAPINTS + NBUGINTS; i++)
|
|
c->x86_capability[i] |= boot_cpu_data.x86_capability[i];
|
|
}
|
|
|
|
ppin_init(c);
|
|
|
|
/* Init Machine Check Exception if available. */
|
|
mcheck_cpu_init(c);
|
|
|
|
#ifdef CONFIG_NUMA
|
|
numa_add_cpu(smp_processor_id());
|
|
#endif
|
|
}
|
|
|
|
/*
|
|
* Set up the CPU state needed to execute SYSENTER/SYSEXIT instructions
|
|
* on 32-bit kernels:
|
|
*/
|
|
#ifdef CONFIG_X86_32
|
|
void enable_sep_cpu(void)
|
|
{
|
|
struct tss_struct *tss;
|
|
int cpu;
|
|
|
|
if (!boot_cpu_has(X86_FEATURE_SEP))
|
|
return;
|
|
|
|
cpu = get_cpu();
|
|
tss = &per_cpu(cpu_tss_rw, cpu);
|
|
|
|
/*
|
|
* We cache MSR_IA32_SYSENTER_CS's value in the TSS's ss1 field --
|
|
* see the big comment in struct x86_hw_tss's definition.
|
|
*/
|
|
|
|
tss->x86_tss.ss1 = __KERNEL_CS;
|
|
wrmsr(MSR_IA32_SYSENTER_CS, tss->x86_tss.ss1, 0);
|
|
wrmsr(MSR_IA32_SYSENTER_ESP, (unsigned long)(cpu_entry_stack(cpu) + 1), 0);
|
|
wrmsr(MSR_IA32_SYSENTER_EIP, (unsigned long)entry_SYSENTER_32, 0);
|
|
|
|
put_cpu();
|
|
}
|
|
#endif
|
|
|
|
static __init void identify_boot_cpu(void)
|
|
{
|
|
identify_cpu(&boot_cpu_data);
|
|
if (HAS_KERNEL_IBT && cpu_feature_enabled(X86_FEATURE_IBT))
|
|
pr_info("CET detected: Indirect Branch Tracking enabled\n");
|
|
#ifdef CONFIG_X86_32
|
|
enable_sep_cpu();
|
|
#endif
|
|
cpu_detect_tlb(&boot_cpu_data);
|
|
setup_cr_pinning();
|
|
|
|
tsx_init();
|
|
tdx_init();
|
|
lkgs_init();
|
|
}
|
|
|
|
void identify_secondary_cpu(struct cpuinfo_x86 *c)
|
|
{
|
|
BUG_ON(c == &boot_cpu_data);
|
|
identify_cpu(c);
|
|
#ifdef CONFIG_X86_32
|
|
enable_sep_cpu();
|
|
#endif
|
|
x86_spec_ctrl_setup_ap();
|
|
update_srbds_msr();
|
|
if (boot_cpu_has_bug(X86_BUG_GDS))
|
|
update_gds_msr();
|
|
|
|
tsx_ap_init();
|
|
}
|
|
|
|
void print_cpu_info(struct cpuinfo_x86 *c)
|
|
{
|
|
const char *vendor = NULL;
|
|
|
|
if (c->x86_vendor < X86_VENDOR_NUM) {
|
|
vendor = this_cpu->c_vendor;
|
|
} else {
|
|
if (c->cpuid_level >= 0)
|
|
vendor = c->x86_vendor_id;
|
|
}
|
|
|
|
if (vendor && !strstr(c->x86_model_id, vendor))
|
|
pr_cont("%s ", vendor);
|
|
|
|
if (c->x86_model_id[0])
|
|
pr_cont("%s", c->x86_model_id);
|
|
else
|
|
pr_cont("%d86", c->x86);
|
|
|
|
pr_cont(" (family: 0x%x, model: 0x%x", c->x86, c->x86_model);
|
|
|
|
if (c->x86_stepping || c->cpuid_level >= 0)
|
|
pr_cont(", stepping: 0x%x)\n", c->x86_stepping);
|
|
else
|
|
pr_cont(")\n");
|
|
}
|
|
|
|
/*
|
|
* clearcpuid= was already parsed in cpu_parse_early_param(). This dummy
|
|
* function prevents it from becoming an environment variable for init.
|
|
*/
|
|
static __init int setup_clearcpuid(char *arg)
|
|
{
|
|
return 1;
|
|
}
|
|
__setup("clearcpuid=", setup_clearcpuid);
|
|
|
|
DEFINE_PER_CPU_ALIGNED(struct pcpu_hot, pcpu_hot) = {
|
|
.current_task = &init_task,
|
|
.preempt_count = INIT_PREEMPT_COUNT,
|
|
.top_of_stack = TOP_OF_INIT_STACK,
|
|
};
|
|
EXPORT_PER_CPU_SYMBOL(pcpu_hot);
|
|
EXPORT_PER_CPU_SYMBOL(const_pcpu_hot);
|
|
|
|
#ifdef CONFIG_X86_64
|
|
DEFINE_PER_CPU_FIRST(struct fixed_percpu_data,
|
|
fixed_percpu_data) __aligned(PAGE_SIZE) __visible;
|
|
EXPORT_PER_CPU_SYMBOL_GPL(fixed_percpu_data);
|
|
|
|
static void wrmsrl_cstar(unsigned long val)
|
|
{
|
|
/*
|
|
* Intel CPUs do not support 32-bit SYSCALL. Writing to MSR_CSTAR
|
|
* is so far ignored by the CPU, but raises a #VE trap in a TDX
|
|
* guest. Avoid the pointless write on all Intel CPUs.
|
|
*/
|
|
if (boot_cpu_data.x86_vendor != X86_VENDOR_INTEL)
|
|
wrmsrl(MSR_CSTAR, val);
|
|
}
|
|
|
|
static inline void idt_syscall_init(void)
|
|
{
|
|
wrmsrl(MSR_LSTAR, (unsigned long)entry_SYSCALL_64);
|
|
|
|
if (ia32_enabled()) {
|
|
wrmsrl_cstar((unsigned long)entry_SYSCALL_compat);
|
|
/*
|
|
* This only works on Intel CPUs.
|
|
* On AMD CPUs these MSRs are 32-bit, CPU truncates MSR_IA32_SYSENTER_EIP.
|
|
* This does not cause SYSENTER to jump to the wrong location, because
|
|
* AMD doesn't allow SYSENTER in long mode (either 32- or 64-bit).
|
|
*/
|
|
wrmsrl_safe(MSR_IA32_SYSENTER_CS, (u64)__KERNEL_CS);
|
|
wrmsrl_safe(MSR_IA32_SYSENTER_ESP,
|
|
(unsigned long)(cpu_entry_stack(smp_processor_id()) + 1));
|
|
wrmsrl_safe(MSR_IA32_SYSENTER_EIP, (u64)entry_SYSENTER_compat);
|
|
} else {
|
|
wrmsrl_cstar((unsigned long)entry_SYSCALL32_ignore);
|
|
wrmsrl_safe(MSR_IA32_SYSENTER_CS, (u64)GDT_ENTRY_INVALID_SEG);
|
|
wrmsrl_safe(MSR_IA32_SYSENTER_ESP, 0ULL);
|
|
wrmsrl_safe(MSR_IA32_SYSENTER_EIP, 0ULL);
|
|
}
|
|
|
|
/*
|
|
* Flags to clear on syscall; clear as much as possible
|
|
* to minimize user space-kernel interference.
|
|
*/
|
|
wrmsrl(MSR_SYSCALL_MASK,
|
|
X86_EFLAGS_CF|X86_EFLAGS_PF|X86_EFLAGS_AF|
|
|
X86_EFLAGS_ZF|X86_EFLAGS_SF|X86_EFLAGS_TF|
|
|
X86_EFLAGS_IF|X86_EFLAGS_DF|X86_EFLAGS_OF|
|
|
X86_EFLAGS_IOPL|X86_EFLAGS_NT|X86_EFLAGS_RF|
|
|
X86_EFLAGS_AC|X86_EFLAGS_ID);
|
|
}
|
|
|
|
/* May not be marked __init: used by software suspend */
|
|
void syscall_init(void)
|
|
{
|
|
/* The default user and kernel segments */
|
|
wrmsr(MSR_STAR, 0, (__USER32_CS << 16) | __KERNEL_CS);
|
|
|
|
/*
|
|
* Except the IA32_STAR MSR, there is NO need to setup SYSCALL and
|
|
* SYSENTER MSRs for FRED, because FRED uses the ring 3 FRED
|
|
* entrypoint for SYSCALL and SYSENTER, and ERETU is the only legit
|
|
* instruction to return to ring 3 (both sysexit and sysret cause
|
|
* #UD when FRED is enabled).
|
|
*/
|
|
if (!cpu_feature_enabled(X86_FEATURE_FRED))
|
|
idt_syscall_init();
|
|
}
|
|
|
|
#else /* CONFIG_X86_64 */
|
|
|
|
#ifdef CONFIG_STACKPROTECTOR
|
|
DEFINE_PER_CPU(unsigned long, __stack_chk_guard);
|
|
#ifndef CONFIG_SMP
|
|
EXPORT_PER_CPU_SYMBOL(__stack_chk_guard);
|
|
#endif
|
|
#endif
|
|
|
|
#endif /* CONFIG_X86_64 */
|
|
|
|
/*
|
|
* Clear all 6 debug registers:
|
|
*/
|
|
static void clear_all_debug_regs(void)
|
|
{
|
|
int i;
|
|
|
|
for (i = 0; i < 8; i++) {
|
|
/* Ignore db4, db5 */
|
|
if ((i == 4) || (i == 5))
|
|
continue;
|
|
|
|
set_debugreg(0, i);
|
|
}
|
|
}
|
|
|
|
#ifdef CONFIG_KGDB
|
|
/*
|
|
* Restore debug regs if using kgdbwait and you have a kernel debugger
|
|
* connection established.
|
|
*/
|
|
static void dbg_restore_debug_regs(void)
|
|
{
|
|
if (unlikely(kgdb_connected && arch_kgdb_ops.correct_hw_break))
|
|
arch_kgdb_ops.correct_hw_break();
|
|
}
|
|
#else /* ! CONFIG_KGDB */
|
|
#define dbg_restore_debug_regs()
|
|
#endif /* ! CONFIG_KGDB */
|
|
|
|
static inline void setup_getcpu(int cpu)
|
|
{
|
|
unsigned long cpudata = vdso_encode_cpunode(cpu, early_cpu_to_node(cpu));
|
|
struct desc_struct d = { };
|
|
|
|
if (boot_cpu_has(X86_FEATURE_RDTSCP) || boot_cpu_has(X86_FEATURE_RDPID))
|
|
wrmsr(MSR_TSC_AUX, cpudata, 0);
|
|
|
|
/* Store CPU and node number in limit. */
|
|
d.limit0 = cpudata;
|
|
d.limit1 = cpudata >> 16;
|
|
|
|
d.type = 5; /* RO data, expand down, accessed */
|
|
d.dpl = 3; /* Visible to user code */
|
|
d.s = 1; /* Not a system segment */
|
|
d.p = 1; /* Present */
|
|
d.d = 1; /* 32-bit */
|
|
|
|
write_gdt_entry(get_cpu_gdt_rw(cpu), GDT_ENTRY_CPUNODE, &d, DESCTYPE_S);
|
|
}
|
|
|
|
#ifdef CONFIG_X86_64
|
|
static inline void tss_setup_ist(struct tss_struct *tss)
|
|
{
|
|
/* Set up the per-CPU TSS IST stacks */
|
|
tss->x86_tss.ist[IST_INDEX_DF] = __this_cpu_ist_top_va(DF);
|
|
tss->x86_tss.ist[IST_INDEX_NMI] = __this_cpu_ist_top_va(NMI);
|
|
tss->x86_tss.ist[IST_INDEX_DB] = __this_cpu_ist_top_va(DB);
|
|
tss->x86_tss.ist[IST_INDEX_MCE] = __this_cpu_ist_top_va(MCE);
|
|
/* Only mapped when SEV-ES is active */
|
|
tss->x86_tss.ist[IST_INDEX_VC] = __this_cpu_ist_top_va(VC);
|
|
}
|
|
#else /* CONFIG_X86_64 */
|
|
static inline void tss_setup_ist(struct tss_struct *tss) { }
|
|
#endif /* !CONFIG_X86_64 */
|
|
|
|
static inline void tss_setup_io_bitmap(struct tss_struct *tss)
|
|
{
|
|
tss->x86_tss.io_bitmap_base = IO_BITMAP_OFFSET_INVALID;
|
|
|
|
#ifdef CONFIG_X86_IOPL_IOPERM
|
|
tss->io_bitmap.prev_max = 0;
|
|
tss->io_bitmap.prev_sequence = 0;
|
|
memset(tss->io_bitmap.bitmap, 0xff, sizeof(tss->io_bitmap.bitmap));
|
|
/*
|
|
* Invalidate the extra array entry past the end of the all
|
|
* permission bitmap as required by the hardware.
|
|
*/
|
|
tss->io_bitmap.mapall[IO_BITMAP_LONGS] = ~0UL;
|
|
#endif
|
|
}
|
|
|
|
/*
|
|
* Setup everything needed to handle exceptions from the IDT, including the IST
|
|
* exceptions which use paranoid_entry().
|
|
*/
|
|
void cpu_init_exception_handling(bool boot_cpu)
|
|
{
|
|
struct tss_struct *tss = this_cpu_ptr(&cpu_tss_rw);
|
|
int cpu = raw_smp_processor_id();
|
|
|
|
/* paranoid_entry() gets the CPU number from the GDT */
|
|
setup_getcpu(cpu);
|
|
|
|
/* For IDT mode, IST vectors need to be set in TSS. */
|
|
if (!cpu_feature_enabled(X86_FEATURE_FRED))
|
|
tss_setup_ist(tss);
|
|
tss_setup_io_bitmap(tss);
|
|
set_tss_desc(cpu, &get_cpu_entry_area(cpu)->tss.x86_tss);
|
|
|
|
load_TR_desc();
|
|
|
|
/* GHCB needs to be setup to handle #VC. */
|
|
setup_ghcb();
|
|
|
|
if (cpu_feature_enabled(X86_FEATURE_FRED)) {
|
|
/* The boot CPU has enabled FRED during early boot */
|
|
if (!boot_cpu)
|
|
cpu_init_fred_exceptions();
|
|
|
|
cpu_init_fred_rsps();
|
|
} else {
|
|
load_current_idt();
|
|
}
|
|
}
|
|
|
|
void __init cpu_init_replace_early_idt(void)
|
|
{
|
|
if (cpu_feature_enabled(X86_FEATURE_FRED))
|
|
cpu_init_fred_exceptions();
|
|
else
|
|
idt_setup_early_pf();
|
|
}
|
|
|
|
/*
|
|
* cpu_init() initializes state that is per-CPU. Some data is already
|
|
* initialized (naturally) in the bootstrap process, such as the GDT. We
|
|
* reload it nevertheless, this function acts as a 'CPU state barrier',
|
|
* nothing should get across.
|
|
*/
|
|
void cpu_init(void)
|
|
{
|
|
struct task_struct *cur = current;
|
|
int cpu = raw_smp_processor_id();
|
|
|
|
#ifdef CONFIG_NUMA
|
|
if (this_cpu_read(numa_node) == 0 &&
|
|
early_cpu_to_node(cpu) != NUMA_NO_NODE)
|
|
set_numa_node(early_cpu_to_node(cpu));
|
|
#endif
|
|
pr_debug("Initializing CPU#%d\n", cpu);
|
|
|
|
if (IS_ENABLED(CONFIG_X86_64) || cpu_feature_enabled(X86_FEATURE_VME) ||
|
|
boot_cpu_has(X86_FEATURE_TSC) || boot_cpu_has(X86_FEATURE_DE))
|
|
cr4_clear_bits(X86_CR4_VME|X86_CR4_PVI|X86_CR4_TSD|X86_CR4_DE);
|
|
|
|
if (IS_ENABLED(CONFIG_X86_64)) {
|
|
loadsegment(fs, 0);
|
|
memset(cur->thread.tls_array, 0, GDT_ENTRY_TLS_ENTRIES * 8);
|
|
syscall_init();
|
|
|
|
wrmsrl(MSR_FS_BASE, 0);
|
|
wrmsrl(MSR_KERNEL_GS_BASE, 0);
|
|
barrier();
|
|
|
|
x2apic_setup();
|
|
|
|
intel_posted_msi_init();
|
|
}
|
|
|
|
mmgrab(&init_mm);
|
|
cur->active_mm = &init_mm;
|
|
BUG_ON(cur->mm);
|
|
initialize_tlbstate_and_flush();
|
|
enter_lazy_tlb(&init_mm, cur);
|
|
|
|
/*
|
|
* sp0 points to the entry trampoline stack regardless of what task
|
|
* is running.
|
|
*/
|
|
load_sp0((unsigned long)(cpu_entry_stack(cpu) + 1));
|
|
|
|
load_mm_ldt(&init_mm);
|
|
|
|
clear_all_debug_regs();
|
|
dbg_restore_debug_regs();
|
|
|
|
doublefault_init_cpu_tss();
|
|
|
|
if (is_uv_system())
|
|
uv_cpu_init();
|
|
|
|
load_fixmap_gdt(cpu);
|
|
}
|
|
|
|
#ifdef CONFIG_MICROCODE_LATE_LOADING
|
|
/**
|
|
* store_cpu_caps() - Store a snapshot of CPU capabilities
|
|
* @curr_info: Pointer where to store it
|
|
*
|
|
* Returns: None
|
|
*/
|
|
void store_cpu_caps(struct cpuinfo_x86 *curr_info)
|
|
{
|
|
/* Reload CPUID max function as it might've changed. */
|
|
curr_info->cpuid_level = cpuid_eax(0);
|
|
|
|
/* Copy all capability leafs and pick up the synthetic ones. */
|
|
memcpy(&curr_info->x86_capability, &boot_cpu_data.x86_capability,
|
|
sizeof(curr_info->x86_capability));
|
|
|
|
/* Get the hardware CPUID leafs */
|
|
get_cpu_cap(curr_info);
|
|
}
|
|
|
|
/**
|
|
* microcode_check() - Check if any CPU capabilities changed after an update.
|
|
* @prev_info: CPU capabilities stored before an update.
|
|
*
|
|
* The microcode loader calls this upon late microcode load to recheck features,
|
|
* only when microcode has been updated. Caller holds and CPU hotplug lock.
|
|
*
|
|
* Return: None
|
|
*/
|
|
void microcode_check(struct cpuinfo_x86 *prev_info)
|
|
{
|
|
struct cpuinfo_x86 curr_info;
|
|
|
|
perf_check_microcode();
|
|
|
|
amd_check_microcode();
|
|
|
|
store_cpu_caps(&curr_info);
|
|
|
|
if (!memcmp(&prev_info->x86_capability, &curr_info.x86_capability,
|
|
sizeof(prev_info->x86_capability)))
|
|
return;
|
|
|
|
pr_warn("x86/CPU: CPU features have changed after loading microcode, but might not take effect.\n");
|
|
pr_warn("x86/CPU: Please consider either early loading through initrd/built-in or a potential BIOS update.\n");
|
|
}
|
|
#endif
|
|
|
|
/*
|
|
* Invoked from core CPU hotplug code after hotplug operations
|
|
*/
|
|
void arch_smt_update(void)
|
|
{
|
|
/* Handle the speculative execution misfeatures */
|
|
cpu_bugs_smt_update();
|
|
/* Check whether IPI broadcasting can be enabled */
|
|
apic_smt_update();
|
|
}
|
|
|
|
void __init arch_cpu_finalize_init(void)
|
|
{
|
|
struct cpuinfo_x86 *c = this_cpu_ptr(&cpu_info);
|
|
|
|
identify_boot_cpu();
|
|
|
|
select_idle_routine();
|
|
|
|
/*
|
|
* identify_boot_cpu() initialized SMT support information, let the
|
|
* core code know.
|
|
*/
|
|
cpu_smt_set_num_threads(__max_threads_per_core, __max_threads_per_core);
|
|
|
|
if (!IS_ENABLED(CONFIG_SMP)) {
|
|
pr_info("CPU: ");
|
|
print_cpu_info(&boot_cpu_data);
|
|
}
|
|
|
|
cpu_select_mitigations();
|
|
|
|
arch_smt_update();
|
|
|
|
if (IS_ENABLED(CONFIG_X86_32)) {
|
|
/*
|
|
* Check whether this is a real i386 which is not longer
|
|
* supported and fixup the utsname.
|
|
*/
|
|
if (boot_cpu_data.x86 < 4)
|
|
panic("Kernel requires i486+ for 'invlpg' and other features");
|
|
|
|
init_utsname()->machine[1] =
|
|
'0' + (boot_cpu_data.x86 > 6 ? 6 : boot_cpu_data.x86);
|
|
}
|
|
|
|
/*
|
|
* Must be before alternatives because it might set or clear
|
|
* feature bits.
|
|
*/
|
|
fpu__init_system();
|
|
fpu__init_cpu();
|
|
|
|
/*
|
|
* Ensure that access to the per CPU representation has the initial
|
|
* boot CPU configuration.
|
|
*/
|
|
*c = boot_cpu_data;
|
|
c->initialized = true;
|
|
|
|
alternative_instructions();
|
|
|
|
if (IS_ENABLED(CONFIG_X86_64)) {
|
|
unsigned long USER_PTR_MAX = TASK_SIZE_MAX-1;
|
|
|
|
/*
|
|
* Enable this when LAM is gated on LASS support
|
|
if (cpu_feature_enabled(X86_FEATURE_LAM))
|
|
USER_PTR_MAX = (1ul << 63) - PAGE_SIZE - 1;
|
|
*/
|
|
runtime_const_init(ptr, USER_PTR_MAX);
|
|
|
|
/*
|
|
* Make sure the first 2MB area is not mapped by huge pages
|
|
* There are typically fixed size MTRRs in there and overlapping
|
|
* MTRRs into large pages causes slow downs.
|
|
*
|
|
* Right now we don't do that with gbpages because there seems
|
|
* very little benefit for that case.
|
|
*/
|
|
if (!direct_gbpages)
|
|
set_memory_4k((unsigned long)__va(0), 1);
|
|
} else {
|
|
fpu__init_check_bugs();
|
|
}
|
|
|
|
/*
|
|
* This needs to be called before any devices perform DMA
|
|
* operations that might use the SWIOTLB bounce buffers. It will
|
|
* mark the bounce buffers as decrypted so that their usage will
|
|
* not cause "plain-text" data to be decrypted when accessed. It
|
|
* must be called after late_time_init() so that Hyper-V x86/x64
|
|
* hypercalls work when the SWIOTLB bounce buffers are decrypted.
|
|
*/
|
|
mem_encrypt_init();
|
|
}
|