1
linux/arch/x86/kernel/apic/apic.c
Zhang Rui ffd95846c6 x86/apic: Always explicitly disarm TSC-deadline timer
New processors have become pickier about the local APIC timer state
before entering low power modes. These low power modes are used (for
example) when you close your laptop lid and suspend. If you put your
laptop in a bag and it is not in this low power mode, it is likely
to get quite toasty while it quickly sucks the battery dry.

The problem boils down to some CPUs' inability to power down until the
CPU recognizes that the local APIC timer is shut down. The current
kernel code works in one-shot and periodic modes but does not work for
deadline mode. Deadline mode has been the supported and preferred mode
on Intel CPUs for over a decade and uses an MSR to drive the timer
instead of an APIC register.

Disable the TSC Deadline timer in lapic_timer_shutdown() by writing to
MSR_IA32_TSC_DEADLINE when in TSC-deadline mode. Also avoid writing
to the initial-count register (APIC_TMICT) which is ignored in
TSC-deadline mode.

Note: The APIC_LVTT|=APIC_LVT_MASKED operation should theoretically be
enough to tell the hardware that the timer will not fire in any of the
timer modes. But mitigating AMD erratum 411[1] also requires clearing
out APIC_TMICT. Solely setting APIC_LVT_MASKED is also ineffective in
practice on Intel Lunar Lake systems, which is the motivation for this
change.

1. 411 Processor May Exit Message-Triggered C1E State Without an Interrupt if Local APIC Timer Reaches Zero - https://www.amd.com/content/dam/amd/en/documents/archived-tech-docs/revision-guides/41322_10h_Rev_Gd.pdf

Fixes: 279f146143 ("x86: apic: Use tsc deadline for oneshot when available")
Suggested-by: Dave Hansen <dave.hansen@intel.com>
Signed-off-by: Zhang Rui <rui.zhang@intel.com>
Signed-off-by: Dave Hansen <dave.hansen@linux.intel.com>
Reviewed-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
Tested-by: Srinivas Pandruvada <srinivas.pandruvada@linux.intel.com>
Tested-by: Todd Brandt <todd.e.brandt@intel.com>
Cc: stable@vger.kernel.org
Link: https://lore.kernel.org/all/20241015061522.25288-1-rui.zhang%40intel.com
2024-10-15 05:45:18 -07:00

2685 lines
66 KiB
C

// SPDX-License-Identifier: GPL-2.0-only
/*
* Local APIC handling, local APIC timers
*
* (c) 1999, 2000, 2009 Ingo Molnar <mingo@redhat.com>
*
* Fixes
* Maciej W. Rozycki : Bits for genuine 82489DX APICs;
* thanks to Eric Gilmore
* and Rolf G. Tews
* for testing these extensively.
* Maciej W. Rozycki : Various updates and fixes.
* Mikael Pettersson : Power Management for UP-APIC.
* Pavel Machek and
* Mikael Pettersson : PM converted to driver model.
*/
#include <linux/perf_event.h>
#include <linux/kernel_stat.h>
#include <linux/mc146818rtc.h>
#include <linux/acpi_pmtmr.h>
#include <linux/bitmap.h>
#include <linux/clockchips.h>
#include <linux/interrupt.h>
#include <linux/memblock.h>
#include <linux/ftrace.h>
#include <linux/ioport.h>
#include <linux/export.h>
#include <linux/syscore_ops.h>
#include <linux/delay.h>
#include <linux/timex.h>
#include <linux/i8253.h>
#include <linux/dmar.h>
#include <linux/init.h>
#include <linux/cpu.h>
#include <linux/dmi.h>
#include <linux/smp.h>
#include <linux/mm.h>
#include <xen/xen.h>
#include <asm/trace/irq_vectors.h>
#include <asm/irq_remapping.h>
#include <asm/pc-conf-reg.h>
#include <asm/perf_event.h>
#include <asm/x86_init.h>
#include <linux/atomic.h>
#include <asm/barrier.h>
#include <asm/mpspec.h>
#include <asm/i8259.h>
#include <asm/proto.h>
#include <asm/traps.h>
#include <asm/apic.h>
#include <asm/acpi.h>
#include <asm/io_apic.h>
#include <asm/desc.h>
#include <asm/hpet.h>
#include <asm/mtrr.h>
#include <asm/time.h>
#include <asm/smp.h>
#include <asm/mce.h>
#include <asm/tsc.h>
#include <asm/hypervisor.h>
#include <asm/cpu_device_id.h>
#include <asm/intel-family.h>
#include <asm/irq_regs.h>
#include <asm/cpu.h>
#include "local.h"
/* Processor that is doing the boot up */
u32 boot_cpu_physical_apicid __ro_after_init = BAD_APICID;
EXPORT_SYMBOL_GPL(boot_cpu_physical_apicid);
u8 boot_cpu_apic_version __ro_after_init;
/*
* This variable controls which CPUs receive external NMIs. By default,
* external NMIs are delivered only to the BSP.
*/
static int apic_extnmi __ro_after_init = APIC_EXTNMI_BSP;
/*
* Hypervisor supports 15 bits of APIC ID in MSI Extended Destination ID
*/
static bool virt_ext_dest_id __ro_after_init;
/* For parallel bootup. */
unsigned long apic_mmio_base __ro_after_init;
static inline bool apic_accessible(void)
{
return x2apic_mode || apic_mmio_base;
}
#ifdef CONFIG_X86_32
/* Local APIC was disabled by the BIOS and enabled by the kernel */
static int enabled_via_apicbase __ro_after_init;
/*
* Handle interrupt mode configuration register (IMCR).
* This register controls whether the interrupt signals
* that reach the BSP come from the master PIC or from the
* local APIC. Before entering Symmetric I/O Mode, either
* the BIOS or the operating system must switch out of
* PIC Mode by changing the IMCR.
*/
static inline void imcr_pic_to_apic(void)
{
/* NMI and 8259 INTR go through APIC */
pc_conf_set(PC_CONF_MPS_IMCR, 0x01);
}
static inline void imcr_apic_to_pic(void)
{
/* NMI and 8259 INTR go directly to BSP */
pc_conf_set(PC_CONF_MPS_IMCR, 0x00);
}
#endif
/*
* Knob to control our willingness to enable the local APIC.
*
* +1=force-enable
*/
static int force_enable_local_apic __initdata;
/*
* APIC command line parameters
*/
static int __init parse_lapic(char *arg)
{
if (IS_ENABLED(CONFIG_X86_32) && !arg)
force_enable_local_apic = 1;
else if (arg && !strncmp(arg, "notscdeadline", 13))
setup_clear_cpu_cap(X86_FEATURE_TSC_DEADLINE_TIMER);
return 0;
}
early_param("lapic", parse_lapic);
#ifdef CONFIG_X86_64
static int apic_calibrate_pmtmr __initdata;
static __init int setup_apicpmtimer(char *s)
{
apic_calibrate_pmtmr = 1;
notsc_setup(NULL);
return 1;
}
__setup("apicpmtimer", setup_apicpmtimer);
#endif
static unsigned long mp_lapic_addr __ro_after_init;
bool apic_is_disabled __ro_after_init;
/* Disable local APIC timer from the kernel commandline or via dmi quirk */
static int disable_apic_timer __initdata;
/* Local APIC timer works in C2 */
int local_apic_timer_c2_ok __ro_after_init;
EXPORT_SYMBOL_GPL(local_apic_timer_c2_ok);
/*
* Debug level, exported for io_apic.c
*/
int apic_verbosity __ro_after_init;
int pic_mode __ro_after_init;
/* Have we found an MP table */
int smp_found_config __ro_after_init;
static struct resource lapic_resource = {
.name = "Local APIC",
.flags = IORESOURCE_MEM | IORESOURCE_BUSY,
};
unsigned int lapic_timer_period = 0;
static void apic_pm_activate(void);
/*
* Get the LAPIC version
*/
static inline int lapic_get_version(void)
{
return GET_APIC_VERSION(apic_read(APIC_LVR));
}
/*
* Check, if the APIC is integrated or a separate chip
*/
static inline int lapic_is_integrated(void)
{
return APIC_INTEGRATED(lapic_get_version());
}
/*
* Check, whether this is a modern or a first generation APIC
*/
static int modern_apic(void)
{
/* AMD systems use old APIC versions, so check the CPU */
if (boot_cpu_data.x86_vendor == X86_VENDOR_AMD &&
boot_cpu_data.x86 >= 0xf)
return 1;
/* Hygon systems use modern APIC */
if (boot_cpu_data.x86_vendor == X86_VENDOR_HYGON)
return 1;
return lapic_get_version() >= 0x14;
}
/*
* right after this call apic become NOOP driven
* so apic->write/read doesn't do anything
*/
static void __init apic_disable(void)
{
apic_install_driver(&apic_noop);
}
void native_apic_icr_write(u32 low, u32 id)
{
unsigned long flags;
local_irq_save(flags);
apic_write(APIC_ICR2, SET_XAPIC_DEST_FIELD(id));
apic_write(APIC_ICR, low);
local_irq_restore(flags);
}
u64 native_apic_icr_read(void)
{
u32 icr1, icr2;
icr2 = apic_read(APIC_ICR2);
icr1 = apic_read(APIC_ICR);
return icr1 | ((u64)icr2 << 32);
}
/**
* lapic_get_maxlvt - get the maximum number of local vector table entries
*/
int lapic_get_maxlvt(void)
{
/*
* - we always have APIC integrated on 64bit mode
* - 82489DXs do not report # of LVT entries
*/
return lapic_is_integrated() ? GET_APIC_MAXLVT(apic_read(APIC_LVR)) : 2;
}
/*
* Local APIC timer
*/
/* Clock divisor */
#define APIC_DIVISOR 16
#define TSC_DIVISOR 8
/* i82489DX specific */
#define I82489DX_BASE_DIVIDER (((0x2) << 18))
/*
* This function sets up the local APIC timer, with a timeout of
* 'clocks' APIC bus clock. During calibration we actually call
* this function twice on the boot CPU, once with a bogus timeout
* value, second time for real. The other (noncalibrating) CPUs
* call this function only once, with the real, calibrated value.
*
* We do reads before writes even if unnecessary, to get around the
* P5 APIC double write bug.
*/
static void __setup_APIC_LVTT(unsigned int clocks, int oneshot, int irqen)
{
unsigned int lvtt_value, tmp_value;
lvtt_value = LOCAL_TIMER_VECTOR;
if (!oneshot)
lvtt_value |= APIC_LVT_TIMER_PERIODIC;
else if (boot_cpu_has(X86_FEATURE_TSC_DEADLINE_TIMER))
lvtt_value |= APIC_LVT_TIMER_TSCDEADLINE;
/*
* The i82489DX APIC uses bit 18 and 19 for the base divider. This
* overlaps with bit 18 on integrated APICs, but is not documented
* in the SDM. No problem though. i82489DX equipped systems do not
* have TSC deadline timer.
*/
if (!lapic_is_integrated())
lvtt_value |= I82489DX_BASE_DIVIDER;
if (!irqen)
lvtt_value |= APIC_LVT_MASKED;
apic_write(APIC_LVTT, lvtt_value);
if (lvtt_value & APIC_LVT_TIMER_TSCDEADLINE) {
/*
* See Intel SDM: TSC-Deadline Mode chapter. In xAPIC mode,
* writing to the APIC LVTT and TSC_DEADLINE MSR isn't serialized.
* According to Intel, MFENCE can do the serialization here.
*/
asm volatile("mfence" : : : "memory");
return;
}
/*
* Divide PICLK by 16
*/
tmp_value = apic_read(APIC_TDCR);
apic_write(APIC_TDCR,
(tmp_value & ~(APIC_TDR_DIV_1 | APIC_TDR_DIV_TMBASE)) |
APIC_TDR_DIV_16);
if (!oneshot)
apic_write(APIC_TMICT, clocks / APIC_DIVISOR);
}
/*
* Setup extended LVT, AMD specific
*
* Software should use the LVT offsets the BIOS provides. The offsets
* are determined by the subsystems using it like those for MCE
* threshold or IBS. On K8 only offset 0 (APIC500) and MCE interrupts
* are supported. Beginning with family 10h at least 4 offsets are
* available.
*
* Since the offsets must be consistent for all cores, we keep track
* of the LVT offsets in software and reserve the offset for the same
* vector also to be used on other cores. An offset is freed by
* setting the entry to APIC_EILVT_MASKED.
*
* If the BIOS is right, there should be no conflicts. Otherwise a
* "[Firmware Bug]: ..." error message is generated. However, if
* software does not properly determines the offsets, it is not
* necessarily a BIOS bug.
*/
static atomic_t eilvt_offsets[APIC_EILVT_NR_MAX];
static inline int eilvt_entry_is_changeable(unsigned int old, unsigned int new)
{
return (old & APIC_EILVT_MASKED)
|| (new == APIC_EILVT_MASKED)
|| ((new & ~APIC_EILVT_MASKED) == old);
}
static unsigned int reserve_eilvt_offset(int offset, unsigned int new)
{
unsigned int rsvd, vector;
if (offset >= APIC_EILVT_NR_MAX)
return ~0;
rsvd = atomic_read(&eilvt_offsets[offset]);
do {
vector = rsvd & ~APIC_EILVT_MASKED; /* 0: unassigned */
if (vector && !eilvt_entry_is_changeable(vector, new))
/* may not change if vectors are different */
return rsvd;
} while (!atomic_try_cmpxchg(&eilvt_offsets[offset], &rsvd, new));
rsvd = new & ~APIC_EILVT_MASKED;
if (rsvd && rsvd != vector)
pr_info("LVT offset %d assigned for vector 0x%02x\n",
offset, rsvd);
return new;
}
/*
* If mask=1, the LVT entry does not generate interrupts while mask=0
* enables the vector. See also the BKDGs. Must be called with
* preemption disabled.
*/
int setup_APIC_eilvt(u8 offset, u8 vector, u8 msg_type, u8 mask)
{
unsigned long reg = APIC_EILVTn(offset);
unsigned int new, old, reserved;
new = (mask << 16) | (msg_type << 8) | vector;
old = apic_read(reg);
reserved = reserve_eilvt_offset(offset, new);
if (reserved != new) {
pr_err(FW_BUG "cpu %d, try to use APIC%lX (LVT offset %d) for "
"vector 0x%x, but the register is already in use for "
"vector 0x%x on another cpu\n",
smp_processor_id(), reg, offset, new, reserved);
return -EINVAL;
}
if (!eilvt_entry_is_changeable(old, new)) {
pr_err(FW_BUG "cpu %d, try to use APIC%lX (LVT offset %d) for "
"vector 0x%x, but the register is already in use for "
"vector 0x%x on this cpu\n",
smp_processor_id(), reg, offset, new, old);
return -EBUSY;
}
apic_write(reg, new);
return 0;
}
EXPORT_SYMBOL_GPL(setup_APIC_eilvt);
/*
* Program the next event, relative to now
*/
static int lapic_next_event(unsigned long delta,
struct clock_event_device *evt)
{
apic_write(APIC_TMICT, delta);
return 0;
}
static int lapic_next_deadline(unsigned long delta,
struct clock_event_device *evt)
{
u64 tsc;
/* This MSR is special and need a special fence: */
weak_wrmsr_fence();
tsc = rdtsc();
wrmsrl(MSR_IA32_TSC_DEADLINE, tsc + (((u64) delta) * TSC_DIVISOR));
return 0;
}
static int lapic_timer_shutdown(struct clock_event_device *evt)
{
unsigned int v;
/* Lapic used as dummy for broadcast ? */
if (evt->features & CLOCK_EVT_FEAT_DUMMY)
return 0;
v = apic_read(APIC_LVTT);
v |= (APIC_LVT_MASKED | LOCAL_TIMER_VECTOR);
apic_write(APIC_LVTT, v);
/*
* Setting APIC_LVT_MASKED (above) should be enough to tell
* the hardware that this timer will never fire. But AMD
* erratum 411 and some Intel CPU behavior circa 2024 say
* otherwise. Time for belt and suspenders programming: mask
* the timer _and_ zero the counter registers:
*/
if (v & APIC_LVT_TIMER_TSCDEADLINE)
wrmsrl(MSR_IA32_TSC_DEADLINE, 0);
else
apic_write(APIC_TMICT, 0);
return 0;
}
static inline int
lapic_timer_set_periodic_oneshot(struct clock_event_device *evt, bool oneshot)
{
/* Lapic used as dummy for broadcast ? */
if (evt->features & CLOCK_EVT_FEAT_DUMMY)
return 0;
__setup_APIC_LVTT(lapic_timer_period, oneshot, 1);
return 0;
}
static int lapic_timer_set_periodic(struct clock_event_device *evt)
{
return lapic_timer_set_periodic_oneshot(evt, false);
}
static int lapic_timer_set_oneshot(struct clock_event_device *evt)
{
return lapic_timer_set_periodic_oneshot(evt, true);
}
/*
* Local APIC timer broadcast function
*/
static void lapic_timer_broadcast(const struct cpumask *mask)
{
#ifdef CONFIG_SMP
__apic_send_IPI_mask(mask, LOCAL_TIMER_VECTOR);
#endif
}
/*
* The local apic timer can be used for any function which is CPU local.
*/
static struct clock_event_device lapic_clockevent = {
.name = "lapic",
.features = CLOCK_EVT_FEAT_PERIODIC |
CLOCK_EVT_FEAT_ONESHOT | CLOCK_EVT_FEAT_C3STOP
| CLOCK_EVT_FEAT_DUMMY,
.shift = 32,
.set_state_shutdown = lapic_timer_shutdown,
.set_state_periodic = lapic_timer_set_periodic,
.set_state_oneshot = lapic_timer_set_oneshot,
.set_state_oneshot_stopped = lapic_timer_shutdown,
.set_next_event = lapic_next_event,
.broadcast = lapic_timer_broadcast,
.rating = 100,
.irq = -1,
};
static DEFINE_PER_CPU(struct clock_event_device, lapic_events);
static const struct x86_cpu_id deadline_match[] __initconst = {
X86_MATCH_VFM_STEPPINGS(INTEL_HASWELL_X, X86_STEPPINGS(0x2, 0x2), 0x3a), /* EP */
X86_MATCH_VFM_STEPPINGS(INTEL_HASWELL_X, X86_STEPPINGS(0x4, 0x4), 0x0f), /* EX */
X86_MATCH_VFM(INTEL_BROADWELL_X, 0x0b000020),
X86_MATCH_VFM_STEPPINGS(INTEL_BROADWELL_D, X86_STEPPINGS(0x2, 0x2), 0x00000011),
X86_MATCH_VFM_STEPPINGS(INTEL_BROADWELL_D, X86_STEPPINGS(0x3, 0x3), 0x0700000e),
X86_MATCH_VFM_STEPPINGS(INTEL_BROADWELL_D, X86_STEPPINGS(0x4, 0x4), 0x0f00000c),
X86_MATCH_VFM_STEPPINGS(INTEL_BROADWELL_D, X86_STEPPINGS(0x5, 0x5), 0x0e000003),
X86_MATCH_VFM_STEPPINGS(INTEL_SKYLAKE_X, X86_STEPPINGS(0x3, 0x3), 0x01000136),
X86_MATCH_VFM_STEPPINGS(INTEL_SKYLAKE_X, X86_STEPPINGS(0x4, 0x4), 0x02000014),
X86_MATCH_VFM_STEPPINGS(INTEL_SKYLAKE_X, X86_STEPPINGS(0x5, 0xf), 0),
X86_MATCH_VFM(INTEL_HASWELL, 0x22),
X86_MATCH_VFM(INTEL_HASWELL_L, 0x20),
X86_MATCH_VFM(INTEL_HASWELL_G, 0x17),
X86_MATCH_VFM(INTEL_BROADWELL, 0x25),
X86_MATCH_VFM(INTEL_BROADWELL_G, 0x17),
X86_MATCH_VFM(INTEL_SKYLAKE_L, 0xb2),
X86_MATCH_VFM(INTEL_SKYLAKE, 0xb2),
X86_MATCH_VFM(INTEL_KABYLAKE_L, 0x52),
X86_MATCH_VFM(INTEL_KABYLAKE, 0x52),
{},
};
static __init bool apic_validate_deadline_timer(void)
{
const struct x86_cpu_id *m;
u32 rev;
if (!boot_cpu_has(X86_FEATURE_TSC_DEADLINE_TIMER))
return false;
if (boot_cpu_has(X86_FEATURE_HYPERVISOR))
return true;
m = x86_match_cpu(deadline_match);
if (!m)
return true;
rev = (u32)m->driver_data;
if (boot_cpu_data.microcode >= rev)
return true;
setup_clear_cpu_cap(X86_FEATURE_TSC_DEADLINE_TIMER);
pr_err(FW_BUG "TSC_DEADLINE disabled due to Errata; "
"please update microcode to version: 0x%x (or later)\n", rev);
return false;
}
/*
* Setup the local APIC timer for this CPU. Copy the initialized values
* of the boot CPU and register the clock event in the framework.
*/
static void setup_APIC_timer(void)
{
struct clock_event_device *levt = this_cpu_ptr(&lapic_events);
if (this_cpu_has(X86_FEATURE_ARAT)) {
lapic_clockevent.features &= ~CLOCK_EVT_FEAT_C3STOP;
/* Make LAPIC timer preferable over percpu HPET */
lapic_clockevent.rating = 150;
}
memcpy(levt, &lapic_clockevent, sizeof(*levt));
levt->cpumask = cpumask_of(smp_processor_id());
if (this_cpu_has(X86_FEATURE_TSC_DEADLINE_TIMER)) {
levt->name = "lapic-deadline";
levt->features &= ~(CLOCK_EVT_FEAT_PERIODIC |
CLOCK_EVT_FEAT_DUMMY);
levt->set_next_event = lapic_next_deadline;
clockevents_config_and_register(levt,
tsc_khz * (1000 / TSC_DIVISOR),
0xF, ~0UL);
} else
clockevents_register_device(levt);
}
/*
* Install the updated TSC frequency from recalibration at the TSC
* deadline clockevent devices.
*/
static void __lapic_update_tsc_freq(void *info)
{
struct clock_event_device *levt = this_cpu_ptr(&lapic_events);
if (!this_cpu_has(X86_FEATURE_TSC_DEADLINE_TIMER))
return;
clockevents_update_freq(levt, tsc_khz * (1000 / TSC_DIVISOR));
}
void lapic_update_tsc_freq(void)
{
/*
* The clockevent device's ->mult and ->shift can both be
* changed. In order to avoid races, schedule the frequency
* update code on each CPU.
*/
on_each_cpu(__lapic_update_tsc_freq, NULL, 0);
}
/*
* In this functions we calibrate APIC bus clocks to the external timer.
*
* We want to do the calibration only once since we want to have local timer
* irqs synchronous. CPUs connected by the same APIC bus have the very same bus
* frequency.
*
* This was previously done by reading the PIT/HPET and waiting for a wrap
* around to find out, that a tick has elapsed. I have a box, where the PIT
* readout is broken, so it never gets out of the wait loop again. This was
* also reported by others.
*
* Monitoring the jiffies value is inaccurate and the clockevents
* infrastructure allows us to do a simple substitution of the interrupt
* handler.
*
* The calibration routine also uses the pm_timer when possible, as the PIT
* happens to run way too slow (factor 2.3 on my VAIO CoreDuo, which goes
* back to normal later in the boot process).
*/
#define LAPIC_CAL_LOOPS (HZ/10)
static __initdata int lapic_cal_loops = -1;
static __initdata long lapic_cal_t1, lapic_cal_t2;
static __initdata unsigned long long lapic_cal_tsc1, lapic_cal_tsc2;
static __initdata u32 lapic_cal_pm1, lapic_cal_pm2;
static __initdata unsigned long lapic_cal_j1, lapic_cal_j2;
/*
* Temporary interrupt handler and polled calibration function.
*/
static void __init lapic_cal_handler(struct clock_event_device *dev)
{
unsigned long long tsc = 0;
long tapic = apic_read(APIC_TMCCT);
u32 pm = acpi_pm_read_early();
if (boot_cpu_has(X86_FEATURE_TSC))
tsc = rdtsc();
switch (lapic_cal_loops++) {
case 0:
lapic_cal_t1 = tapic;
lapic_cal_tsc1 = tsc;
lapic_cal_pm1 = pm;
lapic_cal_j1 = jiffies;
break;
case LAPIC_CAL_LOOPS:
lapic_cal_t2 = tapic;
lapic_cal_tsc2 = tsc;
if (pm < lapic_cal_pm1)
pm += ACPI_PM_OVRRUN;
lapic_cal_pm2 = pm;
lapic_cal_j2 = jiffies;
break;
}
}
static int __init
calibrate_by_pmtimer(u32 deltapm, long *delta, long *deltatsc)
{
const long pm_100ms = PMTMR_TICKS_PER_SEC / 10;
const long pm_thresh = pm_100ms / 100;
unsigned long mult;
u64 res;
#ifndef CONFIG_X86_PM_TIMER
return -1;
#endif
apic_pr_verbose("... PM-Timer delta = %u\n", deltapm);
/* Check, if the PM timer is available */
if (!deltapm)
return -1;
mult = clocksource_hz2mult(PMTMR_TICKS_PER_SEC, 22);
if (deltapm > (pm_100ms - pm_thresh) &&
deltapm < (pm_100ms + pm_thresh)) {
apic_pr_verbose("... PM-Timer result ok\n");
return 0;
}
res = (((u64)deltapm) * mult) >> 22;
do_div(res, 1000000);
pr_warn("APIC calibration not consistent with PM-Timer: %ldms instead of 100ms\n",
(long)res);
/* Correct the lapic counter value */
res = (((u64)(*delta)) * pm_100ms);
do_div(res, deltapm);
pr_info("APIC delta adjusted to PM-Timer: "
"%lu (%ld)\n", (unsigned long)res, *delta);
*delta = (long)res;
/* Correct the tsc counter value */
if (boot_cpu_has(X86_FEATURE_TSC)) {
res = (((u64)(*deltatsc)) * pm_100ms);
do_div(res, deltapm);
apic_pr_verbose("TSC delta adjusted to PM-Timer: %lu (%ld)\n",
(unsigned long)res, *deltatsc);
*deltatsc = (long)res;
}
return 0;
}
static int __init lapic_init_clockevent(void)
{
if (!lapic_timer_period)
return -1;
/* Calculate the scaled math multiplication factor */
lapic_clockevent.mult = div_sc(lapic_timer_period/APIC_DIVISOR,
TICK_NSEC, lapic_clockevent.shift);
lapic_clockevent.max_delta_ns =
clockevent_delta2ns(0x7FFFFFFF, &lapic_clockevent);
lapic_clockevent.max_delta_ticks = 0x7FFFFFFF;
lapic_clockevent.min_delta_ns =
clockevent_delta2ns(0xF, &lapic_clockevent);
lapic_clockevent.min_delta_ticks = 0xF;
return 0;
}
bool __init apic_needs_pit(void)
{
/*
* If the frequencies are not known, PIT is required for both TSC
* and apic timer calibration.
*/
if (!tsc_khz || !cpu_khz)
return true;
/* Is there an APIC at all or is it disabled? */
if (!boot_cpu_has(X86_FEATURE_APIC) || apic_is_disabled)
return true;
/*
* If interrupt delivery mode is legacy PIC or virtual wire without
* configuration, the local APIC timer won't be set up. Make sure
* that the PIT is initialized.
*/
if (apic_intr_mode == APIC_PIC ||
apic_intr_mode == APIC_VIRTUAL_WIRE_NO_CONFIG)
return true;
/* Virt guests may lack ARAT, but still have DEADLINE */
if (!boot_cpu_has(X86_FEATURE_ARAT))
return true;
/* Deadline timer is based on TSC so no further PIT action required */
if (boot_cpu_has(X86_FEATURE_TSC_DEADLINE_TIMER))
return false;
/* APIC timer disabled? */
if (disable_apic_timer)
return true;
/*
* The APIC timer frequency is known already, no PIT calibration
* required. If unknown, let the PIT be initialized.
*/
return lapic_timer_period == 0;
}
static int __init calibrate_APIC_clock(void)
{
struct clock_event_device *levt = this_cpu_ptr(&lapic_events);
u64 tsc_perj = 0, tsc_start = 0;
unsigned long jif_start;
unsigned long deltaj;
long delta, deltatsc;
int pm_referenced = 0;
if (boot_cpu_has(X86_FEATURE_TSC_DEADLINE_TIMER))
return 0;
/*
* Check if lapic timer has already been calibrated by platform
* specific routine, such as tsc calibration code. If so just fill
* in the clockevent structure and return.
*/
if (!lapic_init_clockevent()) {
apic_pr_verbose("lapic timer already calibrated %d\n", lapic_timer_period);
/*
* Direct calibration methods must have an always running
* local APIC timer, no need for broadcast timer.
*/
lapic_clockevent.features &= ~CLOCK_EVT_FEAT_DUMMY;
return 0;
}
apic_pr_verbose("Using local APIC timer interrupts. Calibrating APIC timer ...\n");
/*
* There are platforms w/o global clockevent devices. Instead of
* making the calibration conditional on that, use a polling based
* approach everywhere.
*/
local_irq_disable();
/*
* Setup the APIC counter to maximum. There is no way the lapic
* can underflow in the 100ms detection time frame
*/
__setup_APIC_LVTT(0xffffffff, 0, 0);
/*
* Methods to terminate the calibration loop:
* 1) Global clockevent if available (jiffies)
* 2) TSC if available and frequency is known
*/
jif_start = READ_ONCE(jiffies);
if (tsc_khz) {
tsc_start = rdtsc();
tsc_perj = div_u64((u64)tsc_khz * 1000, HZ);
}
/*
* Enable interrupts so the tick can fire, if a global
* clockevent device is available
*/
local_irq_enable();
while (lapic_cal_loops <= LAPIC_CAL_LOOPS) {
/* Wait for a tick to elapse */
while (1) {
if (tsc_khz) {
u64 tsc_now = rdtsc();
if ((tsc_now - tsc_start) >= tsc_perj) {
tsc_start += tsc_perj;
break;
}
} else {
unsigned long jif_now = READ_ONCE(jiffies);
if (time_after(jif_now, jif_start)) {
jif_start = jif_now;
break;
}
}
cpu_relax();
}
/* Invoke the calibration routine */
local_irq_disable();
lapic_cal_handler(NULL);
local_irq_enable();
}
local_irq_disable();
/* Build delta t1-t2 as apic timer counts down */
delta = lapic_cal_t1 - lapic_cal_t2;
apic_pr_verbose("... lapic delta = %ld\n", delta);
deltatsc = (long)(lapic_cal_tsc2 - lapic_cal_tsc1);
/* we trust the PM based calibration if possible */
pm_referenced = !calibrate_by_pmtimer(lapic_cal_pm2 - lapic_cal_pm1,
&delta, &deltatsc);
lapic_timer_period = (delta * APIC_DIVISOR) / LAPIC_CAL_LOOPS;
lapic_init_clockevent();
apic_pr_verbose("..... delta %ld\n", delta);
apic_pr_verbose("..... mult: %u\n", lapic_clockevent.mult);
apic_pr_verbose("..... calibration result: %u\n", lapic_timer_period);
if (boot_cpu_has(X86_FEATURE_TSC)) {
apic_pr_verbose("..... CPU clock speed is %ld.%04ld MHz.\n",
(deltatsc / LAPIC_CAL_LOOPS) / (1000000 / HZ),
(deltatsc / LAPIC_CAL_LOOPS) % (1000000 / HZ));
}
apic_pr_verbose("..... host bus clock speed is %u.%04u MHz.\n",
lapic_timer_period / (1000000 / HZ),
lapic_timer_period % (1000000 / HZ));
/*
* Do a sanity check on the APIC calibration result
*/
if (lapic_timer_period < (1000000 / HZ)) {
local_irq_enable();
pr_warn("APIC frequency too slow, disabling apic timer\n");
return -1;
}
levt->features &= ~CLOCK_EVT_FEAT_DUMMY;
/*
* PM timer calibration failed or not turned on so lets try APIC
* timer based calibration, if a global clockevent device is
* available.
*/
if (!pm_referenced && global_clock_event) {
apic_pr_verbose("... verify APIC timer\n");
/*
* Setup the apic timer manually
*/
levt->event_handler = lapic_cal_handler;
lapic_timer_set_periodic(levt);
lapic_cal_loops = -1;
/* Let the interrupts run */
local_irq_enable();
while (lapic_cal_loops <= LAPIC_CAL_LOOPS)
cpu_relax();
/* Stop the lapic timer */
local_irq_disable();
lapic_timer_shutdown(levt);
/* Jiffies delta */
deltaj = lapic_cal_j2 - lapic_cal_j1;
apic_pr_verbose("... jiffies delta = %lu\n", deltaj);
/* Check, if the jiffies result is consistent */
if (deltaj >= LAPIC_CAL_LOOPS-2 && deltaj <= LAPIC_CAL_LOOPS+2)
apic_pr_verbose("... jiffies result ok\n");
else
levt->features |= CLOCK_EVT_FEAT_DUMMY;
}
local_irq_enable();
if (levt->features & CLOCK_EVT_FEAT_DUMMY) {
pr_warn("APIC timer disabled due to verification failure\n");
return -1;
}
return 0;
}
/*
* Setup the boot APIC
*
* Calibrate and verify the result.
*/
void __init setup_boot_APIC_clock(void)
{
/*
* The local apic timer can be disabled via the kernel
* commandline or from the CPU detection code. Register the lapic
* timer as a dummy clock event source on SMP systems, so the
* broadcast mechanism is used. On UP systems simply ignore it.
*/
if (disable_apic_timer) {
pr_info("Disabling APIC timer\n");
/* No broadcast on UP ! */
if (num_possible_cpus() > 1) {
lapic_clockevent.mult = 1;
setup_APIC_timer();
}
return;
}
if (calibrate_APIC_clock()) {
/* No broadcast on UP ! */
if (num_possible_cpus() > 1)
setup_APIC_timer();
return;
}
/*
* If nmi_watchdog is set to IO_APIC, we need the
* PIT/HPET going. Otherwise register lapic as a dummy
* device.
*/
lapic_clockevent.features &= ~CLOCK_EVT_FEAT_DUMMY;
/* Setup the lapic or request the broadcast */
setup_APIC_timer();
amd_e400_c1e_apic_setup();
}
void setup_secondary_APIC_clock(void)
{
setup_APIC_timer();
amd_e400_c1e_apic_setup();
}
/*
* The guts of the apic timer interrupt
*/
static void local_apic_timer_interrupt(void)
{
struct clock_event_device *evt = this_cpu_ptr(&lapic_events);
/*
* Normally we should not be here till LAPIC has been initialized but
* in some cases like kdump, its possible that there is a pending LAPIC
* timer interrupt from previous kernel's context and is delivered in
* new kernel the moment interrupts are enabled.
*
* Interrupts are enabled early and LAPIC is setup much later, hence
* its possible that when we get here evt->event_handler is NULL.
* Check for event_handler being NULL and discard the interrupt as
* spurious.
*/
if (!evt->event_handler) {
pr_warn("Spurious LAPIC timer interrupt on cpu %d\n",
smp_processor_id());
/* Switch it off */
lapic_timer_shutdown(evt);
return;
}
/*
* the NMI deadlock-detector uses this.
*/
inc_irq_stat(apic_timer_irqs);
evt->event_handler(evt);
}
/*
* Local APIC timer interrupt. This is the most natural way for doing
* local interrupts, but local timer interrupts can be emulated by
* broadcast interrupts too. [in case the hw doesn't support APIC timers]
*
* [ if a single-CPU system runs an SMP kernel then we call the local
* interrupt as well. Thus we cannot inline the local irq ... ]
*/
DEFINE_IDTENTRY_SYSVEC(sysvec_apic_timer_interrupt)
{
struct pt_regs *old_regs = set_irq_regs(regs);
apic_eoi();
trace_local_timer_entry(LOCAL_TIMER_VECTOR);
local_apic_timer_interrupt();
trace_local_timer_exit(LOCAL_TIMER_VECTOR);
set_irq_regs(old_regs);
}
/*
* Local APIC start and shutdown
*/
/**
* clear_local_APIC - shutdown the local APIC
*
* This is called, when a CPU is disabled and before rebooting, so the state of
* the local APIC has no dangling leftovers. Also used to cleanout any BIOS
* leftovers during boot.
*/
void clear_local_APIC(void)
{
int maxlvt;
u32 v;
if (!apic_accessible())
return;
maxlvt = lapic_get_maxlvt();
/*
* Masking an LVT entry can trigger a local APIC error
* if the vector is zero. Mask LVTERR first to prevent this.
*/
if (maxlvt >= 3) {
v = ERROR_APIC_VECTOR; /* any non-zero vector will do */
apic_write(APIC_LVTERR, v | APIC_LVT_MASKED);
}
/*
* Careful: we have to set masks only first to deassert
* any level-triggered sources.
*/
v = apic_read(APIC_LVTT);
apic_write(APIC_LVTT, v | APIC_LVT_MASKED);
v = apic_read(APIC_LVT0);
apic_write(APIC_LVT0, v | APIC_LVT_MASKED);
v = apic_read(APIC_LVT1);
apic_write(APIC_LVT1, v | APIC_LVT_MASKED);
if (maxlvt >= 4) {
v = apic_read(APIC_LVTPC);
apic_write(APIC_LVTPC, v | APIC_LVT_MASKED);
}
/* lets not touch this if we didn't frob it */
#ifdef CONFIG_X86_THERMAL_VECTOR
if (maxlvt >= 5) {
v = apic_read(APIC_LVTTHMR);
apic_write(APIC_LVTTHMR, v | APIC_LVT_MASKED);
}
#endif
#ifdef CONFIG_X86_MCE_INTEL
if (maxlvt >= 6) {
v = apic_read(APIC_LVTCMCI);
if (!(v & APIC_LVT_MASKED))
apic_write(APIC_LVTCMCI, v | APIC_LVT_MASKED);
}
#endif
/*
* Clean APIC state for other OSs:
*/
apic_write(APIC_LVTT, APIC_LVT_MASKED);
apic_write(APIC_LVT0, APIC_LVT_MASKED);
apic_write(APIC_LVT1, APIC_LVT_MASKED);
if (maxlvt >= 3)
apic_write(APIC_LVTERR, APIC_LVT_MASKED);
if (maxlvt >= 4)
apic_write(APIC_LVTPC, APIC_LVT_MASKED);
/* Integrated APIC (!82489DX) ? */
if (lapic_is_integrated()) {
if (maxlvt > 3)
/* Clear ESR due to Pentium errata 3AP and 11AP */
apic_write(APIC_ESR, 0);
apic_read(APIC_ESR);
}
}
/**
* apic_soft_disable - Clears and software disables the local APIC on hotplug
*
* Contrary to disable_local_APIC() this does not touch the enable bit in
* MSR_IA32_APICBASE. Clearing that bit on systems based on the 3 wire APIC
* bus would require a hardware reset as the APIC would lose track of bus
* arbitration. On systems with FSB delivery APICBASE could be disabled,
* but it has to be guaranteed that no interrupt is sent to the APIC while
* in that state and it's not clear from the SDM whether it still responds
* to INIT/SIPI messages. Stay on the safe side and use software disable.
*/
void apic_soft_disable(void)
{
u32 value;
clear_local_APIC();
/* Soft disable APIC (implies clearing of registers for 82489DX!). */
value = apic_read(APIC_SPIV);
value &= ~APIC_SPIV_APIC_ENABLED;
apic_write(APIC_SPIV, value);
}
/**
* disable_local_APIC - clear and disable the local APIC
*/
void disable_local_APIC(void)
{
if (!apic_accessible())
return;
apic_soft_disable();
#ifdef CONFIG_X86_32
/*
* When LAPIC was disabled by the BIOS and enabled by the kernel,
* restore the disabled state.
*/
if (enabled_via_apicbase) {
unsigned int l, h;
rdmsr(MSR_IA32_APICBASE, l, h);
l &= ~MSR_IA32_APICBASE_ENABLE;
wrmsr(MSR_IA32_APICBASE, l, h);
}
#endif
}
/*
* If Linux enabled the LAPIC against the BIOS default disable it down before
* re-entering the BIOS on shutdown. Otherwise the BIOS may get confused and
* not power-off. Additionally clear all LVT entries before disable_local_APIC
* for the case where Linux didn't enable the LAPIC.
*/
void lapic_shutdown(void)
{
unsigned long flags;
if (!boot_cpu_has(X86_FEATURE_APIC) && !apic_from_smp_config())
return;
local_irq_save(flags);
#ifdef CONFIG_X86_32
if (!enabled_via_apicbase)
clear_local_APIC();
else
#endif
disable_local_APIC();
local_irq_restore(flags);
}
/**
* sync_Arb_IDs - synchronize APIC bus arbitration IDs
*/
void __init sync_Arb_IDs(void)
{
/*
* Unsupported on P4 - see Intel Dev. Manual Vol. 3, Ch. 8.6.1 And not
* needed on AMD.
*/
if (modern_apic() || boot_cpu_data.x86_vendor == X86_VENDOR_AMD)
return;
/*
* Wait for idle.
*/
apic_wait_icr_idle();
apic_pr_debug("Synchronizing Arb IDs.\n");
apic_write(APIC_ICR, APIC_DEST_ALLINC | APIC_INT_LEVELTRIG | APIC_DM_INIT);
}
enum apic_intr_mode_id apic_intr_mode __ro_after_init;
static int __init __apic_intr_mode_select(void)
{
/* Check kernel option */
if (apic_is_disabled) {
pr_info("APIC disabled via kernel command line\n");
return APIC_PIC;
}
/* Check BIOS */
#ifdef CONFIG_X86_64
/* On 64-bit, the APIC must be integrated, Check local APIC only */
if (!boot_cpu_has(X86_FEATURE_APIC)) {
apic_is_disabled = true;
pr_info("APIC disabled by BIOS\n");
return APIC_PIC;
}
#else
/* On 32-bit, the APIC may be integrated APIC or 82489DX */
/* Neither 82489DX nor integrated APIC ? */
if (!boot_cpu_has(X86_FEATURE_APIC) && !smp_found_config) {
apic_is_disabled = true;
return APIC_PIC;
}
/* If the BIOS pretends there is an integrated APIC ? */
if (!boot_cpu_has(X86_FEATURE_APIC) &&
APIC_INTEGRATED(boot_cpu_apic_version)) {
apic_is_disabled = true;
pr_err(FW_BUG "Local APIC not detected, force emulation\n");
return APIC_PIC;
}
#endif
/* Check MP table or ACPI MADT configuration */
if (!smp_found_config) {
disable_ioapic_support();
if (!acpi_lapic) {
pr_info("APIC: ACPI MADT or MP tables are not detected\n");
return APIC_VIRTUAL_WIRE_NO_CONFIG;
}
return APIC_VIRTUAL_WIRE;
}
#ifdef CONFIG_SMP
/* If SMP should be disabled, then really disable it! */
if (!setup_max_cpus) {
pr_info("APIC: SMP mode deactivated\n");
return APIC_SYMMETRIC_IO_NO_ROUTING;
}
#endif
return APIC_SYMMETRIC_IO;
}
/* Select the interrupt delivery mode for the BSP */
void __init apic_intr_mode_select(void)
{
apic_intr_mode = __apic_intr_mode_select();
}
/*
* An initial setup of the virtual wire mode.
*/
void __init init_bsp_APIC(void)
{
unsigned int value;
/*
* Don't do the setup now if we have a SMP BIOS as the
* through-I/O-APIC virtual wire mode might be active.
*/
if (smp_found_config || !boot_cpu_has(X86_FEATURE_APIC))
return;
/*
* Do not trust the local APIC being empty at bootup.
*/
clear_local_APIC();
/*
* Enable APIC.
*/
value = apic_read(APIC_SPIV);
value &= ~APIC_VECTOR_MASK;
value |= APIC_SPIV_APIC_ENABLED;
#ifdef CONFIG_X86_32
/* This bit is reserved on P4/Xeon and should be cleared */
if ((boot_cpu_data.x86_vendor == X86_VENDOR_INTEL) &&
(boot_cpu_data.x86 == 15))
value &= ~APIC_SPIV_FOCUS_DISABLED;
else
#endif
value |= APIC_SPIV_FOCUS_DISABLED;
value |= SPURIOUS_APIC_VECTOR;
apic_write(APIC_SPIV, value);
/*
* Set up the virtual wire mode.
*/
apic_write(APIC_LVT0, APIC_DM_EXTINT);
value = APIC_DM_NMI;
if (!lapic_is_integrated()) /* 82489DX */
value |= APIC_LVT_LEVEL_TRIGGER;
if (apic_extnmi == APIC_EXTNMI_NONE)
value |= APIC_LVT_MASKED;
apic_write(APIC_LVT1, value);
}
static void __init apic_bsp_setup(bool upmode);
/* Init the interrupt delivery mode for the BSP */
void __init apic_intr_mode_init(void)
{
bool upmode = IS_ENABLED(CONFIG_UP_LATE_INIT);
switch (apic_intr_mode) {
case APIC_PIC:
pr_info("APIC: Keep in PIC mode(8259)\n");
return;
case APIC_VIRTUAL_WIRE:
pr_info("APIC: Switch to virtual wire mode setup\n");
break;
case APIC_VIRTUAL_WIRE_NO_CONFIG:
pr_info("APIC: Switch to virtual wire mode setup with no configuration\n");
upmode = true;
break;
case APIC_SYMMETRIC_IO:
pr_info("APIC: Switch to symmetric I/O mode setup\n");
break;
case APIC_SYMMETRIC_IO_NO_ROUTING:
pr_info("APIC: Switch to symmetric I/O mode setup in no SMP routine\n");
break;
}
x86_64_probe_apic();
x86_32_install_bigsmp();
if (x86_platform.apic_post_init)
x86_platform.apic_post_init();
apic_bsp_setup(upmode);
}
static void lapic_setup_esr(void)
{
unsigned int oldvalue, value, maxlvt;
if (!lapic_is_integrated()) {
pr_info("No ESR for 82489DX.\n");
return;
}
if (apic->disable_esr) {
/*
* Something untraceable is creating bad interrupts on
* secondary quads ... for the moment, just leave the
* ESR disabled - we can't do anything useful with the
* errors anyway - mbligh
*/
pr_info("Leaving ESR disabled.\n");
return;
}
maxlvt = lapic_get_maxlvt();
if (maxlvt > 3) /* Due to the Pentium erratum 3AP. */
apic_write(APIC_ESR, 0);
oldvalue = apic_read(APIC_ESR);
/* enables sending errors */
value = ERROR_APIC_VECTOR;
apic_write(APIC_LVTERR, value);
/*
* spec says clear errors after enabling vector.
*/
if (maxlvt > 3)
apic_write(APIC_ESR, 0);
value = apic_read(APIC_ESR);
if (value != oldvalue) {
apic_pr_verbose("ESR value before enabling vector: 0x%08x after: 0x%08x\n",
oldvalue, value);
}
}
#define APIC_IR_REGS APIC_ISR_NR
#define APIC_IR_BITS (APIC_IR_REGS * 32)
#define APIC_IR_MAPSIZE (APIC_IR_BITS / BITS_PER_LONG)
union apic_ir {
unsigned long map[APIC_IR_MAPSIZE];
u32 regs[APIC_IR_REGS];
};
static bool apic_check_and_ack(union apic_ir *irr, union apic_ir *isr)
{
int i, bit;
/* Read the IRRs */
for (i = 0; i < APIC_IR_REGS; i++)
irr->regs[i] = apic_read(APIC_IRR + i * 0x10);
/* Read the ISRs */
for (i = 0; i < APIC_IR_REGS; i++)
isr->regs[i] = apic_read(APIC_ISR + i * 0x10);
/*
* If the ISR map is not empty. ACK the APIC and run another round
* to verify whether a pending IRR has been unblocked and turned
* into a ISR.
*/
if (!bitmap_empty(isr->map, APIC_IR_BITS)) {
/*
* There can be multiple ISR bits set when a high priority
* interrupt preempted a lower priority one. Issue an ACK
* per set bit.
*/
for_each_set_bit(bit, isr->map, APIC_IR_BITS)
apic_eoi();
return true;
}
return !bitmap_empty(irr->map, APIC_IR_BITS);
}
/*
* After a crash, we no longer service the interrupts and a pending
* interrupt from previous kernel might still have ISR bit set.
*
* Most probably by now the CPU has serviced that pending interrupt and it
* might not have done the apic_eoi() because it thought, interrupt
* came from i8259 as ExtInt. LAPIC did not get EOI so it does not clear
* the ISR bit and cpu thinks it has already serviced the interrupt. Hence
* a vector might get locked. It was noticed for timer irq (vector
* 0x31). Issue an extra EOI to clear ISR.
*
* If there are pending IRR bits they turn into ISR bits after a higher
* priority ISR bit has been acked.
*/
static void apic_pending_intr_clear(void)
{
union apic_ir irr, isr;
unsigned int i;
/* 512 loops are way oversized and give the APIC a chance to obey. */
for (i = 0; i < 512; i++) {
if (!apic_check_and_ack(&irr, &isr))
return;
}
/* Dump the IRR/ISR content if that failed */
pr_warn("APIC: Stale IRR: %256pb ISR: %256pb\n", irr.map, isr.map);
}
/**
* setup_local_APIC - setup the local APIC
*
* Used to setup local APIC while initializing BSP or bringing up APs.
* Always called with preemption disabled.
*/
static void setup_local_APIC(void)
{
int cpu = smp_processor_id();
unsigned int value;
if (apic_is_disabled) {
disable_ioapic_support();
return;
}
/*
* If this comes from kexec/kcrash the APIC might be enabled in
* SPIV. Soft disable it before doing further initialization.
*/
value = apic_read(APIC_SPIV);
value &= ~APIC_SPIV_APIC_ENABLED;
apic_write(APIC_SPIV, value);
#ifdef CONFIG_X86_32
/* Pound the ESR really hard over the head with a big hammer - mbligh */
if (lapic_is_integrated() && apic->disable_esr) {
apic_write(APIC_ESR, 0);
apic_write(APIC_ESR, 0);
apic_write(APIC_ESR, 0);
apic_write(APIC_ESR, 0);
}
#endif
/*
* Intel recommends to set DFR, LDR and TPR before enabling
* an APIC. See e.g. "AP-388 82489DX User's Manual" (Intel
* document number 292116).
*
* Except for APICs which operate in physical destination mode.
*/
if (apic->init_apic_ldr)
apic->init_apic_ldr();
/*
* Set Task Priority to 'accept all except vectors 0-31'. An APIC
* vector in the 16-31 range could be delivered if TPR == 0, but we
* would think it's an exception and terrible things will happen. We
* never change this later on.
*/
value = apic_read(APIC_TASKPRI);
value &= ~APIC_TPRI_MASK;
value |= 0x10;
apic_write(APIC_TASKPRI, value);
/* Clear eventually stale ISR/IRR bits */
apic_pending_intr_clear();
/*
* Now that we are all set up, enable the APIC
*/
value = apic_read(APIC_SPIV);
value &= ~APIC_VECTOR_MASK;
/*
* Enable APIC
*/
value |= APIC_SPIV_APIC_ENABLED;
#ifdef CONFIG_X86_32
/*
* Some unknown Intel IO/APIC (or APIC) errata is biting us with
* certain networking cards. If high frequency interrupts are
* happening on a particular IOAPIC pin, plus the IOAPIC routing
* entry is masked/unmasked at a high rate as well then sooner or
* later IOAPIC line gets 'stuck', no more interrupts are received
* from the device. If focus CPU is disabled then the hang goes
* away, oh well :-(
*
* [ This bug can be reproduced easily with a level-triggered
* PCI Ne2000 networking cards and PII/PIII processors, dual
* BX chipset. ]
*/
/*
* Actually disabling the focus CPU check just makes the hang less
* frequent as it makes the interrupt distribution model be more
* like LRU than MRU (the short-term load is more even across CPUs).
*/
/*
* - enable focus processor (bit==0)
* - 64bit mode always use processor focus
* so no need to set it
*/
value &= ~APIC_SPIV_FOCUS_DISABLED;
#endif
/*
* Set spurious IRQ vector
*/
value |= SPURIOUS_APIC_VECTOR;
apic_write(APIC_SPIV, value);
perf_events_lapic_init();
/*
* Set up LVT0, LVT1:
*
* set up through-local-APIC on the boot CPU's LINT0. This is not
* strictly necessary in pure symmetric-IO mode, but sometimes
* we delegate interrupts to the 8259A.
*/
/*
* TODO: set up through-local-APIC from through-I/O-APIC? --macro
*/
value = apic_read(APIC_LVT0) & APIC_LVT_MASKED;
if (!cpu && (pic_mode || !value || ioapic_is_disabled)) {
value = APIC_DM_EXTINT;
apic_pr_verbose("Enabled ExtINT on CPU#%d\n", cpu);
} else {
value = APIC_DM_EXTINT | APIC_LVT_MASKED;
apic_pr_verbose("Masked ExtINT on CPU#%d\n", cpu);
}
apic_write(APIC_LVT0, value);
/*
* Only the BSP sees the LINT1 NMI signal by default. This can be
* modified by apic_extnmi= boot option.
*/
if ((!cpu && apic_extnmi != APIC_EXTNMI_NONE) ||
apic_extnmi == APIC_EXTNMI_ALL)
value = APIC_DM_NMI;
else
value = APIC_DM_NMI | APIC_LVT_MASKED;
/* Is 82489DX ? */
if (!lapic_is_integrated())
value |= APIC_LVT_LEVEL_TRIGGER;
apic_write(APIC_LVT1, value);
#ifdef CONFIG_X86_MCE_INTEL
/* Recheck CMCI information after local APIC is up on CPU #0 */
if (!cpu)
cmci_recheck();
#endif
}
static void end_local_APIC_setup(void)
{
lapic_setup_esr();
#ifdef CONFIG_X86_32
{
unsigned int value;
/* Disable the local apic timer */
value = apic_read(APIC_LVTT);
value |= (APIC_LVT_MASKED | LOCAL_TIMER_VECTOR);
apic_write(APIC_LVTT, value);
}
#endif
apic_pm_activate();
}
/*
* APIC setup function for application processors. Called from smpboot.c
*/
void apic_ap_setup(void)
{
setup_local_APIC();
end_local_APIC_setup();
}
static __init void apic_read_boot_cpu_id(bool x2apic)
{
/*
* This can be invoked from check_x2apic() before the APIC has been
* selected. But that code knows for sure that the BIOS enabled
* X2APIC.
*/
if (x2apic) {
boot_cpu_physical_apicid = native_apic_msr_read(APIC_ID);
boot_cpu_apic_version = GET_APIC_VERSION(native_apic_msr_read(APIC_LVR));
} else {
boot_cpu_physical_apicid = read_apic_id();
boot_cpu_apic_version = GET_APIC_VERSION(apic_read(APIC_LVR));
}
topology_register_boot_apic(boot_cpu_physical_apicid);
x86_32_probe_bigsmp_early();
}
#ifdef CONFIG_X86_X2APIC
int x2apic_mode;
EXPORT_SYMBOL_GPL(x2apic_mode);
enum {
X2APIC_OFF,
X2APIC_DISABLED,
/* All states below here have X2APIC enabled */
X2APIC_ON,
X2APIC_ON_LOCKED
};
static int x2apic_state;
static bool x2apic_hw_locked(void)
{
u64 x86_arch_cap_msr;
u64 msr;
x86_arch_cap_msr = x86_read_arch_cap_msr();
if (x86_arch_cap_msr & ARCH_CAP_XAPIC_DISABLE) {
rdmsrl(MSR_IA32_XAPIC_DISABLE_STATUS, msr);
return (msr & LEGACY_XAPIC_DISABLED);
}
return false;
}
static void __x2apic_disable(void)
{
u64 msr;
if (!boot_cpu_has(X86_FEATURE_APIC))
return;
rdmsrl(MSR_IA32_APICBASE, msr);
if (!(msr & X2APIC_ENABLE))
return;
/* Disable xapic and x2apic first and then reenable xapic mode */
wrmsrl(MSR_IA32_APICBASE, msr & ~(X2APIC_ENABLE | XAPIC_ENABLE));
wrmsrl(MSR_IA32_APICBASE, msr & ~X2APIC_ENABLE);
printk_once(KERN_INFO "x2apic disabled\n");
}
static void __x2apic_enable(void)
{
u64 msr;
rdmsrl(MSR_IA32_APICBASE, msr);
if (msr & X2APIC_ENABLE)
return;
wrmsrl(MSR_IA32_APICBASE, msr | X2APIC_ENABLE);
printk_once(KERN_INFO "x2apic enabled\n");
}
static int __init setup_nox2apic(char *str)
{
if (x2apic_enabled()) {
u32 apicid = native_apic_msr_read(APIC_ID);
if (apicid >= 255) {
pr_warn("Apicid: %08x, cannot enforce nox2apic\n",
apicid);
return 0;
}
if (x2apic_hw_locked()) {
pr_warn("APIC locked in x2apic mode, can't disable\n");
return 0;
}
pr_warn("x2apic already enabled.\n");
__x2apic_disable();
}
setup_clear_cpu_cap(X86_FEATURE_X2APIC);
x2apic_state = X2APIC_DISABLED;
x2apic_mode = 0;
return 0;
}
early_param("nox2apic", setup_nox2apic);
/* Called from cpu_init() to enable x2apic on (secondary) cpus */
void x2apic_setup(void)
{
/*
* Try to make the AP's APIC state match that of the BSP, but if the
* BSP is unlocked and the AP is locked then there is a state mismatch.
* Warn about the mismatch in case a GP fault occurs due to a locked AP
* trying to be turned off.
*/
if (x2apic_state != X2APIC_ON_LOCKED && x2apic_hw_locked())
pr_warn("x2apic lock mismatch between BSP and AP.\n");
/*
* If x2apic is not in ON or LOCKED state, disable it if already enabled
* from BIOS.
*/
if (x2apic_state < X2APIC_ON) {
__x2apic_disable();
return;
}
__x2apic_enable();
}
static __init void apic_set_fixmap(bool read_apic);
static __init void x2apic_disable(void)
{
u32 x2apic_id;
if (x2apic_state < X2APIC_ON)
return;
x2apic_id = read_apic_id();
if (x2apic_id >= 255)
panic("Cannot disable x2apic, id: %08x\n", x2apic_id);
if (x2apic_hw_locked()) {
pr_warn("Cannot disable locked x2apic, id: %08x\n", x2apic_id);
return;
}
__x2apic_disable();
x2apic_mode = 0;
x2apic_state = X2APIC_DISABLED;
/*
* Don't reread the APIC ID as it was already done from
* check_x2apic() and the APIC driver still is a x2APIC variant,
* which fails to do the read after x2APIC was disabled.
*/
apic_set_fixmap(false);
}
static __init void x2apic_enable(void)
{
if (x2apic_state != X2APIC_OFF)
return;
x2apic_mode = 1;
x2apic_state = X2APIC_ON;
__x2apic_enable();
}
static __init void try_to_enable_x2apic(int remap_mode)
{
if (x2apic_state == X2APIC_DISABLED)
return;
if (remap_mode != IRQ_REMAP_X2APIC_MODE) {
u32 apic_limit = 255;
/*
* Using X2APIC without IR is not architecturally supported
* on bare metal but may be supported in guests.
*/
if (!x86_init.hyper.x2apic_available()) {
pr_info("x2apic: IRQ remapping doesn't support X2APIC mode\n");
x2apic_disable();
return;
}
/*
* If the hypervisor supports extended destination ID in
* MSI, that increases the maximum APIC ID that can be
* used for non-remapped IRQ domains.
*/
if (x86_init.hyper.msi_ext_dest_id()) {
virt_ext_dest_id = 1;
apic_limit = 32767;
}
/*
* Without IR, all CPUs can be addressed by IOAPIC/MSI only
* in physical mode, and CPUs with an APIC ID that cannot
* be addressed must not be brought online.
*/
x2apic_set_max_apicid(apic_limit);
x2apic_phys = 1;
}
x2apic_enable();
}
void __init check_x2apic(void)
{
if (x2apic_enabled()) {
pr_info("x2apic: enabled by BIOS, switching to x2apic ops\n");
x2apic_mode = 1;
if (x2apic_hw_locked())
x2apic_state = X2APIC_ON_LOCKED;
else
x2apic_state = X2APIC_ON;
apic_read_boot_cpu_id(true);
} else if (!boot_cpu_has(X86_FEATURE_X2APIC)) {
x2apic_state = X2APIC_DISABLED;
}
}
#else /* CONFIG_X86_X2APIC */
void __init check_x2apic(void)
{
if (!apic_is_x2apic_enabled())
return;
/*
* Checkme: Can we simply turn off x2APIC here instead of disabling the APIC?
*/
pr_err("Kernel does not support x2APIC, please recompile with CONFIG_X86_X2APIC.\n");
pr_err("Disabling APIC, expect reduced performance and functionality.\n");
apic_is_disabled = true;
setup_clear_cpu_cap(X86_FEATURE_APIC);
}
static inline void try_to_enable_x2apic(int remap_mode) { }
static inline void __x2apic_enable(void) { }
#endif /* !CONFIG_X86_X2APIC */
void __init enable_IR_x2apic(void)
{
unsigned long flags;
int ret, ir_stat;
if (ioapic_is_disabled) {
pr_info("Not enabling interrupt remapping due to skipped IO-APIC setup\n");
return;
}
ir_stat = irq_remapping_prepare();
if (ir_stat < 0 && !x2apic_supported())
return;
ret = save_ioapic_entries();
if (ret) {
pr_info("Saving IO-APIC state failed: %d\n", ret);
return;
}
local_irq_save(flags);
legacy_pic->mask_all();
mask_ioapic_entries();
/* If irq_remapping_prepare() succeeded, try to enable it */
if (ir_stat >= 0)
ir_stat = irq_remapping_enable();
/* ir_stat contains the remap mode or an error code */
try_to_enable_x2apic(ir_stat);
if (ir_stat < 0)
restore_ioapic_entries();
legacy_pic->restore_mask();
local_irq_restore(flags);
}
#ifdef CONFIG_X86_64
/*
* Detect and enable local APICs on non-SMP boards.
* Original code written by Keir Fraser.
* On AMD64 we trust the BIOS - if it says no APIC it is likely
* not correctly set up (usually the APIC timer won't work etc.)
*/
static bool __init detect_init_APIC(void)
{
if (!boot_cpu_has(X86_FEATURE_APIC)) {
pr_info("No local APIC present\n");
return false;
}
register_lapic_address(APIC_DEFAULT_PHYS_BASE);
return true;
}
#else
static bool __init apic_verify(unsigned long addr)
{
u32 features, h, l;
/*
* The APIC feature bit should now be enabled
* in `cpuid'
*/
features = cpuid_edx(1);
if (!(features & (1 << X86_FEATURE_APIC))) {
pr_warn("Could not enable APIC!\n");
return false;
}
set_cpu_cap(&boot_cpu_data, X86_FEATURE_APIC);
/* The BIOS may have set up the APIC at some other address */
if (boot_cpu_data.x86 >= 6) {
rdmsr(MSR_IA32_APICBASE, l, h);
if (l & MSR_IA32_APICBASE_ENABLE)
addr = l & MSR_IA32_APICBASE_BASE;
}
register_lapic_address(addr);
pr_info("Found and enabled local APIC!\n");
return true;
}
bool __init apic_force_enable(unsigned long addr)
{
u32 h, l;
if (apic_is_disabled)
return false;
/*
* Some BIOSes disable the local APIC in the APIC_BASE
* MSR. This can only be done in software for Intel P6 or later
* and AMD K7 (Model > 1) or later.
*/
if (boot_cpu_data.x86 >= 6) {
rdmsr(MSR_IA32_APICBASE, l, h);
if (!(l & MSR_IA32_APICBASE_ENABLE)) {
pr_info("Local APIC disabled by BIOS -- reenabling.\n");
l &= ~MSR_IA32_APICBASE_BASE;
l |= MSR_IA32_APICBASE_ENABLE | addr;
wrmsr(MSR_IA32_APICBASE, l, h);
enabled_via_apicbase = 1;
}
}
return apic_verify(addr);
}
/*
* Detect and initialize APIC
*/
static bool __init detect_init_APIC(void)
{
/* Disabled by kernel option? */
if (apic_is_disabled)
return false;
switch (boot_cpu_data.x86_vendor) {
case X86_VENDOR_AMD:
if ((boot_cpu_data.x86 == 6 && boot_cpu_data.x86_model > 1) ||
(boot_cpu_data.x86 >= 15))
break;
goto no_apic;
case X86_VENDOR_HYGON:
break;
case X86_VENDOR_INTEL:
if (boot_cpu_data.x86 == 6 || boot_cpu_data.x86 == 15 ||
(boot_cpu_data.x86 == 5 && boot_cpu_has(X86_FEATURE_APIC)))
break;
goto no_apic;
default:
goto no_apic;
}
if (!boot_cpu_has(X86_FEATURE_APIC)) {
/*
* Over-ride BIOS and try to enable the local APIC only if
* "lapic" specified.
*/
if (!force_enable_local_apic) {
pr_info("Local APIC disabled by BIOS -- "
"you can enable it with \"lapic\"\n");
return false;
}
if (!apic_force_enable(APIC_DEFAULT_PHYS_BASE))
return false;
} else {
if (!apic_verify(APIC_DEFAULT_PHYS_BASE))
return false;
}
apic_pm_activate();
return true;
no_apic:
pr_info("No local APIC present or hardware disabled\n");
return false;
}
#endif
/**
* init_apic_mappings - initialize APIC mappings
*/
void __init init_apic_mappings(void)
{
if (apic_validate_deadline_timer())
pr_info("TSC deadline timer available\n");
if (x2apic_mode)
return;
if (!smp_found_config) {
if (!detect_init_APIC()) {
pr_info("APIC: disable apic facility\n");
apic_disable();
}
}
}
static __init void apic_set_fixmap(bool read_apic)
{
set_fixmap_nocache(FIX_APIC_BASE, mp_lapic_addr);
apic_mmio_base = APIC_BASE;
apic_pr_verbose("Mapped APIC to %16lx (%16lx)\n", apic_mmio_base, mp_lapic_addr);
if (read_apic)
apic_read_boot_cpu_id(false);
}
void __init register_lapic_address(unsigned long address)
{
/* This should only happen once */
WARN_ON_ONCE(mp_lapic_addr);
mp_lapic_addr = address;
if (!x2apic_mode)
apic_set_fixmap(true);
}
/*
* Local APIC interrupts
*/
/*
* Common handling code for spurious_interrupt and spurious_vector entry
* points below. No point in allowing the compiler to inline it twice.
*/
static noinline void handle_spurious_interrupt(u8 vector)
{
u32 v;
trace_spurious_apic_entry(vector);
inc_irq_stat(irq_spurious_count);
/*
* If this is a spurious interrupt then do not acknowledge
*/
if (vector == SPURIOUS_APIC_VECTOR) {
/* See SDM vol 3 */
pr_info("Spurious APIC interrupt (vector 0xFF) on CPU#%d, should never happen.\n",
smp_processor_id());
goto out;
}
/*
* If it is a vectored one, verify it's set in the ISR. If set,
* acknowledge it.
*/
v = apic_read(APIC_ISR + ((vector & ~0x1f) >> 1));
if (v & (1 << (vector & 0x1f))) {
pr_info("Spurious interrupt (vector 0x%02x) on CPU#%d. Acked\n",
vector, smp_processor_id());
apic_eoi();
} else {
pr_info("Spurious interrupt (vector 0x%02x) on CPU#%d. Not pending!\n",
vector, smp_processor_id());
}
out:
trace_spurious_apic_exit(vector);
}
/**
* spurious_interrupt - Catch all for interrupts raised on unused vectors
* @regs: Pointer to pt_regs on stack
* @vector: The vector number
*
* This is invoked from ASM entry code to catch all interrupts which
* trigger on an entry which is routed to the common_spurious idtentry
* point.
*/
DEFINE_IDTENTRY_IRQ(spurious_interrupt)
{
handle_spurious_interrupt(vector);
}
DEFINE_IDTENTRY_SYSVEC(sysvec_spurious_apic_interrupt)
{
handle_spurious_interrupt(SPURIOUS_APIC_VECTOR);
}
/*
* This interrupt should never happen with our APIC/SMP architecture
*/
DEFINE_IDTENTRY_SYSVEC(sysvec_error_interrupt)
{
static const char * const error_interrupt_reason[] = {
"Send CS error", /* APIC Error Bit 0 */
"Receive CS error", /* APIC Error Bit 1 */
"Send accept error", /* APIC Error Bit 2 */
"Receive accept error", /* APIC Error Bit 3 */
"Redirectable IPI", /* APIC Error Bit 4 */
"Send illegal vector", /* APIC Error Bit 5 */
"Received illegal vector", /* APIC Error Bit 6 */
"Illegal register address", /* APIC Error Bit 7 */
};
u32 v, i = 0;
trace_error_apic_entry(ERROR_APIC_VECTOR);
/* First tickle the hardware, only then report what went on. -- REW */
if (lapic_get_maxlvt() > 3) /* Due to the Pentium erratum 3AP. */
apic_write(APIC_ESR, 0);
v = apic_read(APIC_ESR);
apic_eoi();
atomic_inc(&irq_err_count);
apic_pr_debug("APIC error on CPU%d: %02x", smp_processor_id(), v);
v &= 0xff;
while (v) {
if (v & 0x1)
apic_pr_debug_cont(" : %s", error_interrupt_reason[i]);
i++;
v >>= 1;
}
apic_pr_debug_cont("\n");
trace_error_apic_exit(ERROR_APIC_VECTOR);
}
/**
* connect_bsp_APIC - attach the APIC to the interrupt system
*/
static void __init connect_bsp_APIC(void)
{
#ifdef CONFIG_X86_32
if (pic_mode) {
/*
* Do not trust the local APIC being empty at bootup.
*/
clear_local_APIC();
/*
* PIC mode, enable APIC mode in the IMCR, i.e. connect BSP's
* local APIC to INT and NMI lines.
*/
apic_pr_verbose("Leaving PIC mode, enabling APIC mode.\n");
imcr_pic_to_apic();
}
#endif
}
/**
* disconnect_bsp_APIC - detach the APIC from the interrupt system
* @virt_wire_setup: indicates, whether virtual wire mode is selected
*
* Virtual wire mode is necessary to deliver legacy interrupts even when the
* APIC is disabled.
*/
void disconnect_bsp_APIC(int virt_wire_setup)
{
unsigned int value;
#ifdef CONFIG_X86_32
if (pic_mode) {
/*
* Put the board back into PIC mode (has an effect only on
* certain older boards). Note that APIC interrupts, including
* IPIs, won't work beyond this point! The only exception are
* INIT IPIs.
*/
apic_pr_verbose("Disabling APIC mode, entering PIC mode.\n");
imcr_apic_to_pic();
return;
}
#endif
/* Go back to Virtual Wire compatibility mode */
/* For the spurious interrupt use vector F, and enable it */
value = apic_read(APIC_SPIV);
value &= ~APIC_VECTOR_MASK;
value |= APIC_SPIV_APIC_ENABLED;
value |= 0xf;
apic_write(APIC_SPIV, value);
if (!virt_wire_setup) {
/*
* For LVT0 make it edge triggered, active high,
* external and enabled
*/
value = apic_read(APIC_LVT0);
value &= ~(APIC_MODE_MASK | APIC_SEND_PENDING |
APIC_INPUT_POLARITY | APIC_LVT_REMOTE_IRR |
APIC_LVT_LEVEL_TRIGGER | APIC_LVT_MASKED);
value |= APIC_LVT_REMOTE_IRR | APIC_SEND_PENDING;
value = SET_APIC_DELIVERY_MODE(value, APIC_MODE_EXTINT);
apic_write(APIC_LVT0, value);
} else {
/* Disable LVT0 */
apic_write(APIC_LVT0, APIC_LVT_MASKED);
}
/*
* For LVT1 make it edge triggered, active high,
* nmi and enabled
*/
value = apic_read(APIC_LVT1);
value &= ~(APIC_MODE_MASK | APIC_SEND_PENDING |
APIC_INPUT_POLARITY | APIC_LVT_REMOTE_IRR |
APIC_LVT_LEVEL_TRIGGER | APIC_LVT_MASKED);
value |= APIC_LVT_REMOTE_IRR | APIC_SEND_PENDING;
value = SET_APIC_DELIVERY_MODE(value, APIC_MODE_NMI);
apic_write(APIC_LVT1, value);
}
void __irq_msi_compose_msg(struct irq_cfg *cfg, struct msi_msg *msg,
bool dmar)
{
memset(msg, 0, sizeof(*msg));
msg->arch_addr_lo.base_address = X86_MSI_BASE_ADDRESS_LOW;
msg->arch_addr_lo.dest_mode_logical = apic->dest_mode_logical;
msg->arch_addr_lo.destid_0_7 = cfg->dest_apicid & 0xFF;
msg->arch_data.delivery_mode = APIC_DELIVERY_MODE_FIXED;
msg->arch_data.vector = cfg->vector;
msg->address_hi = X86_MSI_BASE_ADDRESS_HIGH;
/*
* Only the IOMMU itself can use the trick of putting destination
* APIC ID into the high bits of the address. Anything else would
* just be writing to memory if it tried that, and needs IR to
* address APICs which can't be addressed in the normal 32-bit
* address range at 0xFFExxxxx. That is typically just 8 bits, but
* some hypervisors allow the extended destination ID field in bits
* 5-11 to be used, giving support for 15 bits of APIC IDs in total.
*/
if (dmar)
msg->arch_addr_hi.destid_8_31 = cfg->dest_apicid >> 8;
else if (virt_ext_dest_id && cfg->dest_apicid < 0x8000)
msg->arch_addr_lo.virt_destid_8_14 = cfg->dest_apicid >> 8;
else
WARN_ON_ONCE(cfg->dest_apicid > 0xFF);
}
u32 x86_msi_msg_get_destid(struct msi_msg *msg, bool extid)
{
u32 dest = msg->arch_addr_lo.destid_0_7;
if (extid)
dest |= msg->arch_addr_hi.destid_8_31 << 8;
return dest;
}
EXPORT_SYMBOL_GPL(x86_msi_msg_get_destid);
static void __init apic_bsp_up_setup(void)
{
reset_phys_cpu_present_map(boot_cpu_physical_apicid);
}
/**
* apic_bsp_setup - Setup function for local apic and io-apic
* @upmode: Force UP mode (for APIC_init_uniprocessor)
*/
static void __init apic_bsp_setup(bool upmode)
{
connect_bsp_APIC();
if (upmode)
apic_bsp_up_setup();
setup_local_APIC();
enable_IO_APIC();
end_local_APIC_setup();
irq_remap_enable_fault_handling();
setup_IO_APIC();
lapic_update_legacy_vectors();
}
#ifdef CONFIG_UP_LATE_INIT
void __init up_late_init(void)
{
if (apic_intr_mode == APIC_PIC)
return;
/* Setup local timer */
x86_init.timers.setup_percpu_clockev();
}
#endif
/*
* Power management
*/
#ifdef CONFIG_PM
static struct {
/*
* 'active' is true if the local APIC was enabled by us and
* not the BIOS; this signifies that we are also responsible
* for disabling it before entering apm/acpi suspend
*/
int active;
/* r/w apic fields */
u32 apic_id;
unsigned int apic_taskpri;
unsigned int apic_ldr;
unsigned int apic_dfr;
unsigned int apic_spiv;
unsigned int apic_lvtt;
unsigned int apic_lvtpc;
unsigned int apic_lvt0;
unsigned int apic_lvt1;
unsigned int apic_lvterr;
unsigned int apic_tmict;
unsigned int apic_tdcr;
unsigned int apic_thmr;
unsigned int apic_cmci;
} apic_pm_state;
static int lapic_suspend(void)
{
unsigned long flags;
int maxlvt;
if (!apic_pm_state.active)
return 0;
maxlvt = lapic_get_maxlvt();
apic_pm_state.apic_id = apic_read(APIC_ID);
apic_pm_state.apic_taskpri = apic_read(APIC_TASKPRI);
apic_pm_state.apic_ldr = apic_read(APIC_LDR);
apic_pm_state.apic_dfr = apic_read(APIC_DFR);
apic_pm_state.apic_spiv = apic_read(APIC_SPIV);
apic_pm_state.apic_lvtt = apic_read(APIC_LVTT);
if (maxlvt >= 4)
apic_pm_state.apic_lvtpc = apic_read(APIC_LVTPC);
apic_pm_state.apic_lvt0 = apic_read(APIC_LVT0);
apic_pm_state.apic_lvt1 = apic_read(APIC_LVT1);
apic_pm_state.apic_lvterr = apic_read(APIC_LVTERR);
apic_pm_state.apic_tmict = apic_read(APIC_TMICT);
apic_pm_state.apic_tdcr = apic_read(APIC_TDCR);
#ifdef CONFIG_X86_THERMAL_VECTOR
if (maxlvt >= 5)
apic_pm_state.apic_thmr = apic_read(APIC_LVTTHMR);
#endif
#ifdef CONFIG_X86_MCE_INTEL
if (maxlvt >= 6)
apic_pm_state.apic_cmci = apic_read(APIC_LVTCMCI);
#endif
local_irq_save(flags);
/*
* Mask IOAPIC before disabling the local APIC to prevent stale IRR
* entries on some implementations.
*/
mask_ioapic_entries();
disable_local_APIC();
irq_remapping_disable();
local_irq_restore(flags);
return 0;
}
static void lapic_resume(void)
{
unsigned int l, h;
unsigned long flags;
int maxlvt;
if (!apic_pm_state.active)
return;
local_irq_save(flags);
/*
* IO-APIC and PIC have their own resume routines.
* We just mask them here to make sure the interrupt
* subsystem is completely quiet while we enable x2apic
* and interrupt-remapping.
*/
mask_ioapic_entries();
legacy_pic->mask_all();
if (x2apic_mode) {
__x2apic_enable();
} else {
/*
* Make sure the APICBASE points to the right address
*
* FIXME! This will be wrong if we ever support suspend on
* SMP! We'll need to do this as part of the CPU restore!
*/
if (boot_cpu_data.x86 >= 6) {
rdmsr(MSR_IA32_APICBASE, l, h);
l &= ~MSR_IA32_APICBASE_BASE;
l |= MSR_IA32_APICBASE_ENABLE | mp_lapic_addr;
wrmsr(MSR_IA32_APICBASE, l, h);
}
}
maxlvt = lapic_get_maxlvt();
apic_write(APIC_LVTERR, ERROR_APIC_VECTOR | APIC_LVT_MASKED);
apic_write(APIC_ID, apic_pm_state.apic_id);
apic_write(APIC_DFR, apic_pm_state.apic_dfr);
apic_write(APIC_LDR, apic_pm_state.apic_ldr);
apic_write(APIC_TASKPRI, apic_pm_state.apic_taskpri);
apic_write(APIC_SPIV, apic_pm_state.apic_spiv);
apic_write(APIC_LVT0, apic_pm_state.apic_lvt0);
apic_write(APIC_LVT1, apic_pm_state.apic_lvt1);
#ifdef CONFIG_X86_THERMAL_VECTOR
if (maxlvt >= 5)
apic_write(APIC_LVTTHMR, apic_pm_state.apic_thmr);
#endif
#ifdef CONFIG_X86_MCE_INTEL
if (maxlvt >= 6)
apic_write(APIC_LVTCMCI, apic_pm_state.apic_cmci);
#endif
if (maxlvt >= 4)
apic_write(APIC_LVTPC, apic_pm_state.apic_lvtpc);
apic_write(APIC_LVTT, apic_pm_state.apic_lvtt);
apic_write(APIC_TDCR, apic_pm_state.apic_tdcr);
apic_write(APIC_TMICT, apic_pm_state.apic_tmict);
apic_write(APIC_ESR, 0);
apic_read(APIC_ESR);
apic_write(APIC_LVTERR, apic_pm_state.apic_lvterr);
apic_write(APIC_ESR, 0);
apic_read(APIC_ESR);
irq_remapping_reenable(x2apic_mode);
local_irq_restore(flags);
}
/*
* This device has no shutdown method - fully functioning local APICs
* are needed on every CPU up until machine_halt/restart/poweroff.
*/
static struct syscore_ops lapic_syscore_ops = {
.resume = lapic_resume,
.suspend = lapic_suspend,
};
static void apic_pm_activate(void)
{
apic_pm_state.active = 1;
}
static int __init init_lapic_sysfs(void)
{
/* XXX: remove suspend/resume procs if !apic_pm_state.active? */
if (boot_cpu_has(X86_FEATURE_APIC))
register_syscore_ops(&lapic_syscore_ops);
return 0;
}
/* local apic needs to resume before other devices access its registers. */
core_initcall(init_lapic_sysfs);
#else /* CONFIG_PM */
static void apic_pm_activate(void) { }
#endif /* CONFIG_PM */
#ifdef CONFIG_X86_64
static int multi_checked;
static int multi;
static int set_multi(const struct dmi_system_id *d)
{
if (multi)
return 0;
pr_info("APIC: %s detected, Multi Chassis\n", d->ident);
multi = 1;
return 0;
}
static const struct dmi_system_id multi_dmi_table[] = {
{
.callback = set_multi,
.ident = "IBM System Summit2",
.matches = {
DMI_MATCH(DMI_SYS_VENDOR, "IBM"),
DMI_MATCH(DMI_PRODUCT_NAME, "Summit2"),
},
},
{}
};
static void dmi_check_multi(void)
{
if (multi_checked)
return;
dmi_check_system(multi_dmi_table);
multi_checked = 1;
}
/*
* apic_is_clustered_box() -- Check if we can expect good TSC
*
* Thus far, the major user of this is IBM's Summit2 series:
* Clustered boxes may have unsynced TSC problems if they are
* multi-chassis.
* Use DMI to check them
*/
int apic_is_clustered_box(void)
{
dmi_check_multi();
return multi;
}
#endif
/*
* APIC command line parameters
*/
static int __init setup_disableapic(char *arg)
{
apic_is_disabled = true;
setup_clear_cpu_cap(X86_FEATURE_APIC);
return 0;
}
early_param("disableapic", setup_disableapic);
/* same as disableapic, for compatibility */
static int __init setup_nolapic(char *arg)
{
return setup_disableapic(arg);
}
early_param("nolapic", setup_nolapic);
static int __init parse_lapic_timer_c2_ok(char *arg)
{
local_apic_timer_c2_ok = 1;
return 0;
}
early_param("lapic_timer_c2_ok", parse_lapic_timer_c2_ok);
static int __init parse_disable_apic_timer(char *arg)
{
disable_apic_timer = 1;
return 0;
}
early_param("noapictimer", parse_disable_apic_timer);
static int __init parse_nolapic_timer(char *arg)
{
disable_apic_timer = 1;
return 0;
}
early_param("nolapic_timer", parse_nolapic_timer);
static int __init apic_set_verbosity(char *arg)
{
if (!arg) {
if (IS_ENABLED(CONFIG_X86_32))
return -EINVAL;
ioapic_is_disabled = false;
return 0;
}
if (strcmp("debug", arg) == 0)
apic_verbosity = APIC_DEBUG;
else if (strcmp("verbose", arg) == 0)
apic_verbosity = APIC_VERBOSE;
#ifdef CONFIG_X86_64
else {
pr_warn("APIC Verbosity level %s not recognised"
" use apic=verbose or apic=debug\n", arg);
return -EINVAL;
}
#endif
return 0;
}
early_param("apic", apic_set_verbosity);
static int __init lapic_insert_resource(void)
{
if (!apic_mmio_base)
return -1;
/* Put local APIC into the resource map. */
lapic_resource.start = apic_mmio_base;
lapic_resource.end = lapic_resource.start + PAGE_SIZE - 1;
insert_resource(&iomem_resource, &lapic_resource);
return 0;
}
/*
* need call insert after e820__reserve_resources()
* that is using request_resource
*/
late_initcall(lapic_insert_resource);
static int __init apic_set_extnmi(char *arg)
{
if (!arg)
return -EINVAL;
if (!strncmp("all", arg, 3))
apic_extnmi = APIC_EXTNMI_ALL;
else if (!strncmp("none", arg, 4))
apic_extnmi = APIC_EXTNMI_NONE;
else if (!strncmp("bsp", arg, 3))
apic_extnmi = APIC_EXTNMI_BSP;
else {
pr_warn("Unknown external NMI delivery mode `%s' ignored\n", arg);
return -EINVAL;
}
return 0;
}
early_param("apic_extnmi", apic_set_extnmi);