e59db0623f
According to the prototype formal BPF memory consistency model discussed e.g. in [1] and following the ordering properties of the C/in-kernel macro atomic_cmpxchg(), a BPF atomic operation with the BPF_CMPXCHG modifier is fully ordered. However, the current RISC-V JIT lowerings fail to meet such memory ordering property. This is illustrated by the following litmus test: BPF BPF__MP+success_cmpxchg+fence { 0:r1=x; 0:r3=y; 0:r5=1; 1:r2=y; 1:r4=f; 1:r7=x; } P0 | P1 ; *(u64 *)(r1 + 0) = 1 | r1 = *(u64 *)(r2 + 0) ; r2 = cmpxchg_64 (r3 + 0, r4, r5) | r3 = atomic_fetch_add((u64 *)(r4 + 0), r5) ; | r6 = *(u64 *)(r7 + 0) ; exists (1:r1=1 /\ 1:r6=0) whose "exists" clause is not satisfiable according to the BPF memory model. Using the current RISC-V JIT lowerings, the test can be mapped to the following RISC-V litmus test: RISCV RISCV__MP+success_cmpxchg+fence { 0:x1=x; 0:x3=y; 0:x5=1; 1:x2=y; 1:x4=f; 1:x7=x; } P0 | P1 ; sd x5, 0(x1) | ld x1, 0(x2) ; L00: | amoadd.d.aqrl x3, x5, 0(x4) ; lr.d x2, 0(x3) | ld x6, 0(x7) ; bne x2, x4, L01 | ; sc.d x6, x5, 0(x3) | ; bne x6, x4, L00 | ; fence rw, rw | ; L01: | ; exists (1:x1=1 /\ 1:x6=0) where the two stores in P0 can be reordered. Update the RISC-V JIT lowerings/implementation of BPF_CMPXCHG to emit an SC with RELEASE ("rl") annotation in order to meet the expected memory ordering guarantees. The resulting RISC-V JIT lowerings of BPF_CMPXCHG match the RISC-V lowerings of the C atomic_cmpxchg(). Other lowerings were fixed via |
||
---|---|---|
.. | ||
bpf_jit_comp32.c | ||
bpf_jit_comp64.c | ||
bpf_jit_core.c | ||
bpf_jit.h | ||
Makefile |