77514915b7
Instead of implementing the bitops functions directly in assembly, provide the arch_-prefixed versions and use the wrappers from asm-generic to add instrumentation. This improves KASAN coverage and fixes the kasan_bitops_generic() unit test. Signed-off-by: Samuel Holland <samuel.holland@sifive.com> Reviewed-by: Alexandre Ghiti <alexghiti@rivosinc.com> Tested-by: Alexandre Ghiti <alexghiti@rivosinc.com> Link: https://lore.kernel.org/r/20240801033725.28816-3-samuel.holland@sifive.com Signed-off-by: Palmer Dabbelt <palmer@rivosinc.com>
380 lines
9.7 KiB
C
380 lines
9.7 KiB
C
/* SPDX-License-Identifier: GPL-2.0-only */
|
|
/*
|
|
* Copyright (C) 2012 Regents of the University of California
|
|
*/
|
|
|
|
#ifndef _ASM_RISCV_BITOPS_H
|
|
#define _ASM_RISCV_BITOPS_H
|
|
|
|
#ifndef _LINUX_BITOPS_H
|
|
#error "Only <linux/bitops.h> can be included directly"
|
|
#endif /* _LINUX_BITOPS_H */
|
|
|
|
#include <linux/compiler.h>
|
|
#include <linux/irqflags.h>
|
|
#include <asm/barrier.h>
|
|
#include <asm/bitsperlong.h>
|
|
|
|
#if !defined(CONFIG_RISCV_ISA_ZBB) || defined(NO_ALTERNATIVE)
|
|
#include <asm-generic/bitops/__ffs.h>
|
|
#include <asm-generic/bitops/__fls.h>
|
|
#include <asm-generic/bitops/ffs.h>
|
|
#include <asm-generic/bitops/fls.h>
|
|
|
|
#else
|
|
#define __HAVE_ARCH___FFS
|
|
#define __HAVE_ARCH___FLS
|
|
#define __HAVE_ARCH_FFS
|
|
#define __HAVE_ARCH_FLS
|
|
|
|
#include <asm-generic/bitops/__ffs.h>
|
|
#include <asm-generic/bitops/__fls.h>
|
|
#include <asm-generic/bitops/ffs.h>
|
|
#include <asm-generic/bitops/fls.h>
|
|
|
|
#include <asm/alternative-macros.h>
|
|
#include <asm/hwcap.h>
|
|
|
|
#if (BITS_PER_LONG == 64)
|
|
#define CTZW "ctzw "
|
|
#define CLZW "clzw "
|
|
#elif (BITS_PER_LONG == 32)
|
|
#define CTZW "ctz "
|
|
#define CLZW "clz "
|
|
#else
|
|
#error "Unexpected BITS_PER_LONG"
|
|
#endif
|
|
|
|
static __always_inline unsigned long variable__ffs(unsigned long word)
|
|
{
|
|
asm goto(ALTERNATIVE("j %l[legacy]", "nop", 0,
|
|
RISCV_ISA_EXT_ZBB, 1)
|
|
: : : : legacy);
|
|
|
|
asm volatile (".option push\n"
|
|
".option arch,+zbb\n"
|
|
"ctz %0, %1\n"
|
|
".option pop\n"
|
|
: "=r" (word) : "r" (word) :);
|
|
|
|
return word;
|
|
|
|
legacy:
|
|
return generic___ffs(word);
|
|
}
|
|
|
|
/**
|
|
* __ffs - find first set bit in a long word
|
|
* @word: The word to search
|
|
*
|
|
* Undefined if no set bit exists, so code should check against 0 first.
|
|
*/
|
|
#define __ffs(word) \
|
|
(__builtin_constant_p(word) ? \
|
|
(unsigned long)__builtin_ctzl(word) : \
|
|
variable__ffs(word))
|
|
|
|
static __always_inline unsigned long variable__fls(unsigned long word)
|
|
{
|
|
asm goto(ALTERNATIVE("j %l[legacy]", "nop", 0,
|
|
RISCV_ISA_EXT_ZBB, 1)
|
|
: : : : legacy);
|
|
|
|
asm volatile (".option push\n"
|
|
".option arch,+zbb\n"
|
|
"clz %0, %1\n"
|
|
".option pop\n"
|
|
: "=r" (word) : "r" (word) :);
|
|
|
|
return BITS_PER_LONG - 1 - word;
|
|
|
|
legacy:
|
|
return generic___fls(word);
|
|
}
|
|
|
|
/**
|
|
* __fls - find last set bit in a long word
|
|
* @word: the word to search
|
|
*
|
|
* Undefined if no set bit exists, so code should check against 0 first.
|
|
*/
|
|
#define __fls(word) \
|
|
(__builtin_constant_p(word) ? \
|
|
(unsigned long)(BITS_PER_LONG - 1 - __builtin_clzl(word)) : \
|
|
variable__fls(word))
|
|
|
|
static __always_inline int variable_ffs(int x)
|
|
{
|
|
asm goto(ALTERNATIVE("j %l[legacy]", "nop", 0,
|
|
RISCV_ISA_EXT_ZBB, 1)
|
|
: : : : legacy);
|
|
|
|
if (!x)
|
|
return 0;
|
|
|
|
asm volatile (".option push\n"
|
|
".option arch,+zbb\n"
|
|
CTZW "%0, %1\n"
|
|
".option pop\n"
|
|
: "=r" (x) : "r" (x) :);
|
|
|
|
return x + 1;
|
|
|
|
legacy:
|
|
return generic_ffs(x);
|
|
}
|
|
|
|
/**
|
|
* ffs - find first set bit in a word
|
|
* @x: the word to search
|
|
*
|
|
* This is defined the same way as the libc and compiler builtin ffs routines.
|
|
*
|
|
* ffs(value) returns 0 if value is 0 or the position of the first set bit if
|
|
* value is nonzero. The first (least significant) bit is at position 1.
|
|
*/
|
|
#define ffs(x) (__builtin_constant_p(x) ? __builtin_ffs(x) : variable_ffs(x))
|
|
|
|
static __always_inline int variable_fls(unsigned int x)
|
|
{
|
|
asm goto(ALTERNATIVE("j %l[legacy]", "nop", 0,
|
|
RISCV_ISA_EXT_ZBB, 1)
|
|
: : : : legacy);
|
|
|
|
if (!x)
|
|
return 0;
|
|
|
|
asm volatile (".option push\n"
|
|
".option arch,+zbb\n"
|
|
CLZW "%0, %1\n"
|
|
".option pop\n"
|
|
: "=r" (x) : "r" (x) :);
|
|
|
|
return 32 - x;
|
|
|
|
legacy:
|
|
return generic_fls(x);
|
|
}
|
|
|
|
/**
|
|
* fls - find last set bit in a word
|
|
* @x: the word to search
|
|
*
|
|
* This is defined in a similar way as ffs, but returns the position of the most
|
|
* significant set bit.
|
|
*
|
|
* fls(value) returns 0 if value is 0 or the position of the last set bit if
|
|
* value is nonzero. The last (most significant) bit is at position 32.
|
|
*/
|
|
#define fls(x) \
|
|
({ \
|
|
typeof(x) x_ = (x); \
|
|
__builtin_constant_p(x_) ? \
|
|
((x_ != 0) ? (32 - __builtin_clz(x_)) : 0) \
|
|
: \
|
|
variable_fls(x_); \
|
|
})
|
|
|
|
#endif /* !defined(CONFIG_RISCV_ISA_ZBB) || defined(NO_ALTERNATIVE) */
|
|
|
|
#include <asm-generic/bitops/ffz.h>
|
|
#include <asm-generic/bitops/fls64.h>
|
|
#include <asm-generic/bitops/sched.h>
|
|
|
|
#include <asm/arch_hweight.h>
|
|
|
|
#include <asm-generic/bitops/const_hweight.h>
|
|
|
|
#if (BITS_PER_LONG == 64)
|
|
#define __AMO(op) "amo" #op ".d"
|
|
#elif (BITS_PER_LONG == 32)
|
|
#define __AMO(op) "amo" #op ".w"
|
|
#else
|
|
#error "Unexpected BITS_PER_LONG"
|
|
#endif
|
|
|
|
#define __test_and_op_bit_ord(op, mod, nr, addr, ord) \
|
|
({ \
|
|
unsigned long __res, __mask; \
|
|
__mask = BIT_MASK(nr); \
|
|
__asm__ __volatile__ ( \
|
|
__AMO(op) #ord " %0, %2, %1" \
|
|
: "=r" (__res), "+A" (addr[BIT_WORD(nr)]) \
|
|
: "r" (mod(__mask)) \
|
|
: "memory"); \
|
|
((__res & __mask) != 0); \
|
|
})
|
|
|
|
#define __op_bit_ord(op, mod, nr, addr, ord) \
|
|
__asm__ __volatile__ ( \
|
|
__AMO(op) #ord " zero, %1, %0" \
|
|
: "+A" (addr[BIT_WORD(nr)]) \
|
|
: "r" (mod(BIT_MASK(nr))) \
|
|
: "memory");
|
|
|
|
#define __test_and_op_bit(op, mod, nr, addr) \
|
|
__test_and_op_bit_ord(op, mod, nr, addr, .aqrl)
|
|
#define __op_bit(op, mod, nr, addr) \
|
|
__op_bit_ord(op, mod, nr, addr, )
|
|
|
|
/* Bitmask modifiers */
|
|
#define __NOP(x) (x)
|
|
#define __NOT(x) (~(x))
|
|
|
|
/**
|
|
* arch_test_and_set_bit - Set a bit and return its old value
|
|
* @nr: Bit to set
|
|
* @addr: Address to count from
|
|
*
|
|
* This operation may be reordered on other architectures than x86.
|
|
*/
|
|
static inline int arch_test_and_set_bit(int nr, volatile unsigned long *addr)
|
|
{
|
|
return __test_and_op_bit(or, __NOP, nr, addr);
|
|
}
|
|
|
|
/**
|
|
* arch_test_and_clear_bit - Clear a bit and return its old value
|
|
* @nr: Bit to clear
|
|
* @addr: Address to count from
|
|
*
|
|
* This operation can be reordered on other architectures other than x86.
|
|
*/
|
|
static inline int arch_test_and_clear_bit(int nr, volatile unsigned long *addr)
|
|
{
|
|
return __test_and_op_bit(and, __NOT, nr, addr);
|
|
}
|
|
|
|
/**
|
|
* arch_test_and_change_bit - Change a bit and return its old value
|
|
* @nr: Bit to change
|
|
* @addr: Address to count from
|
|
*
|
|
* This operation is atomic and cannot be reordered.
|
|
* It also implies a memory barrier.
|
|
*/
|
|
static inline int arch_test_and_change_bit(int nr, volatile unsigned long *addr)
|
|
{
|
|
return __test_and_op_bit(xor, __NOP, nr, addr);
|
|
}
|
|
|
|
/**
|
|
* arch_set_bit - Atomically set a bit in memory
|
|
* @nr: the bit to set
|
|
* @addr: the address to start counting from
|
|
*
|
|
* Note: there are no guarantees that this function will not be reordered
|
|
* on non x86 architectures, so if you are writing portable code,
|
|
* make sure not to rely on its reordering guarantees.
|
|
*
|
|
* Note that @nr may be almost arbitrarily large; this function is not
|
|
* restricted to acting on a single-word quantity.
|
|
*/
|
|
static inline void arch_set_bit(int nr, volatile unsigned long *addr)
|
|
{
|
|
__op_bit(or, __NOP, nr, addr);
|
|
}
|
|
|
|
/**
|
|
* arch_clear_bit - Clears a bit in memory
|
|
* @nr: Bit to clear
|
|
* @addr: Address to start counting from
|
|
*
|
|
* Note: there are no guarantees that this function will not be reordered
|
|
* on non x86 architectures, so if you are writing portable code,
|
|
* make sure not to rely on its reordering guarantees.
|
|
*/
|
|
static inline void arch_clear_bit(int nr, volatile unsigned long *addr)
|
|
{
|
|
__op_bit(and, __NOT, nr, addr);
|
|
}
|
|
|
|
/**
|
|
* arch_change_bit - Toggle a bit in memory
|
|
* @nr: Bit to change
|
|
* @addr: Address to start counting from
|
|
*
|
|
* change_bit() may be reordered on other architectures than x86.
|
|
* Note that @nr may be almost arbitrarily large; this function is not
|
|
* restricted to acting on a single-word quantity.
|
|
*/
|
|
static inline void arch_change_bit(int nr, volatile unsigned long *addr)
|
|
{
|
|
__op_bit(xor, __NOP, nr, addr);
|
|
}
|
|
|
|
/**
|
|
* arch_test_and_set_bit_lock - Set a bit and return its old value, for lock
|
|
* @nr: Bit to set
|
|
* @addr: Address to count from
|
|
*
|
|
* This operation is atomic and provides acquire barrier semantics.
|
|
* It can be used to implement bit locks.
|
|
*/
|
|
static inline int arch_test_and_set_bit_lock(
|
|
unsigned long nr, volatile unsigned long *addr)
|
|
{
|
|
return __test_and_op_bit_ord(or, __NOP, nr, addr, .aq);
|
|
}
|
|
|
|
/**
|
|
* arch_clear_bit_unlock - Clear a bit in memory, for unlock
|
|
* @nr: the bit to set
|
|
* @addr: the address to start counting from
|
|
*
|
|
* This operation is atomic and provides release barrier semantics.
|
|
*/
|
|
static inline void arch_clear_bit_unlock(
|
|
unsigned long nr, volatile unsigned long *addr)
|
|
{
|
|
__op_bit_ord(and, __NOT, nr, addr, .rl);
|
|
}
|
|
|
|
/**
|
|
* arch___clear_bit_unlock - Clear a bit in memory, for unlock
|
|
* @nr: the bit to set
|
|
* @addr: the address to start counting from
|
|
*
|
|
* This operation is like clear_bit_unlock, however it is not atomic.
|
|
* It does provide release barrier semantics so it can be used to unlock
|
|
* a bit lock, however it would only be used if no other CPU can modify
|
|
* any bits in the memory until the lock is released (a good example is
|
|
* if the bit lock itself protects access to the other bits in the word).
|
|
*
|
|
* On RISC-V systems there seems to be no benefit to taking advantage of the
|
|
* non-atomic property here: it's a lot more instructions and we still have to
|
|
* provide release semantics anyway.
|
|
*/
|
|
static inline void arch___clear_bit_unlock(
|
|
unsigned long nr, volatile unsigned long *addr)
|
|
{
|
|
arch_clear_bit_unlock(nr, addr);
|
|
}
|
|
|
|
static inline bool arch_xor_unlock_is_negative_byte(unsigned long mask,
|
|
volatile unsigned long *addr)
|
|
{
|
|
unsigned long res;
|
|
__asm__ __volatile__ (
|
|
__AMO(xor) ".rl %0, %2, %1"
|
|
: "=r" (res), "+A" (*addr)
|
|
: "r" (__NOP(mask))
|
|
: "memory");
|
|
return (res & BIT(7)) != 0;
|
|
}
|
|
|
|
#undef __test_and_op_bit
|
|
#undef __op_bit
|
|
#undef __NOP
|
|
#undef __NOT
|
|
#undef __AMO
|
|
|
|
#include <asm-generic/bitops/instrumented-atomic.h>
|
|
#include <asm-generic/bitops/instrumented-lock.h>
|
|
|
|
#include <asm-generic/bitops/non-atomic.h>
|
|
#include <asm-generic/bitops/le.h>
|
|
#include <asm-generic/bitops/ext2-atomic.h>
|
|
|
|
#endif /* _ASM_RISCV_BITOPS_H */
|