0974d03eb4
Smatch warns: arch/powerpc/kernel/rtas.c:1932 __do_sys_rtas() warn: potential spectre issue 'args.args' [r] (local cap) The 'nargs' and 'nret' locals come directly from a user-supplied buffer and are used as indexes into a small stack-based array and as inputs to copy_to_user() after they are subject to bounds checks. Use array_index_nospec() after the bounds checks to clamp these values for speculative execution. Signed-off-by: Nathan Lynch <nathanl@linux.ibm.com> Reported-by: Breno Leitao <leitao@debian.org> Reviewed-by: Breno Leitao <leitao@debian.org> Signed-off-by: Michael Ellerman <mpe@ellerman.id.au> Link: https://msgid.link/20240530-sys_rtas-nargs-nret-v1-1-129acddd4d89@linux.ibm.com
2192 lines
58 KiB
C
2192 lines
58 KiB
C
// SPDX-License-Identifier: GPL-2.0-or-later
|
||
/*
|
||
*
|
||
* Procedures for interfacing to the RTAS on CHRP machines.
|
||
*
|
||
* Peter Bergner, IBM March 2001.
|
||
* Copyright (C) 2001 IBM.
|
||
*/
|
||
|
||
#define pr_fmt(fmt) "rtas: " fmt
|
||
|
||
#include <linux/bsearch.h>
|
||
#include <linux/capability.h>
|
||
#include <linux/delay.h>
|
||
#include <linux/export.h>
|
||
#include <linux/init.h>
|
||
#include <linux/kconfig.h>
|
||
#include <linux/kernel.h>
|
||
#include <linux/lockdep.h>
|
||
#include <linux/memblock.h>
|
||
#include <linux/mutex.h>
|
||
#include <linux/nospec.h>
|
||
#include <linux/of.h>
|
||
#include <linux/of_fdt.h>
|
||
#include <linux/reboot.h>
|
||
#include <linux/sched.h>
|
||
#include <linux/security.h>
|
||
#include <linux/slab.h>
|
||
#include <linux/spinlock.h>
|
||
#include <linux/stdarg.h>
|
||
#include <linux/syscalls.h>
|
||
#include <linux/types.h>
|
||
#include <linux/uaccess.h>
|
||
#include <linux/xarray.h>
|
||
|
||
#include <asm/delay.h>
|
||
#include <asm/firmware.h>
|
||
#include <asm/interrupt.h>
|
||
#include <asm/machdep.h>
|
||
#include <asm/mmu.h>
|
||
#include <asm/page.h>
|
||
#include <asm/rtas-work-area.h>
|
||
#include <asm/rtas.h>
|
||
#include <asm/time.h>
|
||
#include <asm/trace.h>
|
||
#include <asm/udbg.h>
|
||
|
||
struct rtas_filter {
|
||
/* Indexes into the args buffer, -1 if not used */
|
||
const int buf_idx1;
|
||
const int size_idx1;
|
||
const int buf_idx2;
|
||
const int size_idx2;
|
||
/*
|
||
* Assumed buffer size per the spec if the function does not
|
||
* have a size parameter, e.g. ibm,errinjct. 0 if unused.
|
||
*/
|
||
const int fixed_size;
|
||
};
|
||
|
||
/**
|
||
* struct rtas_function - Descriptor for RTAS functions.
|
||
*
|
||
* @token: Value of @name if it exists under the /rtas node.
|
||
* @name: Function name.
|
||
* @filter: If non-NULL, invoking this function via the rtas syscall is
|
||
* generally allowed, and @filter describes constraints on the
|
||
* arguments. See also @banned_for_syscall_on_le.
|
||
* @banned_for_syscall_on_le: Set when call via sys_rtas is generally allowed
|
||
* but specifically restricted on ppc64le. Such
|
||
* functions are believed to have no users on
|
||
* ppc64le, and we want to keep it that way. It does
|
||
* not make sense for this to be set when @filter
|
||
* is NULL.
|
||
* @lock: Pointer to an optional dedicated per-function mutex. This
|
||
* should be set for functions that require multiple calls in
|
||
* sequence to complete a single operation, and such sequences
|
||
* will disrupt each other if allowed to interleave. Users of
|
||
* this function are required to hold the associated lock for
|
||
* the duration of the call sequence. Add an explanatory
|
||
* comment to the function table entry if setting this member.
|
||
*/
|
||
struct rtas_function {
|
||
s32 token;
|
||
const bool banned_for_syscall_on_le:1;
|
||
const char * const name;
|
||
const struct rtas_filter *filter;
|
||
struct mutex *lock;
|
||
};
|
||
|
||
/*
|
||
* Per-function locks for sequence-based RTAS functions.
|
||
*/
|
||
static DEFINE_MUTEX(rtas_ibm_activate_firmware_lock);
|
||
static DEFINE_MUTEX(rtas_ibm_get_dynamic_sensor_state_lock);
|
||
static DEFINE_MUTEX(rtas_ibm_get_indices_lock);
|
||
static DEFINE_MUTEX(rtas_ibm_lpar_perftools_lock);
|
||
static DEFINE_MUTEX(rtas_ibm_physical_attestation_lock);
|
||
static DEFINE_MUTEX(rtas_ibm_set_dynamic_indicator_lock);
|
||
DEFINE_MUTEX(rtas_ibm_get_vpd_lock);
|
||
|
||
static struct rtas_function rtas_function_table[] __ro_after_init = {
|
||
[RTAS_FNIDX__CHECK_EXCEPTION] = {
|
||
.name = "check-exception",
|
||
},
|
||
[RTAS_FNIDX__DISPLAY_CHARACTER] = {
|
||
.name = "display-character",
|
||
.filter = &(const struct rtas_filter) {
|
||
.buf_idx1 = -1, .size_idx1 = -1,
|
||
.buf_idx2 = -1, .size_idx2 = -1,
|
||
},
|
||
},
|
||
[RTAS_FNIDX__EVENT_SCAN] = {
|
||
.name = "event-scan",
|
||
},
|
||
[RTAS_FNIDX__FREEZE_TIME_BASE] = {
|
||
.name = "freeze-time-base",
|
||
},
|
||
[RTAS_FNIDX__GET_POWER_LEVEL] = {
|
||
.name = "get-power-level",
|
||
.filter = &(const struct rtas_filter) {
|
||
.buf_idx1 = -1, .size_idx1 = -1,
|
||
.buf_idx2 = -1, .size_idx2 = -1,
|
||
},
|
||
},
|
||
[RTAS_FNIDX__GET_SENSOR_STATE] = {
|
||
.name = "get-sensor-state",
|
||
.filter = &(const struct rtas_filter) {
|
||
.buf_idx1 = -1, .size_idx1 = -1,
|
||
.buf_idx2 = -1, .size_idx2 = -1,
|
||
},
|
||
},
|
||
[RTAS_FNIDX__GET_TERM_CHAR] = {
|
||
.name = "get-term-char",
|
||
},
|
||
[RTAS_FNIDX__GET_TIME_OF_DAY] = {
|
||
.name = "get-time-of-day",
|
||
.filter = &(const struct rtas_filter) {
|
||
.buf_idx1 = -1, .size_idx1 = -1,
|
||
.buf_idx2 = -1, .size_idx2 = -1,
|
||
},
|
||
},
|
||
[RTAS_FNIDX__IBM_ACTIVATE_FIRMWARE] = {
|
||
.name = "ibm,activate-firmware",
|
||
.filter = &(const struct rtas_filter) {
|
||
.buf_idx1 = -1, .size_idx1 = -1,
|
||
.buf_idx2 = -1, .size_idx2 = -1,
|
||
},
|
||
/*
|
||
* PAPR+ as of v2.13 doesn't explicitly impose any
|
||
* restriction, but this typically requires multiple
|
||
* calls before success, and there's no reason to
|
||
* allow sequences to interleave.
|
||
*/
|
||
.lock = &rtas_ibm_activate_firmware_lock,
|
||
},
|
||
[RTAS_FNIDX__IBM_CBE_START_PTCAL] = {
|
||
.name = "ibm,cbe-start-ptcal",
|
||
},
|
||
[RTAS_FNIDX__IBM_CBE_STOP_PTCAL] = {
|
||
.name = "ibm,cbe-stop-ptcal",
|
||
},
|
||
[RTAS_FNIDX__IBM_CHANGE_MSI] = {
|
||
.name = "ibm,change-msi",
|
||
},
|
||
[RTAS_FNIDX__IBM_CLOSE_ERRINJCT] = {
|
||
.name = "ibm,close-errinjct",
|
||
.filter = &(const struct rtas_filter) {
|
||
.buf_idx1 = -1, .size_idx1 = -1,
|
||
.buf_idx2 = -1, .size_idx2 = -1,
|
||
},
|
||
},
|
||
[RTAS_FNIDX__IBM_CONFIGURE_BRIDGE] = {
|
||
.name = "ibm,configure-bridge",
|
||
},
|
||
[RTAS_FNIDX__IBM_CONFIGURE_CONNECTOR] = {
|
||
.name = "ibm,configure-connector",
|
||
.filter = &(const struct rtas_filter) {
|
||
.buf_idx1 = 0, .size_idx1 = -1,
|
||
.buf_idx2 = 1, .size_idx2 = -1,
|
||
.fixed_size = 4096,
|
||
},
|
||
},
|
||
[RTAS_FNIDX__IBM_CONFIGURE_KERNEL_DUMP] = {
|
||
.name = "ibm,configure-kernel-dump",
|
||
},
|
||
[RTAS_FNIDX__IBM_CONFIGURE_PE] = {
|
||
.name = "ibm,configure-pe",
|
||
},
|
||
[RTAS_FNIDX__IBM_CREATE_PE_DMA_WINDOW] = {
|
||
.name = "ibm,create-pe-dma-window",
|
||
},
|
||
[RTAS_FNIDX__IBM_DISPLAY_MESSAGE] = {
|
||
.name = "ibm,display-message",
|
||
.filter = &(const struct rtas_filter) {
|
||
.buf_idx1 = 0, .size_idx1 = -1,
|
||
.buf_idx2 = -1, .size_idx2 = -1,
|
||
},
|
||
},
|
||
[RTAS_FNIDX__IBM_ERRINJCT] = {
|
||
.name = "ibm,errinjct",
|
||
.filter = &(const struct rtas_filter) {
|
||
.buf_idx1 = 2, .size_idx1 = -1,
|
||
.buf_idx2 = -1, .size_idx2 = -1,
|
||
.fixed_size = 1024,
|
||
},
|
||
},
|
||
[RTAS_FNIDX__IBM_EXTI2C] = {
|
||
.name = "ibm,exti2c",
|
||
},
|
||
[RTAS_FNIDX__IBM_GET_CONFIG_ADDR_INFO] = {
|
||
.name = "ibm,get-config-addr-info",
|
||
},
|
||
[RTAS_FNIDX__IBM_GET_CONFIG_ADDR_INFO2] = {
|
||
.name = "ibm,get-config-addr-info2",
|
||
.filter = &(const struct rtas_filter) {
|
||
.buf_idx1 = -1, .size_idx1 = -1,
|
||
.buf_idx2 = -1, .size_idx2 = -1,
|
||
},
|
||
},
|
||
[RTAS_FNIDX__IBM_GET_DYNAMIC_SENSOR_STATE] = {
|
||
.name = "ibm,get-dynamic-sensor-state",
|
||
.filter = &(const struct rtas_filter) {
|
||
.buf_idx1 = 1, .size_idx1 = -1,
|
||
.buf_idx2 = -1, .size_idx2 = -1,
|
||
},
|
||
/*
|
||
* PAPR+ v2.13 R1–7.3.19–3 is explicit that the OS
|
||
* must not call ibm,get-dynamic-sensor-state with
|
||
* different inputs until a non-retry status has been
|
||
* returned.
|
||
*/
|
||
.lock = &rtas_ibm_get_dynamic_sensor_state_lock,
|
||
},
|
||
[RTAS_FNIDX__IBM_GET_INDICES] = {
|
||
.name = "ibm,get-indices",
|
||
.filter = &(const struct rtas_filter) {
|
||
.buf_idx1 = 2, .size_idx1 = 3,
|
||
.buf_idx2 = -1, .size_idx2 = -1,
|
||
},
|
||
/*
|
||
* PAPR+ v2.13 R1–7.3.17–2 says that the OS must not
|
||
* interleave ibm,get-indices call sequences with
|
||
* different inputs.
|
||
*/
|
||
.lock = &rtas_ibm_get_indices_lock,
|
||
},
|
||
[RTAS_FNIDX__IBM_GET_RIO_TOPOLOGY] = {
|
||
.name = "ibm,get-rio-topology",
|
||
},
|
||
[RTAS_FNIDX__IBM_GET_SYSTEM_PARAMETER] = {
|
||
.name = "ibm,get-system-parameter",
|
||
.filter = &(const struct rtas_filter) {
|
||
.buf_idx1 = 1, .size_idx1 = 2,
|
||
.buf_idx2 = -1, .size_idx2 = -1,
|
||
},
|
||
},
|
||
[RTAS_FNIDX__IBM_GET_VPD] = {
|
||
.name = "ibm,get-vpd",
|
||
.filter = &(const struct rtas_filter) {
|
||
.buf_idx1 = 0, .size_idx1 = -1,
|
||
.buf_idx2 = 1, .size_idx2 = 2,
|
||
},
|
||
/*
|
||
* PAPR+ v2.13 R1–7.3.20–4 indicates that sequences
|
||
* should not be allowed to interleave.
|
||
*/
|
||
.lock = &rtas_ibm_get_vpd_lock,
|
||
},
|
||
[RTAS_FNIDX__IBM_GET_XIVE] = {
|
||
.name = "ibm,get-xive",
|
||
},
|
||
[RTAS_FNIDX__IBM_INT_OFF] = {
|
||
.name = "ibm,int-off",
|
||
},
|
||
[RTAS_FNIDX__IBM_INT_ON] = {
|
||
.name = "ibm,int-on",
|
||
},
|
||
[RTAS_FNIDX__IBM_IO_QUIESCE_ACK] = {
|
||
.name = "ibm,io-quiesce-ack",
|
||
},
|
||
[RTAS_FNIDX__IBM_LPAR_PERFTOOLS] = {
|
||
.name = "ibm,lpar-perftools",
|
||
.filter = &(const struct rtas_filter) {
|
||
.buf_idx1 = 2, .size_idx1 = 3,
|
||
.buf_idx2 = -1, .size_idx2 = -1,
|
||
},
|
||
/*
|
||
* PAPR+ v2.13 R1–7.3.26–6 says the OS should allow
|
||
* only one call sequence in progress at a time.
|
||
*/
|
||
.lock = &rtas_ibm_lpar_perftools_lock,
|
||
},
|
||
[RTAS_FNIDX__IBM_MANAGE_FLASH_IMAGE] = {
|
||
.name = "ibm,manage-flash-image",
|
||
},
|
||
[RTAS_FNIDX__IBM_MANAGE_STORAGE_PRESERVATION] = {
|
||
.name = "ibm,manage-storage-preservation",
|
||
},
|
||
[RTAS_FNIDX__IBM_NMI_INTERLOCK] = {
|
||
.name = "ibm,nmi-interlock",
|
||
},
|
||
[RTAS_FNIDX__IBM_NMI_REGISTER] = {
|
||
.name = "ibm,nmi-register",
|
||
},
|
||
[RTAS_FNIDX__IBM_OPEN_ERRINJCT] = {
|
||
.name = "ibm,open-errinjct",
|
||
.filter = &(const struct rtas_filter) {
|
||
.buf_idx1 = -1, .size_idx1 = -1,
|
||
.buf_idx2 = -1, .size_idx2 = -1,
|
||
},
|
||
},
|
||
[RTAS_FNIDX__IBM_OPEN_SRIOV_ALLOW_UNFREEZE] = {
|
||
.name = "ibm,open-sriov-allow-unfreeze",
|
||
},
|
||
[RTAS_FNIDX__IBM_OPEN_SRIOV_MAP_PE_NUMBER] = {
|
||
.name = "ibm,open-sriov-map-pe-number",
|
||
},
|
||
[RTAS_FNIDX__IBM_OS_TERM] = {
|
||
.name = "ibm,os-term",
|
||
},
|
||
[RTAS_FNIDX__IBM_PARTNER_CONTROL] = {
|
||
.name = "ibm,partner-control",
|
||
},
|
||
[RTAS_FNIDX__IBM_PHYSICAL_ATTESTATION] = {
|
||
.name = "ibm,physical-attestation",
|
||
.filter = &(const struct rtas_filter) {
|
||
.buf_idx1 = 0, .size_idx1 = 1,
|
||
.buf_idx2 = -1, .size_idx2 = -1,
|
||
},
|
||
/*
|
||
* This follows a sequence-based pattern similar to
|
||
* ibm,get-vpd et al. Since PAPR+ restricts
|
||
* interleaving call sequences for other functions of
|
||
* this style, assume the restriction applies here,
|
||
* even though it's not explicit in the spec.
|
||
*/
|
||
.lock = &rtas_ibm_physical_attestation_lock,
|
||
},
|
||
[RTAS_FNIDX__IBM_PLATFORM_DUMP] = {
|
||
.name = "ibm,platform-dump",
|
||
.filter = &(const struct rtas_filter) {
|
||
.buf_idx1 = 4, .size_idx1 = 5,
|
||
.buf_idx2 = -1, .size_idx2 = -1,
|
||
},
|
||
/*
|
||
* PAPR+ v2.13 7.3.3.4.1 indicates that concurrent
|
||
* sequences of ibm,platform-dump are allowed if they
|
||
* are operating on different dump tags. So leave the
|
||
* lock pointer unset for now. This may need
|
||
* reconsideration if kernel-internal users appear.
|
||
*/
|
||
},
|
||
[RTAS_FNIDX__IBM_POWER_OFF_UPS] = {
|
||
.name = "ibm,power-off-ups",
|
||
},
|
||
[RTAS_FNIDX__IBM_QUERY_INTERRUPT_SOURCE_NUMBER] = {
|
||
.name = "ibm,query-interrupt-source-number",
|
||
},
|
||
[RTAS_FNIDX__IBM_QUERY_PE_DMA_WINDOW] = {
|
||
.name = "ibm,query-pe-dma-window",
|
||
},
|
||
[RTAS_FNIDX__IBM_READ_PCI_CONFIG] = {
|
||
.name = "ibm,read-pci-config",
|
||
},
|
||
[RTAS_FNIDX__IBM_READ_SLOT_RESET_STATE] = {
|
||
.name = "ibm,read-slot-reset-state",
|
||
.filter = &(const struct rtas_filter) {
|
||
.buf_idx1 = -1, .size_idx1 = -1,
|
||
.buf_idx2 = -1, .size_idx2 = -1,
|
||
},
|
||
},
|
||
[RTAS_FNIDX__IBM_READ_SLOT_RESET_STATE2] = {
|
||
.name = "ibm,read-slot-reset-state2",
|
||
},
|
||
[RTAS_FNIDX__IBM_REMOVE_PE_DMA_WINDOW] = {
|
||
.name = "ibm,remove-pe-dma-window",
|
||
},
|
||
[RTAS_FNIDX__IBM_RESET_PE_DMA_WINDOW] = {
|
||
/*
|
||
* Note: PAPR+ v2.13 7.3.31.4.1 spells this as
|
||
* "ibm,reset-pe-dma-windows" (plural), but RTAS
|
||
* implementations use the singular form in practice.
|
||
*/
|
||
.name = "ibm,reset-pe-dma-window",
|
||
},
|
||
[RTAS_FNIDX__IBM_SCAN_LOG_DUMP] = {
|
||
.name = "ibm,scan-log-dump",
|
||
.filter = &(const struct rtas_filter) {
|
||
.buf_idx1 = 0, .size_idx1 = 1,
|
||
.buf_idx2 = -1, .size_idx2 = -1,
|
||
},
|
||
},
|
||
[RTAS_FNIDX__IBM_SET_DYNAMIC_INDICATOR] = {
|
||
.name = "ibm,set-dynamic-indicator",
|
||
.filter = &(const struct rtas_filter) {
|
||
.buf_idx1 = 2, .size_idx1 = -1,
|
||
.buf_idx2 = -1, .size_idx2 = -1,
|
||
},
|
||
/*
|
||
* PAPR+ v2.13 R1–7.3.18–3 says the OS must not call
|
||
* this function with different inputs until a
|
||
* non-retry status has been returned.
|
||
*/
|
||
.lock = &rtas_ibm_set_dynamic_indicator_lock,
|
||
},
|
||
[RTAS_FNIDX__IBM_SET_EEH_OPTION] = {
|
||
.name = "ibm,set-eeh-option",
|
||
.filter = &(const struct rtas_filter) {
|
||
.buf_idx1 = -1, .size_idx1 = -1,
|
||
.buf_idx2 = -1, .size_idx2 = -1,
|
||
},
|
||
},
|
||
[RTAS_FNIDX__IBM_SET_SLOT_RESET] = {
|
||
.name = "ibm,set-slot-reset",
|
||
},
|
||
[RTAS_FNIDX__IBM_SET_SYSTEM_PARAMETER] = {
|
||
.name = "ibm,set-system-parameter",
|
||
.filter = &(const struct rtas_filter) {
|
||
.buf_idx1 = 1, .size_idx1 = -1,
|
||
.buf_idx2 = -1, .size_idx2 = -1,
|
||
},
|
||
},
|
||
[RTAS_FNIDX__IBM_SET_XIVE] = {
|
||
.name = "ibm,set-xive",
|
||
},
|
||
[RTAS_FNIDX__IBM_SLOT_ERROR_DETAIL] = {
|
||
.name = "ibm,slot-error-detail",
|
||
},
|
||
[RTAS_FNIDX__IBM_SUSPEND_ME] = {
|
||
.name = "ibm,suspend-me",
|
||
.banned_for_syscall_on_le = true,
|
||
.filter = &(const struct rtas_filter) {
|
||
.buf_idx1 = -1, .size_idx1 = -1,
|
||
.buf_idx2 = -1, .size_idx2 = -1,
|
||
},
|
||
},
|
||
[RTAS_FNIDX__IBM_TUNE_DMA_PARMS] = {
|
||
.name = "ibm,tune-dma-parms",
|
||
},
|
||
[RTAS_FNIDX__IBM_UPDATE_FLASH_64_AND_REBOOT] = {
|
||
.name = "ibm,update-flash-64-and-reboot",
|
||
},
|
||
[RTAS_FNIDX__IBM_UPDATE_NODES] = {
|
||
.name = "ibm,update-nodes",
|
||
.banned_for_syscall_on_le = true,
|
||
.filter = &(const struct rtas_filter) {
|
||
.buf_idx1 = 0, .size_idx1 = -1,
|
||
.buf_idx2 = -1, .size_idx2 = -1,
|
||
.fixed_size = 4096,
|
||
},
|
||
},
|
||
[RTAS_FNIDX__IBM_UPDATE_PROPERTIES] = {
|
||
.name = "ibm,update-properties",
|
||
.banned_for_syscall_on_le = true,
|
||
.filter = &(const struct rtas_filter) {
|
||
.buf_idx1 = 0, .size_idx1 = -1,
|
||
.buf_idx2 = -1, .size_idx2 = -1,
|
||
.fixed_size = 4096,
|
||
},
|
||
},
|
||
[RTAS_FNIDX__IBM_VALIDATE_FLASH_IMAGE] = {
|
||
.name = "ibm,validate-flash-image",
|
||
},
|
||
[RTAS_FNIDX__IBM_WRITE_PCI_CONFIG] = {
|
||
.name = "ibm,write-pci-config",
|
||
},
|
||
[RTAS_FNIDX__NVRAM_FETCH] = {
|
||
.name = "nvram-fetch",
|
||
},
|
||
[RTAS_FNIDX__NVRAM_STORE] = {
|
||
.name = "nvram-store",
|
||
},
|
||
[RTAS_FNIDX__POWER_OFF] = {
|
||
.name = "power-off",
|
||
},
|
||
[RTAS_FNIDX__PUT_TERM_CHAR] = {
|
||
.name = "put-term-char",
|
||
},
|
||
[RTAS_FNIDX__QUERY_CPU_STOPPED_STATE] = {
|
||
.name = "query-cpu-stopped-state",
|
||
},
|
||
[RTAS_FNIDX__READ_PCI_CONFIG] = {
|
||
.name = "read-pci-config",
|
||
},
|
||
[RTAS_FNIDX__RTAS_LAST_ERROR] = {
|
||
.name = "rtas-last-error",
|
||
},
|
||
[RTAS_FNIDX__SET_INDICATOR] = {
|
||
.name = "set-indicator",
|
||
.filter = &(const struct rtas_filter) {
|
||
.buf_idx1 = -1, .size_idx1 = -1,
|
||
.buf_idx2 = -1, .size_idx2 = -1,
|
||
},
|
||
},
|
||
[RTAS_FNIDX__SET_POWER_LEVEL] = {
|
||
.name = "set-power-level",
|
||
.filter = &(const struct rtas_filter) {
|
||
.buf_idx1 = -1, .size_idx1 = -1,
|
||
.buf_idx2 = -1, .size_idx2 = -1,
|
||
},
|
||
},
|
||
[RTAS_FNIDX__SET_TIME_FOR_POWER_ON] = {
|
||
.name = "set-time-for-power-on",
|
||
.filter = &(const struct rtas_filter) {
|
||
.buf_idx1 = -1, .size_idx1 = -1,
|
||
.buf_idx2 = -1, .size_idx2 = -1,
|
||
},
|
||
},
|
||
[RTAS_FNIDX__SET_TIME_OF_DAY] = {
|
||
.name = "set-time-of-day",
|
||
.filter = &(const struct rtas_filter) {
|
||
.buf_idx1 = -1, .size_idx1 = -1,
|
||
.buf_idx2 = -1, .size_idx2 = -1,
|
||
},
|
||
},
|
||
[RTAS_FNIDX__START_CPU] = {
|
||
.name = "start-cpu",
|
||
},
|
||
[RTAS_FNIDX__STOP_SELF] = {
|
||
.name = "stop-self",
|
||
},
|
||
[RTAS_FNIDX__SYSTEM_REBOOT] = {
|
||
.name = "system-reboot",
|
||
},
|
||
[RTAS_FNIDX__THAW_TIME_BASE] = {
|
||
.name = "thaw-time-base",
|
||
},
|
||
[RTAS_FNIDX__WRITE_PCI_CONFIG] = {
|
||
.name = "write-pci-config",
|
||
},
|
||
};
|
||
|
||
#define for_each_rtas_function(funcp) \
|
||
for (funcp = &rtas_function_table[0]; \
|
||
funcp < &rtas_function_table[ARRAY_SIZE(rtas_function_table)]; \
|
||
++funcp)
|
||
|
||
/*
|
||
* Nearly all RTAS calls need to be serialized. All uses of the
|
||
* default rtas_args block must hold rtas_lock.
|
||
*
|
||
* Exceptions to the RTAS serialization requirement (e.g. stop-self)
|
||
* must use a separate rtas_args structure.
|
||
*/
|
||
static DEFINE_RAW_SPINLOCK(rtas_lock);
|
||
static struct rtas_args rtas_args;
|
||
|
||
/**
|
||
* rtas_function_token() - RTAS function token lookup.
|
||
* @handle: Function handle, e.g. RTAS_FN_EVENT_SCAN.
|
||
*
|
||
* Context: Any context.
|
||
* Return: the token value for the function if implemented by this platform,
|
||
* otherwise RTAS_UNKNOWN_SERVICE.
|
||
*/
|
||
s32 rtas_function_token(const rtas_fn_handle_t handle)
|
||
{
|
||
const size_t index = handle.index;
|
||
const bool out_of_bounds = index >= ARRAY_SIZE(rtas_function_table);
|
||
|
||
if (WARN_ONCE(out_of_bounds, "invalid function index %zu", index))
|
||
return RTAS_UNKNOWN_SERVICE;
|
||
/*
|
||
* Various drivers attempt token lookups on non-RTAS
|
||
* platforms.
|
||
*/
|
||
if (!rtas.dev)
|
||
return RTAS_UNKNOWN_SERVICE;
|
||
|
||
return rtas_function_table[index].token;
|
||
}
|
||
EXPORT_SYMBOL_GPL(rtas_function_token);
|
||
|
||
static int rtas_function_cmp(const void *a, const void *b)
|
||
{
|
||
const struct rtas_function *f1 = a;
|
||
const struct rtas_function *f2 = b;
|
||
|
||
return strcmp(f1->name, f2->name);
|
||
}
|
||
|
||
/*
|
||
* Boot-time initialization of the function table needs the lookup to
|
||
* return a non-const-qualified object. Use rtas_name_to_function()
|
||
* in all other contexts.
|
||
*/
|
||
static struct rtas_function *__rtas_name_to_function(const char *name)
|
||
{
|
||
const struct rtas_function key = {
|
||
.name = name,
|
||
};
|
||
struct rtas_function *found;
|
||
|
||
found = bsearch(&key, rtas_function_table, ARRAY_SIZE(rtas_function_table),
|
||
sizeof(rtas_function_table[0]), rtas_function_cmp);
|
||
|
||
return found;
|
||
}
|
||
|
||
static const struct rtas_function *rtas_name_to_function(const char *name)
|
||
{
|
||
return __rtas_name_to_function(name);
|
||
}
|
||
|
||
static DEFINE_XARRAY(rtas_token_to_function_xarray);
|
||
|
||
static int __init rtas_token_to_function_xarray_init(void)
|
||
{
|
||
const struct rtas_function *func;
|
||
int err = 0;
|
||
|
||
for_each_rtas_function(func) {
|
||
const s32 token = func->token;
|
||
|
||
if (token == RTAS_UNKNOWN_SERVICE)
|
||
continue;
|
||
|
||
err = xa_err(xa_store(&rtas_token_to_function_xarray,
|
||
token, (void *)func, GFP_KERNEL));
|
||
if (err)
|
||
break;
|
||
}
|
||
|
||
return err;
|
||
}
|
||
arch_initcall(rtas_token_to_function_xarray_init);
|
||
|
||
/*
|
||
* For use by sys_rtas(), where the token value is provided by user
|
||
* space and we don't want to warn on failed lookups.
|
||
*/
|
||
static const struct rtas_function *rtas_token_to_function_untrusted(s32 token)
|
||
{
|
||
return xa_load(&rtas_token_to_function_xarray, token);
|
||
}
|
||
|
||
/*
|
||
* Reverse lookup for deriving the function descriptor from a
|
||
* known-good token value in contexts where the former is not already
|
||
* available. @token must be valid, e.g. derived from the result of a
|
||
* prior lookup against the function table.
|
||
*/
|
||
static const struct rtas_function *rtas_token_to_function(s32 token)
|
||
{
|
||
const struct rtas_function *func;
|
||
|
||
if (WARN_ONCE(token < 0, "invalid token %d", token))
|
||
return NULL;
|
||
|
||
func = rtas_token_to_function_untrusted(token);
|
||
if (func)
|
||
return func;
|
||
/*
|
||
* Fall back to linear scan in case the reverse mapping hasn't
|
||
* been initialized yet.
|
||
*/
|
||
if (xa_empty(&rtas_token_to_function_xarray)) {
|
||
for_each_rtas_function(func) {
|
||
if (func->token == token)
|
||
return func;
|
||
}
|
||
}
|
||
|
||
WARN_ONCE(true, "unexpected failed lookup for token %d", token);
|
||
return NULL;
|
||
}
|
||
|
||
/* This is here deliberately so it's only used in this file */
|
||
void enter_rtas(unsigned long);
|
||
|
||
static void __do_enter_rtas(struct rtas_args *args)
|
||
{
|
||
enter_rtas(__pa(args));
|
||
srr_regs_clobbered(); /* rtas uses SRRs, invalidate */
|
||
}
|
||
|
||
static void __do_enter_rtas_trace(struct rtas_args *args)
|
||
{
|
||
const struct rtas_function *func = rtas_token_to_function(be32_to_cpu(args->token));
|
||
|
||
/*
|
||
* If there is a per-function lock, it must be held by the
|
||
* caller.
|
||
*/
|
||
if (func->lock)
|
||
lockdep_assert_held(func->lock);
|
||
|
||
if (args == &rtas_args)
|
||
lockdep_assert_held(&rtas_lock);
|
||
|
||
trace_rtas_input(args, func->name);
|
||
trace_rtas_ll_entry(args);
|
||
|
||
__do_enter_rtas(args);
|
||
|
||
trace_rtas_ll_exit(args);
|
||
trace_rtas_output(args, func->name);
|
||
}
|
||
|
||
static void do_enter_rtas(struct rtas_args *args)
|
||
{
|
||
const unsigned long msr = mfmsr();
|
||
/*
|
||
* Situations where we want to skip any active tracepoints for
|
||
* safety reasons:
|
||
*
|
||
* 1. The last code executed on an offline CPU as it stops,
|
||
* i.e. we're about to call stop-self. The tracepoints'
|
||
* function name lookup uses xarray, which uses RCU, which
|
||
* isn't valid to call on an offline CPU. Any events
|
||
* emitted on an offline CPU will be discarded anyway.
|
||
*
|
||
* 2. In real mode, as when invoking ibm,nmi-interlock from
|
||
* the pseries MCE handler. We cannot count on trace
|
||
* buffers or the entries in rtas_token_to_function_xarray
|
||
* to be contained in the RMO.
|
||
*/
|
||
const unsigned long mask = MSR_IR | MSR_DR;
|
||
const bool can_trace = likely(cpu_online(raw_smp_processor_id()) &&
|
||
(msr & mask) == mask);
|
||
/*
|
||
* Make sure MSR[RI] is currently enabled as it will be forced later
|
||
* in enter_rtas.
|
||
*/
|
||
BUG_ON(!(msr & MSR_RI));
|
||
|
||
BUG_ON(!irqs_disabled());
|
||
|
||
hard_irq_disable(); /* Ensure MSR[EE] is disabled on PPC64 */
|
||
|
||
if (can_trace)
|
||
__do_enter_rtas_trace(args);
|
||
else
|
||
__do_enter_rtas(args);
|
||
}
|
||
|
||
struct rtas_t rtas;
|
||
|
||
DEFINE_SPINLOCK(rtas_data_buf_lock);
|
||
EXPORT_SYMBOL_GPL(rtas_data_buf_lock);
|
||
|
||
char rtas_data_buf[RTAS_DATA_BUF_SIZE] __aligned(SZ_4K);
|
||
EXPORT_SYMBOL_GPL(rtas_data_buf);
|
||
|
||
unsigned long rtas_rmo_buf;
|
||
|
||
/*
|
||
* If non-NULL, this gets called when the kernel terminates.
|
||
* This is done like this so rtas_flash can be a module.
|
||
*/
|
||
void (*rtas_flash_term_hook)(int);
|
||
EXPORT_SYMBOL_GPL(rtas_flash_term_hook);
|
||
|
||
/*
|
||
* call_rtas_display_status and call_rtas_display_status_delay
|
||
* are designed only for very early low-level debugging, which
|
||
* is why the token is hard-coded to 10.
|
||
*/
|
||
static void call_rtas_display_status(unsigned char c)
|
||
{
|
||
unsigned long flags;
|
||
|
||
if (!rtas.base)
|
||
return;
|
||
|
||
raw_spin_lock_irqsave(&rtas_lock, flags);
|
||
rtas_call_unlocked(&rtas_args, 10, 1, 1, NULL, c);
|
||
raw_spin_unlock_irqrestore(&rtas_lock, flags);
|
||
}
|
||
|
||
static void call_rtas_display_status_delay(char c)
|
||
{
|
||
static int pending_newline = 0; /* did last write end with unprinted newline? */
|
||
static int width = 16;
|
||
|
||
if (c == '\n') {
|
||
while (width-- > 0)
|
||
call_rtas_display_status(' ');
|
||
width = 16;
|
||
mdelay(500);
|
||
pending_newline = 1;
|
||
} else {
|
||
if (pending_newline) {
|
||
call_rtas_display_status('\r');
|
||
call_rtas_display_status('\n');
|
||
}
|
||
pending_newline = 0;
|
||
if (width--) {
|
||
call_rtas_display_status(c);
|
||
udelay(10000);
|
||
}
|
||
}
|
||
}
|
||
|
||
void __init udbg_init_rtas_panel(void)
|
||
{
|
||
udbg_putc = call_rtas_display_status_delay;
|
||
}
|
||
|
||
#ifdef CONFIG_UDBG_RTAS_CONSOLE
|
||
|
||
/* If you think you're dying before early_init_dt_scan_rtas() does its
|
||
* work, you can hard code the token values for your firmware here and
|
||
* hardcode rtas.base/entry etc.
|
||
*/
|
||
static unsigned int rtas_putchar_token = RTAS_UNKNOWN_SERVICE;
|
||
static unsigned int rtas_getchar_token = RTAS_UNKNOWN_SERVICE;
|
||
|
||
static void udbg_rtascon_putc(char c)
|
||
{
|
||
int tries;
|
||
|
||
if (!rtas.base)
|
||
return;
|
||
|
||
/* Add CRs before LFs */
|
||
if (c == '\n')
|
||
udbg_rtascon_putc('\r');
|
||
|
||
/* if there is more than one character to be displayed, wait a bit */
|
||
for (tries = 0; tries < 16; tries++) {
|
||
if (rtas_call(rtas_putchar_token, 1, 1, NULL, c) == 0)
|
||
break;
|
||
udelay(1000);
|
||
}
|
||
}
|
||
|
||
static int udbg_rtascon_getc_poll(void)
|
||
{
|
||
int c;
|
||
|
||
if (!rtas.base)
|
||
return -1;
|
||
|
||
if (rtas_call(rtas_getchar_token, 0, 2, &c))
|
||
return -1;
|
||
|
||
return c;
|
||
}
|
||
|
||
static int udbg_rtascon_getc(void)
|
||
{
|
||
int c;
|
||
|
||
while ((c = udbg_rtascon_getc_poll()) == -1)
|
||
;
|
||
|
||
return c;
|
||
}
|
||
|
||
|
||
void __init udbg_init_rtas_console(void)
|
||
{
|
||
udbg_putc = udbg_rtascon_putc;
|
||
udbg_getc = udbg_rtascon_getc;
|
||
udbg_getc_poll = udbg_rtascon_getc_poll;
|
||
}
|
||
#endif /* CONFIG_UDBG_RTAS_CONSOLE */
|
||
|
||
void rtas_progress(char *s, unsigned short hex)
|
||
{
|
||
struct device_node *root;
|
||
int width;
|
||
const __be32 *p;
|
||
char *os;
|
||
static int display_character, set_indicator;
|
||
static int display_width, display_lines, form_feed;
|
||
static const int *row_width;
|
||
static DEFINE_SPINLOCK(progress_lock);
|
||
static int current_line;
|
||
static int pending_newline = 0; /* did last write end with unprinted newline? */
|
||
|
||
if (!rtas.base)
|
||
return;
|
||
|
||
if (display_width == 0) {
|
||
display_width = 0x10;
|
||
if ((root = of_find_node_by_path("/rtas"))) {
|
||
if ((p = of_get_property(root,
|
||
"ibm,display-line-length", NULL)))
|
||
display_width = be32_to_cpu(*p);
|
||
if ((p = of_get_property(root,
|
||
"ibm,form-feed", NULL)))
|
||
form_feed = be32_to_cpu(*p);
|
||
if ((p = of_get_property(root,
|
||
"ibm,display-number-of-lines", NULL)))
|
||
display_lines = be32_to_cpu(*p);
|
||
row_width = of_get_property(root,
|
||
"ibm,display-truncation-length", NULL);
|
||
of_node_put(root);
|
||
}
|
||
display_character = rtas_function_token(RTAS_FN_DISPLAY_CHARACTER);
|
||
set_indicator = rtas_function_token(RTAS_FN_SET_INDICATOR);
|
||
}
|
||
|
||
if (display_character == RTAS_UNKNOWN_SERVICE) {
|
||
/* use hex display if available */
|
||
if (set_indicator != RTAS_UNKNOWN_SERVICE)
|
||
rtas_call(set_indicator, 3, 1, NULL, 6, 0, hex);
|
||
return;
|
||
}
|
||
|
||
spin_lock(&progress_lock);
|
||
|
||
/*
|
||
* Last write ended with newline, but we didn't print it since
|
||
* it would just clear the bottom line of output. Print it now
|
||
* instead.
|
||
*
|
||
* If no newline is pending and form feed is supported, clear the
|
||
* display with a form feed; otherwise, print a CR to start output
|
||
* at the beginning of the line.
|
||
*/
|
||
if (pending_newline) {
|
||
rtas_call(display_character, 1, 1, NULL, '\r');
|
||
rtas_call(display_character, 1, 1, NULL, '\n');
|
||
pending_newline = 0;
|
||
} else {
|
||
current_line = 0;
|
||
if (form_feed)
|
||
rtas_call(display_character, 1, 1, NULL,
|
||
(char)form_feed);
|
||
else
|
||
rtas_call(display_character, 1, 1, NULL, '\r');
|
||
}
|
||
|
||
if (row_width)
|
||
width = row_width[current_line];
|
||
else
|
||
width = display_width;
|
||
os = s;
|
||
while (*os) {
|
||
if (*os == '\n' || *os == '\r') {
|
||
/* If newline is the last character, save it
|
||
* until next call to avoid bumping up the
|
||
* display output.
|
||
*/
|
||
if (*os == '\n' && !os[1]) {
|
||
pending_newline = 1;
|
||
current_line++;
|
||
if (current_line > display_lines-1)
|
||
current_line = display_lines-1;
|
||
spin_unlock(&progress_lock);
|
||
return;
|
||
}
|
||
|
||
/* RTAS wants CR-LF, not just LF */
|
||
|
||
if (*os == '\n') {
|
||
rtas_call(display_character, 1, 1, NULL, '\r');
|
||
rtas_call(display_character, 1, 1, NULL, '\n');
|
||
} else {
|
||
/* CR might be used to re-draw a line, so we'll
|
||
* leave it alone and not add LF.
|
||
*/
|
||
rtas_call(display_character, 1, 1, NULL, *os);
|
||
}
|
||
|
||
if (row_width)
|
||
width = row_width[current_line];
|
||
else
|
||
width = display_width;
|
||
} else {
|
||
width--;
|
||
rtas_call(display_character, 1, 1, NULL, *os);
|
||
}
|
||
|
||
os++;
|
||
|
||
/* if we overwrite the screen length */
|
||
if (width <= 0)
|
||
while ((*os != 0) && (*os != '\n') && (*os != '\r'))
|
||
os++;
|
||
}
|
||
|
||
spin_unlock(&progress_lock);
|
||
}
|
||
EXPORT_SYMBOL_GPL(rtas_progress); /* needed by rtas_flash module */
|
||
|
||
int rtas_token(const char *service)
|
||
{
|
||
const struct rtas_function *func;
|
||
const __be32 *tokp;
|
||
|
||
if (rtas.dev == NULL)
|
||
return RTAS_UNKNOWN_SERVICE;
|
||
|
||
func = rtas_name_to_function(service);
|
||
if (func)
|
||
return func->token;
|
||
/*
|
||
* The caller is looking up a name that is not known to be an
|
||
* RTAS function. Either it's a function that needs to be
|
||
* added to the table, or they're misusing rtas_token() to
|
||
* access non-function properties of the /rtas node. Warn and
|
||
* fall back to the legacy behavior.
|
||
*/
|
||
WARN_ONCE(1, "unknown function `%s`, should it be added to rtas_function_table?\n",
|
||
service);
|
||
|
||
tokp = of_get_property(rtas.dev, service, NULL);
|
||
return tokp ? be32_to_cpu(*tokp) : RTAS_UNKNOWN_SERVICE;
|
||
}
|
||
EXPORT_SYMBOL_GPL(rtas_token);
|
||
|
||
#ifdef CONFIG_RTAS_ERROR_LOGGING
|
||
|
||
static u32 rtas_error_log_max __ro_after_init = RTAS_ERROR_LOG_MAX;
|
||
|
||
/*
|
||
* Return the firmware-specified size of the error log buffer
|
||
* for all rtas calls that require an error buffer argument.
|
||
* This includes 'check-exception' and 'rtas-last-error'.
|
||
*/
|
||
int rtas_get_error_log_max(void)
|
||
{
|
||
return rtas_error_log_max;
|
||
}
|
||
|
||
static void __init init_error_log_max(void)
|
||
{
|
||
static const char propname[] __initconst = "rtas-error-log-max";
|
||
u32 max;
|
||
|
||
if (of_property_read_u32(rtas.dev, propname, &max)) {
|
||
pr_warn("%s not found, using default of %u\n",
|
||
propname, RTAS_ERROR_LOG_MAX);
|
||
max = RTAS_ERROR_LOG_MAX;
|
||
}
|
||
|
||
if (max > RTAS_ERROR_LOG_MAX) {
|
||
pr_warn("%s = %u, clamping max error log size to %u\n",
|
||
propname, max, RTAS_ERROR_LOG_MAX);
|
||
max = RTAS_ERROR_LOG_MAX;
|
||
}
|
||
|
||
rtas_error_log_max = max;
|
||
}
|
||
|
||
|
||
static char rtas_err_buf[RTAS_ERROR_LOG_MAX];
|
||
|
||
/** Return a copy of the detailed error text associated with the
|
||
* most recent failed call to rtas. Because the error text
|
||
* might go stale if there are any other intervening rtas calls,
|
||
* this routine must be called atomically with whatever produced
|
||
* the error (i.e. with rtas_lock still held from the previous call).
|
||
*/
|
||
static char *__fetch_rtas_last_error(char *altbuf)
|
||
{
|
||
const s32 token = rtas_function_token(RTAS_FN_RTAS_LAST_ERROR);
|
||
struct rtas_args err_args, save_args;
|
||
u32 bufsz;
|
||
char *buf = NULL;
|
||
|
||
lockdep_assert_held(&rtas_lock);
|
||
|
||
if (token == -1)
|
||
return NULL;
|
||
|
||
bufsz = rtas_get_error_log_max();
|
||
|
||
err_args.token = cpu_to_be32(token);
|
||
err_args.nargs = cpu_to_be32(2);
|
||
err_args.nret = cpu_to_be32(1);
|
||
err_args.args[0] = cpu_to_be32(__pa(rtas_err_buf));
|
||
err_args.args[1] = cpu_to_be32(bufsz);
|
||
err_args.args[2] = 0;
|
||
|
||
save_args = rtas_args;
|
||
rtas_args = err_args;
|
||
|
||
do_enter_rtas(&rtas_args);
|
||
|
||
err_args = rtas_args;
|
||
rtas_args = save_args;
|
||
|
||
/* Log the error in the unlikely case that there was one. */
|
||
if (unlikely(err_args.args[2] == 0)) {
|
||
if (altbuf) {
|
||
buf = altbuf;
|
||
} else {
|
||
buf = rtas_err_buf;
|
||
if (slab_is_available())
|
||
buf = kmalloc(RTAS_ERROR_LOG_MAX, GFP_ATOMIC);
|
||
}
|
||
if (buf)
|
||
memmove(buf, rtas_err_buf, RTAS_ERROR_LOG_MAX);
|
||
}
|
||
|
||
return buf;
|
||
}
|
||
|
||
#define get_errorlog_buffer() kmalloc(RTAS_ERROR_LOG_MAX, GFP_KERNEL)
|
||
|
||
#else /* CONFIG_RTAS_ERROR_LOGGING */
|
||
#define __fetch_rtas_last_error(x) NULL
|
||
#define get_errorlog_buffer() NULL
|
||
static void __init init_error_log_max(void) {}
|
||
#endif
|
||
|
||
|
||
static void
|
||
va_rtas_call_unlocked(struct rtas_args *args, int token, int nargs, int nret,
|
||
va_list list)
|
||
{
|
||
int i;
|
||
|
||
args->token = cpu_to_be32(token);
|
||
args->nargs = cpu_to_be32(nargs);
|
||
args->nret = cpu_to_be32(nret);
|
||
args->rets = &(args->args[nargs]);
|
||
|
||
for (i = 0; i < nargs; ++i)
|
||
args->args[i] = cpu_to_be32(va_arg(list, __u32));
|
||
|
||
for (i = 0; i < nret; ++i)
|
||
args->rets[i] = 0;
|
||
|
||
do_enter_rtas(args);
|
||
}
|
||
|
||
/**
|
||
* rtas_call_unlocked() - Invoke an RTAS firmware function without synchronization.
|
||
* @args: RTAS parameter block to be used for the call, must obey RTAS addressing
|
||
* constraints.
|
||
* @token: Identifies the function being invoked.
|
||
* @nargs: Number of input parameters. Does not include token.
|
||
* @nret: Number of output parameters, including the call status.
|
||
* @....: List of @nargs input parameters.
|
||
*
|
||
* Invokes the RTAS function indicated by @token, which the caller
|
||
* should obtain via rtas_function_token().
|
||
*
|
||
* This function is similar to rtas_call(), but must be used with a
|
||
* limited set of RTAS calls specifically exempted from the general
|
||
* requirement that only one RTAS call may be in progress at any
|
||
* time. Examples include stop-self and ibm,nmi-interlock.
|
||
*/
|
||
void rtas_call_unlocked(struct rtas_args *args, int token, int nargs, int nret, ...)
|
||
{
|
||
va_list list;
|
||
|
||
va_start(list, nret);
|
||
va_rtas_call_unlocked(args, token, nargs, nret, list);
|
||
va_end(list);
|
||
}
|
||
|
||
static bool token_is_restricted_errinjct(s32 token)
|
||
{
|
||
return token == rtas_function_token(RTAS_FN_IBM_OPEN_ERRINJCT) ||
|
||
token == rtas_function_token(RTAS_FN_IBM_ERRINJCT);
|
||
}
|
||
|
||
/**
|
||
* rtas_call() - Invoke an RTAS firmware function.
|
||
* @token: Identifies the function being invoked.
|
||
* @nargs: Number of input parameters. Does not include token.
|
||
* @nret: Number of output parameters, including the call status.
|
||
* @outputs: Array of @nret output words.
|
||
* @....: List of @nargs input parameters.
|
||
*
|
||
* Invokes the RTAS function indicated by @token, which the caller
|
||
* should obtain via rtas_function_token().
|
||
*
|
||
* The @nargs and @nret arguments must match the number of input and
|
||
* output parameters specified for the RTAS function.
|
||
*
|
||
* rtas_call() returns RTAS status codes, not conventional Linux errno
|
||
* values. Callers must translate any failure to an appropriate errno
|
||
* in syscall context. Most callers of RTAS functions that can return
|
||
* -2 or 990x should use rtas_busy_delay() to correctly handle those
|
||
* statuses before calling again.
|
||
*
|
||
* The return value descriptions are adapted from 7.2.8 [RTAS] Return
|
||
* Codes of the PAPR and CHRP specifications.
|
||
*
|
||
* Context: Process context preferably, interrupt context if
|
||
* necessary. Acquires an internal spinlock and may perform
|
||
* GFP_ATOMIC slab allocation in error path. Unsafe for NMI
|
||
* context.
|
||
* Return:
|
||
* * 0 - RTAS function call succeeded.
|
||
* * -1 - RTAS function encountered a hardware or
|
||
* platform error, or the token is invalid,
|
||
* or the function is restricted by kernel policy.
|
||
* * -2 - Specs say "A necessary hardware device was busy,
|
||
* and the requested function could not be
|
||
* performed. The operation should be retried at
|
||
* a later time." This is misleading, at least with
|
||
* respect to current RTAS implementations. What it
|
||
* usually means in practice is that the function
|
||
* could not be completed while meeting RTAS's
|
||
* deadline for returning control to the OS (250us
|
||
* for PAPR/PowerVM, typically), but the call may be
|
||
* immediately reattempted to resume work on it.
|
||
* * -3 - Parameter error.
|
||
* * -7 - Unexpected state change.
|
||
* * 9000...9899 - Vendor-specific success codes.
|
||
* * 9900...9905 - Advisory extended delay. Caller should try
|
||
* again after ~10^x ms has elapsed, where x is
|
||
* the last digit of the status [0-5]. Again going
|
||
* beyond the PAPR text, 990x on PowerVM indicates
|
||
* contention for RTAS-internal resources. Other
|
||
* RTAS call sequences in progress should be
|
||
* allowed to complete before reattempting the
|
||
* call.
|
||
* * -9000 - Multi-level isolation error.
|
||
* * -9999...-9004 - Vendor-specific error codes.
|
||
* * Additional negative values - Function-specific error.
|
||
* * Additional positive values - Function-specific success.
|
||
*/
|
||
int rtas_call(int token, int nargs, int nret, int *outputs, ...)
|
||
{
|
||
struct pin_cookie cookie;
|
||
va_list list;
|
||
int i;
|
||
unsigned long flags;
|
||
struct rtas_args *args;
|
||
char *buff_copy = NULL;
|
||
int ret;
|
||
|
||
if (!rtas.entry || token == RTAS_UNKNOWN_SERVICE)
|
||
return -1;
|
||
|
||
if (token_is_restricted_errinjct(token)) {
|
||
/*
|
||
* It would be nicer to not discard the error value
|
||
* from security_locked_down(), but callers expect an
|
||
* RTAS status, not an errno.
|
||
*/
|
||
if (security_locked_down(LOCKDOWN_RTAS_ERROR_INJECTION))
|
||
return -1;
|
||
}
|
||
|
||
if ((mfmsr() & (MSR_IR|MSR_DR)) != (MSR_IR|MSR_DR)) {
|
||
WARN_ON_ONCE(1);
|
||
return -1;
|
||
}
|
||
|
||
raw_spin_lock_irqsave(&rtas_lock, flags);
|
||
cookie = lockdep_pin_lock(&rtas_lock);
|
||
|
||
/* We use the global rtas args buffer */
|
||
args = &rtas_args;
|
||
|
||
va_start(list, outputs);
|
||
va_rtas_call_unlocked(args, token, nargs, nret, list);
|
||
va_end(list);
|
||
|
||
/* A -1 return code indicates that the last command couldn't
|
||
be completed due to a hardware error. */
|
||
if (be32_to_cpu(args->rets[0]) == -1)
|
||
buff_copy = __fetch_rtas_last_error(NULL);
|
||
|
||
if (nret > 1 && outputs != NULL)
|
||
for (i = 0; i < nret-1; ++i)
|
||
outputs[i] = be32_to_cpu(args->rets[i + 1]);
|
||
ret = (nret > 0) ? be32_to_cpu(args->rets[0]) : 0;
|
||
|
||
lockdep_unpin_lock(&rtas_lock, cookie);
|
||
raw_spin_unlock_irqrestore(&rtas_lock, flags);
|
||
|
||
if (buff_copy) {
|
||
log_error(buff_copy, ERR_TYPE_RTAS_LOG, 0);
|
||
if (slab_is_available())
|
||
kfree(buff_copy);
|
||
}
|
||
return ret;
|
||
}
|
||
EXPORT_SYMBOL_GPL(rtas_call);
|
||
|
||
/**
|
||
* rtas_busy_delay_time() - From an RTAS status value, calculate the
|
||
* suggested delay time in milliseconds.
|
||
*
|
||
* @status: a value returned from rtas_call() or similar APIs which return
|
||
* the status of a RTAS function call.
|
||
*
|
||
* Context: Any context.
|
||
*
|
||
* Return:
|
||
* * 100000 - If @status is 9905.
|
||
* * 10000 - If @status is 9904.
|
||
* * 1000 - If @status is 9903.
|
||
* * 100 - If @status is 9902.
|
||
* * 10 - If @status is 9901.
|
||
* * 1 - If @status is either 9900 or -2. This is "wrong" for -2, but
|
||
* some callers depend on this behavior, and the worst outcome
|
||
* is that they will delay for longer than necessary.
|
||
* * 0 - If @status is not a busy or extended delay value.
|
||
*/
|
||
unsigned int rtas_busy_delay_time(int status)
|
||
{
|
||
int order;
|
||
unsigned int ms = 0;
|
||
|
||
if (status == RTAS_BUSY) {
|
||
ms = 1;
|
||
} else if (status >= RTAS_EXTENDED_DELAY_MIN &&
|
||
status <= RTAS_EXTENDED_DELAY_MAX) {
|
||
order = status - RTAS_EXTENDED_DELAY_MIN;
|
||
for (ms = 1; order > 0; order--)
|
||
ms *= 10;
|
||
}
|
||
|
||
return ms;
|
||
}
|
||
|
||
/*
|
||
* Early boot fallback for rtas_busy_delay().
|
||
*/
|
||
static bool __init rtas_busy_delay_early(int status)
|
||
{
|
||
static size_t successive_ext_delays __initdata;
|
||
bool retry;
|
||
|
||
switch (status) {
|
||
case RTAS_EXTENDED_DELAY_MIN...RTAS_EXTENDED_DELAY_MAX:
|
||
/*
|
||
* In the unlikely case that we receive an extended
|
||
* delay status in early boot, the OS is probably not
|
||
* the cause, and there's nothing we can do to clear
|
||
* the condition. Best we can do is delay for a bit
|
||
* and hope it's transient. Lie to the caller if it
|
||
* seems like we're stuck in a retry loop.
|
||
*/
|
||
mdelay(1);
|
||
retry = true;
|
||
successive_ext_delays += 1;
|
||
if (successive_ext_delays > 1000) {
|
||
pr_err("too many extended delays, giving up\n");
|
||
dump_stack();
|
||
retry = false;
|
||
successive_ext_delays = 0;
|
||
}
|
||
break;
|
||
case RTAS_BUSY:
|
||
retry = true;
|
||
successive_ext_delays = 0;
|
||
break;
|
||
default:
|
||
retry = false;
|
||
successive_ext_delays = 0;
|
||
break;
|
||
}
|
||
|
||
return retry;
|
||
}
|
||
|
||
/**
|
||
* rtas_busy_delay() - helper for RTAS busy and extended delay statuses
|
||
*
|
||
* @status: a value returned from rtas_call() or similar APIs which return
|
||
* the status of a RTAS function call.
|
||
*
|
||
* Context: Process context. May sleep or schedule.
|
||
*
|
||
* Return:
|
||
* * true - @status is RTAS_BUSY or an extended delay hint. The
|
||
* caller may assume that the CPU has been yielded if necessary,
|
||
* and that an appropriate delay for @status has elapsed.
|
||
* Generally the caller should reattempt the RTAS call which
|
||
* yielded @status.
|
||
*
|
||
* * false - @status is not @RTAS_BUSY nor an extended delay hint. The
|
||
* caller is responsible for handling @status.
|
||
*/
|
||
bool __ref rtas_busy_delay(int status)
|
||
{
|
||
unsigned int ms;
|
||
bool ret;
|
||
|
||
/*
|
||
* Can't do timed sleeps before timekeeping is up.
|
||
*/
|
||
if (system_state < SYSTEM_SCHEDULING)
|
||
return rtas_busy_delay_early(status);
|
||
|
||
switch (status) {
|
||
case RTAS_EXTENDED_DELAY_MIN...RTAS_EXTENDED_DELAY_MAX:
|
||
ret = true;
|
||
ms = rtas_busy_delay_time(status);
|
||
/*
|
||
* The extended delay hint can be as high as 100 seconds.
|
||
* Surely any function returning such a status is either
|
||
* buggy or isn't going to be significantly slowed by us
|
||
* polling at 1HZ. Clamp the sleep time to one second.
|
||
*/
|
||
ms = clamp(ms, 1U, 1000U);
|
||
/*
|
||
* The delay hint is an order-of-magnitude suggestion, not
|
||
* a minimum. It is fine, possibly even advantageous, for
|
||
* us to pause for less time than hinted. For small values,
|
||
* use usleep_range() to ensure we don't sleep much longer
|
||
* than actually needed.
|
||
*
|
||
* See Documentation/timers/timers-howto.rst for
|
||
* explanation of the threshold used here. In effect we use
|
||
* usleep_range() for 9900 and 9901, msleep() for
|
||
* 9902-9905.
|
||
*/
|
||
if (ms <= 20)
|
||
usleep_range(ms * 100, ms * 1000);
|
||
else
|
||
msleep(ms);
|
||
break;
|
||
case RTAS_BUSY:
|
||
ret = true;
|
||
/*
|
||
* We should call again immediately if there's no other
|
||
* work to do.
|
||
*/
|
||
cond_resched();
|
||
break;
|
||
default:
|
||
ret = false;
|
||
/*
|
||
* Not a busy or extended delay status; the caller should
|
||
* handle @status itself. Ensure we warn on misuses in
|
||
* atomic context regardless.
|
||
*/
|
||
might_sleep();
|
||
break;
|
||
}
|
||
|
||
return ret;
|
||
}
|
||
EXPORT_SYMBOL_GPL(rtas_busy_delay);
|
||
|
||
int rtas_error_rc(int rtas_rc)
|
||
{
|
||
int rc;
|
||
|
||
switch (rtas_rc) {
|
||
case RTAS_HARDWARE_ERROR: /* Hardware Error */
|
||
rc = -EIO;
|
||
break;
|
||
case RTAS_INVALID_PARAMETER: /* Bad indicator/domain/etc */
|
||
rc = -EINVAL;
|
||
break;
|
||
case -9000: /* Isolation error */
|
||
rc = -EFAULT;
|
||
break;
|
||
case -9001: /* Outstanding TCE/PTE */
|
||
rc = -EEXIST;
|
||
break;
|
||
case -9002: /* No usable slot */
|
||
rc = -ENODEV;
|
||
break;
|
||
default:
|
||
pr_err("%s: unexpected error %d\n", __func__, rtas_rc);
|
||
rc = -ERANGE;
|
||
break;
|
||
}
|
||
return rc;
|
||
}
|
||
EXPORT_SYMBOL_GPL(rtas_error_rc);
|
||
|
||
int rtas_get_power_level(int powerdomain, int *level)
|
||
{
|
||
int token = rtas_function_token(RTAS_FN_GET_POWER_LEVEL);
|
||
int rc;
|
||
|
||
if (token == RTAS_UNKNOWN_SERVICE)
|
||
return -ENOENT;
|
||
|
||
while ((rc = rtas_call(token, 1, 2, level, powerdomain)) == RTAS_BUSY)
|
||
udelay(1);
|
||
|
||
if (rc < 0)
|
||
return rtas_error_rc(rc);
|
||
return rc;
|
||
}
|
||
EXPORT_SYMBOL_GPL(rtas_get_power_level);
|
||
|
||
int rtas_set_power_level(int powerdomain, int level, int *setlevel)
|
||
{
|
||
int token = rtas_function_token(RTAS_FN_SET_POWER_LEVEL);
|
||
int rc;
|
||
|
||
if (token == RTAS_UNKNOWN_SERVICE)
|
||
return -ENOENT;
|
||
|
||
do {
|
||
rc = rtas_call(token, 2, 2, setlevel, powerdomain, level);
|
||
} while (rtas_busy_delay(rc));
|
||
|
||
if (rc < 0)
|
||
return rtas_error_rc(rc);
|
||
return rc;
|
||
}
|
||
EXPORT_SYMBOL_GPL(rtas_set_power_level);
|
||
|
||
int rtas_get_sensor(int sensor, int index, int *state)
|
||
{
|
||
int token = rtas_function_token(RTAS_FN_GET_SENSOR_STATE);
|
||
int rc;
|
||
|
||
if (token == RTAS_UNKNOWN_SERVICE)
|
||
return -ENOENT;
|
||
|
||
do {
|
||
rc = rtas_call(token, 2, 2, state, sensor, index);
|
||
} while (rtas_busy_delay(rc));
|
||
|
||
if (rc < 0)
|
||
return rtas_error_rc(rc);
|
||
return rc;
|
||
}
|
||
EXPORT_SYMBOL_GPL(rtas_get_sensor);
|
||
|
||
int rtas_get_sensor_fast(int sensor, int index, int *state)
|
||
{
|
||
int token = rtas_function_token(RTAS_FN_GET_SENSOR_STATE);
|
||
int rc;
|
||
|
||
if (token == RTAS_UNKNOWN_SERVICE)
|
||
return -ENOENT;
|
||
|
||
rc = rtas_call(token, 2, 2, state, sensor, index);
|
||
WARN_ON(rc == RTAS_BUSY || (rc >= RTAS_EXTENDED_DELAY_MIN &&
|
||
rc <= RTAS_EXTENDED_DELAY_MAX));
|
||
|
||
if (rc < 0)
|
||
return rtas_error_rc(rc);
|
||
return rc;
|
||
}
|
||
|
||
bool rtas_indicator_present(int token, int *maxindex)
|
||
{
|
||
int proplen, count, i;
|
||
const struct indicator_elem {
|
||
__be32 token;
|
||
__be32 maxindex;
|
||
} *indicators;
|
||
|
||
indicators = of_get_property(rtas.dev, "rtas-indicators", &proplen);
|
||
if (!indicators)
|
||
return false;
|
||
|
||
count = proplen / sizeof(struct indicator_elem);
|
||
|
||
for (i = 0; i < count; i++) {
|
||
if (__be32_to_cpu(indicators[i].token) != token)
|
||
continue;
|
||
if (maxindex)
|
||
*maxindex = __be32_to_cpu(indicators[i].maxindex);
|
||
return true;
|
||
}
|
||
|
||
return false;
|
||
}
|
||
|
||
int rtas_set_indicator(int indicator, int index, int new_value)
|
||
{
|
||
int token = rtas_function_token(RTAS_FN_SET_INDICATOR);
|
||
int rc;
|
||
|
||
if (token == RTAS_UNKNOWN_SERVICE)
|
||
return -ENOENT;
|
||
|
||
do {
|
||
rc = rtas_call(token, 3, 1, NULL, indicator, index, new_value);
|
||
} while (rtas_busy_delay(rc));
|
||
|
||
if (rc < 0)
|
||
return rtas_error_rc(rc);
|
||
return rc;
|
||
}
|
||
EXPORT_SYMBOL_GPL(rtas_set_indicator);
|
||
|
||
/*
|
||
* Ignoring RTAS extended delay
|
||
*/
|
||
int rtas_set_indicator_fast(int indicator, int index, int new_value)
|
||
{
|
||
int token = rtas_function_token(RTAS_FN_SET_INDICATOR);
|
||
int rc;
|
||
|
||
if (token == RTAS_UNKNOWN_SERVICE)
|
||
return -ENOENT;
|
||
|
||
rc = rtas_call(token, 3, 1, NULL, indicator, index, new_value);
|
||
|
||
WARN_ON(rc == RTAS_BUSY || (rc >= RTAS_EXTENDED_DELAY_MIN &&
|
||
rc <= RTAS_EXTENDED_DELAY_MAX));
|
||
|
||
if (rc < 0)
|
||
return rtas_error_rc(rc);
|
||
|
||
return rc;
|
||
}
|
||
|
||
/**
|
||
* rtas_ibm_suspend_me() - Call ibm,suspend-me to suspend the LPAR.
|
||
*
|
||
* @fw_status: RTAS call status will be placed here if not NULL.
|
||
*
|
||
* rtas_ibm_suspend_me() should be called only on a CPU which has
|
||
* received H_CONTINUE from the H_JOIN hcall. All other active CPUs
|
||
* should be waiting to return from H_JOIN.
|
||
*
|
||
* rtas_ibm_suspend_me() may suspend execution of the OS
|
||
* indefinitely. Callers should take appropriate measures upon return, such as
|
||
* resetting watchdog facilities.
|
||
*
|
||
* Callers may choose to retry this call if @fw_status is
|
||
* %RTAS_THREADS_ACTIVE.
|
||
*
|
||
* Return:
|
||
* 0 - The partition has resumed from suspend, possibly after
|
||
* migration to a different host.
|
||
* -ECANCELED - The operation was aborted.
|
||
* -EAGAIN - There were other CPUs not in H_JOIN at the time of the call.
|
||
* -EBUSY - Some other condition prevented the suspend from succeeding.
|
||
* -EIO - Hardware/platform error.
|
||
*/
|
||
int rtas_ibm_suspend_me(int *fw_status)
|
||
{
|
||
int token = rtas_function_token(RTAS_FN_IBM_SUSPEND_ME);
|
||
int fwrc;
|
||
int ret;
|
||
|
||
fwrc = rtas_call(token, 0, 1, NULL);
|
||
|
||
switch (fwrc) {
|
||
case 0:
|
||
ret = 0;
|
||
break;
|
||
case RTAS_SUSPEND_ABORTED:
|
||
ret = -ECANCELED;
|
||
break;
|
||
case RTAS_THREADS_ACTIVE:
|
||
ret = -EAGAIN;
|
||
break;
|
||
case RTAS_NOT_SUSPENDABLE:
|
||
case RTAS_OUTSTANDING_COPROC:
|
||
ret = -EBUSY;
|
||
break;
|
||
case -1:
|
||
default:
|
||
ret = -EIO;
|
||
break;
|
||
}
|
||
|
||
if (fw_status)
|
||
*fw_status = fwrc;
|
||
|
||
return ret;
|
||
}
|
||
|
||
void __noreturn rtas_restart(char *cmd)
|
||
{
|
||
if (rtas_flash_term_hook)
|
||
rtas_flash_term_hook(SYS_RESTART);
|
||
pr_emerg("system-reboot returned %d\n",
|
||
rtas_call(rtas_function_token(RTAS_FN_SYSTEM_REBOOT), 0, 1, NULL));
|
||
for (;;);
|
||
}
|
||
|
||
void rtas_power_off(void)
|
||
{
|
||
if (rtas_flash_term_hook)
|
||
rtas_flash_term_hook(SYS_POWER_OFF);
|
||
/* allow power on only with power button press */
|
||
pr_emerg("power-off returned %d\n",
|
||
rtas_call(rtas_function_token(RTAS_FN_POWER_OFF), 2, 1, NULL, -1, -1));
|
||
for (;;);
|
||
}
|
||
|
||
void __noreturn rtas_halt(void)
|
||
{
|
||
if (rtas_flash_term_hook)
|
||
rtas_flash_term_hook(SYS_HALT);
|
||
/* allow power on only with power button press */
|
||
pr_emerg("power-off returned %d\n",
|
||
rtas_call(rtas_function_token(RTAS_FN_POWER_OFF), 2, 1, NULL, -1, -1));
|
||
for (;;);
|
||
}
|
||
|
||
/* Must be in the RMO region, so we place it here */
|
||
static char rtas_os_term_buf[2048];
|
||
static bool ibm_extended_os_term;
|
||
|
||
void rtas_os_term(char *str)
|
||
{
|
||
s32 token = rtas_function_token(RTAS_FN_IBM_OS_TERM);
|
||
static struct rtas_args args;
|
||
int status;
|
||
|
||
/*
|
||
* Firmware with the ibm,extended-os-term property is guaranteed
|
||
* to always return from an ibm,os-term call. Earlier versions without
|
||
* this property may terminate the partition which we want to avoid
|
||
* since it interferes with panic_timeout.
|
||
*/
|
||
|
||
if (token == RTAS_UNKNOWN_SERVICE || !ibm_extended_os_term)
|
||
return;
|
||
|
||
snprintf(rtas_os_term_buf, 2048, "OS panic: %s", str);
|
||
|
||
/*
|
||
* Keep calling as long as RTAS returns a "try again" status,
|
||
* but don't use rtas_busy_delay(), which potentially
|
||
* schedules.
|
||
*/
|
||
do {
|
||
rtas_call_unlocked(&args, token, 1, 1, NULL, __pa(rtas_os_term_buf));
|
||
status = be32_to_cpu(args.rets[0]);
|
||
} while (rtas_busy_delay_time(status));
|
||
|
||
if (status != 0)
|
||
pr_emerg("ibm,os-term call failed %d\n", status);
|
||
}
|
||
|
||
/**
|
||
* rtas_activate_firmware() - Activate a new version of firmware.
|
||
*
|
||
* Context: This function may sleep.
|
||
*
|
||
* Activate a new version of partition firmware. The OS must call this
|
||
* after resuming from a partition hibernation or migration in order
|
||
* to maintain the ability to perform live firmware updates. It's not
|
||
* catastrophic for this method to be absent or to fail; just log the
|
||
* condition in that case.
|
||
*/
|
||
void rtas_activate_firmware(void)
|
||
{
|
||
int token = rtas_function_token(RTAS_FN_IBM_ACTIVATE_FIRMWARE);
|
||
int fwrc;
|
||
|
||
if (token == RTAS_UNKNOWN_SERVICE) {
|
||
pr_notice("ibm,activate-firmware method unavailable\n");
|
||
return;
|
||
}
|
||
|
||
mutex_lock(&rtas_ibm_activate_firmware_lock);
|
||
|
||
do {
|
||
fwrc = rtas_call(token, 0, 1, NULL);
|
||
} while (rtas_busy_delay(fwrc));
|
||
|
||
mutex_unlock(&rtas_ibm_activate_firmware_lock);
|
||
|
||
if (fwrc)
|
||
pr_err("ibm,activate-firmware failed (%i)\n", fwrc);
|
||
}
|
||
|
||
/**
|
||
* get_pseries_errorlog() - Find a specific pseries error log in an RTAS
|
||
* extended event log.
|
||
* @log: RTAS error/event log
|
||
* @section_id: two character section identifier
|
||
*
|
||
* Return: A pointer to the specified errorlog or NULL if not found.
|
||
*/
|
||
noinstr struct pseries_errorlog *get_pseries_errorlog(struct rtas_error_log *log,
|
||
uint16_t section_id)
|
||
{
|
||
struct rtas_ext_event_log_v6 *ext_log =
|
||
(struct rtas_ext_event_log_v6 *)log->buffer;
|
||
struct pseries_errorlog *sect;
|
||
unsigned char *p, *log_end;
|
||
uint32_t ext_log_length = rtas_error_extended_log_length(log);
|
||
uint8_t log_format = rtas_ext_event_log_format(ext_log);
|
||
uint32_t company_id = rtas_ext_event_company_id(ext_log);
|
||
|
||
/* Check that we understand the format */
|
||
if (ext_log_length < sizeof(struct rtas_ext_event_log_v6) ||
|
||
log_format != RTAS_V6EXT_LOG_FORMAT_EVENT_LOG ||
|
||
company_id != RTAS_V6EXT_COMPANY_ID_IBM)
|
||
return NULL;
|
||
|
||
log_end = log->buffer + ext_log_length;
|
||
p = ext_log->vendor_log;
|
||
|
||
while (p < log_end) {
|
||
sect = (struct pseries_errorlog *)p;
|
||
if (pseries_errorlog_id(sect) == section_id)
|
||
return sect;
|
||
p += pseries_errorlog_length(sect);
|
||
}
|
||
|
||
return NULL;
|
||
}
|
||
|
||
/*
|
||
* The sys_rtas syscall, as originally designed, allows root to pass
|
||
* arbitrary physical addresses to RTAS calls. A number of RTAS calls
|
||
* can be abused to write to arbitrary memory and do other things that
|
||
* are potentially harmful to system integrity, and thus should only
|
||
* be used inside the kernel and not exposed to userspace.
|
||
*
|
||
* All known legitimate users of the sys_rtas syscall will only ever
|
||
* pass addresses that fall within the RMO buffer, and use a known
|
||
* subset of RTAS calls.
|
||
*
|
||
* Accordingly, we filter RTAS requests to check that the call is
|
||
* permitted, and that provided pointers fall within the RMO buffer.
|
||
* If a function is allowed to be invoked via the syscall, then its
|
||
* entry in the rtas_functions table points to a rtas_filter that
|
||
* describes its constraints, with the indexes of the parameters which
|
||
* are expected to contain addresses and sizes of buffers allocated
|
||
* inside the RMO buffer.
|
||
*/
|
||
|
||
static bool in_rmo_buf(u32 base, u32 end)
|
||
{
|
||
return base >= rtas_rmo_buf &&
|
||
base < (rtas_rmo_buf + RTAS_USER_REGION_SIZE) &&
|
||
base <= end &&
|
||
end >= rtas_rmo_buf &&
|
||
end < (rtas_rmo_buf + RTAS_USER_REGION_SIZE);
|
||
}
|
||
|
||
static bool block_rtas_call(const struct rtas_function *func, int nargs,
|
||
struct rtas_args *args)
|
||
{
|
||
const struct rtas_filter *f;
|
||
const bool is_platform_dump =
|
||
func == &rtas_function_table[RTAS_FNIDX__IBM_PLATFORM_DUMP];
|
||
const bool is_config_conn =
|
||
func == &rtas_function_table[RTAS_FNIDX__IBM_CONFIGURE_CONNECTOR];
|
||
u32 base, size, end;
|
||
|
||
/*
|
||
* Only functions with filters attached are allowed.
|
||
*/
|
||
f = func->filter;
|
||
if (!f)
|
||
goto err;
|
||
/*
|
||
* And some functions aren't allowed on LE.
|
||
*/
|
||
if (IS_ENABLED(CONFIG_CPU_LITTLE_ENDIAN) && func->banned_for_syscall_on_le)
|
||
goto err;
|
||
|
||
if (f->buf_idx1 != -1) {
|
||
base = be32_to_cpu(args->args[f->buf_idx1]);
|
||
if (f->size_idx1 != -1)
|
||
size = be32_to_cpu(args->args[f->size_idx1]);
|
||
else if (f->fixed_size)
|
||
size = f->fixed_size;
|
||
else
|
||
size = 1;
|
||
|
||
end = base + size - 1;
|
||
|
||
/*
|
||
* Special case for ibm,platform-dump - NULL buffer
|
||
* address is used to indicate end of dump processing
|
||
*/
|
||
if (is_platform_dump && base == 0)
|
||
return false;
|
||
|
||
if (!in_rmo_buf(base, end))
|
||
goto err;
|
||
}
|
||
|
||
if (f->buf_idx2 != -1) {
|
||
base = be32_to_cpu(args->args[f->buf_idx2]);
|
||
if (f->size_idx2 != -1)
|
||
size = be32_to_cpu(args->args[f->size_idx2]);
|
||
else if (f->fixed_size)
|
||
size = f->fixed_size;
|
||
else
|
||
size = 1;
|
||
end = base + size - 1;
|
||
|
||
/*
|
||
* Special case for ibm,configure-connector where the
|
||
* address can be 0
|
||
*/
|
||
if (is_config_conn && base == 0)
|
||
return false;
|
||
|
||
if (!in_rmo_buf(base, end))
|
||
goto err;
|
||
}
|
||
|
||
return false;
|
||
err:
|
||
pr_err_ratelimited("sys_rtas: RTAS call blocked - exploit attempt?\n");
|
||
pr_err_ratelimited("sys_rtas: %s nargs=%d (called by %s)\n",
|
||
func->name, nargs, current->comm);
|
||
return true;
|
||
}
|
||
|
||
/* We assume to be passed big endian arguments */
|
||
SYSCALL_DEFINE1(rtas, struct rtas_args __user *, uargs)
|
||
{
|
||
const struct rtas_function *func;
|
||
struct pin_cookie cookie;
|
||
struct rtas_args args;
|
||
unsigned long flags;
|
||
char *buff_copy, *errbuf = NULL;
|
||
int nargs, nret, token;
|
||
|
||
if (!capable(CAP_SYS_ADMIN))
|
||
return -EPERM;
|
||
|
||
if (!rtas.entry)
|
||
return -EINVAL;
|
||
|
||
if (copy_from_user(&args, uargs, 3 * sizeof(u32)) != 0)
|
||
return -EFAULT;
|
||
|
||
nargs = be32_to_cpu(args.nargs);
|
||
nret = be32_to_cpu(args.nret);
|
||
token = be32_to_cpu(args.token);
|
||
|
||
if (nargs >= ARRAY_SIZE(args.args)
|
||
|| nret > ARRAY_SIZE(args.args)
|
||
|| nargs + nret > ARRAY_SIZE(args.args))
|
||
return -EINVAL;
|
||
|
||
nargs = array_index_nospec(nargs, ARRAY_SIZE(args.args));
|
||
nret = array_index_nospec(nret, ARRAY_SIZE(args.args) - nargs);
|
||
|
||
/* Copy in args. */
|
||
if (copy_from_user(args.args, uargs->args,
|
||
nargs * sizeof(rtas_arg_t)) != 0)
|
||
return -EFAULT;
|
||
|
||
/*
|
||
* If this token doesn't correspond to a function the kernel
|
||
* understands, you're not allowed to call it.
|
||
*/
|
||
func = rtas_token_to_function_untrusted(token);
|
||
if (!func)
|
||
return -EINVAL;
|
||
|
||
args.rets = &args.args[nargs];
|
||
memset(args.rets, 0, nret * sizeof(rtas_arg_t));
|
||
|
||
if (block_rtas_call(func, nargs, &args))
|
||
return -EINVAL;
|
||
|
||
if (token_is_restricted_errinjct(token)) {
|
||
int err;
|
||
|
||
err = security_locked_down(LOCKDOWN_RTAS_ERROR_INJECTION);
|
||
if (err)
|
||
return err;
|
||
}
|
||
|
||
/* Need to handle ibm,suspend_me call specially */
|
||
if (token == rtas_function_token(RTAS_FN_IBM_SUSPEND_ME)) {
|
||
|
||
/*
|
||
* rtas_ibm_suspend_me assumes the streamid handle is in cpu
|
||
* endian, or at least the hcall within it requires it.
|
||
*/
|
||
int rc = 0;
|
||
u64 handle = ((u64)be32_to_cpu(args.args[0]) << 32)
|
||
| be32_to_cpu(args.args[1]);
|
||
rc = rtas_syscall_dispatch_ibm_suspend_me(handle);
|
||
if (rc == -EAGAIN)
|
||
args.rets[0] = cpu_to_be32(RTAS_NOT_SUSPENDABLE);
|
||
else if (rc == -EIO)
|
||
args.rets[0] = cpu_to_be32(-1);
|
||
else if (rc)
|
||
return rc;
|
||
goto copy_return;
|
||
}
|
||
|
||
buff_copy = get_errorlog_buffer();
|
||
|
||
/*
|
||
* If this function has a mutex assigned to it, we must
|
||
* acquire it to avoid interleaving with any kernel-based uses
|
||
* of the same function. Kernel-based sequences acquire the
|
||
* appropriate mutex explicitly.
|
||
*/
|
||
if (func->lock)
|
||
mutex_lock(func->lock);
|
||
|
||
raw_spin_lock_irqsave(&rtas_lock, flags);
|
||
cookie = lockdep_pin_lock(&rtas_lock);
|
||
|
||
rtas_args = args;
|
||
do_enter_rtas(&rtas_args);
|
||
args = rtas_args;
|
||
|
||
/* A -1 return code indicates that the last command couldn't
|
||
be completed due to a hardware error. */
|
||
if (be32_to_cpu(args.rets[0]) == -1)
|
||
errbuf = __fetch_rtas_last_error(buff_copy);
|
||
|
||
lockdep_unpin_lock(&rtas_lock, cookie);
|
||
raw_spin_unlock_irqrestore(&rtas_lock, flags);
|
||
|
||
if (func->lock)
|
||
mutex_unlock(func->lock);
|
||
|
||
if (buff_copy) {
|
||
if (errbuf)
|
||
log_error(errbuf, ERR_TYPE_RTAS_LOG, 0);
|
||
kfree(buff_copy);
|
||
}
|
||
|
||
copy_return:
|
||
/* Copy out args. */
|
||
if (copy_to_user(uargs->args + nargs,
|
||
args.args + nargs,
|
||
nret * sizeof(rtas_arg_t)) != 0)
|
||
return -EFAULT;
|
||
|
||
return 0;
|
||
}
|
||
|
||
static void __init rtas_function_table_init(void)
|
||
{
|
||
struct property *prop;
|
||
|
||
for (size_t i = 0; i < ARRAY_SIZE(rtas_function_table); ++i) {
|
||
struct rtas_function *curr = &rtas_function_table[i];
|
||
struct rtas_function *prior;
|
||
int cmp;
|
||
|
||
curr->token = RTAS_UNKNOWN_SERVICE;
|
||
|
||
if (i == 0)
|
||
continue;
|
||
/*
|
||
* Ensure table is sorted correctly for binary search
|
||
* on function names.
|
||
*/
|
||
prior = &rtas_function_table[i - 1];
|
||
|
||
cmp = strcmp(prior->name, curr->name);
|
||
if (cmp < 0)
|
||
continue;
|
||
|
||
if (cmp == 0) {
|
||
pr_err("'%s' has duplicate function table entries\n",
|
||
curr->name);
|
||
} else {
|
||
pr_err("function table unsorted: '%s' wrongly precedes '%s'\n",
|
||
prior->name, curr->name);
|
||
}
|
||
}
|
||
|
||
for_each_property_of_node(rtas.dev, prop) {
|
||
struct rtas_function *func;
|
||
|
||
if (prop->length != sizeof(u32))
|
||
continue;
|
||
|
||
func = __rtas_name_to_function(prop->name);
|
||
if (!func)
|
||
continue;
|
||
|
||
func->token = be32_to_cpup((__be32 *)prop->value);
|
||
|
||
pr_debug("function %s has token %u\n", func->name, func->token);
|
||
}
|
||
}
|
||
|
||
/*
|
||
* Call early during boot, before mem init, to retrieve the RTAS
|
||
* information from the device-tree and allocate the RMO buffer for userland
|
||
* accesses.
|
||
*/
|
||
void __init rtas_initialize(void)
|
||
{
|
||
unsigned long rtas_region = RTAS_INSTANTIATE_MAX;
|
||
u32 base, size, entry;
|
||
int no_base, no_size, no_entry;
|
||
|
||
/* Get RTAS dev node and fill up our "rtas" structure with infos
|
||
* about it.
|
||
*/
|
||
rtas.dev = of_find_node_by_name(NULL, "rtas");
|
||
if (!rtas.dev)
|
||
return;
|
||
|
||
no_base = of_property_read_u32(rtas.dev, "linux,rtas-base", &base);
|
||
no_size = of_property_read_u32(rtas.dev, "rtas-size", &size);
|
||
if (no_base || no_size) {
|
||
of_node_put(rtas.dev);
|
||
rtas.dev = NULL;
|
||
return;
|
||
}
|
||
|
||
rtas.base = base;
|
||
rtas.size = size;
|
||
no_entry = of_property_read_u32(rtas.dev, "linux,rtas-entry", &entry);
|
||
rtas.entry = no_entry ? rtas.base : entry;
|
||
|
||
init_error_log_max();
|
||
|
||
/* Must be called before any function token lookups */
|
||
rtas_function_table_init();
|
||
|
||
/*
|
||
* Discover this now to avoid a device tree lookup in the
|
||
* panic path.
|
||
*/
|
||
ibm_extended_os_term = of_property_read_bool(rtas.dev, "ibm,extended-os-term");
|
||
|
||
/* If RTAS was found, allocate the RMO buffer for it and look for
|
||
* the stop-self token if any
|
||
*/
|
||
#ifdef CONFIG_PPC64
|
||
if (firmware_has_feature(FW_FEATURE_LPAR))
|
||
rtas_region = min(ppc64_rma_size, RTAS_INSTANTIATE_MAX);
|
||
#endif
|
||
rtas_rmo_buf = memblock_phys_alloc_range(RTAS_USER_REGION_SIZE, PAGE_SIZE,
|
||
0, rtas_region);
|
||
if (!rtas_rmo_buf)
|
||
panic("ERROR: RTAS: Failed to allocate %lx bytes below %pa\n",
|
||
PAGE_SIZE, &rtas_region);
|
||
|
||
rtas_work_area_reserve_arena(rtas_region);
|
||
}
|
||
|
||
int __init early_init_dt_scan_rtas(unsigned long node,
|
||
const char *uname, int depth, void *data)
|
||
{
|
||
const u32 *basep, *entryp, *sizep;
|
||
|
||
if (depth != 1 || strcmp(uname, "rtas") != 0)
|
||
return 0;
|
||
|
||
basep = of_get_flat_dt_prop(node, "linux,rtas-base", NULL);
|
||
entryp = of_get_flat_dt_prop(node, "linux,rtas-entry", NULL);
|
||
sizep = of_get_flat_dt_prop(node, "rtas-size", NULL);
|
||
|
||
#ifdef CONFIG_PPC64
|
||
/* need this feature to decide the crashkernel offset */
|
||
if (of_get_flat_dt_prop(node, "ibm,hypertas-functions", NULL))
|
||
powerpc_firmware_features |= FW_FEATURE_LPAR;
|
||
#endif
|
||
|
||
if (basep && entryp && sizep) {
|
||
rtas.base = *basep;
|
||
rtas.entry = *entryp;
|
||
rtas.size = *sizep;
|
||
}
|
||
|
||
#ifdef CONFIG_UDBG_RTAS_CONSOLE
|
||
basep = of_get_flat_dt_prop(node, "put-term-char", NULL);
|
||
if (basep)
|
||
rtas_putchar_token = *basep;
|
||
|
||
basep = of_get_flat_dt_prop(node, "get-term-char", NULL);
|
||
if (basep)
|
||
rtas_getchar_token = *basep;
|
||
|
||
if (rtas_putchar_token != RTAS_UNKNOWN_SERVICE &&
|
||
rtas_getchar_token != RTAS_UNKNOWN_SERVICE)
|
||
udbg_init_rtas_console();
|
||
|
||
#endif
|
||
|
||
/* break now */
|
||
return 1;
|
||
}
|
||
|
||
static DEFINE_RAW_SPINLOCK(timebase_lock);
|
||
static u64 timebase = 0;
|
||
|
||
void rtas_give_timebase(void)
|
||
{
|
||
unsigned long flags;
|
||
|
||
raw_spin_lock_irqsave(&timebase_lock, flags);
|
||
hard_irq_disable();
|
||
rtas_call(rtas_function_token(RTAS_FN_FREEZE_TIME_BASE), 0, 1, NULL);
|
||
timebase = get_tb();
|
||
raw_spin_unlock(&timebase_lock);
|
||
|
||
while (timebase)
|
||
barrier();
|
||
rtas_call(rtas_function_token(RTAS_FN_THAW_TIME_BASE), 0, 1, NULL);
|
||
local_irq_restore(flags);
|
||
}
|
||
|
||
void rtas_take_timebase(void)
|
||
{
|
||
while (!timebase)
|
||
barrier();
|
||
raw_spin_lock(&timebase_lock);
|
||
set_tb(timebase >> 32, timebase & 0xffffffff);
|
||
timebase = 0;
|
||
raw_spin_unlock(&timebase_lock);
|
||
}
|