1
linux/arch/powerpc/include/asm/kvm_book3s_64.h
Gautam Menghani e1f288d2f9 KVM: PPC: Book3S HV nestedv2: Add support for reading VPA counters for pseries guests
PAPR hypervisor has introduced three new counters in the VPA area of
LPAR CPUs for KVM L2 guest (see [1] for terminology) observability - two
for context switches from host to guest and vice versa, and one counter
for getting the total time spent inside the KVM guest. Add a tracepoint
that enables reading the counters for use by ftrace/perf. Note that this
tracepoint is only available for nestedv2 API (i.e, KVM on PowerVM).

[1] Terminology:
a. L1 refers to the VM (LPAR) booted on top of PAPR hypervisor
b. L2 refers to the KVM guest booted on top of L1.

Reviewed-by: Nicholas Piggin <npiggin@gmail.com>
Acked-by: Naveen N Rao <naveen@kernel.org>
Signed-off-by: Vaibhav Jain <vaibhav@linux.ibm.com>
Signed-off-by: Gautam Menghani <gautam@linux.ibm.com>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
Link: https://msgid.link/20240520175742.196329-1-gautam@linux.ibm.com
2024-06-03 22:06:28 +10:00

695 lines
18 KiB
C

/* SPDX-License-Identifier: GPL-2.0-only */
/*
*
* Copyright SUSE Linux Products GmbH 2010
*
* Authors: Alexander Graf <agraf@suse.de>
*/
#ifndef __ASM_KVM_BOOK3S_64_H__
#define __ASM_KVM_BOOK3S_64_H__
#include <linux/string.h>
#include <asm/bitops.h>
#include <asm/book3s/64/mmu-hash.h>
#include <asm/cpu_has_feature.h>
#include <asm/ppc-opcode.h>
#include <asm/pte-walk.h>
/*
* Structure for a nested guest, that is, for a guest that is managed by
* one of our guests.
*/
struct kvm_nested_guest {
struct kvm *l1_host; /* L1 VM that owns this nested guest */
int l1_lpid; /* lpid L1 guest thinks this guest is */
int shadow_lpid; /* real lpid of this nested guest */
pgd_t *shadow_pgtable; /* our page table for this guest */
u64 l1_gr_to_hr; /* L1's addr of part'n-scoped table */
u64 process_table; /* process table entry for this guest */
long refcnt; /* number of pointers to this struct */
struct mutex tlb_lock; /* serialize page faults and tlbies */
struct kvm_nested_guest *next;
cpumask_t need_tlb_flush;
short prev_cpu[NR_CPUS];
u8 radix; /* is this nested guest radix */
};
/*
* We define a nested rmap entry as a single 64-bit quantity
* 0xFFF0000000000000 12-bit lpid field
* 0x000FFFFFFFFFF000 40-bit guest 4k page frame number
* 0x0000000000000001 1-bit single entry flag
*/
#define RMAP_NESTED_LPID_MASK 0xFFF0000000000000UL
#define RMAP_NESTED_LPID_SHIFT (52)
#define RMAP_NESTED_GPA_MASK 0x000FFFFFFFFFF000UL
#define RMAP_NESTED_IS_SINGLE_ENTRY 0x0000000000000001UL
/* Structure for a nested guest rmap entry */
struct rmap_nested {
struct llist_node list;
u64 rmap;
};
/*
* for_each_nest_rmap_safe - iterate over the list of nested rmap entries
* safe against removal of the list entry or NULL list
* @pos: a (struct rmap_nested *) to use as a loop cursor
* @node: pointer to the first entry
* NOTE: this can be NULL
* @rmapp: an (unsigned long *) in which to return the rmap entries on each
* iteration
* NOTE: this must point to already allocated memory
*
* The nested_rmap is a llist of (struct rmap_nested) entries pointed to by the
* rmap entry in the memslot. The list is always terminated by a "single entry"
* stored in the list element of the final entry of the llist. If there is ONLY
* a single entry then this is itself in the rmap entry of the memslot, not a
* llist head pointer.
*
* Note that the iterator below assumes that a nested rmap entry is always
* non-zero. This is true for our usage because the LPID field is always
* non-zero (zero is reserved for the host).
*
* This should be used to iterate over the list of rmap_nested entries with
* processing done on the u64 rmap value given by each iteration. This is safe
* against removal of list entries and it is always safe to call free on (pos).
*
* e.g.
* struct rmap_nested *cursor;
* struct llist_node *first;
* unsigned long rmap;
* for_each_nest_rmap_safe(cursor, first, &rmap) {
* do_something(rmap);
* free(cursor);
* }
*/
#define for_each_nest_rmap_safe(pos, node, rmapp) \
for ((pos) = llist_entry((node), typeof(*(pos)), list); \
(node) && \
(*(rmapp) = ((RMAP_NESTED_IS_SINGLE_ENTRY & ((u64) (node))) ? \
((u64) (node)) : ((pos)->rmap))) && \
(((node) = ((RMAP_NESTED_IS_SINGLE_ENTRY & ((u64) (node))) ? \
((struct llist_node *) ((pos) = NULL)) : \
(pos)->list.next)), true); \
(pos) = llist_entry((node), typeof(*(pos)), list))
struct kvm_nested_guest *kvmhv_get_nested(struct kvm *kvm, int l1_lpid,
bool create);
void kvmhv_put_nested(struct kvm_nested_guest *gp);
int kvmhv_nested_next_lpid(struct kvm *kvm, int lpid);
/* Encoding of first parameter for H_TLB_INVALIDATE */
#define H_TLBIE_P1_ENC(ric, prs, r) (___PPC_RIC(ric) | ___PPC_PRS(prs) | \
___PPC_R(r))
/* Power architecture requires HPT is at least 256kiB, at most 64TiB */
#define PPC_MIN_HPT_ORDER 18
#define PPC_MAX_HPT_ORDER 46
#ifdef CONFIG_KVM_BOOK3S_PR_POSSIBLE
static inline struct kvmppc_book3s_shadow_vcpu *svcpu_get(struct kvm_vcpu *vcpu)
{
preempt_disable();
return &get_paca()->shadow_vcpu;
}
static inline void svcpu_put(struct kvmppc_book3s_shadow_vcpu *svcpu)
{
preempt_enable();
}
#endif
#ifdef CONFIG_KVM_BOOK3S_HV_POSSIBLE
static inline bool kvm_is_radix(struct kvm *kvm)
{
return kvm->arch.radix;
}
static inline bool kvmhv_vcpu_is_radix(struct kvm_vcpu *vcpu)
{
bool radix;
if (vcpu->arch.nested)
radix = vcpu->arch.nested->radix;
else
radix = kvm_is_radix(vcpu->kvm);
return radix;
}
unsigned long kvmppc_msr_hard_disable_set_facilities(struct kvm_vcpu *vcpu, unsigned long msr);
int kvmhv_vcpu_entry_p9(struct kvm_vcpu *vcpu, u64 time_limit, unsigned long lpcr, u64 *tb);
#define KVM_DEFAULT_HPT_ORDER 24 /* 16MB HPT by default */
#endif
/*
* Invalid HDSISR value which is used to indicate when HW has not set the reg.
* Used to work around an errata.
*/
#define HDSISR_CANARY 0x7fff
/*
* We use a lock bit in HPTE dword 0 to synchronize updates and
* accesses to each HPTE, and another bit to indicate non-present
* HPTEs.
*/
#define HPTE_V_HVLOCK 0x40UL
#define HPTE_V_ABSENT 0x20UL
/*
* We use this bit in the guest_rpte field of the revmap entry
* to indicate a modified HPTE.
*/
#define HPTE_GR_MODIFIED (1ul << 62)
/* These bits are reserved in the guest view of the HPTE */
#define HPTE_GR_RESERVED HPTE_GR_MODIFIED
static inline long try_lock_hpte(__be64 *hpte, unsigned long bits)
{
unsigned long tmp, old;
__be64 be_lockbit, be_bits;
/*
* We load/store in native endian, but the HTAB is in big endian. If
* we byte swap all data we apply on the PTE we're implicitly correct
* again.
*/
be_lockbit = cpu_to_be64(HPTE_V_HVLOCK);
be_bits = cpu_to_be64(bits);
asm volatile(" ldarx %0,0,%2\n"
" and. %1,%0,%3\n"
" bne 2f\n"
" or %0,%0,%4\n"
" stdcx. %0,0,%2\n"
" beq+ 2f\n"
" mr %1,%3\n"
"2: isync"
: "=&r" (tmp), "=&r" (old)
: "r" (hpte), "r" (be_bits), "r" (be_lockbit)
: "cc", "memory");
return old == 0;
}
static inline void unlock_hpte(__be64 *hpte, unsigned long hpte_v)
{
hpte_v &= ~HPTE_V_HVLOCK;
asm volatile(PPC_RELEASE_BARRIER "" : : : "memory");
hpte[0] = cpu_to_be64(hpte_v);
}
/* Without barrier */
static inline void __unlock_hpte(__be64 *hpte, unsigned long hpte_v)
{
hpte_v &= ~HPTE_V_HVLOCK;
hpte[0] = cpu_to_be64(hpte_v);
}
/*
* These functions encode knowledge of the POWER7/8/9 hardware
* interpretations of the HPTE LP (large page size) field.
*/
static inline int kvmppc_hpte_page_shifts(unsigned long h, unsigned long l)
{
unsigned int lphi;
if (!(h & HPTE_V_LARGE))
return 12; /* 4kB */
lphi = (l >> 16) & 0xf;
switch ((l >> 12) & 0xf) {
case 0:
return !lphi ? 24 : 0; /* 16MB */
break;
case 1:
return 16; /* 64kB */
break;
case 3:
return !lphi ? 34 : 0; /* 16GB */
break;
case 7:
return (16 << 8) + 12; /* 64kB in 4kB */
break;
case 8:
if (!lphi)
return (24 << 8) + 16; /* 16MB in 64kkB */
if (lphi == 3)
return (24 << 8) + 12; /* 16MB in 4kB */
break;
}
return 0;
}
static inline int kvmppc_hpte_base_page_shift(unsigned long h, unsigned long l)
{
return kvmppc_hpte_page_shifts(h, l) & 0xff;
}
static inline int kvmppc_hpte_actual_page_shift(unsigned long h, unsigned long l)
{
int tmp = kvmppc_hpte_page_shifts(h, l);
if (tmp >= 0x100)
tmp >>= 8;
return tmp;
}
static inline unsigned long kvmppc_actual_pgsz(unsigned long v, unsigned long r)
{
int shift = kvmppc_hpte_actual_page_shift(v, r);
if (shift)
return 1ul << shift;
return 0;
}
static inline int kvmppc_pgsize_lp_encoding(int base_shift, int actual_shift)
{
switch (base_shift) {
case 12:
switch (actual_shift) {
case 12:
return 0;
case 16:
return 7;
case 24:
return 0x38;
}
break;
case 16:
switch (actual_shift) {
case 16:
return 1;
case 24:
return 8;
}
break;
case 24:
return 0;
}
return -1;
}
static inline unsigned long compute_tlbie_rb(unsigned long v, unsigned long r,
unsigned long pte_index)
{
int a_pgshift, b_pgshift;
unsigned long rb = 0, va_low, sllp;
b_pgshift = a_pgshift = kvmppc_hpte_page_shifts(v, r);
if (a_pgshift >= 0x100) {
b_pgshift &= 0xff;
a_pgshift >>= 8;
}
/*
* Ignore the top 14 bits of va
* v have top two bits covering segment size, hence move
* by 16 bits, Also clear the lower HPTE_V_AVPN_SHIFT (7) bits.
* AVA field in v also have the lower 23 bits ignored.
* For base page size 4K we need 14 .. 65 bits (so need to
* collect extra 11 bits)
* For others we need 14..14+i
*/
/* This covers 14..54 bits of va*/
rb = (v & ~0x7fUL) << 16; /* AVA field */
/*
* AVA in v had cleared lower 23 bits. We need to derive
* that from pteg index
*/
va_low = pte_index >> 3;
if (v & HPTE_V_SECONDARY)
va_low = ~va_low;
/*
* get the vpn bits from va_low using reverse of hashing.
* In v we have va with 23 bits dropped and then left shifted
* HPTE_V_AVPN_SHIFT (7) bits. Now to find vsid we need
* right shift it with (SID_SHIFT - (23 - 7))
*/
if (!(v & HPTE_V_1TB_SEG))
va_low ^= v >> (SID_SHIFT - 16);
else
va_low ^= v >> (SID_SHIFT_1T - 16);
va_low &= 0x7ff;
if (b_pgshift <= 12) {
if (a_pgshift > 12) {
sllp = (a_pgshift == 16) ? 5 : 4;
rb |= sllp << 5; /* AP field */
}
rb |= (va_low & 0x7ff) << 12; /* remaining 11 bits of AVA */
} else {
int aval_shift;
/*
* remaining bits of AVA/LP fields
* Also contain the rr bits of LP
*/
rb |= (va_low << b_pgshift) & 0x7ff000;
/*
* Now clear not needed LP bits based on actual psize
*/
rb &= ~((1ul << a_pgshift) - 1);
/*
* AVAL field 58..77 - base_page_shift bits of va
* we have space for 58..64 bits, Missing bits should
* be zero filled. +1 is to take care of L bit shift
*/
aval_shift = 64 - (77 - b_pgshift) + 1;
rb |= ((va_low << aval_shift) & 0xfe);
rb |= 1; /* L field */
rb |= r & 0xff000 & ((1ul << a_pgshift) - 1); /* LP field */
}
/*
* This sets both bits of the B field in the PTE. 0b1x values are
* reserved, but those will have been filtered by kvmppc_do_h_enter.
*/
rb |= (v >> HPTE_V_SSIZE_SHIFT) << 8; /* B field */
return rb;
}
static inline unsigned long hpte_rpn(unsigned long ptel, unsigned long psize)
{
return ((ptel & HPTE_R_RPN) & ~(psize - 1)) >> PAGE_SHIFT;
}
static inline int hpte_is_writable(unsigned long ptel)
{
unsigned long pp = ptel & (HPTE_R_PP0 | HPTE_R_PP);
return pp != PP_RXRX && pp != PP_RXXX;
}
static inline unsigned long hpte_make_readonly(unsigned long ptel)
{
if ((ptel & HPTE_R_PP0) || (ptel & HPTE_R_PP) == PP_RWXX)
ptel = (ptel & ~HPTE_R_PP) | PP_RXXX;
else
ptel |= PP_RXRX;
return ptel;
}
static inline bool hpte_cache_flags_ok(unsigned long hptel, bool is_ci)
{
unsigned int wimg = hptel & HPTE_R_WIMG;
/* Handle SAO */
if (wimg == (HPTE_R_W | HPTE_R_I | HPTE_R_M) &&
cpu_has_feature(CPU_FTR_ARCH_206))
wimg = HPTE_R_M;
if (!is_ci)
return wimg == HPTE_R_M;
/*
* if host is mapped cache inhibited, make sure hptel also have
* cache inhibited.
*/
if (wimg & HPTE_R_W) /* FIXME!! is this ok for all guest. ? */
return false;
return !!(wimg & HPTE_R_I);
}
/*
* If it's present and writable, atomically set dirty and referenced bits and
* return the PTE, otherwise return 0.
*/
static inline pte_t kvmppc_read_update_linux_pte(pte_t *ptep, int writing)
{
pte_t old_pte, new_pte = __pte(0);
while (1) {
/*
* Make sure we don't reload from ptep
*/
old_pte = READ_ONCE(*ptep);
/*
* wait until H_PAGE_BUSY is clear then set it atomically
*/
if (unlikely(pte_val(old_pte) & H_PAGE_BUSY)) {
cpu_relax();
continue;
}
/* If pte is not present return None */
if (unlikely(!pte_present(old_pte)))
return __pte(0);
new_pte = pte_mkyoung(old_pte);
if (writing && pte_write(old_pte))
new_pte = pte_mkdirty(new_pte);
if (pte_xchg(ptep, old_pte, new_pte))
break;
}
return new_pte;
}
static inline bool hpte_read_permission(unsigned long pp, unsigned long key)
{
if (key)
return PP_RWRX <= pp && pp <= PP_RXRX;
return true;
}
static inline bool hpte_write_permission(unsigned long pp, unsigned long key)
{
if (key)
return pp == PP_RWRW;
return pp <= PP_RWRW;
}
static inline int hpte_get_skey_perm(unsigned long hpte_r, unsigned long amr)
{
unsigned long skey;
skey = ((hpte_r & HPTE_R_KEY_HI) >> 57) |
((hpte_r & HPTE_R_KEY_LO) >> 9);
return (amr >> (62 - 2 * skey)) & 3;
}
static inline void lock_rmap(unsigned long *rmap)
{
do {
while (test_bit(KVMPPC_RMAP_LOCK_BIT, rmap))
cpu_relax();
} while (test_and_set_bit_lock(KVMPPC_RMAP_LOCK_BIT, rmap));
}
static inline void unlock_rmap(unsigned long *rmap)
{
__clear_bit_unlock(KVMPPC_RMAP_LOCK_BIT, rmap);
}
static inline bool slot_is_aligned(struct kvm_memory_slot *memslot,
unsigned long pagesize)
{
unsigned long mask = (pagesize >> PAGE_SHIFT) - 1;
if (pagesize <= PAGE_SIZE)
return true;
return !(memslot->base_gfn & mask) && !(memslot->npages & mask);
}
/*
* This works for 4k, 64k and 16M pages on POWER7,
* and 4k and 16M pages on PPC970.
*/
static inline unsigned long slb_pgsize_encoding(unsigned long psize)
{
unsigned long senc = 0;
if (psize > 0x1000) {
senc = SLB_VSID_L;
if (psize == 0x10000)
senc |= SLB_VSID_LP_01;
}
return senc;
}
static inline int is_vrma_hpte(unsigned long hpte_v)
{
return (hpte_v & ~0xffffffUL) ==
(HPTE_V_1TB_SEG | (VRMA_VSID << (40 - 16)));
}
#ifdef CONFIG_KVM_BOOK3S_HV_POSSIBLE
/*
* Note modification of an HPTE; set the HPTE modified bit
* if anyone is interested.
*/
static inline void note_hpte_modification(struct kvm *kvm,
struct revmap_entry *rev)
{
if (atomic_read(&kvm->arch.hpte_mod_interest))
rev->guest_rpte |= HPTE_GR_MODIFIED;
}
/*
* Like kvm_memslots(), but for use in real mode when we can't do
* any RCU stuff (since the secondary threads are offline from the
* kernel's point of view), and we can't print anything.
* Thus we use rcu_dereference_raw() rather than rcu_dereference_check().
*/
static inline struct kvm_memslots *kvm_memslots_raw(struct kvm *kvm)
{
return rcu_dereference_raw_check(kvm->memslots[0]);
}
extern void kvmppc_mmu_debugfs_init(struct kvm *kvm);
extern void kvmhv_radix_debugfs_init(struct kvm *kvm);
extern void kvmhv_rm_send_ipi(int cpu);
static inline unsigned long kvmppc_hpt_npte(struct kvm_hpt_info *hpt)
{
/* HPTEs are 2**4 bytes long */
return 1UL << (hpt->order - 4);
}
static inline unsigned long kvmppc_hpt_mask(struct kvm_hpt_info *hpt)
{
/* 128 (2**7) bytes in each HPTEG */
return (1UL << (hpt->order - 7)) - 1;
}
/* Set bits in a dirty bitmap, which is in LE format */
static inline void set_dirty_bits(unsigned long *map, unsigned long i,
unsigned long npages)
{
if (npages >= 8)
memset((char *)map + i / 8, 0xff, npages / 8);
else
for (; npages; ++i, --npages)
__set_bit_le(i, map);
}
static inline void set_dirty_bits_atomic(unsigned long *map, unsigned long i,
unsigned long npages)
{
if (npages >= 8)
memset((char *)map + i / 8, 0xff, npages / 8);
else
for (; npages; ++i, --npages)
set_bit_le(i, map);
}
static inline u64 sanitize_msr(u64 msr)
{
msr &= ~MSR_HV;
msr |= MSR_ME;
return msr;
}
#ifdef CONFIG_PPC_TRANSACTIONAL_MEM
static inline void copy_from_checkpoint(struct kvm_vcpu *vcpu)
{
vcpu->arch.regs.ccr = vcpu->arch.cr_tm;
vcpu->arch.regs.xer = vcpu->arch.xer_tm;
vcpu->arch.regs.link = vcpu->arch.lr_tm;
vcpu->arch.regs.ctr = vcpu->arch.ctr_tm;
vcpu->arch.amr = vcpu->arch.amr_tm;
vcpu->arch.ppr = vcpu->arch.ppr_tm;
vcpu->arch.dscr = vcpu->arch.dscr_tm;
vcpu->arch.tar = vcpu->arch.tar_tm;
memcpy(vcpu->arch.regs.gpr, vcpu->arch.gpr_tm,
sizeof(vcpu->arch.regs.gpr));
vcpu->arch.fp = vcpu->arch.fp_tm;
vcpu->arch.vr = vcpu->arch.vr_tm;
vcpu->arch.vrsave = vcpu->arch.vrsave_tm;
}
static inline void copy_to_checkpoint(struct kvm_vcpu *vcpu)
{
vcpu->arch.cr_tm = vcpu->arch.regs.ccr;
vcpu->arch.xer_tm = vcpu->arch.regs.xer;
vcpu->arch.lr_tm = vcpu->arch.regs.link;
vcpu->arch.ctr_tm = vcpu->arch.regs.ctr;
vcpu->arch.amr_tm = vcpu->arch.amr;
vcpu->arch.ppr_tm = vcpu->arch.ppr;
vcpu->arch.dscr_tm = vcpu->arch.dscr;
vcpu->arch.tar_tm = vcpu->arch.tar;
memcpy(vcpu->arch.gpr_tm, vcpu->arch.regs.gpr,
sizeof(vcpu->arch.regs.gpr));
vcpu->arch.fp_tm = vcpu->arch.fp;
vcpu->arch.vr_tm = vcpu->arch.vr;
vcpu->arch.vrsave_tm = vcpu->arch.vrsave;
}
#endif /* CONFIG_PPC_TRANSACTIONAL_MEM */
extern int kvmppc_create_pte(struct kvm *kvm, pgd_t *pgtable, pte_t pte,
unsigned long gpa, unsigned int level,
unsigned long mmu_seq, u64 lpid,
unsigned long *rmapp, struct rmap_nested **n_rmap);
extern void kvmhv_insert_nest_rmap(struct kvm *kvm, unsigned long *rmapp,
struct rmap_nested **n_rmap);
extern void kvmhv_update_nest_rmap_rc_list(struct kvm *kvm, unsigned long *rmapp,
unsigned long clr, unsigned long set,
unsigned long hpa, unsigned long nbytes);
extern void kvmhv_remove_nest_rmap_range(struct kvm *kvm,
const struct kvm_memory_slot *memslot,
unsigned long gpa, unsigned long hpa,
unsigned long nbytes);
static inline pte_t *
find_kvm_secondary_pte_unlocked(struct kvm *kvm, unsigned long ea,
unsigned *hshift)
{
pte_t *pte;
pte = __find_linux_pte(kvm->arch.pgtable, ea, NULL, hshift);
return pte;
}
static inline pte_t *find_kvm_secondary_pte(struct kvm *kvm, unsigned long ea,
unsigned *hshift)
{
pte_t *pte;
VM_WARN(!spin_is_locked(&kvm->mmu_lock),
"%s called with kvm mmu_lock not held \n", __func__);
pte = __find_linux_pte(kvm->arch.pgtable, ea, NULL, hshift);
return pte;
}
static inline pte_t *find_kvm_host_pte(struct kvm *kvm, unsigned long mmu_seq,
unsigned long ea, unsigned *hshift)
{
pte_t *pte;
VM_WARN(!spin_is_locked(&kvm->mmu_lock),
"%s called with kvm mmu_lock not held \n", __func__);
if (mmu_invalidate_retry(kvm, mmu_seq))
return NULL;
pte = __find_linux_pte(kvm->mm->pgd, ea, NULL, hshift);
return pte;
}
extern pte_t *find_kvm_nested_guest_pte(struct kvm *kvm, unsigned long lpid,
unsigned long ea, unsigned *hshift);
int kvmhv_nestedv2_vcpu_create(struct kvm_vcpu *vcpu, struct kvmhv_nestedv2_io *io);
void kvmhv_nestedv2_vcpu_free(struct kvm_vcpu *vcpu, struct kvmhv_nestedv2_io *io);
int kvmhv_nestedv2_flush_vcpu(struct kvm_vcpu *vcpu, u64 time_limit);
int kvmhv_nestedv2_set_ptbl_entry(unsigned long lpid, u64 dw0, u64 dw1);
int kvmhv_nestedv2_parse_output(struct kvm_vcpu *vcpu);
int kvmhv_nestedv2_set_vpa(struct kvm_vcpu *vcpu, unsigned long vpa);
int kmvhv_counters_tracepoint_regfunc(void);
void kmvhv_counters_tracepoint_unregfunc(void);
int kvmhv_get_l2_counters_status(void);
void kvmhv_set_l2_counters_status(int cpu, bool status);
#endif /* CONFIG_KVM_BOOK3S_HV_POSSIBLE */
#endif /* __ASM_KVM_BOOK3S_64_H__ */