1
linux/Documentation/userspace-api/tee.rst
Sumit Garg 50709576d8 Documentation: Destage TEE subsystem documentation
Add a separate documentation directory for TEE subsystem since it is a
standalone subsystem which already offers devices consumed by multiple
different subsystem drivers.

Split overall TEE subsystem documentation modularly where:
- The userspace API has been moved to Documentation/userspace-api/tee.rst.
- The driver API has been moved to Documentation/driver-api/tee.rst.
- The first module covers the overview of TEE subsystem.
- The further modules are dedicated to different TEE implementations like:
  - OP-TEE
  - AMD-TEE
  - and so on for future TEE implementation support.

Acked-by: Rijo Thomas <Rijo-john.Thomas@amd.com>
Acked-by: Jens Wiklander <jens.wiklander@linaro.org>
Signed-off-by: Sumit Garg <sumit.garg@linaro.org>
Signed-off-by: Jonathan Corbet <corbet@lwn.net>
Link: https://lore.kernel.org/r/20231128072352.866859-1-sumit.garg@linaro.org
2023-12-08 15:45:10 -07:00

40 lines
1.6 KiB
ReStructuredText

.. SPDX-License-Identifier: GPL-2.0
.. tee:
==================================================
TEE (Trusted Execution Environment) Userspace API
==================================================
include/uapi/linux/tee.h defines the generic interface to a TEE.
User space (the client) connects to the driver by opening /dev/tee[0-9]* or
/dev/teepriv[0-9]*.
- TEE_IOC_SHM_ALLOC allocates shared memory and returns a file descriptor
which user space can mmap. When user space doesn't need the file
descriptor any more, it should be closed. When shared memory isn't needed
any longer it should be unmapped with munmap() to allow the reuse of
memory.
- TEE_IOC_VERSION lets user space know which TEE this driver handles and
its capabilities.
- TEE_IOC_OPEN_SESSION opens a new session to a Trusted Application.
- TEE_IOC_INVOKE invokes a function in a Trusted Application.
- TEE_IOC_CANCEL may cancel an ongoing TEE_IOC_OPEN_SESSION or TEE_IOC_INVOKE.
- TEE_IOC_CLOSE_SESSION closes a session to a Trusted Application.
There are two classes of clients, normal clients and supplicants. The latter is
a helper process for the TEE to access resources in Linux, for example file
system access. A normal client opens /dev/tee[0-9]* and a supplicant opens
/dev/teepriv[0-9].
Much of the communication between clients and the TEE is opaque to the
driver. The main job for the driver is to receive requests from the
clients, forward them to the TEE and send back the results. In the case of
supplicants the communication goes in the other direction, the TEE sends
requests to the supplicant which then sends back the result.