/* * This file is provided under a dual BSD/GPLv2 license. When using or * redistributing this file, you may do so under either license. * * GPL LICENSE SUMMARY * * Copyright(c) 2008 - 2011 Intel Corporation. All rights reserved. * * This program is free software; you can redistribute it and/or modify * it under the terms of version 2 of the GNU General Public License as * published by the Free Software Foundation. * * This program is distributed in the hope that it will be useful, but * WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA. * The full GNU General Public License is included in this distribution * in the file called LICENSE.GPL. * * BSD LICENSE * * Copyright(c) 2008 - 2011 Intel Corporation. All rights reserved. * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * * * Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * * Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in * the documentation and/or other materials provided with the * distribution. * * Neither the name of Intel Corporation nor the names of its * contributors may be used to endorse or promote products derived * from this software without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. */ #include #include "scic_task_request.h" #include "scic_remote_device.h" #include "scic_io_request.h" #include "scic_sds_remote_device.h" #include "scic_sds_remote_node_context.h" #include "isci.h" #include "request.h" #include "sata.h" #include "task.h" /** * isci_task_execute_task() - This function is one of the SAS Domain Template * functions. This function is called by libsas to send a task down to * hardware. * @task: This parameter specifies the SAS task to send. * @num: This parameter specifies the number of tasks to queue. * @gfp_flags: This parameter specifies the context of this call. * * status, zero indicates success. */ int isci_task_execute_task(struct sas_task *task, int num, gfp_t gfp_flags) { struct isci_host *isci_host; struct isci_request *request = NULL; struct isci_remote_device *device; unsigned long flags; unsigned long quiesce_flags = 0; int ret; enum sci_status status; dev_dbg(task->dev->port->ha->dev, "%s: num=%d\n", __func__, num); if (task->task_state_flags & SAS_TASK_STATE_ABORTED) { isci_task_complete_for_upper_layer( task, SAS_TASK_UNDELIVERED, SAM_STAT_TASK_ABORTED, isci_perform_normal_io_completion ); return 0; /* The I/O was accepted (and failed). */ } if ((task->dev == NULL) || (task->dev->port == NULL)) { /* Indicate SAS_TASK_UNDELIVERED, so that the scsi midlayer * removes the target. */ isci_task_complete_for_upper_layer( task, SAS_TASK_UNDELIVERED, SAS_DEVICE_UNKNOWN, isci_perform_normal_io_completion ); return 0; /* The I/O was accepted (and failed). */ } isci_host = isci_host_from_sas_ha(task->dev->port->ha); /* Check if we have room for more tasks */ ret = isci_host_can_queue(isci_host, num); if (ret) { dev_warn(task->dev->port->ha->dev, "%s: queue full\n", __func__); return ret; } do { dev_dbg(task->dev->port->ha->dev, "task = %p, num = %d; dev = %p; cmd = %p\n", task, num, task->dev, task->uldd_task); if ((task->dev == NULL) || (task->dev->port == NULL)) { dev_warn(task->dev->port->ha->dev, "%s: task %p's port or dev == NULL!\n", __func__, task); /* Indicate SAS_TASK_UNDELIVERED, so that the scsi * midlayer removes the target. */ isci_task_complete_for_upper_layer( task, SAS_TASK_UNDELIVERED, SAS_DEVICE_UNKNOWN, isci_perform_normal_io_completion ); /* We don't have a valid host reference, so we * can't control the host queueing condition. */ continue; } device = isci_dev_from_domain_dev(task->dev); isci_host = isci_host_from_sas_ha(task->dev->port->ha); /* check if the controller hasn't started or if the device * is ready but not accepting IO. */ if (device) { spin_lock_irqsave(&device->host_quiesce_lock, quiesce_flags); } /* From this point onward, any process that needs to guarantee * that there is no kernel I/O being started will have to wait * for the quiesce spinlock. */ if ((device && ((isci_remote_device_get_state(device) == isci_ready) || (isci_remote_device_get_state(device) == isci_host_quiesce)))) { /* Forces a retry from scsi mid layer. */ dev_warn(task->dev->port->ha->dev, "%s: task %p: isci_host->status = %d, " "device = %p\n", __func__, task, isci_host_get_state(isci_host), device); if (device) dev_dbg(task->dev->port->ha->dev, "%s: device->status = 0x%x\n", __func__, isci_remote_device_get_state(device)); /* Indicate QUEUE_FULL so that the scsi midlayer * retries. */ isci_task_complete_for_upper_layer( task, SAS_TASK_COMPLETE, SAS_QUEUE_FULL, isci_perform_normal_io_completion ); isci_host_can_dequeue(isci_host, 1); } /* the device is going down... */ else if (!device || (isci_ready_for_io != isci_remote_device_get_state(device))) { dev_dbg(task->dev->port->ha->dev, "%s: task %p: isci_host->status = %d, " "device = %p\n", __func__, task, isci_host_get_state(isci_host), device); if (device) dev_dbg(task->dev->port->ha->dev, "%s: device->status = 0x%x\n", __func__, isci_remote_device_get_state(device)); /* Indicate SAS_TASK_UNDELIVERED, so that the scsi * midlayer removes the target. */ isci_task_complete_for_upper_layer( task, SAS_TASK_UNDELIVERED, SAS_DEVICE_UNKNOWN, isci_perform_normal_io_completion ); isci_host_can_dequeue(isci_host, 1); } else { /* build and send the request. */ status = isci_request_execute(isci_host, task, &request, gfp_flags); if (status == SCI_SUCCESS) { spin_lock_irqsave(&task->task_state_lock, flags); task->task_state_flags |= SAS_TASK_AT_INITIATOR; spin_unlock_irqrestore(&task->task_state_lock, flags); } else { /* Indicate QUEUE_FULL so that the scsi * midlayer retries. if the request * failed for remote device reasons, * it gets returned as * SAS_TASK_UNDELIVERED next time * through. */ isci_task_complete_for_upper_layer( task, SAS_TASK_COMPLETE, SAS_QUEUE_FULL, isci_perform_normal_io_completion ); isci_host_can_dequeue(isci_host, 1); } } if (device) { spin_unlock_irqrestore(&device->host_quiesce_lock, quiesce_flags ); } task = list_entry(task->list.next, struct sas_task, list); } while (--num > 0); return 0; } /** * isci_task_request_build() - This function builds the task request object. * @isci_host: This parameter specifies the ISCI host object * @request: This parameter points to the isci_request object allocated in the * request construct function. * @tmf: This parameter is the task management struct to be built * * SCI_SUCCESS on successfull completion, or specific failure code. */ static enum sci_status isci_task_request_build( struct isci_host *isci_host, struct isci_request **isci_request, struct isci_tmf *isci_tmf) { struct scic_sds_remote_device *sci_device; enum sci_status status = SCI_FAILURE; struct isci_request *request; struct isci_remote_device *isci_device; /* struct sci_sas_identify_address_frame_protocols dev_protocols; */ struct smp_discover_response_protocols dev_protocols; dev_dbg(&isci_host->pdev->dev, "%s: isci_tmf = %p\n", __func__, isci_tmf); isci_device = isci_tmf->device; sci_device = isci_device->sci_device_handle; /* do common allocation and init of request object. */ status = isci_request_alloc_tmf( isci_host, isci_tmf, &request, isci_device, GFP_ATOMIC ); if (status != SCI_SUCCESS) goto out; /* let the core do it's construct. */ status = scic_task_request_construct( isci_host->core_controller, sci_device, SCI_CONTROLLER_INVALID_IO_TAG, request, request->sci_request_mem_ptr, &request->sci_request_handle ); if (status != SCI_SUCCESS) { dev_warn(&isci_host->pdev->dev, "%s: scic_task_request_construct failed - " "status = 0x%x\n", __func__, status); goto errout; } sci_object_set_association( request->sci_request_handle, request ); scic_remote_device_get_protocols( sci_device, &dev_protocols ); /* let the core do it's protocol * specific construction. */ if (dev_protocols.u.bits.attached_ssp_target) { isci_tmf->proto = SAS_PROTOCOL_SSP; status = scic_task_request_construct_ssp( request->sci_request_handle ); if (status != SCI_SUCCESS) goto errout; } if (dev_protocols.u.bits.attached_stp_target) { isci_tmf->proto = SAS_PROTOCOL_SATA; status = isci_sata_management_task_request_build(request); if (status != SCI_SUCCESS) goto errout; } goto out; errout: /* release the dma memory if we fail. */ isci_request_free(isci_host, request); request = NULL; out: *isci_request = request; return status; } /** * isci_tmf_timeout_cb() - This function is called as a kernel callback when * the timeout period for the TMF has expired. * * */ static void isci_tmf_timeout_cb(void *tmf_request_arg) { struct isci_request *request = (struct isci_request *)tmf_request_arg; struct isci_tmf *tmf = isci_request_access_tmf(request); enum sci_status status; BUG_ON(request->ttype != tmf_task); /* This task management request has timed-out. Terminate the request * so that the request eventually completes to the requestor in the * request completion callback path. */ /* Note - the timer callback function itself has provided spinlock * exclusion from the start and completion paths. No need to take * the request->isci_host->scic_lock here. */ if (tmf->timeout_timer != NULL) { /* Call the users callback, if any. */ if (tmf->cb_state_func != NULL) tmf->cb_state_func(isci_tmf_timed_out, tmf, tmf->cb_data); /* Terminate the TMF transmit request. */ status = scic_controller_terminate_request( request->isci_host->core_controller, request->isci_device->sci_device_handle, request->sci_request_handle ); dev_dbg(&request->isci_host->pdev->dev, "%s: tmf_request = %p; tmf = %p; status = %d\n", __func__, request, tmf, status); } else dev_dbg(&request->isci_host->pdev->dev, "%s: timer already canceled! " "tmf_request = %p; tmf = %p\n", __func__, request, tmf); /* No need to unlock since the caller to this callback is doing it for * us. * request->isci_host->scic_lock */ } /** * isci_task_execute_tmf() - This function builds and sends a task request, * then waits for the completion. * @isci_host: This parameter specifies the ISCI host object * @tmf: This parameter is the pointer to the task management structure for * this request. * @timeout_ms: This parameter specifies the timeout period for the task * management request. * * TMF_RESP_FUNC_COMPLETE on successful completion of the TMF (this includes * error conditions reported in the IU status), or TMF_RESP_FUNC_FAILED. */ int isci_task_execute_tmf( struct isci_host *isci_host, struct isci_tmf *tmf, unsigned long timeout_ms) { DECLARE_COMPLETION_ONSTACK(completion); enum sci_status status = SCI_FAILURE; struct scic_sds_remote_device *sci_device; struct isci_remote_device *isci_device = tmf->device; struct isci_request *request; int ret = TMF_RESP_FUNC_FAILED; unsigned long flags; /* sanity check, return TMF_RESP_FUNC_FAILED * if the device is not there and ready. */ if (!isci_device || ((isci_ready_for_io != isci_remote_device_get_state(isci_device)) && (isci_host_quiesce != isci_remote_device_get_state(isci_device)))) { dev_dbg(&isci_host->pdev->dev, "%s: isci_device = %p not ready (%d)\n", __func__, isci_device, isci_remote_device_get_state(isci_device)); return TMF_RESP_FUNC_FAILED; } else dev_dbg(&isci_host->pdev->dev, "%s: isci_device = %p\n", __func__, isci_device); sci_device = isci_device->sci_device_handle; /* Assign the pointer to the TMF's completion kernel wait structure. */ tmf->complete = &completion; isci_task_request_build( isci_host, &request, tmf ); if (!request) { dev_warn(&isci_host->pdev->dev, "%s: isci_task_request_build failed\n", __func__); return TMF_RESP_FUNC_FAILED; } /* Allocate the TMF timeout timer. */ spin_lock_irqsave(&isci_host->scic_lock, flags); tmf->timeout_timer = isci_timer_create(isci_host, request, isci_tmf_timeout_cb); /* Start the timer. */ if (tmf->timeout_timer) isci_timer_start(tmf->timeout_timer, timeout_ms); else dev_warn(&isci_host->pdev->dev, "%s: isci_timer_create failed!!!!\n", __func__); /* start the TMF io. */ status = scic_controller_start_task( isci_host->core_controller, sci_device, request->sci_request_handle, SCI_CONTROLLER_INVALID_IO_TAG ); if (status != SCI_SUCCESS) { dev_warn(&isci_host->pdev->dev, "%s: start_io failed - status = 0x%x, request = %p\n", __func__, status, request); goto cleanup_request; } /* Call the users callback, if any. */ if (tmf->cb_state_func != NULL) tmf->cb_state_func(isci_tmf_started, tmf, tmf->cb_data); /* Change the state of the TMF-bearing request to "started". */ isci_request_change_state(request, started); /* add the request to the remote device request list. */ list_add(&request->dev_node, &isci_device->reqs_in_process); spin_unlock_irqrestore(&isci_host->scic_lock, flags); /* Wait for the TMF to complete, or a timeout. */ wait_for_completion(&completion); isci_print_tmf(tmf); if (tmf->status == SCI_SUCCESS) ret = TMF_RESP_FUNC_COMPLETE; else if (tmf->status == SCI_FAILURE_IO_RESPONSE_VALID) { dev_dbg(&isci_host->pdev->dev, "%s: tmf.status == " "SCI_FAILURE_IO_RESPONSE_VALID\n", __func__); ret = TMF_RESP_FUNC_COMPLETE; } /* Else - leave the default "failed" status alone. */ dev_dbg(&isci_host->pdev->dev, "%s: completed request = %p\n", __func__, request); if (request->io_request_completion != NULL) { /* The fact that this is non-NULL for a TMF request * means there is a thread waiting for this TMF to * finish. */ complete(request->io_request_completion); } spin_lock_irqsave(&isci_host->scic_lock, flags); cleanup_request: /* Clean up the timer if needed. */ if (tmf->timeout_timer) { isci_del_timer(isci_host, tmf->timeout_timer); tmf->timeout_timer = NULL; } spin_unlock_irqrestore(&isci_host->scic_lock, flags); isci_request_free(isci_host, request); return ret; } void isci_task_build_tmf( struct isci_tmf *tmf, struct isci_remote_device *isci_device, enum isci_tmf_function_codes code, void (*tmf_sent_cb)(enum isci_tmf_cb_state, struct isci_tmf *, void *), void *cb_data) { dev_dbg(&isci_device->isci_port->isci_host->pdev->dev, "%s: isci_device = %p\n", __func__, isci_device); memset(tmf, 0, sizeof(*tmf)); tmf->device = isci_device; tmf->tmf_code = code; tmf->timeout_timer = NULL; tmf->cb_state_func = tmf_sent_cb; tmf->cb_data = cb_data; } static struct isci_request *isci_task_get_request_from_task( struct sas_task *task, struct isci_host **isci_host, struct isci_remote_device **isci_device) { struct isci_request *request = NULL; unsigned long flags; spin_lock_irqsave(&task->task_state_lock, flags); request = task->lldd_task; /* If task is already done, the request isn't valid */ if (!(task->task_state_flags & SAS_TASK_STATE_DONE) && (task->task_state_flags & SAS_TASK_AT_INITIATOR) && (request != NULL)) { if (isci_host != NULL) *isci_host = request->isci_host; if (isci_device != NULL) *isci_device = request->isci_device; } spin_unlock_irqrestore(&task->task_state_lock, flags); return request; } /** * isci_task_validate_request_to_abort() - This function checks the given I/O * against the "started" state. If the request is still "started", it's * state is changed to aborted. NOTE: isci_host->scic_lock MUST BE HELD * BEFORE CALLING THIS FUNCTION. * @isci_request: This parameter specifies the request object to control. * @isci_host: This parameter specifies the ISCI host object * @isci_device: This is the device to which the request is pending. * @aborted_io_completion: This is a completion structure that will be added to * the request in case it is changed to aborting; this completion is * triggered when the request is fully completed. * * Either "started" on successful change of the task status to "aborted", or * "unallocated" if the task cannot be controlled. */ static enum isci_request_status isci_task_validate_request_to_abort( struct isci_request *isci_request, struct isci_host *isci_host, struct isci_remote_device *isci_device, struct completion *aborted_io_completion) { enum isci_request_status old_state = unallocated; /* Only abort the task if it's in the * device's request_in_process list */ if (isci_request && !list_empty(&isci_request->dev_node)) { old_state = isci_request_change_started_to_aborted( isci_request, aborted_io_completion); /* Only abort requests in the started state. */ if (old_state != started) old_state = unallocated; } return old_state; } static void isci_request_cleanup_completed_loiterer( struct isci_host *isci_host, struct isci_remote_device *isci_device, struct isci_request *isci_request) { struct sas_task *task = isci_request_access_task(isci_request); unsigned long flags; dev_dbg(&isci_host->pdev->dev, "%s: isci_device=%p, request=%p, task=%p\n", __func__, isci_device, isci_request, isci_request->ttype_ptr.io_task_ptr); spin_lock_irqsave(&isci_host->scic_lock, flags); list_del_init(&isci_request->dev_node); if (task != NULL) task->lldd_task = NULL; spin_unlock_irqrestore(&isci_host->scic_lock, flags); isci_request_free(isci_host, isci_request); } /** * isci_terminate_request_core() - This function will terminate the given * request, and wait for it to complete. This function must only be called * from a thread that can wait. Note that the request is terminated and * completed (back to the host, if started there). * @isci_host: This SCU. * @isci_device: The target. * @isci_request: The I/O request to be terminated. * * */ static void isci_terminate_request_core( struct isci_host *isci_host, struct isci_remote_device *isci_device, struct isci_request *isci_request, struct completion *request_completion) { enum sci_status status = SCI_SUCCESS; bool was_terminated = false; bool needs_cleanup_handling = false; enum isci_request_status request_status; unsigned long flags; dev_dbg(&isci_host->pdev->dev, "%s: device = %p; request = %p\n", __func__, isci_device, isci_request); /* Peek at the current status of the request. This will tell * us if there was special handling on the request such that it * needs to be detached and freed here. */ spin_lock_irqsave(&isci_request->state_lock, flags); request_status = isci_request_get_state(isci_request); /* TMFs are in their own thread */ if ((isci_request->ttype == io_task) && ((request_status == aborted) || (request_status == aborting) || (request_status == terminating))) /* The completion routine won't free a request in * the aborted/aborting/terminating state, so we do * it here. */ needs_cleanup_handling = true; spin_unlock_irqrestore(&isci_request->state_lock, flags); spin_lock_irqsave(&isci_host->scic_lock, flags); /* Make sure the request wasn't just sitting around signalling * device condition (if the request handle is NULL, then the * request completed but needed additional handling here). */ if (isci_request->sci_request_handle != NULL) { was_terminated = true; status = scic_controller_terminate_request( isci_host->core_controller, isci_device->sci_device_handle, isci_request->sci_request_handle ); } spin_unlock_irqrestore(&isci_host->scic_lock, flags); /* * The only time the request to terminate will * fail is when the io request is completed and * being aborted. */ if (status != SCI_SUCCESS) dev_err(&isci_host->pdev->dev, "%s: scic_controller_terminate_request" " returned = 0x%x\n", __func__, status); else { if (was_terminated) { dev_dbg(&isci_host->pdev->dev, "%s: before completion wait (%p)\n", __func__, request_completion); /* Wait here for the request to complete. */ wait_for_completion(request_completion); dev_dbg(&isci_host->pdev->dev, "%s: after completion wait (%p)\n", __func__, request_completion); } if (needs_cleanup_handling) isci_request_cleanup_completed_loiterer( isci_host, isci_device, isci_request ); } } static void isci_terminate_request( struct isci_host *isci_host, struct isci_remote_device *isci_device, struct isci_request *isci_request, enum isci_request_status new_request_state) { enum isci_request_status old_state; DECLARE_COMPLETION_ONSTACK(request_completion); unsigned long flags; spin_lock_irqsave(&isci_host->scic_lock, flags); /* Change state to "new_request_state" if it is currently "started" */ old_state = isci_request_change_started_to_newstate( isci_request, &request_completion, new_request_state ); spin_unlock_irqrestore(&isci_host->scic_lock, flags); if (old_state == started) /* This request was not already being aborted. If it had been, * then the aborting I/O (ie. the TMF request) would not be in * the aborting state, and thus would be terminated here. Note * that since the TMF completion's call to the kernel function * "complete()" does not happen until the pending I/O request * terminate fully completes, we do not have to implement a * special wait here for already aborting requests - the * termination of the TMF request will force the request * to finish it's already started terminate. */ isci_terminate_request_core(isci_host, isci_device, isci_request, &request_completion); } /** * isci_terminate_pending_requests() - This function will change the all of the * requests on the given device's state to "aborting", will terminate the * requests, and wait for them to complete. This function must only be * called from a thread that can wait. Note that the requests are all * terminated and completed (back to the host, if started there). * @isci_host: This parameter specifies SCU. * @isci_device: This parameter specifies the target. * * */ void isci_terminate_pending_requests( struct isci_host *isci_host, struct isci_remote_device *isci_device, enum isci_request_status new_request_state) { struct isci_request *isci_request; struct sas_task *task; bool done = false; unsigned long flags; dev_dbg(&isci_host->pdev->dev, "%s: isci_device = %p (new request state = %d)\n", __func__, isci_device, new_request_state); #define ISCI_TERMINATE_SHOW_PENDING_REQUESTS #ifdef ISCI_TERMINATE_SHOW_PENDING_REQUESTS { struct isci_request *request; /* Only abort the task if it's in the * device's request_in_process list */ list_for_each_entry(request, &isci_device->reqs_in_process, dev_node) dev_dbg(&isci_host->pdev->dev, "%s: isci_device = %p; request is on " "reqs_in_process list: %p\n", __func__, isci_device, request); } #endif /* ISCI_TERMINATE_SHOW_PENDING_REQUESTS */ /* Clean up all pending requests. */ do { spin_lock_irqsave(&isci_host->scic_lock, flags); if (list_empty(&isci_device->reqs_in_process)) { done = true; spin_unlock_irqrestore(&isci_host->scic_lock, flags); dev_dbg(&isci_host->pdev->dev, "%s: isci_device = %p; done.\n", __func__, isci_device); } else { /* The list was not empty - grab the first request. */ isci_request = list_first_entry( &isci_device->reqs_in_process, struct isci_request, dev_node ); /* Note that we are not expecting to have to control * the target to abort the request. */ isci_request->complete_in_target = true; spin_unlock_irqrestore(&isci_host->scic_lock, flags); /* Get the libsas task reference. */ task = isci_request_access_task(isci_request); dev_dbg(&isci_host->pdev->dev, "%s: isci_device=%p request=%p; task=%p\n", __func__, isci_device, isci_request, task); /* Mark all still pending I/O with the selected next * state. */ isci_terminate_request(isci_host, isci_device, isci_request, new_request_state ); /* Set the 'done' state on the task. */ if (task) isci_task_all_done(task); } } while (!done); } /** * isci_task_send_lu_reset_sas() - This function is called by of the SAS Domain * Template functions. * @lun: This parameter specifies the lun to be reset. * * status, zero indicates success. */ static int isci_task_send_lu_reset_sas( struct isci_host *isci_host, struct isci_remote_device *isci_device, u8 *lun) { struct isci_tmf tmf; int ret = TMF_RESP_FUNC_FAILED; dev_dbg(&isci_host->pdev->dev, "%s: isci_host = %p, isci_device = %p\n", __func__, isci_host, isci_device); /* Send the LUN reset to the target. By the time the call returns, * the TMF has fully exected in the target (in which case the return * value is "TMF_RESP_FUNC_COMPLETE", or the request timed-out (or * was otherwise unable to be executed ("TMF_RESP_FUNC_FAILED"). */ isci_task_build_tmf(&tmf, isci_device, isci_tmf_ssp_lun_reset, NULL, NULL); #define ISCI_LU_RESET_TIMEOUT_MS 2000 /* 2 second timeout. */ ret = isci_task_execute_tmf(isci_host, &tmf, ISCI_LU_RESET_TIMEOUT_MS); if (ret == TMF_RESP_FUNC_COMPLETE) dev_dbg(&isci_host->pdev->dev, "%s: %p: TMF_LU_RESET passed\n", __func__, isci_device); else dev_dbg(&isci_host->pdev->dev, "%s: %p: TMF_LU_RESET failed (%x)\n", __func__, isci_device, ret); return ret; } /** * isci_task_lu_reset() - This function is one of the SAS Domain Template * functions. This is one of the Task Management functoins called by libsas, * to reset the given lun. Note the assumption that while this call is * executing, no I/O will be sent by the host to the device. * @lun: This parameter specifies the lun to be reset. * * status, zero indicates success. */ int isci_task_lu_reset( struct domain_device *domain_device, u8 *lun) { struct isci_host *isci_host = NULL; struct isci_remote_device *isci_device = NULL; int ret; bool device_stopping = false; if (domain_device == NULL) { pr_warn("%s: domain_device == NULL\n", __func__); return TMF_RESP_FUNC_FAILED; } isci_device = isci_dev_from_domain_dev(domain_device); if (domain_device->port != NULL) isci_host = isci_host_from_sas_ha(domain_device->port->ha); pr_debug("%s: domain_device=%p, isci_host=%p; isci_device=%p\n", __func__, domain_device, isci_host, isci_device); if (isci_device != NULL) device_stopping = (isci_device->status == isci_stopping) || (isci_device->status == isci_stopped); /* If there is a device reset pending on any request in the * device's list, fail this LUN reset request in order to * escalate to the device reset. */ if ((isci_device == NULL) || (isci_host == NULL) || ((isci_host != NULL) && (isci_device != NULL) && (device_stopping || (isci_device_is_reset_pending(isci_host, isci_device))))) { dev_warn(&isci_host->pdev->dev, "%s: No dev (%p), no host (%p), or " "RESET PENDING: domain_device=%p\n", __func__, isci_device, isci_host, domain_device); return TMF_RESP_FUNC_FAILED; } /* Stop I/O to the remote device. */ isci_device_set_host_quiesce_lock_state(isci_device, true); /* Send the task management part of the reset. */ if (sas_protocol_ata(domain_device->tproto)) { ret = isci_task_send_lu_reset_sata( isci_host, isci_device, lun ); } else ret = isci_task_send_lu_reset_sas(isci_host, isci_device, lun); /* If the LUN reset worked, all the I/O can now be terminated. */ if (ret == TMF_RESP_FUNC_COMPLETE) /* Terminate all I/O now. */ isci_terminate_pending_requests(isci_host, isci_device, terminating); /* Resume I/O to the remote device. */ isci_device_set_host_quiesce_lock_state(isci_device, false); return ret; } /* int (*lldd_clear_nexus_port)(struct asd_sas_port *); */ int isci_task_clear_nexus_port(struct asd_sas_port *port) { return TMF_RESP_FUNC_FAILED; } int isci_task_clear_nexus_ha(struct sas_ha_struct *ha) { return TMF_RESP_FUNC_FAILED; } int isci_task_I_T_nexus_reset(struct domain_device *dev) { return TMF_RESP_FUNC_FAILED; } /* Task Management Functions. Must be called from process context. */ /** * isci_abort_task_process_cb() - This is a helper function for the abort task * TMF command. It manages the request state with respect to the successful * transmission / completion of the abort task request. * @cb_state: This parameter specifies when this function was called - after * the TMF request has been started and after it has timed-out. * @tmf: This parameter specifies the TMF in progress. * * */ static void isci_abort_task_process_cb( enum isci_tmf_cb_state cb_state, struct isci_tmf *tmf, void *cb_data) { struct isci_request *old_request; old_request = (struct isci_request *)cb_data; dev_dbg(&old_request->isci_host->pdev->dev, "%s: tmf=%p, old_request=%p\n", __func__, tmf, old_request); switch (cb_state) { case isci_tmf_started: /* The TMF has been started. Nothing to do here, since the * request state was already set to "aborted" by the abort * task function. */ BUG_ON(old_request->status != aborted); break; case isci_tmf_timed_out: /* Set the task's state to "aborting", since the abort task * function thread set it to "aborted" (above) in anticipation * of the task management request working correctly. Since the * timeout has now fired, the TMF request failed. We set the * state such that the request completion will indicate the * device is no longer present. */ isci_request_change_state(old_request, aborting); break; default: dev_err(&old_request->isci_host->pdev->dev, "%s: Bad cb_state (%d): tmf=%p, old_request=%p\n", __func__, cb_state, tmf, old_request); break; } } /** * isci_task_abort_task() - This function is one of the SAS Domain Template * functions. This function is called by libsas to abort a specified task. * @task: This parameter specifies the SAS task to abort. * * status, zero indicates success. */ int isci_task_abort_task(struct sas_task *task) { DECLARE_COMPLETION_ONSTACK(aborted_io_completion); struct isci_request *old_request = NULL; struct isci_remote_device *isci_device = NULL; struct isci_host *isci_host = NULL; struct isci_tmf tmf; int ret = TMF_RESP_FUNC_FAILED; unsigned long flags; bool any_dev_reset, device_stopping; /* Get the isci_request reference from the task. Note that * this check does not depend on the pending request list * in the device, because tasks driving resets may land here * after completion in the core. */ old_request = isci_task_get_request_from_task(task, &isci_host, &isci_device); dev_dbg(&isci_host->pdev->dev, "%s: task = %p\n", __func__, task); /* Check if the device has been / is currently being removed. * If so, no task management will be done, and the I/O will * be terminated. */ device_stopping = (isci_device->status == isci_stopping) || (isci_device->status == isci_stopped); #ifdef NOMORE /* This abort task function is the first stop of the libsas error * handler thread. Since libsas is executing in a thread with a * referernce to the "task" parameter, that task cannot be completed * directly back to the upper layers. In order to make sure that * the task is managed correctly if this abort task fails, set the * "SAS_TASK_STATE_ABORTED" bit now such that completions up the * stack will be intercepted and only allowed to happen in the * libsas SCSI error handler thread. */ spin_lock_irqsave(&task->task_state_lock, flags); task->task_state_flags |= SAS_TASK_STATE_ABORTED; spin_unlock_irqrestore(&task->task_state_lock, flags); #endif /* NOMORE */ /* This version of the driver will fail abort requests for * SATA/STP. Failing the abort request this way will cause the * SCSI error handler thread to escalate to LUN reset */ if (sas_protocol_ata(task->task_proto) && !device_stopping) { dev_warn(&isci_host->pdev->dev, " task %p is for a STP/SATA device;" " returning TMF_RESP_FUNC_FAILED\n" " to cause a LUN reset...\n", task); return TMF_RESP_FUNC_FAILED; } dev_dbg(&isci_host->pdev->dev, "%s: old_request == %p\n", __func__, old_request); spin_lock_irqsave(&task->task_state_lock, flags); /* Don't do resets to stopping devices. */ if (device_stopping) task->task_state_flags &= ~SAS_TASK_NEED_DEV_RESET; /* See if there is a pending device reset for this device. */ any_dev_reset = task->task_state_flags & SAS_TASK_NEED_DEV_RESET; spin_unlock_irqrestore(&task->task_state_lock, flags); if ((isci_device != NULL) && !device_stopping) any_dev_reset = any_dev_reset || isci_device_is_reset_pending(isci_host, isci_device ); /* If the extraction of the request reference from the task * failed, then the request has been completed (or if there is a * pending reset then this abort request function must be failed * in order to escalate to the target reset). */ if ((old_request == NULL) || ((old_request != NULL) && (old_request->sci_request_handle == NULL) && (old_request->complete_in_target)) || any_dev_reset) { spin_lock_irqsave(&task->task_state_lock, flags); /* If the device reset task flag is set, fail the task * management request. Otherwise, the original request * has completed. */ if (any_dev_reset) { /* Turn off the task's DONE to make sure this * task is escalated to a target reset. */ task->task_state_flags &= ~SAS_TASK_STATE_DONE; /* Fail the task management request in order to * escalate to the target reset. */ ret = TMF_RESP_FUNC_FAILED; dev_dbg(&isci_host->pdev->dev, "%s: Failing task abort in order to " "escalate to target reset because\n" "SAS_TASK_NEED_DEV_RESET is set for " "task %p on dev %p\n", __func__, task, isci_device); } else { ret = TMF_RESP_FUNC_COMPLETE; dev_dbg(&isci_host->pdev->dev, "%s: abort task not needed for %p\n", __func__, task); /* The request has already completed and there * is nothing to do here other than to set the task * done bit, and indicate that the task abort function * was sucessful. */ isci_set_task_doneflags(task); /* Set the abort bit to make sure that libsas sticks the * task in the completed task queue. */ /* task->task_state_flags |= SAS_TASK_STATE_ABORTED; */ /* Check for the situation where the request was * left around on the device list but the * request already completed. */ if (old_request && !old_request->sci_request_handle) { isci_request_cleanup_completed_loiterer( isci_host, isci_device, old_request ); } } spin_unlock_irqrestore(&task->task_state_lock, flags); return ret; } spin_lock_irqsave(&isci_host->scic_lock, flags); /* Sanity check the request status, and set the I/O kernel completion * struct that will be triggered when the request completes. */ if (isci_task_validate_request_to_abort( old_request, isci_host, isci_device, &aborted_io_completion) == unallocated) { dev_dbg(&isci_host->pdev->dev, "%s: old_request not valid for device = %p\n", __func__, isci_device); old_request = NULL; } if (!old_request) { /* There is no isci_request attached to the sas_task. * It must have been completed and detached. */ dev_dbg(&isci_host->pdev->dev, "%s: old_request == NULL\n", __func__); spin_unlock_irqrestore(&isci_host->scic_lock, flags); /* Set the state on the task. */ isci_task_all_done(task); return TMF_RESP_FUNC_COMPLETE; } if (task->task_proto == SAS_PROTOCOL_SMP || device_stopping) { if (device_stopping) dev_dbg(&isci_host->pdev->dev, "%s: device is stopping, thus no TMF\n", __func__); else dev_dbg(&isci_host->pdev->dev, "%s: request is SMP, thus no TMF\n", __func__); old_request->complete_in_target = true; spin_unlock_irqrestore(&isci_host->scic_lock, flags); /* Set the state on the task. */ isci_task_all_done(task); ret = TMF_RESP_FUNC_COMPLETE; /* Stopping and SMP devices are not sent a TMF, and are not * reset, but the outstanding I/O request is terminated here. * * Clean up the request on our side, and wait for the aborted * I/O to complete. */ isci_terminate_request_core(isci_host, isci_device, old_request, &aborted_io_completion); } else { /* Fill in the tmf stucture */ isci_task_build_tmf(&tmf, isci_device, isci_tmf_ssp_task_abort, isci_abort_task_process_cb, old_request); tmf.io_tag = scic_io_request_get_io_tag( old_request->sci_request_handle ); spin_unlock_irqrestore(&isci_host->scic_lock, flags); #define ISCI_ABORT_TASK_TIMEOUT_MS 500 /* half second timeout. */ ret = isci_task_execute_tmf(isci_host, &tmf, ISCI_ABORT_TASK_TIMEOUT_MS); if (ret == TMF_RESP_FUNC_COMPLETE) { old_request->complete_in_target = true; /* Clean up the request on our side, and wait for the aborted I/O to * complete. */ isci_terminate_request_core(isci_host, isci_device, old_request, &aborted_io_completion); /* Set the state on the task. */ isci_task_all_done(task); } else dev_err(&isci_host->pdev->dev, "%s: isci_task_send_tmf failed\n", __func__); } return ret; } /** * isci_task_abort_task_set() - This function is one of the SAS Domain Template * functions. This is one of the Task Management functoins called by libsas, * to abort all task for the given lun. * @d_device: This parameter specifies the domain device associated with this * request. * @lun: This parameter specifies the lun associated with this request. * * status, zero indicates success. */ int isci_task_abort_task_set( struct domain_device *d_device, u8 *lun) { return TMF_RESP_FUNC_FAILED; } /** * isci_task_clear_aca() - This function is one of the SAS Domain Template * functions. This is one of the Task Management functoins called by libsas. * @d_device: This parameter specifies the domain device associated with this * request. * @lun: This parameter specifies the lun associated with this request. * * status, zero indicates success. */ int isci_task_clear_aca( struct domain_device *d_device, u8 *lun) { return TMF_RESP_FUNC_FAILED; } /** * isci_task_clear_task_set() - This function is one of the SAS Domain Template * functions. This is one of the Task Management functoins called by libsas. * @d_device: This parameter specifies the domain device associated with this * request. * @lun: This parameter specifies the lun associated with this request. * * status, zero indicates success. */ int isci_task_clear_task_set( struct domain_device *d_device, u8 *lun) { return TMF_RESP_FUNC_FAILED; } /** * isci_task_query_task() - This function is implemented to cause libsas to * correctly escalate the failed abort to a LUN or target reset (this is * because sas_scsi_find_task libsas function does not correctly interpret * all return codes from the abort task call). When TMF_RESP_FUNC_SUCC is * returned, libsas turns this into a LUN reset; when FUNC_FAILED is * returned, libsas will turn this into a target reset * @task: This parameter specifies the sas task being queried. * @lun: This parameter specifies the lun associated with this request. * * status, zero indicates success. */ int isci_task_query_task( struct sas_task *task) { /* See if there is a pending device reset for this device. */ if (task->task_state_flags & SAS_TASK_NEED_DEV_RESET) return TMF_RESP_FUNC_FAILED; else return TMF_RESP_FUNC_SUCC; } /** * isci_task_request_complete() - This function is called by the sci core when * an task request completes. * @isci_host: This parameter specifies the ISCI host object * @request: This parameter is the completed isci_request object. * @completion_status: This parameter specifies the completion status from the * sci core. * * none. */ void isci_task_request_complete( struct isci_host *isci_host, struct isci_request *request, enum sci_task_status completion_status) { struct isci_remote_device *isci_device = request->isci_device; enum isci_request_status old_state; struct isci_tmf *tmf = isci_request_access_tmf(request); struct completion *tmf_complete; dev_dbg(&isci_host->pdev->dev, "%s: request = %p, status=%d\n", __func__, request, completion_status); old_state = isci_request_change_state(request, completed); tmf->status = completion_status; request->complete_in_target = true; if (SAS_PROTOCOL_SSP == tmf->proto) { memcpy(&tmf->resp.resp_iu, scic_io_request_get_response_iu_address( request->sci_request_handle ), sizeof(struct sci_ssp_response_iu)); } else if (SAS_PROTOCOL_SATA == tmf->proto) { memcpy(&tmf->resp.d2h_fis, scic_stp_io_request_get_d2h_reg_address( request->sci_request_handle ), sizeof(struct sata_fis_reg_d2h) ); } /* Manage the timer if it is still running. */ if (tmf->timeout_timer) { isci_del_timer(isci_host, tmf->timeout_timer); tmf->timeout_timer = NULL; } /* PRINT_TMF( ((struct isci_tmf *)request->task)); */ tmf_complete = tmf->complete; scic_controller_complete_task( isci_host->core_controller, isci_device->sci_device_handle, request->sci_request_handle ); /* NULL the request handle to make sure it cannot be terminated * or completed again. */ request->sci_request_handle = NULL; isci_request_change_state(request, unallocated); list_del_init(&request->dev_node); /* The task management part completes last. */ complete(tmf_complete); } /** * isci_task_ssp_request_get_lun() - This function is called by the sci core to * retrieve the lun for a given task request. * @request: This parameter is the isci_request object. * * lun for specified task request. */ u32 isci_task_ssp_request_get_lun(struct isci_request *request) { struct isci_tmf *isci_tmf = isci_request_access_tmf(request); dev_dbg(&request->isci_host->pdev->dev, "%s: lun = %d\n", __func__, isci_tmf->lun[0]); /* @todo: build lun from array of bytes to 32 bit */ return isci_tmf->lun[0]; } /** * isci_task_ssp_request_get_function() - This function is called by the sci * core to retrieve the function for a given task request. * @request: This parameter is the isci_request object. * * function code for specified task request. */ u8 isci_task_ssp_request_get_function(struct isci_request *request) { struct isci_tmf *isci_tmf = isci_request_access_tmf(request); dev_dbg(&request->isci_host->pdev->dev, "%s: func = %d\n", __func__, isci_tmf->tmf_code); return isci_tmf->tmf_code; } /** * isci_task_ssp_request_get_io_tag_to_manage() - This function is called by * the sci core to retrieve the io tag for a given task request. * @request: This parameter is the isci_request object. * * io tag for specified task request. */ u16 isci_task_ssp_request_get_io_tag_to_manage(struct isci_request *request) { u16 io_tag = SCI_CONTROLLER_INVALID_IO_TAG; if (tmf_task == request->ttype) { struct isci_tmf *tmf = isci_request_access_tmf(request); io_tag = tmf->io_tag; } dev_dbg(&request->isci_host->pdev->dev, "%s: request = %p, io_tag = %d\n", __func__, request, io_tag); return io_tag; } /** * isci_task_ssp_request_get_response_data_address() - This function is called * by the sci core to retrieve the response data address for a given task * request. * @request: This parameter is the isci_request object. * * response data address for specified task request. */ void *isci_task_ssp_request_get_response_data_address( struct isci_request *request) { struct isci_tmf *isci_tmf = isci_request_access_tmf(request); return &isci_tmf->resp.resp_iu; } /** * isci_task_ssp_request_get_response_data_length() - This function is called * by the sci core to retrieve the response data length for a given task * request. * @request: This parameter is the isci_request object. * * response data length for specified task request. */ u32 isci_task_ssp_request_get_response_data_length( struct isci_request *request) { struct isci_tmf *isci_tmf = isci_request_access_tmf(request); return sizeof(isci_tmf->resp.resp_iu); } /** * isci_bus_reset_handler() - This function performs a target reset of the * device referenced by "cmd'. This function is exported through the * "struct scsi_host_template" structure such that it is called when an I/O * recovery process has escalated to a target reset. Note that this function * is called from the scsi error handler event thread, so may block on calls. * @scsi_cmd: This parameter specifies the target to be reset. * * SUCCESS if the reset process was successful, else FAILED. */ int isci_bus_reset_handler(struct scsi_cmnd *cmd) { unsigned long flags = 0; struct isci_host *isci_host = NULL; enum sci_status status; int base_status; struct isci_remote_device *isci_dev = isci_dev_from_domain_dev( sdev_to_domain_dev(cmd->device)); dev_dbg(&cmd->device->sdev_gendev, "%s: cmd %p, isci_dev %p\n", __func__, cmd, isci_dev); if (!isci_dev) { dev_warn(&cmd->device->sdev_gendev, "%s: isci_dev is GONE!\n", __func__); return TMF_RESP_FUNC_COMPLETE; /* Nothing to reset. */ } if (isci_dev->isci_port != NULL) isci_host = isci_dev->isci_port->isci_host; if (isci_host != NULL) spin_lock_irqsave(&isci_host->scic_lock, flags); status = scic_remote_device_reset(isci_dev->sci_device_handle); if (status != SCI_SUCCESS) { if (isci_host != NULL) spin_unlock_irqrestore(&isci_host->scic_lock, flags); scmd_printk(KERN_WARNING, cmd, "%s: scic_remote_device_reset(%p) returned %d!\n", __func__, isci_dev, status); return TMF_RESP_FUNC_FAILED; } if (isci_host != NULL) spin_unlock_irqrestore(&isci_host->scic_lock, flags); /* Stop I/O to the remote device. */ isci_device_set_host_quiesce_lock_state(isci_dev, true); /* Make sure all pending requests are able to be fully terminated. */ isci_device_clear_reset_pending(isci_dev); /* Terminate in-progress I/O now. */ isci_remote_device_nuke_requests(isci_dev); /* Call into the libsas default handler (which calls sas_phy_reset). */ base_status = sas_eh_bus_reset_handler(cmd); if (base_status != SUCCESS) { /* There can be cases where the resets to individual devices * behind an expander will fail because of an unplug of the * expander itself. */ scmd_printk(KERN_WARNING, cmd, "%s: sas_eh_bus_reset_handler(%p) returned %d!\n", __func__, cmd, base_status); } /* WHAT TO DO HERE IF sas_phy_reset FAILS? */ if (isci_host != NULL) spin_lock_irqsave(&isci_host->scic_lock, flags); status = scic_remote_device_reset_complete(isci_dev->sci_device_handle); if (isci_host != NULL) spin_unlock_irqrestore(&isci_host->scic_lock, flags); if (status != SCI_SUCCESS) { scmd_printk(KERN_WARNING, cmd, "%s: scic_remote_device_reset_complete(%p) " "returned %d!\n", __func__, isci_dev, status); } /* WHAT TO DO HERE IF scic_remote_device_reset_complete FAILS? */ dev_dbg(&cmd->device->sdev_gendev, "%s: cmd %p, isci_dev %p complete.\n", __func__, cmd, isci_dev); /* Resume I/O to the remote device. */ isci_device_set_host_quiesce_lock_state(isci_dev, false); return TMF_RESP_FUNC_COMPLETE; }