/* * linux/mm/oom_kill.c * * Copyright (C) 1998,2000 Rik van Riel * Thanks go out to Claus Fischer for some serious inspiration and * for goading me into coding this file... * * The routines in this file are used to kill a process when * we're seriously out of memory. This gets called from __alloc_pages() * in mm/page_alloc.c when we really run out of memory. * * Since we won't call these routines often (on a well-configured * machine) this file will double as a 'coding guide' and a signpost * for newbie kernel hackers. It features several pointers to major * kernel subsystems and hints as to where to find out what things do. */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include int sysctl_panic_on_oom; int sysctl_oom_kill_allocating_task; int sysctl_oom_dump_tasks = 1; static DEFINE_SPINLOCK(zone_scan_lock); /* #define DEBUG */ #ifdef CONFIG_NUMA /** * has_intersects_mems_allowed() - check task eligiblity for kill * @tsk: task struct of which task to consider * @mask: nodemask passed to page allocator for mempolicy ooms * * Task eligibility is determined by whether or not a candidate task, @tsk, * shares the same mempolicy nodes as current if it is bound by such a policy * and whether or not it has the same set of allowed cpuset nodes. */ static bool has_intersects_mems_allowed(struct task_struct *tsk, const nodemask_t *mask) { struct task_struct *start = tsk; do { if (mask) { /* * If this is a mempolicy constrained oom, tsk's * cpuset is irrelevant. Only return true if its * mempolicy intersects current, otherwise it may be * needlessly killed. */ if (mempolicy_nodemask_intersects(tsk, mask)) return true; } else { /* * This is not a mempolicy constrained oom, so only * check the mems of tsk's cpuset. */ if (cpuset_mems_allowed_intersects(current, tsk)) return true; } tsk = next_thread(tsk); } while (tsk != start); return false; } #else static bool has_intersects_mems_allowed(struct task_struct *tsk, const nodemask_t *mask) { return true; } #endif /* CONFIG_NUMA */ /* * The process p may have detached its own ->mm while exiting or through * use_mm(), but one or more of its subthreads may still have a valid * pointer. Return p, or any of its subthreads with a valid ->mm, with * task_lock() held. */ static struct task_struct *find_lock_task_mm(struct task_struct *p) { struct task_struct *t = p; do { task_lock(t); if (likely(t->mm)) return t; task_unlock(t); } while_each_thread(p, t); return NULL; } /** * badness - calculate a numeric value for how bad this task has been * @p: task struct of which task we should calculate * @uptime: current uptime in seconds * * The formula used is relatively simple and documented inline in the * function. The main rationale is that we want to select a good task * to kill when we run out of memory. * * Good in this context means that: * 1) we lose the minimum amount of work done * 2) we recover a large amount of memory * 3) we don't kill anything innocent of eating tons of memory * 4) we want to kill the minimum amount of processes (one) * 5) we try to kill the process the user expects us to kill, this * algorithm has been meticulously tuned to meet the principle * of least surprise ... (be careful when you change it) */ unsigned long badness(struct task_struct *p, unsigned long uptime) { unsigned long points, cpu_time, run_time; struct task_struct *child; struct task_struct *c, *t; int oom_adj = p->signal->oom_adj; struct task_cputime task_time; unsigned long utime; unsigned long stime; if (oom_adj == OOM_DISABLE) return 0; p = find_lock_task_mm(p); if (!p) return 0; /* * The memory size of the process is the basis for the badness. */ points = p->mm->total_vm; task_unlock(p); /* * swapoff can easily use up all memory, so kill those first. */ if (p->flags & PF_OOM_ORIGIN) return ULONG_MAX; /* * Processes which fork a lot of child processes are likely * a good choice. We add half the vmsize of the children if they * have an own mm. This prevents forking servers to flood the * machine with an endless amount of children. In case a single * child is eating the vast majority of memory, adding only half * to the parents will make the child our kill candidate of choice. */ t = p; do { list_for_each_entry(c, &t->children, sibling) { child = find_lock_task_mm(c); if (child) { if (child->mm != p->mm) points += child->mm->total_vm/2 + 1; task_unlock(child); } } } while_each_thread(p, t); /* * CPU time is in tens of seconds and run time is in thousands * of seconds. There is no particular reason for this other than * that it turned out to work very well in practice. */ thread_group_cputime(p, &task_time); utime = cputime_to_jiffies(task_time.utime); stime = cputime_to_jiffies(task_time.stime); cpu_time = (utime + stime) >> (SHIFT_HZ + 3); if (uptime >= p->start_time.tv_sec) run_time = (uptime - p->start_time.tv_sec) >> 10; else run_time = 0; if (cpu_time) points /= int_sqrt(cpu_time); if (run_time) points /= int_sqrt(int_sqrt(run_time)); /* * Niced processes are most likely less important, so double * their badness points. */ if (task_nice(p) > 0) points *= 2; /* * Superuser processes are usually more important, so we make it * less likely that we kill those. */ if (has_capability_noaudit(p, CAP_SYS_ADMIN) || has_capability_noaudit(p, CAP_SYS_RESOURCE)) points /= 4; /* * We don't want to kill a process with direct hardware access. * Not only could that mess up the hardware, but usually users * tend to only have this flag set on applications they think * of as important. */ if (has_capability_noaudit(p, CAP_SYS_RAWIO)) points /= 4; /* * Adjust the score by oom_adj. */ if (oom_adj) { if (oom_adj > 0) { if (!points) points = 1; points <<= oom_adj; } else points >>= -(oom_adj); } #ifdef DEBUG printk(KERN_DEBUG "OOMkill: task %d (%s) got %lu points\n", p->pid, p->comm, points); #endif return points; } /* * Determine the type of allocation constraint. */ #ifdef CONFIG_NUMA static enum oom_constraint constrained_alloc(struct zonelist *zonelist, gfp_t gfp_mask, nodemask_t *nodemask) { struct zone *zone; struct zoneref *z; enum zone_type high_zoneidx = gfp_zone(gfp_mask); /* * Reach here only when __GFP_NOFAIL is used. So, we should avoid * to kill current.We have to random task kill in this case. * Hopefully, CONSTRAINT_THISNODE...but no way to handle it, now. */ if (gfp_mask & __GFP_THISNODE) return CONSTRAINT_NONE; /* * The nodemask here is a nodemask passed to alloc_pages(). Now, * cpuset doesn't use this nodemask for its hardwall/softwall/hierarchy * feature. mempolicy is an only user of nodemask here. * check mempolicy's nodemask contains all N_HIGH_MEMORY */ if (nodemask && !nodes_subset(node_states[N_HIGH_MEMORY], *nodemask)) return CONSTRAINT_MEMORY_POLICY; /* Check this allocation failure is caused by cpuset's wall function */ for_each_zone_zonelist_nodemask(zone, z, zonelist, high_zoneidx, nodemask) if (!cpuset_zone_allowed_softwall(zone, gfp_mask)) return CONSTRAINT_CPUSET; return CONSTRAINT_NONE; } #else static enum oom_constraint constrained_alloc(struct zonelist *zonelist, gfp_t gfp_mask, nodemask_t *nodemask) { return CONSTRAINT_NONE; } #endif /* * Simple selection loop. We chose the process with the highest * number of 'points'. We expect the caller will lock the tasklist. * * (not docbooked, we don't want this one cluttering up the manual) */ static struct task_struct *select_bad_process(unsigned long *ppoints, struct mem_cgroup *mem, enum oom_constraint constraint, const nodemask_t *mask) { struct task_struct *p; struct task_struct *chosen = NULL; struct timespec uptime; *ppoints = 0; do_posix_clock_monotonic_gettime(&uptime); for_each_process(p) { unsigned long points; /* skip the init task and kthreads */ if (is_global_init(p) || (p->flags & PF_KTHREAD)) continue; if (mem && !task_in_mem_cgroup(p, mem)) continue; if (!has_intersects_mems_allowed(p, constraint == CONSTRAINT_MEMORY_POLICY ? mask : NULL)) continue; /* * This task already has access to memory reserves and is * being killed. Don't allow any other task access to the * memory reserve. * * Note: this may have a chance of deadlock if it gets * blocked waiting for another task which itself is waiting * for memory. Is there a better alternative? */ if (test_tsk_thread_flag(p, TIF_MEMDIE)) return ERR_PTR(-1UL); /* * This is in the process of releasing memory so wait for it * to finish before killing some other task by mistake. * * However, if p is the current task, we allow the 'kill' to * go ahead if it is exiting: this will simply set TIF_MEMDIE, * which will allow it to gain access to memory reserves in * the process of exiting and releasing its resources. * Otherwise we could get an easy OOM deadlock. */ if ((p->flags & PF_EXITING) && p->mm) { if (p != current) return ERR_PTR(-1UL); chosen = p; *ppoints = ULONG_MAX; } if (p->signal->oom_adj == OOM_DISABLE) continue; points = badness(p, uptime.tv_sec); if (points > *ppoints || !chosen) { chosen = p; *ppoints = points; } } return chosen; } /** * dump_tasks - dump current memory state of all system tasks * @mem: current's memory controller, if constrained * * Dumps the current memory state of all system tasks, excluding kernel threads. * State information includes task's pid, uid, tgid, vm size, rss, cpu, oom_adj * score, and name. * * If the actual is non-NULL, only tasks that are a member of the mem_cgroup are * shown. * * Call with tasklist_lock read-locked. */ static void dump_tasks(const struct mem_cgroup *mem) { struct task_struct *p; struct task_struct *task; printk(KERN_INFO "[ pid ] uid tgid total_vm rss cpu oom_adj " "name\n"); for_each_process(p) { if (p->flags & PF_KTHREAD) continue; if (mem && !task_in_mem_cgroup(p, mem)) continue; task = find_lock_task_mm(p); if (!task) { /* * This is a kthread or all of p's threads have already * detached their mm's. There's no need to report * them; they can't be oom killed anyway. */ continue; } printk(KERN_INFO "[%5d] %5d %5d %8lu %8lu %3u %3d %s\n", task->pid, __task_cred(task)->uid, task->tgid, task->mm->total_vm, get_mm_rss(task->mm), task_cpu(task), task->signal->oom_adj, task->comm); task_unlock(task); } } static void dump_header(struct task_struct *p, gfp_t gfp_mask, int order, struct mem_cgroup *mem) { task_lock(current); pr_warning("%s invoked oom-killer: gfp_mask=0x%x, order=%d, " "oom_adj=%d\n", current->comm, gfp_mask, order, current->signal->oom_adj); cpuset_print_task_mems_allowed(current); task_unlock(current); dump_stack(); mem_cgroup_print_oom_info(mem, p); show_mem(); if (sysctl_oom_dump_tasks) dump_tasks(mem); } #define K(x) ((x) << (PAGE_SHIFT-10)) static int oom_kill_task(struct task_struct *p) { p = find_lock_task_mm(p); if (!p || p->signal->oom_adj == OOM_DISABLE) { task_unlock(p); return 1; } pr_err("Killed process %d (%s) total-vm:%lukB, anon-rss:%lukB, file-rss:%lukB\n", task_pid_nr(p), p->comm, K(p->mm->total_vm), K(get_mm_counter(p->mm, MM_ANONPAGES)), K(get_mm_counter(p->mm, MM_FILEPAGES))); task_unlock(p); p->rt.time_slice = HZ; set_tsk_thread_flag(p, TIF_MEMDIE); force_sig(SIGKILL, p); return 0; } #undef K static int oom_kill_process(struct task_struct *p, gfp_t gfp_mask, int order, unsigned long points, struct mem_cgroup *mem, const char *message) { struct task_struct *victim = p; struct task_struct *child; struct task_struct *t = p; unsigned long victim_points = 0; struct timespec uptime; if (printk_ratelimit()) dump_header(p, gfp_mask, order, mem); /* * If the task is already exiting, don't alarm the sysadmin or kill * its children or threads, just set TIF_MEMDIE so it can die quickly */ if (p->flags & PF_EXITING) { set_tsk_thread_flag(p, TIF_MEMDIE); return 0; } task_lock(p); pr_err("%s: Kill process %d (%s) score %lu or sacrifice child\n", message, task_pid_nr(p), p->comm, points); task_unlock(p); /* * If any of p's children has a different mm and is eligible for kill, * the one with the highest badness() score is sacrificed for its * parent. This attempts to lose the minimal amount of work done while * still freeing memory. */ do_posix_clock_monotonic_gettime(&uptime); do { list_for_each_entry(child, &t->children, sibling) { unsigned long child_points; if (child->mm == p->mm) continue; if (mem && !task_in_mem_cgroup(child, mem)) continue; /* badness() returns 0 if the thread is unkillable */ child_points = badness(child, uptime.tv_sec); if (child_points > victim_points) { victim = child; victim_points = child_points; } } } while_each_thread(p, t); return oom_kill_task(victim); } /* * Determines whether the kernel must panic because of the panic_on_oom sysctl. */ static void check_panic_on_oom(enum oom_constraint constraint, gfp_t gfp_mask, int order) { if (likely(!sysctl_panic_on_oom)) return; if (sysctl_panic_on_oom != 2) { /* * panic_on_oom == 1 only affects CONSTRAINT_NONE, the kernel * does not panic for cpuset, mempolicy, or memcg allocation * failures. */ if (constraint != CONSTRAINT_NONE) return; } read_lock(&tasklist_lock); dump_header(NULL, gfp_mask, order, NULL); read_unlock(&tasklist_lock); panic("Out of memory: %s panic_on_oom is enabled\n", sysctl_panic_on_oom == 2 ? "compulsory" : "system-wide"); } #ifdef CONFIG_CGROUP_MEM_RES_CTLR void mem_cgroup_out_of_memory(struct mem_cgroup *mem, gfp_t gfp_mask) { unsigned long points = 0; struct task_struct *p; check_panic_on_oom(CONSTRAINT_MEMCG, gfp_mask, 0); read_lock(&tasklist_lock); retry: p = select_bad_process(&points, mem, CONSTRAINT_MEMCG, NULL); if (!p || PTR_ERR(p) == -1UL) goto out; if (oom_kill_process(p, gfp_mask, 0, points, mem, "Memory cgroup out of memory")) goto retry; out: read_unlock(&tasklist_lock); } #endif static BLOCKING_NOTIFIER_HEAD(oom_notify_list); int register_oom_notifier(struct notifier_block *nb) { return blocking_notifier_chain_register(&oom_notify_list, nb); } EXPORT_SYMBOL_GPL(register_oom_notifier); int unregister_oom_notifier(struct notifier_block *nb) { return blocking_notifier_chain_unregister(&oom_notify_list, nb); } EXPORT_SYMBOL_GPL(unregister_oom_notifier); /* * Try to acquire the OOM killer lock for the zones in zonelist. Returns zero * if a parallel OOM killing is already taking place that includes a zone in * the zonelist. Otherwise, locks all zones in the zonelist and returns 1. */ int try_set_zone_oom(struct zonelist *zonelist, gfp_t gfp_mask) { struct zoneref *z; struct zone *zone; int ret = 1; spin_lock(&zone_scan_lock); for_each_zone_zonelist(zone, z, zonelist, gfp_zone(gfp_mask)) { if (zone_is_oom_locked(zone)) { ret = 0; goto out; } } for_each_zone_zonelist(zone, z, zonelist, gfp_zone(gfp_mask)) { /* * Lock each zone in the zonelist under zone_scan_lock so a * parallel invocation of try_set_zone_oom() doesn't succeed * when it shouldn't. */ zone_set_flag(zone, ZONE_OOM_LOCKED); } out: spin_unlock(&zone_scan_lock); return ret; } /* * Clears the ZONE_OOM_LOCKED flag for all zones in the zonelist so that failed * allocation attempts with zonelists containing them may now recall the OOM * killer, if necessary. */ void clear_zonelist_oom(struct zonelist *zonelist, gfp_t gfp_mask) { struct zoneref *z; struct zone *zone; spin_lock(&zone_scan_lock); for_each_zone_zonelist(zone, z, zonelist, gfp_zone(gfp_mask)) { zone_clear_flag(zone, ZONE_OOM_LOCKED); } spin_unlock(&zone_scan_lock); } /* * Try to acquire the oom killer lock for all system zones. Returns zero if a * parallel oom killing is taking place, otherwise locks all zones and returns * non-zero. */ static int try_set_system_oom(void) { struct zone *zone; int ret = 1; spin_lock(&zone_scan_lock); for_each_populated_zone(zone) if (zone_is_oom_locked(zone)) { ret = 0; goto out; } for_each_populated_zone(zone) zone_set_flag(zone, ZONE_OOM_LOCKED); out: spin_unlock(&zone_scan_lock); return ret; } /* * Clears ZONE_OOM_LOCKED for all system zones so that failed allocation * attempts or page faults may now recall the oom killer, if necessary. */ static void clear_system_oom(void) { struct zone *zone; spin_lock(&zone_scan_lock); for_each_populated_zone(zone) zone_clear_flag(zone, ZONE_OOM_LOCKED); spin_unlock(&zone_scan_lock); } /* * Must be called with tasklist_lock held for read. */ static void __out_of_memory(gfp_t gfp_mask, int order, enum oom_constraint constraint, const nodemask_t *mask) { struct task_struct *p; unsigned long points; if (sysctl_oom_kill_allocating_task) if (!oom_kill_process(current, gfp_mask, order, 0, NULL, "Out of memory (oom_kill_allocating_task)")) return; retry: /* * Rambo mode: Shoot down a process and hope it solves whatever * issues we may have. */ p = select_bad_process(&points, NULL, constraint, mask); if (PTR_ERR(p) == -1UL) return; /* Found nothing?!?! Either we hang forever, or we panic. */ if (!p) { dump_header(NULL, gfp_mask, order, NULL); read_unlock(&tasklist_lock); panic("Out of memory and no killable processes...\n"); } if (oom_kill_process(p, gfp_mask, order, points, NULL, "Out of memory")) goto retry; } /** * out_of_memory - kill the "best" process when we run out of memory * @zonelist: zonelist pointer * @gfp_mask: memory allocation flags * @order: amount of memory being requested as a power of 2 * @nodemask: nodemask passed to page allocator * * If we run out of memory, we have the choice between either * killing a random task (bad), letting the system crash (worse) * OR try to be smart about which process to kill. Note that we * don't have to be perfect here, we just have to be good. */ void out_of_memory(struct zonelist *zonelist, gfp_t gfp_mask, int order, nodemask_t *nodemask) { unsigned long freed = 0; enum oom_constraint constraint = CONSTRAINT_NONE; blocking_notifier_call_chain(&oom_notify_list, 0, &freed); if (freed > 0) /* Got some memory back in the last second. */ return; /* * If current has a pending SIGKILL, then automatically select it. The * goal is to allow it to allocate so that it may quickly exit and free * its memory. */ if (fatal_signal_pending(current)) { set_thread_flag(TIF_MEMDIE); return; } /* * Check if there were limitations on the allocation (only relevant for * NUMA) that may require different handling. */ if (zonelist) constraint = constrained_alloc(zonelist, gfp_mask, nodemask); check_panic_on_oom(constraint, gfp_mask, order); read_lock(&tasklist_lock); __out_of_memory(gfp_mask, order, constraint, nodemask); read_unlock(&tasklist_lock); /* * Give "p" a good chance of killing itself before we * retry to allocate memory unless "p" is current */ if (!test_thread_flag(TIF_MEMDIE)) schedule_timeout_uninterruptible(1); } /* * The pagefault handler calls here because it is out of memory, so kill a * memory-hogging task. If a populated zone has ZONE_OOM_LOCKED set, a parallel * oom killing is already in progress so do nothing. If a task is found with * TIF_MEMDIE set, it has been killed so do nothing and allow it to exit. */ void pagefault_out_of_memory(void) { if (try_set_system_oom()) { out_of_memory(NULL, 0, 0, NULL); clear_system_oom(); } if (!test_thread_flag(TIF_MEMDIE)) schedule_timeout_uninterruptible(1); }