/* * FSL SoC setup code * * Maintained by Kumar Gala (see MAINTAINERS for contact information) * * 2006 (c) MontaVista Software, Inc. * Vitaly Bordug * * This program is free software; you can redistribute it and/or modify it * under the terms of the GNU General Public License as published by the * Free Software Foundation; either version 2 of the License, or (at your * option) any later version. */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include extern void init_fcc_ioports(struct fs_platform_info*); extern void init_fec_ioports(struct fs_platform_info*); extern void init_smc_ioports(struct fs_uart_platform_info*); static phys_addr_t immrbase = -1; phys_addr_t get_immrbase(void) { struct device_node *soc; if (immrbase != -1) return immrbase; soc = of_find_node_by_type(NULL, "soc"); if (soc) { int size; u32 naddr; const u32 *prop = of_get_property(soc, "#address-cells", &size); if (prop && size == 4) naddr = *prop; else naddr = 2; prop = of_get_property(soc, "ranges", &size); if (prop) immrbase = of_translate_address(soc, prop + naddr); of_node_put(soc); } return immrbase; } EXPORT_SYMBOL(get_immrbase); #if defined(CONFIG_CPM2) || defined(CONFIG_QUICC_ENGINE) || defined(CONFIG_8xx) static u32 brgfreq = -1; u32 get_brgfreq(void) { struct device_node *node; const unsigned int *prop; int size; if (brgfreq != -1) return brgfreq; node = of_find_compatible_node(NULL, NULL, "fsl,cpm-brg"); if (node) { prop = of_get_property(node, "clock-frequency", &size); if (prop && size == 4) brgfreq = *prop; of_node_put(node); return brgfreq; } /* Legacy device binding -- will go away when no users are left. */ node = of_find_node_by_type(NULL, "cpm"); if (!node) node = of_find_compatible_node(NULL, NULL, "fsl,qe"); if (!node) node = of_find_node_by_type(NULL, "qe"); if (node) { prop = of_get_property(node, "brg-frequency", &size); if (prop && size == 4) brgfreq = *prop; if (brgfreq == -1 || brgfreq == 0) { prop = of_get_property(node, "bus-frequency", &size); if (prop && size == 4) brgfreq = *prop / 2; } of_node_put(node); } return brgfreq; } EXPORT_SYMBOL(get_brgfreq); static u32 fs_baudrate = -1; u32 get_baudrate(void) { struct device_node *node; if (fs_baudrate != -1) return fs_baudrate; node = of_find_node_by_type(NULL, "serial"); if (node) { int size; const unsigned int *prop = of_get_property(node, "current-speed", &size); if (prop) fs_baudrate = *prop; of_node_put(node); } return fs_baudrate; } EXPORT_SYMBOL(get_baudrate); #endif /* CONFIG_CPM2 */ #ifdef CONFIG_FIXED_PHY static int __init of_add_fixed_phys(void) { int ret; struct device_node *np; u32 *fixed_link; struct fixed_phy_status status = {}; for_each_node_by_name(np, "ethernet") { fixed_link = (u32 *)of_get_property(np, "fixed-link", NULL); if (!fixed_link) continue; status.link = 1; status.duplex = fixed_link[1]; status.speed = fixed_link[2]; status.pause = fixed_link[3]; status.asym_pause = fixed_link[4]; ret = fixed_phy_add(PHY_POLL, fixed_link[0], &status); if (ret) { of_node_put(np); return ret; } } return 0; } arch_initcall(of_add_fixed_phys); #endif /* CONFIG_FIXED_PHY */ static int __init gfar_mdio_of_init(void) { struct device_node *np = NULL; struct platform_device *mdio_dev; struct resource res; int ret; np = of_find_compatible_node(np, NULL, "fsl,gianfar-mdio"); /* try the deprecated version */ if (!np) np = of_find_compatible_node(np, "mdio", "gianfar"); if (np) { int k; struct device_node *child = NULL; struct gianfar_mdio_data mdio_data; memset(&res, 0, sizeof(res)); memset(&mdio_data, 0, sizeof(mdio_data)); ret = of_address_to_resource(np, 0, &res); if (ret) goto err; mdio_dev = platform_device_register_simple("fsl-gianfar_mdio", res.start, &res, 1); if (IS_ERR(mdio_dev)) { ret = PTR_ERR(mdio_dev); goto err; } for (k = 0; k < 32; k++) mdio_data.irq[k] = PHY_POLL; while ((child = of_get_next_child(np, child)) != NULL) { int irq = irq_of_parse_and_map(child, 0); if (irq != NO_IRQ) { const u32 *id = of_get_property(child, "reg", NULL); mdio_data.irq[*id] = irq; } } ret = platform_device_add_data(mdio_dev, &mdio_data, sizeof(struct gianfar_mdio_data)); if (ret) goto unreg; } of_node_put(np); return 0; unreg: platform_device_unregister(mdio_dev); err: of_node_put(np); return ret; } arch_initcall(gfar_mdio_of_init); static const char *gfar_tx_intr = "tx"; static const char *gfar_rx_intr = "rx"; static const char *gfar_err_intr = "error"; static int __init gfar_of_init(void) { struct device_node *np; unsigned int i; struct platform_device *gfar_dev; struct resource res; int ret; for (np = NULL, i = 0; (np = of_find_compatible_node(np, "network", "gianfar")) != NULL; i++) { struct resource r[4]; struct device_node *phy, *mdio; struct gianfar_platform_data gfar_data; const unsigned int *id; const char *model; const char *ctype; const void *mac_addr; const phandle *ph; int n_res = 2; memset(r, 0, sizeof(r)); memset(&gfar_data, 0, sizeof(gfar_data)); ret = of_address_to_resource(np, 0, &r[0]); if (ret) goto err; of_irq_to_resource(np, 0, &r[1]); model = of_get_property(np, "model", NULL); /* If we aren't the FEC we have multiple interrupts */ if (model && strcasecmp(model, "FEC")) { r[1].name = gfar_tx_intr; r[2].name = gfar_rx_intr; of_irq_to_resource(np, 1, &r[2]); r[3].name = gfar_err_intr; of_irq_to_resource(np, 2, &r[3]); n_res += 2; } gfar_dev = platform_device_register_simple("fsl-gianfar", i, &r[0], n_res); if (IS_ERR(gfar_dev)) { ret = PTR_ERR(gfar_dev); goto err; } mac_addr = of_get_mac_address(np); if (mac_addr) memcpy(gfar_data.mac_addr, mac_addr, 6); if (model && !strcasecmp(model, "TSEC")) gfar_data.device_flags = FSL_GIANFAR_DEV_HAS_GIGABIT | FSL_GIANFAR_DEV_HAS_COALESCE | FSL_GIANFAR_DEV_HAS_RMON | FSL_GIANFAR_DEV_HAS_MULTI_INTR; if (model && !strcasecmp(model, "eTSEC")) gfar_data.device_flags = FSL_GIANFAR_DEV_HAS_GIGABIT | FSL_GIANFAR_DEV_HAS_COALESCE | FSL_GIANFAR_DEV_HAS_RMON | FSL_GIANFAR_DEV_HAS_MULTI_INTR | FSL_GIANFAR_DEV_HAS_CSUM | FSL_GIANFAR_DEV_HAS_VLAN | FSL_GIANFAR_DEV_HAS_EXTENDED_HASH; ctype = of_get_property(np, "phy-connection-type", NULL); /* We only care about rgmii-id. The rest are autodetected */ if (ctype && !strcmp(ctype, "rgmii-id")) gfar_data.interface = PHY_INTERFACE_MODE_RGMII_ID; else gfar_data.interface = PHY_INTERFACE_MODE_MII; ph = of_get_property(np, "phy-handle", NULL); if (ph == NULL) { u32 *fixed_link; fixed_link = (u32 *)of_get_property(np, "fixed-link", NULL); if (!fixed_link) { ret = -ENODEV; goto unreg; } gfar_data.bus_id = 0; gfar_data.phy_id = fixed_link[0]; } else { phy = of_find_node_by_phandle(*ph); if (phy == NULL) { ret = -ENODEV; goto unreg; } mdio = of_get_parent(phy); id = of_get_property(phy, "reg", NULL); ret = of_address_to_resource(mdio, 0, &res); if (ret) { of_node_put(phy); of_node_put(mdio); goto unreg; } gfar_data.phy_id = *id; gfar_data.bus_id = res.start; of_node_put(phy); of_node_put(mdio); } ret = platform_device_add_data(gfar_dev, &gfar_data, sizeof(struct gianfar_platform_data)); if (ret) goto unreg; } return 0; unreg: platform_device_unregister(gfar_dev); err: return ret; } arch_initcall(gfar_of_init); #ifdef CONFIG_I2C_BOARDINFO #include struct i2c_driver_device { char *of_device; char *i2c_driver; char *i2c_type; }; static struct i2c_driver_device i2c_devices[] __initdata = { {"ricoh,rs5c372a", "rtc-rs5c372", "rs5c372a",}, {"ricoh,rs5c372b", "rtc-rs5c372", "rs5c372b",}, {"ricoh,rv5c386", "rtc-rs5c372", "rv5c386",}, {"ricoh,rv5c387a", "rtc-rs5c372", "rv5c387a",}, {"dallas,ds1307", "rtc-ds1307", "ds1307",}, {"dallas,ds1337", "rtc-ds1307", "ds1337",}, {"dallas,ds1338", "rtc-ds1307", "ds1338",}, {"dallas,ds1339", "rtc-ds1307", "ds1339",}, {"dallas,ds1340", "rtc-ds1307", "ds1340",}, {"stm,m41t00", "rtc-ds1307", "m41t00"}, {"dallas,ds1374", "rtc-ds1374", "rtc-ds1374",}, }; static int __init of_find_i2c_driver(struct device_node *node, struct i2c_board_info *info) { int i; for (i = 0; i < ARRAY_SIZE(i2c_devices); i++) { if (!of_device_is_compatible(node, i2c_devices[i].of_device)) continue; if (strlcpy(info->driver_name, i2c_devices[i].i2c_driver, KOBJ_NAME_LEN) >= KOBJ_NAME_LEN || strlcpy(info->type, i2c_devices[i].i2c_type, I2C_NAME_SIZE) >= I2C_NAME_SIZE) return -ENOMEM; return 0; } return -ENODEV; } static void __init of_register_i2c_devices(struct device_node *adap_node, int bus_num) { struct device_node *node = NULL; while ((node = of_get_next_child(adap_node, node))) { struct i2c_board_info info = {}; const u32 *addr; int len; addr = of_get_property(node, "reg", &len); if (!addr || len < sizeof(int) || *addr > (1 << 10) - 1) { printk(KERN_WARNING "fsl_soc.c: invalid i2c device entry\n"); continue; } info.irq = irq_of_parse_and_map(node, 0); if (info.irq == NO_IRQ) info.irq = -1; if (of_find_i2c_driver(node, &info) < 0) continue; info.addr = *addr; i2c_register_board_info(bus_num, &info, 1); } } static int __init fsl_i2c_of_init(void) { struct device_node *np; unsigned int i = 0; struct platform_device *i2c_dev; int ret; for_each_compatible_node(np, NULL, "fsl-i2c") { struct resource r[2]; struct fsl_i2c_platform_data i2c_data; const unsigned char *flags = NULL; memset(&r, 0, sizeof(r)); memset(&i2c_data, 0, sizeof(i2c_data)); ret = of_address_to_resource(np, 0, &r[0]); if (ret) goto err; of_irq_to_resource(np, 0, &r[1]); i2c_dev = platform_device_register_simple("fsl-i2c", i, r, 2); if (IS_ERR(i2c_dev)) { ret = PTR_ERR(i2c_dev); goto err; } i2c_data.device_flags = 0; flags = of_get_property(np, "dfsrr", NULL); if (flags) i2c_data.device_flags |= FSL_I2C_DEV_SEPARATE_DFSRR; flags = of_get_property(np, "fsl5200-clocking", NULL); if (flags) i2c_data.device_flags |= FSL_I2C_DEV_CLOCK_5200; ret = platform_device_add_data(i2c_dev, &i2c_data, sizeof(struct fsl_i2c_platform_data)); if (ret) goto unreg; of_register_i2c_devices(np, i++); } return 0; unreg: platform_device_unregister(i2c_dev); err: return ret; } arch_initcall(fsl_i2c_of_init); #endif #ifdef CONFIG_PPC_83xx static int __init mpc83xx_wdt_init(void) { struct resource r; struct device_node *soc, *np; struct platform_device *dev; const unsigned int *freq; int ret; np = of_find_compatible_node(NULL, "watchdog", "mpc83xx_wdt"); if (!np) { ret = -ENODEV; goto nodev; } soc = of_find_node_by_type(NULL, "soc"); if (!soc) { ret = -ENODEV; goto nosoc; } freq = of_get_property(soc, "bus-frequency", NULL); if (!freq) { ret = -ENODEV; goto err; } memset(&r, 0, sizeof(r)); ret = of_address_to_resource(np, 0, &r); if (ret) goto err; dev = platform_device_register_simple("mpc83xx_wdt", 0, &r, 1); if (IS_ERR(dev)) { ret = PTR_ERR(dev); goto err; } ret = platform_device_add_data(dev, freq, sizeof(int)); if (ret) goto unreg; of_node_put(soc); of_node_put(np); return 0; unreg: platform_device_unregister(dev); err: of_node_put(soc); nosoc: of_node_put(np); nodev: return ret; } arch_initcall(mpc83xx_wdt_init); #endif static enum fsl_usb2_phy_modes determine_usb_phy(const char *phy_type) { if (!phy_type) return FSL_USB2_PHY_NONE; if (!strcasecmp(phy_type, "ulpi")) return FSL_USB2_PHY_ULPI; if (!strcasecmp(phy_type, "utmi")) return FSL_USB2_PHY_UTMI; if (!strcasecmp(phy_type, "utmi_wide")) return FSL_USB2_PHY_UTMI_WIDE; if (!strcasecmp(phy_type, "serial")) return FSL_USB2_PHY_SERIAL; return FSL_USB2_PHY_NONE; } static int __init fsl_usb_of_init(void) { struct device_node *np; unsigned int i = 0; struct platform_device *usb_dev_mph = NULL, *usb_dev_dr_host = NULL, *usb_dev_dr_client = NULL; int ret; for_each_compatible_node(np, NULL, "fsl-usb2-mph") { struct resource r[2]; struct fsl_usb2_platform_data usb_data; const unsigned char *prop = NULL; memset(&r, 0, sizeof(r)); memset(&usb_data, 0, sizeof(usb_data)); ret = of_address_to_resource(np, 0, &r[0]); if (ret) goto err; of_irq_to_resource(np, 0, &r[1]); usb_dev_mph = platform_device_register_simple("fsl-ehci", i, r, 2); if (IS_ERR(usb_dev_mph)) { ret = PTR_ERR(usb_dev_mph); goto err; } usb_dev_mph->dev.coherent_dma_mask = 0xffffffffUL; usb_dev_mph->dev.dma_mask = &usb_dev_mph->dev.coherent_dma_mask; usb_data.operating_mode = FSL_USB2_MPH_HOST; prop = of_get_property(np, "port0", NULL); if (prop) usb_data.port_enables |= FSL_USB2_PORT0_ENABLED; prop = of_get_property(np, "port1", NULL); if (prop) usb_data.port_enables |= FSL_USB2_PORT1_ENABLED; prop = of_get_property(np, "phy_type", NULL); usb_data.phy_mode = determine_usb_phy(prop); ret = platform_device_add_data(usb_dev_mph, &usb_data, sizeof(struct fsl_usb2_platform_data)); if (ret) goto unreg_mph; i++; } for_each_compatible_node(np, NULL, "fsl-usb2-dr") { struct resource r[2]; struct fsl_usb2_platform_data usb_data; const unsigned char *prop = NULL; memset(&r, 0, sizeof(r)); memset(&usb_data, 0, sizeof(usb_data)); ret = of_address_to_resource(np, 0, &r[0]); if (ret) goto unreg_mph; of_irq_to_resource(np, 0, &r[1]); prop = of_get_property(np, "dr_mode", NULL); if (!prop || !strcmp(prop, "host")) { usb_data.operating_mode = FSL_USB2_DR_HOST; usb_dev_dr_host = platform_device_register_simple( "fsl-ehci", i, r, 2); if (IS_ERR(usb_dev_dr_host)) { ret = PTR_ERR(usb_dev_dr_host); goto err; } } else if (prop && !strcmp(prop, "peripheral")) { usb_data.operating_mode = FSL_USB2_DR_DEVICE; usb_dev_dr_client = platform_device_register_simple( "fsl-usb2-udc", i, r, 2); if (IS_ERR(usb_dev_dr_client)) { ret = PTR_ERR(usb_dev_dr_client); goto err; } } else if (prop && !strcmp(prop, "otg")) { usb_data.operating_mode = FSL_USB2_DR_OTG; usb_dev_dr_host = platform_device_register_simple( "fsl-ehci", i, r, 2); if (IS_ERR(usb_dev_dr_host)) { ret = PTR_ERR(usb_dev_dr_host); goto err; } usb_dev_dr_client = platform_device_register_simple( "fsl-usb2-udc", i, r, 2); if (IS_ERR(usb_dev_dr_client)) { ret = PTR_ERR(usb_dev_dr_client); goto err; } } else { ret = -EINVAL; goto err; } prop = of_get_property(np, "phy_type", NULL); usb_data.phy_mode = determine_usb_phy(prop); if (usb_dev_dr_host) { usb_dev_dr_host->dev.coherent_dma_mask = 0xffffffffUL; usb_dev_dr_host->dev.dma_mask = &usb_dev_dr_host-> dev.coherent_dma_mask; if ((ret = platform_device_add_data(usb_dev_dr_host, &usb_data, sizeof(struct fsl_usb2_platform_data)))) goto unreg_dr; } if (usb_dev_dr_client) { usb_dev_dr_client->dev.coherent_dma_mask = 0xffffffffUL; usb_dev_dr_client->dev.dma_mask = &usb_dev_dr_client-> dev.coherent_dma_mask; if ((ret = platform_device_add_data(usb_dev_dr_client, &usb_data, sizeof(struct fsl_usb2_platform_data)))) goto unreg_dr; } i++; } return 0; unreg_dr: if (usb_dev_dr_host) platform_device_unregister(usb_dev_dr_host); if (usb_dev_dr_client) platform_device_unregister(usb_dev_dr_client); unreg_mph: if (usb_dev_mph) platform_device_unregister(usb_dev_mph); err: return ret; } arch_initcall(fsl_usb_of_init); static int __init of_fsl_spi_probe(char *type, char *compatible, u32 sysclk, struct spi_board_info *board_infos, unsigned int num_board_infos, void (*activate_cs)(u8 cs, u8 polarity), void (*deactivate_cs)(u8 cs, u8 polarity)) { struct device_node *np; unsigned int i = 0; for_each_compatible_node(np, type, compatible) { int ret; unsigned int j; const void *prop; struct resource res[2]; struct platform_device *pdev; struct fsl_spi_platform_data pdata = { .activate_cs = activate_cs, .deactivate_cs = deactivate_cs, }; memset(res, 0, sizeof(res)); pdata.sysclk = sysclk; prop = of_get_property(np, "reg", NULL); if (!prop) goto err; pdata.bus_num = *(u32 *)prop; prop = of_get_property(np, "cell-index", NULL); if (prop) i = *(u32 *)prop; prop = of_get_property(np, "mode", NULL); if (prop && !strcmp(prop, "cpu-qe")) pdata.qe_mode = 1; for (j = 0; j < num_board_infos; j++) { if (board_infos[j].bus_num == pdata.bus_num) pdata.max_chipselect++; } if (!pdata.max_chipselect) continue; ret = of_address_to_resource(np, 0, &res[0]); if (ret) goto err; ret = of_irq_to_resource(np, 0, &res[1]); if (ret == NO_IRQ) goto err; pdev = platform_device_alloc("mpc83xx_spi", i); if (!pdev) goto err; ret = platform_device_add_data(pdev, &pdata, sizeof(pdata)); if (ret) goto unreg; ret = platform_device_add_resources(pdev, res, ARRAY_SIZE(res)); if (ret) goto unreg; ret = platform_device_add(pdev); if (ret) goto unreg; goto next; unreg: platform_device_del(pdev); err: pr_err("%s: registration failed\n", np->full_name); next: i++; } return i; } int __init fsl_spi_init(struct spi_board_info *board_infos, unsigned int num_board_infos, void (*activate_cs)(u8 cs, u8 polarity), void (*deactivate_cs)(u8 cs, u8 polarity)) { u32 sysclk = -1; int ret; #ifdef CONFIG_QUICC_ENGINE /* SPI controller is either clocked from QE or SoC clock */ sysclk = get_brgfreq(); #endif if (sysclk == -1) { struct device_node *np; const u32 *freq; int size; np = of_find_node_by_type(NULL, "soc"); if (!np) return -ENODEV; freq = of_get_property(np, "clock-frequency", &size); if (!freq || size != sizeof(*freq) || *freq == 0) { freq = of_get_property(np, "bus-frequency", &size); if (!freq || size != sizeof(*freq) || *freq == 0) { of_node_put(np); return -ENODEV; } } sysclk = *freq; of_node_put(np); } ret = of_fsl_spi_probe(NULL, "fsl,spi", sysclk, board_infos, num_board_infos, activate_cs, deactivate_cs); if (!ret) of_fsl_spi_probe("spi", "fsl_spi", sysclk, board_infos, num_board_infos, activate_cs, deactivate_cs); return spi_register_board_info(board_infos, num_board_infos); } #if defined(CONFIG_PPC_85xx) || defined(CONFIG_PPC_86xx) static __be32 __iomem *rstcr; static int __init setup_rstcr(void) { struct device_node *np; np = of_find_node_by_name(NULL, "global-utilities"); if ((np && of_get_property(np, "fsl,has-rstcr", NULL))) { const u32 *prop = of_get_property(np, "reg", NULL); if (prop) { /* map reset control register * 0xE00B0 is offset of reset control register */ rstcr = ioremap(get_immrbase() + *prop + 0xB0, 0xff); if (!rstcr) printk (KERN_EMERG "Error: reset control " "register not mapped!\n"); } } else printk (KERN_INFO "rstcr compatible register does not exist!\n"); if (np) of_node_put(np); return 0; } arch_initcall(setup_rstcr); void fsl_rstcr_restart(char *cmd) { local_irq_disable(); if (rstcr) /* set reset control register */ out_be32(rstcr, 0x2); /* HRESET_REQ */ while (1) ; } #endif