// SPDX-License-Identifier: GPL-2.0-or-later /* * IIO driver for Lite-On LTR390 ALS and UV sensor * (7-bit I2C slave address 0x53) * * Based on the work of: * Shreeya Patel and Shi Zhigang (LTRF216 Driver) * * Copyright (C) 2023 Anshul Dalal * * Datasheet: * https://optoelectronics.liteon.com/upload/download/DS86-2015-0004/LTR-390UV_Final_%20DS_V1%201.pdf * * TODO: * - Support for configurable gain and resolution * - Sensor suspend/resume support * - Add support for reading the ALS * - Interrupt support */ #include #include #include #include #include #include #include #include #define LTR390_MAIN_CTRL 0x00 #define LTR390_ALS_UVS_MEAS_RATE 0x04 #define LTR390_ALS_UVS_GAIN 0x05 #define LTR390_PART_ID 0x06 #define LTR390_ALS_DATA 0x0D #define LTR390_UVS_DATA 0x10 #define LTR390_INT_CFG 0x19 #define LTR390_PART_NUMBER_ID 0xb #define LTR390_ALS_UVS_GAIN_MASK 0x07 #define LTR390_ALS_UVS_INT_TIME_MASK 0x70 #define LTR390_ALS_UVS_INT_TIME(x) FIELD_PREP(LTR390_ALS_UVS_INT_TIME_MASK, (x)) #define LTR390_SW_RESET BIT(4) #define LTR390_UVS_MODE BIT(3) #define LTR390_SENSOR_ENABLE BIT(1) #define LTR390_FRACTIONAL_PRECISION 100 /* * At 20-bit resolution (integration time: 400ms) and 18x gain, 2300 counts of * the sensor are equal to 1 UV Index [Datasheet Page#8]. * * For the default resolution of 18-bit (integration time: 100ms) and default * gain of 3x, the counts/uvi are calculated as follows: * 2300 / ((3/18) * (100/400)) = 95.83 */ #define LTR390_COUNTS_PER_UVI 96 /* * Window Factor is needed when the device is under Window glass with coated * tinted ink. This is to compensate for the light loss due to the lower * transmission rate of the window glass and helps * in calculating lux. */ #define LTR390_WINDOW_FACTOR 1 enum ltr390_mode { LTR390_SET_ALS_MODE, LTR390_SET_UVS_MODE, }; struct ltr390_data { struct regmap *regmap; struct i2c_client *client; /* Protects device from simulataneous reads */ struct mutex lock; enum ltr390_mode mode; int gain; int int_time_us; }; static const struct regmap_config ltr390_regmap_config = { .name = "ltr390", .reg_bits = 8, .reg_stride = 1, .val_bits = 8, }; static int ltr390_register_read(struct ltr390_data *data, u8 register_address) { struct device *dev = &data->client->dev; int ret; u8 recieve_buffer[3]; ret = regmap_bulk_read(data->regmap, register_address, recieve_buffer, sizeof(recieve_buffer)); if (ret) { dev_err(dev, "failed to read measurement data"); return ret; } return get_unaligned_le24(recieve_buffer); } static int ltr390_set_mode(struct ltr390_data *data, enum ltr390_mode mode) { int ret; if (data->mode == mode) return 0; switch (mode) { case LTR390_SET_ALS_MODE: ret = regmap_clear_bits(data->regmap, LTR390_MAIN_CTRL, LTR390_UVS_MODE); break; case LTR390_SET_UVS_MODE: ret = regmap_set_bits(data->regmap, LTR390_MAIN_CTRL, LTR390_UVS_MODE); break; } if (ret) return ret; data->mode = mode; return 0; } static int ltr390_counts_per_uvi(struct ltr390_data *data) { const int orig_gain = 18; const int orig_int_time = 400; return DIV_ROUND_CLOSEST(23 * data->gain * data->int_time_us, 10 * orig_gain * orig_int_time); } static int ltr390_read_raw(struct iio_dev *iio_device, struct iio_chan_spec const *chan, int *val, int *val2, long mask) { int ret; struct ltr390_data *data = iio_priv(iio_device); guard(mutex)(&data->lock); switch (mask) { case IIO_CHAN_INFO_RAW: switch (chan->type) { case IIO_UVINDEX: ret = ltr390_set_mode(data, LTR390_SET_UVS_MODE); if (ret < 0) return ret; ret = ltr390_register_read(data, LTR390_UVS_DATA); if (ret < 0) return ret; break; case IIO_LIGHT: ret = ltr390_set_mode(data, LTR390_SET_ALS_MODE); if (ret < 0) return ret; ret = ltr390_register_read(data, LTR390_ALS_DATA); if (ret < 0) return ret; break; default: return -EINVAL; } *val = ret; return IIO_VAL_INT; case IIO_CHAN_INFO_SCALE: switch (chan->type) { case IIO_UVINDEX: *val = LTR390_WINDOW_FACTOR * LTR390_FRACTIONAL_PRECISION; *val2 = ltr390_counts_per_uvi(data); return IIO_VAL_FRACTIONAL; case IIO_LIGHT: *val = LTR390_WINDOW_FACTOR * 6 * 100; *val2 = data->gain * data->int_time_us; return IIO_VAL_FRACTIONAL; default: return -EINVAL; } case IIO_CHAN_INFO_INT_TIME: *val = data->int_time_us; return IIO_VAL_INT; default: return -EINVAL; } } /* integration time in us */ static const int ltr390_int_time_map_us[] = { 400000, 200000, 100000, 50000, 25000, 12500 }; static const int ltr390_gain_map[] = { 1, 3, 6, 9, 18 }; static const struct iio_chan_spec ltr390_channels[] = { /* UV sensor */ { .type = IIO_UVINDEX, .scan_index = 0, .info_mask_separate = BIT(IIO_CHAN_INFO_RAW) | BIT(IIO_CHAN_INFO_SCALE), .info_mask_shared_by_all = BIT(IIO_CHAN_INFO_INT_TIME), .info_mask_shared_by_all_available = BIT(IIO_CHAN_INFO_INT_TIME) | BIT(IIO_CHAN_INFO_SCALE) }, /* ALS sensor */ { .type = IIO_LIGHT, .scan_index = 1, .info_mask_separate = BIT(IIO_CHAN_INFO_RAW) | BIT(IIO_CHAN_INFO_SCALE), .info_mask_shared_by_all = BIT(IIO_CHAN_INFO_INT_TIME), .info_mask_shared_by_all_available = BIT(IIO_CHAN_INFO_INT_TIME) | BIT(IIO_CHAN_INFO_SCALE) }, }; static int ltr390_set_gain(struct ltr390_data *data, int val) { int ret, idx; for (idx = 0; idx < ARRAY_SIZE(ltr390_gain_map); idx++) { if (ltr390_gain_map[idx] != val) continue; guard(mutex)(&data->lock); ret = regmap_update_bits(data->regmap, LTR390_ALS_UVS_GAIN, LTR390_ALS_UVS_GAIN_MASK, idx); if (ret) return ret; data->gain = ltr390_gain_map[idx]; return 0; } return -EINVAL; } static int ltr390_set_int_time(struct ltr390_data *data, int val) { int ret, idx; for (idx = 0; idx < ARRAY_SIZE(ltr390_int_time_map_us); idx++) { if (ltr390_int_time_map_us[idx] != val) continue; guard(mutex)(&data->lock); ret = regmap_update_bits(data->regmap, LTR390_ALS_UVS_MEAS_RATE, LTR390_ALS_UVS_INT_TIME_MASK, LTR390_ALS_UVS_INT_TIME(idx)); if (ret) return ret; data->int_time_us = ltr390_int_time_map_us[idx]; return 0; } return -EINVAL; } static int ltr390_read_avail(struct iio_dev *indio_dev, struct iio_chan_spec const *chan, const int **vals, int *type, int *length, long mask) { switch (mask) { case IIO_CHAN_INFO_SCALE: *length = ARRAY_SIZE(ltr390_gain_map); *type = IIO_VAL_INT; *vals = ltr390_gain_map; return IIO_AVAIL_LIST; case IIO_CHAN_INFO_INT_TIME: *length = ARRAY_SIZE(ltr390_int_time_map_us); *type = IIO_VAL_INT; *vals = ltr390_int_time_map_us; return IIO_AVAIL_LIST; default: return -EINVAL; } } static int ltr390_write_raw(struct iio_dev *indio_dev, struct iio_chan_spec const *chan, int val, int val2, long mask) { struct ltr390_data *data = iio_priv(indio_dev); switch (mask) { case IIO_CHAN_INFO_SCALE: if (val2 != 0) return -EINVAL; return ltr390_set_gain(data, val); case IIO_CHAN_INFO_INT_TIME: if (val2 != 0) return -EINVAL; return ltr390_set_int_time(data, val); default: return -EINVAL; } } static const struct iio_info ltr390_info = { .read_raw = ltr390_read_raw, .write_raw = ltr390_write_raw, .read_avail = ltr390_read_avail, }; static int ltr390_probe(struct i2c_client *client) { struct ltr390_data *data; struct iio_dev *indio_dev; struct device *dev; int ret, part_number; dev = &client->dev; indio_dev = devm_iio_device_alloc(dev, sizeof(*data)); if (!indio_dev) return -ENOMEM; data = iio_priv(indio_dev); data->regmap = devm_regmap_init_i2c(client, <r390_regmap_config); if (IS_ERR(data->regmap)) return dev_err_probe(dev, PTR_ERR(data->regmap), "regmap initialization failed\n"); data->client = client; /* default value of integration time from pg: 15 of the datasheet */ data->int_time_us = 100000; /* default value of gain from pg: 16 of the datasheet */ data->gain = 3; /* default mode for ltr390 is ALS mode */ data->mode = LTR390_SET_ALS_MODE; mutex_init(&data->lock); indio_dev->info = <r390_info; indio_dev->channels = ltr390_channels; indio_dev->num_channels = ARRAY_SIZE(ltr390_channels); indio_dev->name = "ltr390"; ret = regmap_read(data->regmap, LTR390_PART_ID, &part_number); if (ret) return dev_err_probe(dev, ret, "failed to get sensor's part id\n"); /* Lower 4 bits of `part_number` change with hardware revisions */ if (part_number >> 4 != LTR390_PART_NUMBER_ID) dev_info(dev, "received invalid product id: 0x%x", part_number); dev_dbg(dev, "LTR390, product id: 0x%x\n", part_number); /* reset sensor, chip fails to respond to this, so ignore any errors */ regmap_set_bits(data->regmap, LTR390_MAIN_CTRL, LTR390_SW_RESET); /* Wait for the registers to reset before proceeding */ usleep_range(1000, 2000); ret = regmap_set_bits(data->regmap, LTR390_MAIN_CTRL, LTR390_SENSOR_ENABLE); if (ret) return dev_err_probe(dev, ret, "failed to enable the sensor\n"); return devm_iio_device_register(dev, indio_dev); } static const struct i2c_device_id ltr390_id[] = { { "ltr390" }, { /* Sentinel */ } }; MODULE_DEVICE_TABLE(i2c, ltr390_id); static const struct of_device_id ltr390_of_table[] = { { .compatible = "liteon,ltr390" }, { /* Sentinel */ } }; MODULE_DEVICE_TABLE(of, ltr390_of_table); static struct i2c_driver ltr390_driver = { .driver = { .name = "ltr390", .of_match_table = ltr390_of_table, }, .probe = ltr390_probe, .id_table = ltr390_id, }; module_i2c_driver(ltr390_driver); MODULE_AUTHOR("Anshul Dalal "); MODULE_DESCRIPTION("Lite-On LTR390 ALS and UV sensor Driver"); MODULE_LICENSE("GPL");