/* * This file is provided under a dual BSD/GPLv2 license. When using or * redistributing this file, you may do so under either license. * * GPL LICENSE SUMMARY * * Copyright(c) 2008 - 2011 Intel Corporation. All rights reserved. * * This program is free software; you can redistribute it and/or modify * it under the terms of version 2 of the GNU General Public License as * published by the Free Software Foundation. * * This program is distributed in the hope that it will be useful, but * WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA. * The full GNU General Public License is included in this distribution * in the file called LICENSE.GPL. * * BSD LICENSE * * Copyright(c) 2008 - 2011 Intel Corporation. All rights reserved. * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * * * Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * * Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in * the documentation and/or other materials provided with the * distribution. * * Neither the name of Intel Corporation nor the names of its * contributors may be used to endorse or promote products derived * from this software without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. */ #include "isci.h" #include "host.h" #include "phy.h" #include "scu_event_codes.h" #include "probe_roms.h" #undef C #define C(a) (#a) static const char *phy_state_name(enum sci_phy_states state) { static const char * const strings[] = PHY_STATES; return strings[state]; } #undef C /* Maximum arbitration wait time in micro-seconds */ #define SCIC_SDS_PHY_MAX_ARBITRATION_WAIT_TIME (700) enum sas_linkrate sci_phy_linkrate(struct isci_phy *iphy) { return iphy->max_negotiated_speed; } static struct isci_host *phy_to_host(struct isci_phy *iphy) { struct isci_phy *table = iphy - iphy->phy_index; struct isci_host *ihost = container_of(table, typeof(*ihost), phys[0]); return ihost; } static struct device *sciphy_to_dev(struct isci_phy *iphy) { return &phy_to_host(iphy)->pdev->dev; } static enum sci_status sci_phy_transport_layer_initialization(struct isci_phy *iphy, struct scu_transport_layer_registers __iomem *reg) { u32 tl_control; iphy->transport_layer_registers = reg; writel(SCIC_SDS_REMOTE_NODE_CONTEXT_INVALID_INDEX, &iphy->transport_layer_registers->stp_rni); /* * Hardware team recommends that we enable the STP prefetch for all * transports */ tl_control = readl(&iphy->transport_layer_registers->control); tl_control |= SCU_TLCR_GEN_BIT(STP_WRITE_DATA_PREFETCH); writel(tl_control, &iphy->transport_layer_registers->control); return SCI_SUCCESS; } static enum sci_status sci_phy_link_layer_initialization(struct isci_phy *iphy, struct scu_link_layer_registers __iomem *llr) { struct isci_host *ihost = iphy->owning_port->owning_controller; struct sci_phy_user_params *phy_user; struct sci_phy_oem_params *phy_oem; int phy_idx = iphy->phy_index; struct sci_phy_cap phy_cap; u32 phy_configuration; u32 parity_check = 0; u32 parity_count = 0; u32 llctl, link_rate; u32 clksm_value = 0; u32 sp_timeouts = 0; phy_user = &ihost->user_parameters.phys[phy_idx]; phy_oem = &ihost->oem_parameters.phys[phy_idx]; iphy->link_layer_registers = llr; /* Set our IDENTIFY frame data */ #define SCI_END_DEVICE 0x01 writel(SCU_SAS_TIID_GEN_BIT(SMP_INITIATOR) | SCU_SAS_TIID_GEN_BIT(SSP_INITIATOR) | SCU_SAS_TIID_GEN_BIT(STP_INITIATOR) | SCU_SAS_TIID_GEN_BIT(DA_SATA_HOST) | SCU_SAS_TIID_GEN_VAL(DEVICE_TYPE, SCI_END_DEVICE), &llr->transmit_identification); /* Write the device SAS Address */ writel(0xFEDCBA98, &llr->sas_device_name_high); writel(phy_idx, &llr->sas_device_name_low); /* Write the source SAS Address */ writel(phy_oem->sas_address.high, &llr->source_sas_address_high); writel(phy_oem->sas_address.low, &llr->source_sas_address_low); /* Clear and Set the PHY Identifier */ writel(0, &llr->identify_frame_phy_id); writel(SCU_SAS_TIPID_GEN_VALUE(ID, phy_idx), &llr->identify_frame_phy_id); /* Change the initial state of the phy configuration register */ phy_configuration = readl(&llr->phy_configuration); /* Hold OOB state machine in reset */ phy_configuration |= SCU_SAS_PCFG_GEN_BIT(OOB_RESET); writel(phy_configuration, &llr->phy_configuration); /* Configure the SNW capabilities */ phy_cap.all = 0; phy_cap.start = 1; phy_cap.gen3_no_ssc = 1; phy_cap.gen2_no_ssc = 1; phy_cap.gen1_no_ssc = 1; if (ihost->oem_parameters.controller.do_enable_ssc) { struct scu_afe_registers __iomem *afe = &ihost->scu_registers->afe; struct scu_afe_transceiver *xcvr = &afe->scu_afe_xcvr[phy_idx]; struct isci_pci_info *pci_info = to_pci_info(ihost->pdev); bool en_sas = false; bool en_sata = false; u32 sas_type = 0; u32 sata_spread = 0x2; u32 sas_spread = 0x2; phy_cap.gen3_ssc = 1; phy_cap.gen2_ssc = 1; phy_cap.gen1_ssc = 1; if (pci_info->orom->hdr.version < ISCI_ROM_VER_1_1) en_sas = en_sata = true; else { sata_spread = ihost->oem_parameters.controller.ssc_sata_tx_spread_level; sas_spread = ihost->oem_parameters.controller.ssc_sas_tx_spread_level; if (sata_spread) en_sata = true; if (sas_spread) { en_sas = true; sas_type = ihost->oem_parameters.controller.ssc_sas_tx_type; } } if (en_sas) { u32 reg; reg = readl(&xcvr->afe_xcvr_control0); reg |= (0x00100000 | (sas_type << 19)); writel(reg, &xcvr->afe_xcvr_control0); reg = readl(&xcvr->afe_tx_ssc_control); reg |= sas_spread << 8; writel(reg, &xcvr->afe_tx_ssc_control); } if (en_sata) { u32 reg; reg = readl(&xcvr->afe_tx_ssc_control); reg |= sata_spread; writel(reg, &xcvr->afe_tx_ssc_control); reg = readl(&llr->stp_control); reg |= 1 << 12; writel(reg, &llr->stp_control); } } /* The SAS specification indicates that the phy_capabilities that * are transmitted shall have an even parity. Calculate the parity. */ parity_check = phy_cap.all; while (parity_check != 0) { if (parity_check & 0x1) parity_count++; parity_check >>= 1; } /* If parity indicates there are an odd number of bits set, then * set the parity bit to 1 in the phy capabilities. */ if ((parity_count % 2) != 0) phy_cap.parity = 1; writel(phy_cap.all, &llr->phy_capabilities); /* Set the enable spinup period but disable the ability to send * notify enable spinup */ writel(SCU_ENSPINUP_GEN_VAL(COUNT, phy_user->notify_enable_spin_up_insertion_frequency), &llr->notify_enable_spinup_control); /* Write the ALIGN Insertion Ferequency for connected phy and * inpendent of connected state */ clksm_value = SCU_ALIGN_INSERTION_FREQUENCY_GEN_VAL(CONNECTED, phy_user->in_connection_align_insertion_frequency); clksm_value |= SCU_ALIGN_INSERTION_FREQUENCY_GEN_VAL(GENERAL, phy_user->align_insertion_frequency); writel(clksm_value, &llr->clock_skew_management); if (is_c0(ihost->pdev) || is_c1(ihost->pdev)) { writel(0x04210400, &llr->afe_lookup_table_control); writel(0x020A7C05, &llr->sas_primitive_timeout); } else writel(0x02108421, &llr->afe_lookup_table_control); llctl = SCU_SAS_LLCTL_GEN_VAL(NO_OUTBOUND_TASK_TIMEOUT, (u8)ihost->user_parameters.no_outbound_task_timeout); switch (phy_user->max_speed_generation) { case SCIC_SDS_PARM_GEN3_SPEED: link_rate = SCU_SAS_LINK_LAYER_CONTROL_MAX_LINK_RATE_GEN3; break; case SCIC_SDS_PARM_GEN2_SPEED: link_rate = SCU_SAS_LINK_LAYER_CONTROL_MAX_LINK_RATE_GEN2; break; default: link_rate = SCU_SAS_LINK_LAYER_CONTROL_MAX_LINK_RATE_GEN1; break; } llctl |= SCU_SAS_LLCTL_GEN_VAL(MAX_LINK_RATE, link_rate); writel(llctl, &llr->link_layer_control); sp_timeouts = readl(&llr->sas_phy_timeouts); /* Clear the default 0x36 (54us) RATE_CHANGE timeout value. */ sp_timeouts &= ~SCU_SAS_PHYTOV_GEN_VAL(RATE_CHANGE, 0xFF); /* Set RATE_CHANGE timeout value to 0x3B (59us). This ensures SCU can * lock with 3Gb drive when SCU max rate is set to 1.5Gb. */ sp_timeouts |= SCU_SAS_PHYTOV_GEN_VAL(RATE_CHANGE, 0x3B); writel(sp_timeouts, &llr->sas_phy_timeouts); if (is_a2(ihost->pdev)) { /* Program the max ARB time for the PHY to 700us so we * inter-operate with the PMC expander which shuts down * PHYs if the expander PHY generates too many breaks. * This time value will guarantee that the initiator PHY * will generate the break. */ writel(SCIC_SDS_PHY_MAX_ARBITRATION_WAIT_TIME, &llr->maximum_arbitration_wait_timer_timeout); } /* Disable link layer hang detection, rely on the OS timeout for * I/O timeouts. */ writel(0, &llr->link_layer_hang_detection_timeout); /* We can exit the initial state to the stopped state */ sci_change_state(&iphy->sm, SCI_PHY_STOPPED); return SCI_SUCCESS; } static void phy_sata_timeout(unsigned long data) { struct sci_timer *tmr = (struct sci_timer *)data; struct isci_phy *iphy = container_of(tmr, typeof(*iphy), sata_timer); struct isci_host *ihost = iphy->owning_port->owning_controller; unsigned long flags; spin_lock_irqsave(&ihost->scic_lock, flags); if (tmr->cancel) goto done; dev_dbg(sciphy_to_dev(iphy), "%s: SCIC SDS Phy 0x%p did not receive signature fis before " "timeout.\n", __func__, iphy); sci_change_state(&iphy->sm, SCI_PHY_STARTING); done: spin_unlock_irqrestore(&ihost->scic_lock, flags); } /** * This method returns the port currently containing this phy. If the phy is * currently contained by the dummy port, then the phy is considered to not * be part of a port. * @sci_phy: This parameter specifies the phy for which to retrieve the * containing port. * * This method returns a handle to a port that contains the supplied phy. * NULL This value is returned if the phy is not part of a real * port (i.e. it's contained in the dummy port). !NULL All other * values indicate a handle/pointer to the port containing the phy. */ struct isci_port *phy_get_non_dummy_port(struct isci_phy *iphy) { struct isci_port *iport = iphy->owning_port; if (iport->physical_port_index == SCIC_SDS_DUMMY_PORT) return NULL; return iphy->owning_port; } /** * This method will assign a port to the phy object. * @out]: iphy This parameter specifies the phy for which to assign a port * object. * * */ void sci_phy_set_port( struct isci_phy *iphy, struct isci_port *iport) { iphy->owning_port = iport; if (iphy->bcn_received_while_port_unassigned) { iphy->bcn_received_while_port_unassigned = false; sci_port_broadcast_change_received(iphy->owning_port, iphy); } } enum sci_status sci_phy_initialize(struct isci_phy *iphy, struct scu_transport_layer_registers __iomem *tl, struct scu_link_layer_registers __iomem *ll) { /* Perfrom the initialization of the TL hardware */ sci_phy_transport_layer_initialization(iphy, tl); /* Perofrm the initialization of the PE hardware */ sci_phy_link_layer_initialization(iphy, ll); /* There is nothing that needs to be done in this state just * transition to the stopped state */ sci_change_state(&iphy->sm, SCI_PHY_STOPPED); return SCI_SUCCESS; } /** * This method assigns the direct attached device ID for this phy. * * @iphy The phy for which the direct attached device id is to * be assigned. * @device_id The direct attached device ID to assign to the phy. * This will either be the RNi for the device or an invalid RNi if there * is no current device assigned to the phy. */ void sci_phy_setup_transport(struct isci_phy *iphy, u32 device_id) { u32 tl_control; writel(device_id, &iphy->transport_layer_registers->stp_rni); /* * The read should guarantee that the first write gets posted * before the next write */ tl_control = readl(&iphy->transport_layer_registers->control); tl_control |= SCU_TLCR_GEN_BIT(CLEAR_TCI_NCQ_MAPPING_TABLE); writel(tl_control, &iphy->transport_layer_registers->control); } static void sci_phy_suspend(struct isci_phy *iphy) { u32 scu_sas_pcfg_value; scu_sas_pcfg_value = readl(&iphy->link_layer_registers->phy_configuration); scu_sas_pcfg_value |= SCU_SAS_PCFG_GEN_BIT(SUSPEND_PROTOCOL_ENGINE); writel(scu_sas_pcfg_value, &iphy->link_layer_registers->phy_configuration); sci_phy_setup_transport(iphy, SCIC_SDS_REMOTE_NODE_CONTEXT_INVALID_INDEX); } void sci_phy_resume(struct isci_phy *iphy) { u32 scu_sas_pcfg_value; scu_sas_pcfg_value = readl(&iphy->link_layer_registers->phy_configuration); scu_sas_pcfg_value &= ~SCU_SAS_PCFG_GEN_BIT(SUSPEND_PROTOCOL_ENGINE); writel(scu_sas_pcfg_value, &iphy->link_layer_registers->phy_configuration); } void sci_phy_get_sas_address(struct isci_phy *iphy, struct sci_sas_address *sas) { sas->high = readl(&iphy->link_layer_registers->source_sas_address_high); sas->low = readl(&iphy->link_layer_registers->source_sas_address_low); } void sci_phy_get_attached_sas_address(struct isci_phy *iphy, struct sci_sas_address *sas) { struct sas_identify_frame *iaf; iaf = &iphy->frame_rcvd.iaf; memcpy(sas, iaf->sas_addr, SAS_ADDR_SIZE); } void sci_phy_get_protocols(struct isci_phy *iphy, struct sci_phy_proto *proto) { proto->all = readl(&iphy->link_layer_registers->transmit_identification); } enum sci_status sci_phy_start(struct isci_phy *iphy) { enum sci_phy_states state = iphy->sm.current_state_id; if (state != SCI_PHY_STOPPED) { dev_dbg(sciphy_to_dev(iphy), "%s: in wrong state: %s\n", __func__, phy_state_name(state)); return SCI_FAILURE_INVALID_STATE; } sci_change_state(&iphy->sm, SCI_PHY_STARTING); return SCI_SUCCESS; } enum sci_status sci_phy_stop(struct isci_phy *iphy) { enum sci_phy_states state = iphy->sm.current_state_id; switch (state) { case SCI_PHY_SUB_INITIAL: case SCI_PHY_SUB_AWAIT_OSSP_EN: case SCI_PHY_SUB_AWAIT_SAS_SPEED_EN: case SCI_PHY_SUB_AWAIT_SAS_POWER: case SCI_PHY_SUB_AWAIT_SATA_POWER: case SCI_PHY_SUB_AWAIT_SATA_PHY_EN: case SCI_PHY_SUB_AWAIT_SATA_SPEED_EN: case SCI_PHY_SUB_AWAIT_SIG_FIS_UF: case SCI_PHY_SUB_FINAL: case SCI_PHY_READY: break; default: dev_dbg(sciphy_to_dev(iphy), "%s: in wrong state: %s\n", __func__, phy_state_name(state)); return SCI_FAILURE_INVALID_STATE; } sci_change_state(&iphy->sm, SCI_PHY_STOPPED); return SCI_SUCCESS; } enum sci_status sci_phy_reset(struct isci_phy *iphy) { enum sci_phy_states state = iphy->sm.current_state_id; if (state != SCI_PHY_READY) { dev_dbg(sciphy_to_dev(iphy), "%s: in wrong state: %s\n", __func__, phy_state_name(state)); return SCI_FAILURE_INVALID_STATE; } sci_change_state(&iphy->sm, SCI_PHY_RESETTING); return SCI_SUCCESS; } enum sci_status sci_phy_consume_power_handler(struct isci_phy *iphy) { enum sci_phy_states state = iphy->sm.current_state_id; switch (state) { case SCI_PHY_SUB_AWAIT_SAS_POWER: { u32 enable_spinup; enable_spinup = readl(&iphy->link_layer_registers->notify_enable_spinup_control); enable_spinup |= SCU_ENSPINUP_GEN_BIT(ENABLE); writel(enable_spinup, &iphy->link_layer_registers->notify_enable_spinup_control); /* Change state to the final state this substate machine has run to completion */ sci_change_state(&iphy->sm, SCI_PHY_SUB_FINAL); return SCI_SUCCESS; } case SCI_PHY_SUB_AWAIT_SATA_POWER: { u32 scu_sas_pcfg_value; /* Release the spinup hold state and reset the OOB state machine */ scu_sas_pcfg_value = readl(&iphy->link_layer_registers->phy_configuration); scu_sas_pcfg_value &= ~(SCU_SAS_PCFG_GEN_BIT(SATA_SPINUP_HOLD) | SCU_SAS_PCFG_GEN_BIT(OOB_ENABLE)); scu_sas_pcfg_value |= SCU_SAS_PCFG_GEN_BIT(OOB_RESET); writel(scu_sas_pcfg_value, &iphy->link_layer_registers->phy_configuration); /* Now restart the OOB operation */ scu_sas_pcfg_value &= ~SCU_SAS_PCFG_GEN_BIT(OOB_RESET); scu_sas_pcfg_value |= SCU_SAS_PCFG_GEN_BIT(OOB_ENABLE); writel(scu_sas_pcfg_value, &iphy->link_layer_registers->phy_configuration); /* Change state to the final state this substate machine has run to completion */ sci_change_state(&iphy->sm, SCI_PHY_SUB_AWAIT_SATA_PHY_EN); return SCI_SUCCESS; } default: dev_dbg(sciphy_to_dev(iphy), "%s: in wrong state: %s\n", __func__, phy_state_name(state)); return SCI_FAILURE_INVALID_STATE; } } static void sci_phy_start_sas_link_training(struct isci_phy *iphy) { /* continue the link training for the phy as if it were a SAS PHY * instead of a SATA PHY. This is done because the completion queue had a SAS * PHY DETECTED event when the state machine was expecting a SATA PHY event. */ u32 phy_control; phy_control = readl(&iphy->link_layer_registers->phy_configuration); phy_control |= SCU_SAS_PCFG_GEN_BIT(SATA_SPINUP_HOLD); writel(phy_control, &iphy->link_layer_registers->phy_configuration); sci_change_state(&iphy->sm, SCI_PHY_SUB_AWAIT_SAS_SPEED_EN); iphy->protocol = SAS_PROTOCOL_SSP; } static void sci_phy_start_sata_link_training(struct isci_phy *iphy) { /* This method continues the link training for the phy as if it were a SATA PHY * instead of a SAS PHY. This is done because the completion queue had a SATA * SPINUP HOLD event when the state machine was expecting a SAS PHY event. none */ sci_change_state(&iphy->sm, SCI_PHY_SUB_AWAIT_SATA_POWER); iphy->protocol = SAS_PROTOCOL_SATA; } /** * sci_phy_complete_link_training - perform processing common to * all protocols upon completion of link training. * @sci_phy: This parameter specifies the phy object for which link training * has completed. * @max_link_rate: This parameter specifies the maximum link rate to be * associated with this phy. * @next_state: This parameter specifies the next state for the phy's starting * sub-state machine. * */ static void sci_phy_complete_link_training(struct isci_phy *iphy, enum sas_linkrate max_link_rate, u32 next_state) { iphy->max_negotiated_speed = max_link_rate; sci_change_state(&iphy->sm, next_state); } static const char *phy_event_name(u32 event_code) { switch (scu_get_event_code(event_code)) { case SCU_EVENT_PORT_SELECTOR_DETECTED: return "port selector"; case SCU_EVENT_SENT_PORT_SELECTION: return "port selection"; case SCU_EVENT_HARD_RESET_TRANSMITTED: return "tx hard reset"; case SCU_EVENT_HARD_RESET_RECEIVED: return "rx hard reset"; case SCU_EVENT_RECEIVED_IDENTIFY_TIMEOUT: return "identify timeout"; case SCU_EVENT_LINK_FAILURE: return "link fail"; case SCU_EVENT_SATA_SPINUP_HOLD: return "sata spinup hold"; case SCU_EVENT_SAS_15_SSC: case SCU_EVENT_SAS_15: return "sas 1.5"; case SCU_EVENT_SAS_30_SSC: case SCU_EVENT_SAS_30: return "sas 3.0"; case SCU_EVENT_SAS_60_SSC: case SCU_EVENT_SAS_60: return "sas 6.0"; case SCU_EVENT_SATA_15_SSC: case SCU_EVENT_SATA_15: return "sata 1.5"; case SCU_EVENT_SATA_30_SSC: case SCU_EVENT_SATA_30: return "sata 3.0"; case SCU_EVENT_SATA_60_SSC: case SCU_EVENT_SATA_60: return "sata 6.0"; case SCU_EVENT_SAS_PHY_DETECTED: return "sas detect"; case SCU_EVENT_SATA_PHY_DETECTED: return "sata detect"; default: return "unknown"; } } #define phy_event_dbg(iphy, state, code) \ dev_dbg(sciphy_to_dev(iphy), "phy-%d:%d: %s event: %s (%x)\n", \ phy_to_host(iphy)->id, iphy->phy_index, \ phy_state_name(state), phy_event_name(code), code) #define phy_event_warn(iphy, state, code) \ dev_warn(sciphy_to_dev(iphy), "phy-%d:%d: %s event: %s (%x)\n", \ phy_to_host(iphy)->id, iphy->phy_index, \ phy_state_name(state), phy_event_name(code), code) void scu_link_layer_set_txcomsas_timeout(struct isci_phy *iphy, u32 timeout) { u32 val; /* Extend timeout */ val = readl(&iphy->link_layer_registers->transmit_comsas_signal); val &= ~SCU_SAS_LLTXCOMSAS_GEN_VAL(NEGTIME, SCU_SAS_LINK_LAYER_TXCOMSAS_NEGTIME_MASK); val |= SCU_SAS_LLTXCOMSAS_GEN_VAL(NEGTIME, timeout); writel(val, &iphy->link_layer_registers->transmit_comsas_signal); } enum sci_status sci_phy_event_handler(struct isci_phy *iphy, u32 event_code) { enum sci_phy_states state = iphy->sm.current_state_id; switch (state) { case SCI_PHY_SUB_AWAIT_OSSP_EN: switch (scu_get_event_code(event_code)) { case SCU_EVENT_SAS_PHY_DETECTED: sci_phy_start_sas_link_training(iphy); iphy->is_in_link_training = true; break; case SCU_EVENT_SATA_SPINUP_HOLD: sci_phy_start_sata_link_training(iphy); iphy->is_in_link_training = true; break; case SCU_EVENT_RECEIVED_IDENTIFY_TIMEOUT: /* Extend timeout value */ scu_link_layer_set_txcomsas_timeout(iphy, SCU_SAS_LINK_LAYER_TXCOMSAS_NEGTIME_EXTENDED); /* Start the oob/sn state machine over again */ sci_change_state(&iphy->sm, SCI_PHY_STARTING); break; default: phy_event_dbg(iphy, state, event_code); return SCI_FAILURE; } return SCI_SUCCESS; case SCI_PHY_SUB_AWAIT_SAS_SPEED_EN: switch (scu_get_event_code(event_code)) { case SCU_EVENT_SAS_PHY_DETECTED: /* * Why is this being reported again by the controller? * We would re-enter this state so just stay here */ break; case SCU_EVENT_SAS_15: case SCU_EVENT_SAS_15_SSC: sci_phy_complete_link_training(iphy, SAS_LINK_RATE_1_5_GBPS, SCI_PHY_SUB_AWAIT_IAF_UF); break; case SCU_EVENT_SAS_30: case SCU_EVENT_SAS_30_SSC: sci_phy_complete_link_training(iphy, SAS_LINK_RATE_3_0_GBPS, SCI_PHY_SUB_AWAIT_IAF_UF); break; case SCU_EVENT_SAS_60: case SCU_EVENT_SAS_60_SSC: sci_phy_complete_link_training(iphy, SAS_LINK_RATE_6_0_GBPS, SCI_PHY_SUB_AWAIT_IAF_UF); break; case SCU_EVENT_SATA_SPINUP_HOLD: /* * We were doing SAS PHY link training and received a SATA PHY event * continue OOB/SN as if this were a SATA PHY */ sci_phy_start_sata_link_training(iphy); break; case SCU_EVENT_LINK_FAILURE: /* Change the timeout value to default */ scu_link_layer_set_txcomsas_timeout(iphy, SCU_SAS_LINK_LAYER_TXCOMSAS_NEGTIME_DEFAULT); /* Link failure change state back to the starting state */ sci_change_state(&iphy->sm, SCI_PHY_STARTING); break; case SCU_EVENT_RECEIVED_IDENTIFY_TIMEOUT: /* Extend the timeout value */ scu_link_layer_set_txcomsas_timeout(iphy, SCU_SAS_LINK_LAYER_TXCOMSAS_NEGTIME_EXTENDED); /* Start the oob/sn state machine over again */ sci_change_state(&iphy->sm, SCI_PHY_STARTING); break; default: phy_event_warn(iphy, state, event_code); return SCI_FAILURE; break; } return SCI_SUCCESS; case SCI_PHY_SUB_AWAIT_IAF_UF: switch (scu_get_event_code(event_code)) { case SCU_EVENT_SAS_PHY_DETECTED: /* Backup the state machine */ sci_phy_start_sas_link_training(iphy); break; case SCU_EVENT_SATA_SPINUP_HOLD: /* We were doing SAS PHY link training and received a * SATA PHY event continue OOB/SN as if this were a * SATA PHY */ sci_phy_start_sata_link_training(iphy); break; case SCU_EVENT_RECEIVED_IDENTIFY_TIMEOUT: /* Extend the timeout value */ scu_link_layer_set_txcomsas_timeout(iphy, SCU_SAS_LINK_LAYER_TXCOMSAS_NEGTIME_EXTENDED); /* Start the oob/sn state machine over again */ sci_change_state(&iphy->sm, SCI_PHY_STARTING); break; case SCU_EVENT_LINK_FAILURE: scu_link_layer_set_txcomsas_timeout(iphy, SCU_SAS_LINK_LAYER_TXCOMSAS_NEGTIME_DEFAULT); case SCU_EVENT_HARD_RESET_RECEIVED: /* Start the oob/sn state machine over again */ sci_change_state(&iphy->sm, SCI_PHY_STARTING); break; default: phy_event_warn(iphy, state, event_code); return SCI_FAILURE; } return SCI_SUCCESS; case SCI_PHY_SUB_AWAIT_SAS_POWER: switch (scu_get_event_code(event_code)) { case SCU_EVENT_LINK_FAILURE: /* Change the timeout value to default */ scu_link_layer_set_txcomsas_timeout(iphy, SCU_SAS_LINK_LAYER_TXCOMSAS_NEGTIME_DEFAULT); /* Link failure change state back to the starting state */ sci_change_state(&iphy->sm, SCI_PHY_STARTING); break; default: phy_event_warn(iphy, state, event_code); return SCI_FAILURE; } return SCI_SUCCESS; case SCI_PHY_SUB_AWAIT_SATA_POWER: switch (scu_get_event_code(event_code)) { case SCU_EVENT_LINK_FAILURE: /* Change the timeout value to default */ scu_link_layer_set_txcomsas_timeout(iphy, SCU_SAS_LINK_LAYER_TXCOMSAS_NEGTIME_DEFAULT); /* Link failure change state back to the starting state */ sci_change_state(&iphy->sm, SCI_PHY_STARTING); break; case SCU_EVENT_SATA_SPINUP_HOLD: /* These events are received every 10ms and are * expected while in this state */ break; case SCU_EVENT_SAS_PHY_DETECTED: /* There has been a change in the phy type before OOB/SN for the * SATA finished start down the SAS link traning path. */ sci_phy_start_sas_link_training(iphy); break; default: phy_event_warn(iphy, state, event_code); return SCI_FAILURE; } return SCI_SUCCESS; case SCI_PHY_SUB_AWAIT_SATA_PHY_EN: switch (scu_get_event_code(event_code)) { case SCU_EVENT_LINK_FAILURE: /* Change the timeout value to default */ scu_link_layer_set_txcomsas_timeout(iphy, SCU_SAS_LINK_LAYER_TXCOMSAS_NEGTIME_DEFAULT); /* Link failure change state back to the starting state */ sci_change_state(&iphy->sm, SCI_PHY_STARTING); break; case SCU_EVENT_SATA_SPINUP_HOLD: /* These events might be received since we dont know how many may be in * the completion queue while waiting for power */ break; case SCU_EVENT_SATA_PHY_DETECTED: iphy->protocol = SAS_PROTOCOL_SATA; /* We have received the SATA PHY notification change state */ sci_change_state(&iphy->sm, SCI_PHY_SUB_AWAIT_SATA_SPEED_EN); break; case SCU_EVENT_SAS_PHY_DETECTED: /* There has been a change in the phy type before OOB/SN for the * SATA finished start down the SAS link traning path. */ sci_phy_start_sas_link_training(iphy); break; default: phy_event_warn(iphy, state, event_code); return SCI_FAILURE; } return SCI_SUCCESS; case SCI_PHY_SUB_AWAIT_SATA_SPEED_EN: switch (scu_get_event_code(event_code)) { case SCU_EVENT_SATA_PHY_DETECTED: /* * The hardware reports multiple SATA PHY detected events * ignore the extras */ break; case SCU_EVENT_SATA_15: case SCU_EVENT_SATA_15_SSC: sci_phy_complete_link_training(iphy, SAS_LINK_RATE_1_5_GBPS, SCI_PHY_SUB_AWAIT_SIG_FIS_UF); break; case SCU_EVENT_SATA_30: case SCU_EVENT_SATA_30_SSC: sci_phy_complete_link_training(iphy, SAS_LINK_RATE_3_0_GBPS, SCI_PHY_SUB_AWAIT_SIG_FIS_UF); break; case SCU_EVENT_SATA_60: case SCU_EVENT_SATA_60_SSC: sci_phy_complete_link_training(iphy, SAS_LINK_RATE_6_0_GBPS, SCI_PHY_SUB_AWAIT_SIG_FIS_UF); break; case SCU_EVENT_LINK_FAILURE: /* Change the timeout value to default */ scu_link_layer_set_txcomsas_timeout(iphy, SCU_SAS_LINK_LAYER_TXCOMSAS_NEGTIME_DEFAULT); /* Link failure change state back to the starting state */ sci_change_state(&iphy->sm, SCI_PHY_STARTING); break; case SCU_EVENT_SAS_PHY_DETECTED: /* * There has been a change in the phy type before OOB/SN for the * SATA finished start down the SAS link traning path. */ sci_phy_start_sas_link_training(iphy); break; default: phy_event_warn(iphy, state, event_code); return SCI_FAILURE; } return SCI_SUCCESS; case SCI_PHY_SUB_AWAIT_SIG_FIS_UF: switch (scu_get_event_code(event_code)) { case SCU_EVENT_SATA_PHY_DETECTED: /* Backup the state machine */ sci_change_state(&iphy->sm, SCI_PHY_SUB_AWAIT_SATA_SPEED_EN); break; case SCU_EVENT_LINK_FAILURE: /* Change the timeout value to default */ scu_link_layer_set_txcomsas_timeout(iphy, SCU_SAS_LINK_LAYER_TXCOMSAS_NEGTIME_DEFAULT); /* Link failure change state back to the starting state */ sci_change_state(&iphy->sm, SCI_PHY_STARTING); break; default: phy_event_warn(iphy, state, event_code); return SCI_FAILURE; } return SCI_SUCCESS; case SCI_PHY_READY: switch (scu_get_event_code(event_code)) { case SCU_EVENT_LINK_FAILURE: /* Set default timeout */ scu_link_layer_set_txcomsas_timeout(iphy, SCU_SAS_LINK_LAYER_TXCOMSAS_NEGTIME_DEFAULT); /* Link failure change state back to the starting state */ sci_change_state(&iphy->sm, SCI_PHY_STARTING); break; case SCU_EVENT_BROADCAST_CHANGE: case SCU_EVENT_BROADCAST_SES: case SCU_EVENT_BROADCAST_RESERVED0: case SCU_EVENT_BROADCAST_RESERVED1: case SCU_EVENT_BROADCAST_EXPANDER: case SCU_EVENT_BROADCAST_AEN: /* Broadcast change received. Notify the port. */ if (phy_get_non_dummy_port(iphy) != NULL) sci_port_broadcast_change_received(iphy->owning_port, iphy); else iphy->bcn_received_while_port_unassigned = true; break; case SCU_EVENT_BROADCAST_RESERVED3: case SCU_EVENT_BROADCAST_RESERVED4: default: phy_event_warn(iphy, state, event_code); return SCI_FAILURE_INVALID_STATE; } return SCI_SUCCESS; case SCI_PHY_RESETTING: switch (scu_get_event_code(event_code)) { case SCU_EVENT_HARD_RESET_TRANSMITTED: /* Link failure change state back to the starting state */ sci_change_state(&iphy->sm, SCI_PHY_STARTING); break; default: phy_event_warn(iphy, state, event_code); return SCI_FAILURE_INVALID_STATE; break; } return SCI_SUCCESS; default: dev_dbg(sciphy_to_dev(iphy), "%s: in wrong state: %s\n", __func__, phy_state_name(state)); return SCI_FAILURE_INVALID_STATE; } } enum sci_status sci_phy_frame_handler(struct isci_phy *iphy, u32 frame_index) { enum sci_phy_states state = iphy->sm.current_state_id; struct isci_host *ihost = iphy->owning_port->owning_controller; enum sci_status result; unsigned long flags; switch (state) { case SCI_PHY_SUB_AWAIT_IAF_UF: { u32 *frame_words; struct sas_identify_frame iaf; result = sci_unsolicited_frame_control_get_header(&ihost->uf_control, frame_index, (void **)&frame_words); if (result != SCI_SUCCESS) return result; sci_swab32_cpy(&iaf, frame_words, sizeof(iaf) / sizeof(u32)); if (iaf.frame_type == 0) { u32 state; spin_lock_irqsave(&iphy->sas_phy.frame_rcvd_lock, flags); memcpy(&iphy->frame_rcvd.iaf, &iaf, sizeof(iaf)); spin_unlock_irqrestore(&iphy->sas_phy.frame_rcvd_lock, flags); if (iaf.smp_tport) { /* We got the IAF for an expander PHY go to the final * state since there are no power requirements for * expander phys. */ state = SCI_PHY_SUB_FINAL; } else { /* We got the IAF we can now go to the await spinup * semaphore state */ state = SCI_PHY_SUB_AWAIT_SAS_POWER; } sci_change_state(&iphy->sm, state); result = SCI_SUCCESS; } else dev_warn(sciphy_to_dev(iphy), "%s: PHY starting substate machine received " "unexpected frame id %x\n", __func__, frame_index); sci_controller_release_frame(ihost, frame_index); return result; } case SCI_PHY_SUB_AWAIT_SIG_FIS_UF: { struct dev_to_host_fis *frame_header; u32 *fis_frame_data; result = sci_unsolicited_frame_control_get_header(&ihost->uf_control, frame_index, (void **)&frame_header); if (result != SCI_SUCCESS) return result; if ((frame_header->fis_type == FIS_REGD2H) && !(frame_header->status & ATA_BUSY)) { sci_unsolicited_frame_control_get_buffer(&ihost->uf_control, frame_index, (void **)&fis_frame_data); spin_lock_irqsave(&iphy->sas_phy.frame_rcvd_lock, flags); sci_controller_copy_sata_response(&iphy->frame_rcvd.fis, frame_header, fis_frame_data); spin_unlock_irqrestore(&iphy->sas_phy.frame_rcvd_lock, flags); /* got IAF we can now go to the await spinup semaphore state */ sci_change_state(&iphy->sm, SCI_PHY_SUB_FINAL); result = SCI_SUCCESS; } else dev_warn(sciphy_to_dev(iphy), "%s: PHY starting substate machine received " "unexpected frame id %x\n", __func__, frame_index); /* Regardless of the result we are done with this frame with it */ sci_controller_release_frame(ihost, frame_index); return result; } default: dev_dbg(sciphy_to_dev(iphy), "%s: in wrong state: %s\n", __func__, phy_state_name(state)); return SCI_FAILURE_INVALID_STATE; } } static void sci_phy_starting_initial_substate_enter(struct sci_base_state_machine *sm) { struct isci_phy *iphy = container_of(sm, typeof(*iphy), sm); /* This is just an temporary state go off to the starting state */ sci_change_state(&iphy->sm, SCI_PHY_SUB_AWAIT_OSSP_EN); } static void sci_phy_starting_await_sas_power_substate_enter(struct sci_base_state_machine *sm) { struct isci_phy *iphy = container_of(sm, typeof(*iphy), sm); struct isci_host *ihost = iphy->owning_port->owning_controller; sci_controller_power_control_queue_insert(ihost, iphy); } static void sci_phy_starting_await_sas_power_substate_exit(struct sci_base_state_machine *sm) { struct isci_phy *iphy = container_of(sm, typeof(*iphy), sm); struct isci_host *ihost = iphy->owning_port->owning_controller; sci_controller_power_control_queue_remove(ihost, iphy); } static void sci_phy_starting_await_sata_power_substate_enter(struct sci_base_state_machine *sm) { struct isci_phy *iphy = container_of(sm, typeof(*iphy), sm); struct isci_host *ihost = iphy->owning_port->owning_controller; sci_controller_power_control_queue_insert(ihost, iphy); } static void sci_phy_starting_await_sata_power_substate_exit(struct sci_base_state_machine *sm) { struct isci_phy *iphy = container_of(sm, typeof(*iphy), sm); struct isci_host *ihost = iphy->owning_port->owning_controller; sci_controller_power_control_queue_remove(ihost, iphy); } static void sci_phy_starting_await_sata_phy_substate_enter(struct sci_base_state_machine *sm) { struct isci_phy *iphy = container_of(sm, typeof(*iphy), sm); sci_mod_timer(&iphy->sata_timer, SCIC_SDS_SATA_LINK_TRAINING_TIMEOUT); } static void sci_phy_starting_await_sata_phy_substate_exit(struct sci_base_state_machine *sm) { struct isci_phy *iphy = container_of(sm, typeof(*iphy), sm); sci_del_timer(&iphy->sata_timer); } static void sci_phy_starting_await_sata_speed_substate_enter(struct sci_base_state_machine *sm) { struct isci_phy *iphy = container_of(sm, typeof(*iphy), sm); sci_mod_timer(&iphy->sata_timer, SCIC_SDS_SATA_LINK_TRAINING_TIMEOUT); } static void sci_phy_starting_await_sata_speed_substate_exit(struct sci_base_state_machine *sm) { struct isci_phy *iphy = container_of(sm, typeof(*iphy), sm); sci_del_timer(&iphy->sata_timer); } static void sci_phy_starting_await_sig_fis_uf_substate_enter(struct sci_base_state_machine *sm) { struct isci_phy *iphy = container_of(sm, typeof(*iphy), sm); if (sci_port_link_detected(iphy->owning_port, iphy)) { /* * Clear the PE suspend condition so we can actually * receive SIG FIS * The hardware will not respond to the XRDY until the PE * suspend condition is cleared. */ sci_phy_resume(iphy); sci_mod_timer(&iphy->sata_timer, SCIC_SDS_SIGNATURE_FIS_TIMEOUT); } else iphy->is_in_link_training = false; } static void sci_phy_starting_await_sig_fis_uf_substate_exit(struct sci_base_state_machine *sm) { struct isci_phy *iphy = container_of(sm, typeof(*iphy), sm); sci_del_timer(&iphy->sata_timer); } static void sci_phy_starting_final_substate_enter(struct sci_base_state_machine *sm) { struct isci_phy *iphy = container_of(sm, typeof(*iphy), sm); /* State machine has run to completion so exit out and change * the base state machine to the ready state */ sci_change_state(&iphy->sm, SCI_PHY_READY); } /** * * @sci_phy: This is the struct isci_phy object to stop. * * This method will stop the struct isci_phy object. This does not reset the * protocol engine it just suspends it and places it in a state where it will * not cause the end device to power up. none */ static void scu_link_layer_stop_protocol_engine( struct isci_phy *iphy) { u32 scu_sas_pcfg_value; u32 enable_spinup_value; /* Suspend the protocol engine and place it in a sata spinup hold state */ scu_sas_pcfg_value = readl(&iphy->link_layer_registers->phy_configuration); scu_sas_pcfg_value |= (SCU_SAS_PCFG_GEN_BIT(OOB_RESET) | SCU_SAS_PCFG_GEN_BIT(SUSPEND_PROTOCOL_ENGINE) | SCU_SAS_PCFG_GEN_BIT(SATA_SPINUP_HOLD)); writel(scu_sas_pcfg_value, &iphy->link_layer_registers->phy_configuration); /* Disable the notify enable spinup primitives */ enable_spinup_value = readl(&iphy->link_layer_registers->notify_enable_spinup_control); enable_spinup_value &= ~SCU_ENSPINUP_GEN_BIT(ENABLE); writel(enable_spinup_value, &iphy->link_layer_registers->notify_enable_spinup_control); } static void scu_link_layer_start_oob(struct isci_phy *iphy) { struct scu_link_layer_registers __iomem *ll = iphy->link_layer_registers; u32 val; /** Reset OOB sequence - start */ val = readl(&ll->phy_configuration); val &= ~(SCU_SAS_PCFG_GEN_BIT(OOB_RESET) | SCU_SAS_PCFG_GEN_BIT(OOB_ENABLE) | SCU_SAS_PCFG_GEN_BIT(HARD_RESET)); writel(val, &ll->phy_configuration); readl(&ll->phy_configuration); /* flush */ /** Reset OOB sequence - end */ /** Start OOB sequence - start */ val = readl(&ll->phy_configuration); val |= SCU_SAS_PCFG_GEN_BIT(OOB_ENABLE); writel(val, &ll->phy_configuration); readl(&ll->phy_configuration); /* flush */ /** Start OOB sequence - end */ } /** * * * This method will transmit a hard reset request on the specified phy. The SCU * hardware requires that we reset the OOB state machine and set the hard reset * bit in the phy configuration register. We then must start OOB over with the * hard reset bit set. */ static void scu_link_layer_tx_hard_reset( struct isci_phy *iphy) { u32 phy_configuration_value; /* * SAS Phys must wait for the HARD_RESET_TX event notification to transition * to the starting state. */ phy_configuration_value = readl(&iphy->link_layer_registers->phy_configuration); phy_configuration_value &= ~(SCU_SAS_PCFG_GEN_BIT(OOB_ENABLE)); phy_configuration_value |= (SCU_SAS_PCFG_GEN_BIT(HARD_RESET) | SCU_SAS_PCFG_GEN_BIT(OOB_RESET)); writel(phy_configuration_value, &iphy->link_layer_registers->phy_configuration); /* Now take the OOB state machine out of reset */ phy_configuration_value |= SCU_SAS_PCFG_GEN_BIT(OOB_ENABLE); phy_configuration_value &= ~SCU_SAS_PCFG_GEN_BIT(OOB_RESET); writel(phy_configuration_value, &iphy->link_layer_registers->phy_configuration); } static void sci_phy_stopped_state_enter(struct sci_base_state_machine *sm) { struct isci_phy *iphy = container_of(sm, typeof(*iphy), sm); struct isci_port *iport = iphy->owning_port; struct isci_host *ihost = iport->owning_controller; /* * @todo We need to get to the controller to place this PE in a * reset state */ sci_del_timer(&iphy->sata_timer); scu_link_layer_stop_protocol_engine(iphy); if (iphy->sm.previous_state_id != SCI_PHY_INITIAL) sci_controller_link_down(ihost, phy_get_non_dummy_port(iphy), iphy); } static void sci_phy_starting_state_enter(struct sci_base_state_machine *sm) { struct isci_phy *iphy = container_of(sm, typeof(*iphy), sm); struct isci_port *iport = iphy->owning_port; struct isci_host *ihost = iport->owning_controller; scu_link_layer_stop_protocol_engine(iphy); scu_link_layer_start_oob(iphy); /* We don't know what kind of phy we are going to be just yet */ iphy->protocol = SAS_PROTOCOL_NONE; iphy->bcn_received_while_port_unassigned = false; if (iphy->sm.previous_state_id == SCI_PHY_READY) sci_controller_link_down(ihost, phy_get_non_dummy_port(iphy), iphy); sci_change_state(&iphy->sm, SCI_PHY_SUB_INITIAL); } static void sci_phy_ready_state_enter(struct sci_base_state_machine *sm) { struct isci_phy *iphy = container_of(sm, typeof(*iphy), sm); struct isci_port *iport = iphy->owning_port; struct isci_host *ihost = iport->owning_controller; sci_controller_link_up(ihost, phy_get_non_dummy_port(iphy), iphy); } static void sci_phy_ready_state_exit(struct sci_base_state_machine *sm) { struct isci_phy *iphy = container_of(sm, typeof(*iphy), sm); sci_phy_suspend(iphy); } static void sci_phy_resetting_state_enter(struct sci_base_state_machine *sm) { struct isci_phy *iphy = container_of(sm, typeof(*iphy), sm); /* The phy is being reset, therefore deactivate it from the port. In * the resetting state we don't notify the user regarding link up and * link down notifications */ sci_port_deactivate_phy(iphy->owning_port, iphy, false); if (iphy->protocol == SAS_PROTOCOL_SSP) { scu_link_layer_tx_hard_reset(iphy); } else { /* The SCU does not need to have a discrete reset state so * just go back to the starting state. */ sci_change_state(&iphy->sm, SCI_PHY_STARTING); } } static const struct sci_base_state sci_phy_state_table[] = { [SCI_PHY_INITIAL] = { }, [SCI_PHY_STOPPED] = { .enter_state = sci_phy_stopped_state_enter, }, [SCI_PHY_STARTING] = { .enter_state = sci_phy_starting_state_enter, }, [SCI_PHY_SUB_INITIAL] = { .enter_state = sci_phy_starting_initial_substate_enter, }, [SCI_PHY_SUB_AWAIT_OSSP_EN] = { }, [SCI_PHY_SUB_AWAIT_SAS_SPEED_EN] = { }, [SCI_PHY_SUB_AWAIT_IAF_UF] = { }, [SCI_PHY_SUB_AWAIT_SAS_POWER] = { .enter_state = sci_phy_starting_await_sas_power_substate_enter, .exit_state = sci_phy_starting_await_sas_power_substate_exit, }, [SCI_PHY_SUB_AWAIT_SATA_POWER] = { .enter_state = sci_phy_starting_await_sata_power_substate_enter, .exit_state = sci_phy_starting_await_sata_power_substate_exit }, [SCI_PHY_SUB_AWAIT_SATA_PHY_EN] = { .enter_state = sci_phy_starting_await_sata_phy_substate_enter, .exit_state = sci_phy_starting_await_sata_phy_substate_exit }, [SCI_PHY_SUB_AWAIT_SATA_SPEED_EN] = { .enter_state = sci_phy_starting_await_sata_speed_substate_enter, .exit_state = sci_phy_starting_await_sata_speed_substate_exit }, [SCI_PHY_SUB_AWAIT_SIG_FIS_UF] = { .enter_state = sci_phy_starting_await_sig_fis_uf_substate_enter, .exit_state = sci_phy_starting_await_sig_fis_uf_substate_exit }, [SCI_PHY_SUB_FINAL] = { .enter_state = sci_phy_starting_final_substate_enter, }, [SCI_PHY_READY] = { .enter_state = sci_phy_ready_state_enter, .exit_state = sci_phy_ready_state_exit, }, [SCI_PHY_RESETTING] = { .enter_state = sci_phy_resetting_state_enter, }, [SCI_PHY_FINAL] = { }, }; void sci_phy_construct(struct isci_phy *iphy, struct isci_port *iport, u8 phy_index) { sci_init_sm(&iphy->sm, sci_phy_state_table, SCI_PHY_INITIAL); /* Copy the rest of the input data to our locals */ iphy->owning_port = iport; iphy->phy_index = phy_index; iphy->bcn_received_while_port_unassigned = false; iphy->protocol = SAS_PROTOCOL_NONE; iphy->link_layer_registers = NULL; iphy->max_negotiated_speed = SAS_LINK_RATE_UNKNOWN; /* Create the SIGNATURE FIS Timeout timer for this phy */ sci_init_timer(&iphy->sata_timer, phy_sata_timeout); } void isci_phy_init(struct isci_phy *iphy, struct isci_host *ihost, int index) { struct sci_oem_params *oem = &ihost->oem_parameters; u64 sci_sas_addr; __be64 sas_addr; sci_sas_addr = oem->phys[index].sas_address.high; sci_sas_addr <<= 32; sci_sas_addr |= oem->phys[index].sas_address.low; sas_addr = cpu_to_be64(sci_sas_addr); memcpy(iphy->sas_addr, &sas_addr, sizeof(sas_addr)); iphy->sas_phy.enabled = 0; iphy->sas_phy.id = index; iphy->sas_phy.sas_addr = &iphy->sas_addr[0]; iphy->sas_phy.frame_rcvd = (u8 *)&iphy->frame_rcvd; iphy->sas_phy.ha = &ihost->sas_ha; iphy->sas_phy.lldd_phy = iphy; iphy->sas_phy.enabled = 1; iphy->sas_phy.class = SAS; iphy->sas_phy.iproto = SAS_PROTOCOL_ALL; iphy->sas_phy.tproto = 0; iphy->sas_phy.type = PHY_TYPE_PHYSICAL; iphy->sas_phy.role = PHY_ROLE_INITIATOR; iphy->sas_phy.oob_mode = OOB_NOT_CONNECTED; iphy->sas_phy.linkrate = SAS_LINK_RATE_UNKNOWN; memset(&iphy->frame_rcvd, 0, sizeof(iphy->frame_rcvd)); } /** * isci_phy_control() - This function is one of the SAS Domain Template * functions. This is a phy management function. * @phy: This parameter specifies the sphy being controlled. * @func: This parameter specifies the phy control function being invoked. * @buf: This parameter is specific to the phy function being invoked. * * status, zero indicates success. */ int isci_phy_control(struct asd_sas_phy *sas_phy, enum phy_func func, void *buf) { int ret = 0; struct isci_phy *iphy = sas_phy->lldd_phy; struct asd_sas_port *port = sas_phy->port; struct isci_host *ihost = sas_phy->ha->lldd_ha; unsigned long flags; dev_dbg(&ihost->pdev->dev, "%s: phy %p; func %d; buf %p; isci phy %p, port %p\n", __func__, sas_phy, func, buf, iphy, port); switch (func) { case PHY_FUNC_DISABLE: spin_lock_irqsave(&ihost->scic_lock, flags); scu_link_layer_start_oob(iphy); sci_phy_stop(iphy); spin_unlock_irqrestore(&ihost->scic_lock, flags); break; case PHY_FUNC_LINK_RESET: spin_lock_irqsave(&ihost->scic_lock, flags); scu_link_layer_start_oob(iphy); sci_phy_stop(iphy); sci_phy_start(iphy); spin_unlock_irqrestore(&ihost->scic_lock, flags); break; case PHY_FUNC_HARD_RESET: if (!port) return -ENODEV; ret = isci_port_perform_hard_reset(ihost, port->lldd_port, iphy); break; case PHY_FUNC_GET_EVENTS: { struct scu_link_layer_registers __iomem *r; struct sas_phy *phy = sas_phy->phy; r = iphy->link_layer_registers; phy->running_disparity_error_count = readl(&r->running_disparity_error_count); phy->loss_of_dword_sync_count = readl(&r->loss_of_sync_error_count); phy->phy_reset_problem_count = readl(&r->phy_reset_problem_count); phy->invalid_dword_count = readl(&r->invalid_dword_counter); break; } default: dev_dbg(&ihost->pdev->dev, "%s: phy %p; func %d NOT IMPLEMENTED!\n", __func__, sas_phy, func); ret = -ENOSYS; break; } return ret; }