/* * * device driver for Conexant 2388x based TV cards * driver core * * (c) 2003 Gerd Knorr [SuSE Labs] * * (c) 2005-2006 Mauro Carvalho Chehab * - Multituner support * - video_ioctl2 conversion * - PAL/M fixes * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 2 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include "cx88.h" #include MODULE_DESCRIPTION("v4l2 driver module for cx2388x based TV cards"); MODULE_AUTHOR("Gerd Knorr [SuSE Labs]"); MODULE_LICENSE("GPL"); /* ------------------------------------------------------------------ */ static unsigned int core_debug = 0; module_param(core_debug,int,0644); MODULE_PARM_DESC(core_debug,"enable debug messages [core]"); static unsigned int nicam = 0; module_param(nicam,int,0644); MODULE_PARM_DESC(nicam,"tv audio is nicam"); static unsigned int nocomb = 0; module_param(nocomb,int,0644); MODULE_PARM_DESC(nocomb,"disable comb filter"); #define dprintk(level,fmt, arg...) if (core_debug >= level) \ printk(KERN_DEBUG "%s: " fmt, core->name , ## arg) static unsigned int cx88_devcount; static LIST_HEAD(cx88_devlist); static DEFINE_MUTEX(devlist); #define NO_SYNC_LINE (-1U) static u32* cx88_risc_field(u32 *rp, struct scatterlist *sglist, unsigned int offset, u32 sync_line, unsigned int bpl, unsigned int padding, unsigned int lines) { struct scatterlist *sg; unsigned int line,todo; /* sync instruction */ if (sync_line != NO_SYNC_LINE) *(rp++) = cpu_to_le32(RISC_RESYNC | sync_line); /* scan lines */ sg = sglist; for (line = 0; line < lines; line++) { while (offset && offset >= sg_dma_len(sg)) { offset -= sg_dma_len(sg); sg++; } if (bpl <= sg_dma_len(sg)-offset) { /* fits into current chunk */ *(rp++)=cpu_to_le32(RISC_WRITE|RISC_SOL|RISC_EOL|bpl); *(rp++)=cpu_to_le32(sg_dma_address(sg)+offset); offset+=bpl; } else { /* scanline needs to be split */ todo = bpl; *(rp++)=cpu_to_le32(RISC_WRITE|RISC_SOL| (sg_dma_len(sg)-offset)); *(rp++)=cpu_to_le32(sg_dma_address(sg)+offset); todo -= (sg_dma_len(sg)-offset); offset = 0; sg++; while (todo > sg_dma_len(sg)) { *(rp++)=cpu_to_le32(RISC_WRITE| sg_dma_len(sg)); *(rp++)=cpu_to_le32(sg_dma_address(sg)); todo -= sg_dma_len(sg); sg++; } *(rp++)=cpu_to_le32(RISC_WRITE|RISC_EOL|todo); *(rp++)=cpu_to_le32(sg_dma_address(sg)); offset += todo; } offset += padding; } return rp; } int cx88_risc_buffer(struct pci_dev *pci, struct btcx_riscmem *risc, struct scatterlist *sglist, unsigned int top_offset, unsigned int bottom_offset, unsigned int bpl, unsigned int padding, unsigned int lines) { u32 instructions,fields; u32 *rp; int rc; fields = 0; if (UNSET != top_offset) fields++; if (UNSET != bottom_offset) fields++; /* estimate risc mem: worst case is one write per page border + one write per scan line + syncs + jump (all 2 dwords). Padding can cause next bpl to start close to a page border. First DMA region may be smaller than PAGE_SIZE */ instructions = fields * (1 + ((bpl + padding) * lines) / PAGE_SIZE + lines); instructions += 2; if ((rc = btcx_riscmem_alloc(pci,risc,instructions*8)) < 0) return rc; /* write risc instructions */ rp = risc->cpu; if (UNSET != top_offset) rp = cx88_risc_field(rp, sglist, top_offset, 0, bpl, padding, lines); if (UNSET != bottom_offset) rp = cx88_risc_field(rp, sglist, bottom_offset, 0x200, bpl, padding, lines); /* save pointer to jmp instruction address */ risc->jmp = rp; BUG_ON((risc->jmp - risc->cpu + 2) * sizeof (*risc->cpu) > risc->size); return 0; } int cx88_risc_databuffer(struct pci_dev *pci, struct btcx_riscmem *risc, struct scatterlist *sglist, unsigned int bpl, unsigned int lines) { u32 instructions; u32 *rp; int rc; /* estimate risc mem: worst case is one write per page border + one write per scan line + syncs + jump (all 2 dwords). Here there is no padding and no sync. First DMA region may be smaller than PAGE_SIZE */ instructions = 1 + (bpl * lines) / PAGE_SIZE + lines; instructions += 1; if ((rc = btcx_riscmem_alloc(pci,risc,instructions*8)) < 0) return rc; /* write risc instructions */ rp = risc->cpu; rp = cx88_risc_field(rp, sglist, 0, NO_SYNC_LINE, bpl, 0, lines); /* save pointer to jmp instruction address */ risc->jmp = rp; BUG_ON((risc->jmp - risc->cpu + 2) * sizeof (*risc->cpu) > risc->size); return 0; } int cx88_risc_stopper(struct pci_dev *pci, struct btcx_riscmem *risc, u32 reg, u32 mask, u32 value) { u32 *rp; int rc; if ((rc = btcx_riscmem_alloc(pci, risc, 4*16)) < 0) return rc; /* write risc instructions */ rp = risc->cpu; *(rp++) = cpu_to_le32(RISC_WRITECR | RISC_IRQ2 | RISC_IMM); *(rp++) = cpu_to_le32(reg); *(rp++) = cpu_to_le32(value); *(rp++) = cpu_to_le32(mask); *(rp++) = cpu_to_le32(RISC_JUMP); *(rp++) = cpu_to_le32(risc->dma); return 0; } void cx88_free_buffer(struct videobuf_queue *q, struct cx88_buffer *buf) { BUG_ON(in_interrupt()); videobuf_waiton(&buf->vb,0,0); videobuf_dma_unmap(q, &buf->vb.dma); videobuf_dma_free(&buf->vb.dma); btcx_riscmem_free((struct pci_dev *)q->dev, &buf->risc); buf->vb.state = STATE_NEEDS_INIT; } /* ------------------------------------------------------------------ */ /* our SRAM memory layout */ /* we are going to put all thr risc programs into host memory, so we * can use the whole SDRAM for the DMA fifos. To simplify things, we * use a static memory layout. That surely will waste memory in case * we don't use all DMA channels at the same time (which will be the * case most of the time). But that still gives us enougth FIFO space * to be able to deal with insane long pci latencies ... * * FIFO space allocations: * channel 21 (y video) - 10.0k * channel 22 (u video) - 2.0k * channel 23 (v video) - 2.0k * channel 24 (vbi) - 4.0k * channels 25+26 (audio) - 4.0k * channel 28 (mpeg) - 4.0k * TOTAL = 29.0k * * Every channel has 160 bytes control data (64 bytes instruction * queue and 6 CDT entries), which is close to 2k total. * * Address layout: * 0x0000 - 0x03ff CMDs / reserved * 0x0400 - 0x0bff instruction queues + CDs * 0x0c00 - FIFOs */ struct sram_channel cx88_sram_channels[] = { [SRAM_CH21] = { .name = "video y / packed", .cmds_start = 0x180040, .ctrl_start = 0x180400, .cdt = 0x180400 + 64, .fifo_start = 0x180c00, .fifo_size = 0x002800, .ptr1_reg = MO_DMA21_PTR1, .ptr2_reg = MO_DMA21_PTR2, .cnt1_reg = MO_DMA21_CNT1, .cnt2_reg = MO_DMA21_CNT2, }, [SRAM_CH22] = { .name = "video u", .cmds_start = 0x180080, .ctrl_start = 0x1804a0, .cdt = 0x1804a0 + 64, .fifo_start = 0x183400, .fifo_size = 0x000800, .ptr1_reg = MO_DMA22_PTR1, .ptr2_reg = MO_DMA22_PTR2, .cnt1_reg = MO_DMA22_CNT1, .cnt2_reg = MO_DMA22_CNT2, }, [SRAM_CH23] = { .name = "video v", .cmds_start = 0x1800c0, .ctrl_start = 0x180540, .cdt = 0x180540 + 64, .fifo_start = 0x183c00, .fifo_size = 0x000800, .ptr1_reg = MO_DMA23_PTR1, .ptr2_reg = MO_DMA23_PTR2, .cnt1_reg = MO_DMA23_CNT1, .cnt2_reg = MO_DMA23_CNT2, }, [SRAM_CH24] = { .name = "vbi", .cmds_start = 0x180100, .ctrl_start = 0x1805e0, .cdt = 0x1805e0 + 64, .fifo_start = 0x184400, .fifo_size = 0x001000, .ptr1_reg = MO_DMA24_PTR1, .ptr2_reg = MO_DMA24_PTR2, .cnt1_reg = MO_DMA24_CNT1, .cnt2_reg = MO_DMA24_CNT2, }, [SRAM_CH25] = { .name = "audio from", .cmds_start = 0x180140, .ctrl_start = 0x180680, .cdt = 0x180680 + 64, .fifo_start = 0x185400, .fifo_size = 0x001000, .ptr1_reg = MO_DMA25_PTR1, .ptr2_reg = MO_DMA25_PTR2, .cnt1_reg = MO_DMA25_CNT1, .cnt2_reg = MO_DMA25_CNT2, }, [SRAM_CH26] = { .name = "audio to", .cmds_start = 0x180180, .ctrl_start = 0x180720, .cdt = 0x180680 + 64, /* same as audio IN */ .fifo_start = 0x185400, /* same as audio IN */ .fifo_size = 0x001000, /* same as audio IN */ .ptr1_reg = MO_DMA26_PTR1, .ptr2_reg = MO_DMA26_PTR2, .cnt1_reg = MO_DMA26_CNT1, .cnt2_reg = MO_DMA26_CNT2, }, [SRAM_CH28] = { .name = "mpeg", .cmds_start = 0x180200, .ctrl_start = 0x1807C0, .cdt = 0x1807C0 + 64, .fifo_start = 0x186400, .fifo_size = 0x001000, .ptr1_reg = MO_DMA28_PTR1, .ptr2_reg = MO_DMA28_PTR2, .cnt1_reg = MO_DMA28_CNT1, .cnt2_reg = MO_DMA28_CNT2, }, }; int cx88_sram_channel_setup(struct cx88_core *core, struct sram_channel *ch, unsigned int bpl, u32 risc) { unsigned int i,lines; u32 cdt; bpl = (bpl + 7) & ~7; /* alignment */ cdt = ch->cdt; lines = ch->fifo_size / bpl; if (lines > 6) lines = 6; BUG_ON(lines < 2); /* write CDT */ for (i = 0; i < lines; i++) cx_write(cdt + 16*i, ch->fifo_start + bpl*i); /* write CMDS */ cx_write(ch->cmds_start + 0, risc); cx_write(ch->cmds_start + 4, cdt); cx_write(ch->cmds_start + 8, (lines*16) >> 3); cx_write(ch->cmds_start + 12, ch->ctrl_start); cx_write(ch->cmds_start + 16, 64 >> 2); for (i = 20; i < 64; i += 4) cx_write(ch->cmds_start + i, 0); /* fill registers */ cx_write(ch->ptr1_reg, ch->fifo_start); cx_write(ch->ptr2_reg, cdt); cx_write(ch->cnt1_reg, (bpl >> 3) -1); cx_write(ch->cnt2_reg, (lines*16) >> 3); dprintk(2,"sram setup %s: bpl=%d lines=%d\n", ch->name, bpl, lines); return 0; } /* ------------------------------------------------------------------ */ /* debug helper code */ static int cx88_risc_decode(u32 risc) { static char *instr[16] = { [ RISC_SYNC >> 28 ] = "sync", [ RISC_WRITE >> 28 ] = "write", [ RISC_WRITEC >> 28 ] = "writec", [ RISC_READ >> 28 ] = "read", [ RISC_READC >> 28 ] = "readc", [ RISC_JUMP >> 28 ] = "jump", [ RISC_SKIP >> 28 ] = "skip", [ RISC_WRITERM >> 28 ] = "writerm", [ RISC_WRITECM >> 28 ] = "writecm", [ RISC_WRITECR >> 28 ] = "writecr", }; static int incr[16] = { [ RISC_WRITE >> 28 ] = 2, [ RISC_JUMP >> 28 ] = 2, [ RISC_WRITERM >> 28 ] = 3, [ RISC_WRITECM >> 28 ] = 3, [ RISC_WRITECR >> 28 ] = 4, }; static char *bits[] = { "12", "13", "14", "resync", "cnt0", "cnt1", "18", "19", "20", "21", "22", "23", "irq1", "irq2", "eol", "sol", }; int i; printk("0x%08x [ %s", risc, instr[risc >> 28] ? instr[risc >> 28] : "INVALID"); for (i = ARRAY_SIZE(bits)-1; i >= 0; i--) if (risc & (1 << (i + 12))) printk(" %s",bits[i]); printk(" count=%d ]\n", risc & 0xfff); return incr[risc >> 28] ? incr[risc >> 28] : 1; } void cx88_sram_channel_dump(struct cx88_core *core, struct sram_channel *ch) { static char *name[] = { "initial risc", "cdt base", "cdt size", "iq base", "iq size", "risc pc", "iq wr ptr", "iq rd ptr", "cdt current", "pci target", "line / byte", }; u32 risc; unsigned int i,j,n; printk("%s: %s - dma channel status dump\n", core->name,ch->name); for (i = 0; i < ARRAY_SIZE(name); i++) printk("%s: cmds: %-12s: 0x%08x\n", core->name,name[i], cx_read(ch->cmds_start + 4*i)); for (i = 0; i < 4; i++) { risc = cx_read(ch->cmds_start + 4 * (i+11)); printk("%s: risc%d: ", core->name, i); cx88_risc_decode(risc); } for (i = 0; i < 16; i += n) { risc = cx_read(ch->ctrl_start + 4 * i); printk("%s: iq %x: ", core->name, i); n = cx88_risc_decode(risc); for (j = 1; j < n; j++) { risc = cx_read(ch->ctrl_start + 4 * (i+j)); printk("%s: iq %x: 0x%08x [ arg #%d ]\n", core->name, i+j, risc, j); } } printk("%s: fifo: 0x%08x -> 0x%x\n", core->name, ch->fifo_start, ch->fifo_start+ch->fifo_size); printk("%s: ctrl: 0x%08x -> 0x%x\n", core->name, ch->ctrl_start, ch->ctrl_start+6*16); printk("%s: ptr1_reg: 0x%08x\n", core->name,cx_read(ch->ptr1_reg)); printk("%s: ptr2_reg: 0x%08x\n", core->name,cx_read(ch->ptr2_reg)); printk("%s: cnt1_reg: 0x%08x\n", core->name,cx_read(ch->cnt1_reg)); printk("%s: cnt2_reg: 0x%08x\n", core->name,cx_read(ch->cnt2_reg)); } static char *cx88_pci_irqs[32] = { "vid", "aud", "ts", "vip", "hst", "5", "6", "tm1", "src_dma", "dst_dma", "risc_rd_err", "risc_wr_err", "brdg_err", "src_dma_err", "dst_dma_err", "ipb_dma_err", "i2c", "i2c_rack", "ir_smp", "gpio0", "gpio1" }; void cx88_print_irqbits(char *name, char *tag, char **strings, int len, u32 bits, u32 mask) { unsigned int i; printk(KERN_DEBUG "%s: %s [0x%x]", name, tag, bits); for (i = 0; i < len; i++) { if (!(bits & (1 << i))) continue; if (strings[i]) printk(" %s", strings[i]); else printk(" %d", i); if (!(mask & (1 << i))) continue; printk("*"); } printk("\n"); } /* ------------------------------------------------------------------ */ int cx88_core_irq(struct cx88_core *core, u32 status) { int handled = 0; if (status & PCI_INT_IR_SMPINT) { cx88_ir_irq(core); handled++; } if (!handled) cx88_print_irqbits(core->name, "irq pci", cx88_pci_irqs, ARRAY_SIZE(cx88_pci_irqs), status, core->pci_irqmask); return handled; } void cx88_wakeup(struct cx88_core *core, struct cx88_dmaqueue *q, u32 count) { struct cx88_buffer *buf; int bc; for (bc = 0;; bc++) { if (list_empty(&q->active)) break; buf = list_entry(q->active.next, struct cx88_buffer, vb.queue); /* count comes from the hw and is is 16bit wide -- * this trick handles wrap-arounds correctly for * up to 32767 buffers in flight... */ if ((s16) (count - buf->count) < 0) break; do_gettimeofday(&buf->vb.ts); dprintk(2,"[%p/%d] wakeup reg=%d buf=%d\n",buf,buf->vb.i, count, buf->count); buf->vb.state = STATE_DONE; list_del(&buf->vb.queue); wake_up(&buf->vb.done); } if (list_empty(&q->active)) { del_timer(&q->timeout); } else { mod_timer(&q->timeout, jiffies+BUFFER_TIMEOUT); } if (bc != 1) printk("%s: %d buffers handled (should be 1)\n",__FUNCTION__,bc); } void cx88_shutdown(struct cx88_core *core) { /* disable RISC controller + IRQs */ cx_write(MO_DEV_CNTRL2, 0); /* stop dma transfers */ cx_write(MO_VID_DMACNTRL, 0x0); cx_write(MO_AUD_DMACNTRL, 0x0); cx_write(MO_TS_DMACNTRL, 0x0); cx_write(MO_VIP_DMACNTRL, 0x0); cx_write(MO_GPHST_DMACNTRL, 0x0); /* stop interrupts */ cx_write(MO_PCI_INTMSK, 0x0); cx_write(MO_VID_INTMSK, 0x0); cx_write(MO_AUD_INTMSK, 0x0); cx_write(MO_TS_INTMSK, 0x0); cx_write(MO_VIP_INTMSK, 0x0); cx_write(MO_GPHST_INTMSK, 0x0); /* stop capturing */ cx_write(VID_CAPTURE_CONTROL, 0); } int cx88_reset(struct cx88_core *core) { dprintk(1,"%s\n",__FUNCTION__); cx88_shutdown(core); /* clear irq status */ cx_write(MO_VID_INTSTAT, 0xFFFFFFFF); // Clear PIV int cx_write(MO_PCI_INTSTAT, 0xFFFFFFFF); // Clear PCI int cx_write(MO_INT1_STAT, 0xFFFFFFFF); // Clear RISC int /* wait a bit */ msleep(100); /* init sram */ cx88_sram_channel_setup(core, &cx88_sram_channels[SRAM_CH21], 720*4, 0); cx88_sram_channel_setup(core, &cx88_sram_channels[SRAM_CH22], 128, 0); cx88_sram_channel_setup(core, &cx88_sram_channels[SRAM_CH23], 128, 0); cx88_sram_channel_setup(core, &cx88_sram_channels[SRAM_CH24], 128, 0); cx88_sram_channel_setup(core, &cx88_sram_channels[SRAM_CH25], 128, 0); cx88_sram_channel_setup(core, &cx88_sram_channels[SRAM_CH26], 128, 0); cx88_sram_channel_setup(core, &cx88_sram_channels[SRAM_CH28], 188*4, 0); /* misc init ... */ cx_write(MO_INPUT_FORMAT, ((1 << 13) | // agc enable (1 << 12) | // agc gain (1 << 11) | // adaptibe agc (0 << 10) | // chroma agc (0 << 9) | // ckillen (7))); /* setup image format */ cx_andor(MO_COLOR_CTRL, 0x4000, 0x4000); /* setup FIFO Threshholds */ cx_write(MO_PDMA_STHRSH, 0x0807); cx_write(MO_PDMA_DTHRSH, 0x0807); /* fixes flashing of image */ cx_write(MO_AGC_SYNC_TIP1, 0x0380000F); cx_write(MO_AGC_BACK_VBI, 0x00E00555); cx_write(MO_VID_INTSTAT, 0xFFFFFFFF); // Clear PIV int cx_write(MO_PCI_INTSTAT, 0xFFFFFFFF); // Clear PCI int cx_write(MO_INT1_STAT, 0xFFFFFFFF); // Clear RISC int /* Reset on-board parts */ cx_write(MO_SRST_IO, 0); msleep(10); cx_write(MO_SRST_IO, 1); return 0; } /* ------------------------------------------------------------------ */ static unsigned int inline norm_swidth(v4l2_std_id norm) { return (norm & (V4L2_STD_MN & ~V4L2_STD_PAL_Nc)) ? 754 : 922; } static unsigned int inline norm_hdelay(v4l2_std_id norm) { return (norm & (V4L2_STD_MN & ~V4L2_STD_PAL_Nc)) ? 135 : 186; } static unsigned int inline norm_vdelay(v4l2_std_id norm) { return (norm & V4L2_STD_625_50) ? 0x24 : 0x18; } static unsigned int inline norm_fsc8(v4l2_std_id norm) { if (norm & V4L2_STD_PAL_M) return 28604892; // 3.575611 MHz if (norm & (V4L2_STD_PAL_Nc)) return 28656448; // 3.582056 MHz if (norm & V4L2_STD_NTSC) // All NTSC/M and variants return 28636360; // 3.57954545 MHz +/- 10 Hz /* SECAM have also different sub carrier for chroma, but step_db and step_dr, at cx88_set_tvnorm already handles that. The same FSC applies to PAL/BGDKIH, PAL/60, NTSC/4.43 and PAL/N */ return 35468950; // 4.43361875 MHz +/- 5 Hz } static unsigned int inline norm_htotal(v4l2_std_id norm) { unsigned int fsc4=norm_fsc8(norm)/2; /* returns 4*FSC / vtotal / frames per seconds */ return (norm & V4L2_STD_625_50) ? ((fsc4+312)/625+12)/25 : ((fsc4+262)/525*1001+15000)/30000; } static unsigned int inline norm_vbipack(v4l2_std_id norm) { return (norm & V4L2_STD_625_50) ? 511 : 400; } int cx88_set_scale(struct cx88_core *core, unsigned int width, unsigned int height, enum v4l2_field field) { unsigned int swidth = norm_swidth(core->tvnorm); unsigned int sheight = norm_maxh(core->tvnorm); u32 value; dprintk(1,"set_scale: %dx%d [%s%s,%s]\n", width, height, V4L2_FIELD_HAS_TOP(field) ? "T" : "", V4L2_FIELD_HAS_BOTTOM(field) ? "B" : "", v4l2_norm_to_name(core->tvnorm)); if (!V4L2_FIELD_HAS_BOTH(field)) height *= 2; // recalc H delay and scale registers value = (width * norm_hdelay(core->tvnorm)) / swidth; value &= 0x3fe; cx_write(MO_HDELAY_EVEN, value); cx_write(MO_HDELAY_ODD, value); dprintk(1,"set_scale: hdelay 0x%04x (width %d)\n", value,swidth); value = (swidth * 4096 / width) - 4096; cx_write(MO_HSCALE_EVEN, value); cx_write(MO_HSCALE_ODD, value); dprintk(1,"set_scale: hscale 0x%04x\n", value); cx_write(MO_HACTIVE_EVEN, width); cx_write(MO_HACTIVE_ODD, width); dprintk(1,"set_scale: hactive 0x%04x\n", width); // recalc V scale Register (delay is constant) cx_write(MO_VDELAY_EVEN, norm_vdelay(core->tvnorm)); cx_write(MO_VDELAY_ODD, norm_vdelay(core->tvnorm)); dprintk(1,"set_scale: vdelay 0x%04x\n", norm_vdelay(core->tvnorm)); value = (0x10000 - (sheight * 512 / height - 512)) & 0x1fff; cx_write(MO_VSCALE_EVEN, value); cx_write(MO_VSCALE_ODD, value); dprintk(1,"set_scale: vscale 0x%04x\n", value); cx_write(MO_VACTIVE_EVEN, sheight); cx_write(MO_VACTIVE_ODD, sheight); dprintk(1,"set_scale: vactive 0x%04x\n", sheight); // setup filters value = 0; value |= (1 << 19); // CFILT (default) if (core->tvnorm & V4L2_STD_SECAM) { value |= (1 << 15); value |= (1 << 16); } if (INPUT(core->input).type == CX88_VMUX_SVIDEO) value |= (1 << 13) | (1 << 5); if (V4L2_FIELD_INTERLACED == field) value |= (1 << 3); // VINT (interlaced vertical scaling) if (width < 385) value |= (1 << 0); // 3-tap interpolation if (width < 193) value |= (1 << 1); // 5-tap interpolation if (nocomb) value |= (3 << 5); // disable comb filter cx_write(MO_FILTER_EVEN, value); cx_write(MO_FILTER_ODD, value); dprintk(1,"set_scale: filter 0x%04x\n", value); return 0; } static const u32 xtal = 28636363; static int set_pll(struct cx88_core *core, int prescale, u32 ofreq) { static u32 pre[] = { 0, 0, 0, 3, 2, 1 }; u64 pll; u32 reg; int i; if (prescale < 2) prescale = 2; if (prescale > 5) prescale = 5; pll = ofreq * 8 * prescale * (u64)(1 << 20); do_div(pll,xtal); reg = (pll & 0x3ffffff) | (pre[prescale] << 26); if (((reg >> 20) & 0x3f) < 14) { printk("%s/0: pll out of range\n",core->name); return -1; } dprintk(1,"set_pll: MO_PLL_REG 0x%08x [old=0x%08x,freq=%d]\n", reg, cx_read(MO_PLL_REG), ofreq); cx_write(MO_PLL_REG, reg); for (i = 0; i < 100; i++) { reg = cx_read(MO_DEVICE_STATUS); if (reg & (1<<2)) { dprintk(1,"pll locked [pre=%d,ofreq=%d]\n", prescale,ofreq); return 0; } dprintk(1,"pll not locked yet, waiting ...\n"); msleep(10); } dprintk(1,"pll NOT locked [pre=%d,ofreq=%d]\n",prescale,ofreq); return -1; } int cx88_start_audio_dma(struct cx88_core *core) { /* constant 128 made buzz in analog Nicam-stereo for bigger fifo_size */ int bpl = cx88_sram_channels[SRAM_CH25].fifo_size/4; /* If downstream RISC is enabled, bail out; ALSA is managing DMA */ if (cx_read(MO_AUD_DMACNTRL) & 0x10) return 0; /* setup fifo + format */ cx88_sram_channel_setup(core, &cx88_sram_channels[SRAM_CH25], bpl, 0); cx88_sram_channel_setup(core, &cx88_sram_channels[SRAM_CH26], bpl, 0); cx_write(MO_AUDD_LNGTH, bpl); /* fifo bpl size */ cx_write(MO_AUDR_LNGTH, bpl); /* fifo bpl size */ /* start dma */ cx_write(MO_AUD_DMACNTRL, 0x0003); /* Up and Down fifo enable */ return 0; } int cx88_stop_audio_dma(struct cx88_core *core) { /* If downstream RISC is enabled, bail out; ALSA is managing DMA */ if (cx_read(MO_AUD_DMACNTRL) & 0x10) return 0; /* stop dma */ cx_write(MO_AUD_DMACNTRL, 0x0000); return 0; } static int set_tvaudio(struct cx88_core *core) { v4l2_std_id norm = core->tvnorm; if (CX88_VMUX_TELEVISION != INPUT(core->input).type) return 0; if (V4L2_STD_PAL_BG & norm) { core->tvaudio = WW_BG; } else if (V4L2_STD_PAL_DK & norm) { core->tvaudio = WW_DK; } else if (V4L2_STD_PAL_I & norm) { core->tvaudio = WW_I; } else if (V4L2_STD_SECAM_L & norm) { core->tvaudio = WW_L; } else if (V4L2_STD_SECAM_DK & norm) { core->tvaudio = WW_DK; } else if ((V4L2_STD_NTSC_M & norm) || (V4L2_STD_PAL_M & norm)) { core->tvaudio = WW_BTSC; } else if (V4L2_STD_NTSC_M_JP & norm) { core->tvaudio = WW_EIAJ; } else { printk("%s/0: tvaudio support needs work for this tv norm [%s], sorry\n", core->name, v4l2_norm_to_name(core->tvnorm)); core->tvaudio = 0; return 0; } cx_andor(MO_AFECFG_IO, 0x1f, 0x0); cx88_set_tvaudio(core); /* cx88_set_stereo(dev,V4L2_TUNER_MODE_STEREO); */ /* This should be needed only on cx88-alsa. It seems that some cx88 chips have bugs and does require DMA enabled for it to work. */ cx88_start_audio_dma(core); return 0; } int cx88_set_tvnorm(struct cx88_core *core, v4l2_std_id norm) { u32 fsc8; u32 adc_clock; u32 vdec_clock; u32 step_db,step_dr; u64 tmp64; u32 bdelay,agcdelay,htotal; u32 cxiformat, cxoformat; core->tvnorm = norm; fsc8 = norm_fsc8(norm); adc_clock = xtal; vdec_clock = fsc8; step_db = fsc8; step_dr = fsc8; if (norm & V4L2_STD_NTSC_M_JP) { cxiformat = VideoFormatNTSCJapan; cxoformat = 0x181f0008; } else if (norm & V4L2_STD_NTSC_443) { cxiformat = VideoFormatNTSC443; cxoformat = 0x181f0008; } else if (norm & V4L2_STD_PAL_M) { cxiformat = VideoFormatPALM; cxoformat = 0x1c1f0008; } else if (norm & V4L2_STD_PAL_N) { cxiformat = VideoFormatPALN; cxoformat = 0x1c1f0008; } else if (norm & V4L2_STD_PAL_Nc) { cxiformat = VideoFormatPALNC; cxoformat = 0x1c1f0008; } else if (norm & V4L2_STD_PAL_60) { cxiformat = VideoFormatPAL60; cxoformat = 0x181f0008; } else if (norm & V4L2_STD_NTSC) { cxiformat = VideoFormatNTSC; cxoformat = 0x181f0008; } else if (norm & V4L2_STD_SECAM) { step_db = 4250000 * 8; step_dr = 4406250 * 8; cxiformat = VideoFormatSECAM; cxoformat = 0x181f0008; } else { /* PAL */ cxiformat = VideoFormatPAL; cxoformat = 0x181f0008; } dprintk(1,"set_tvnorm: \"%s\" fsc8=%d adc=%d vdec=%d db/dr=%d/%d\n", v4l2_norm_to_name(core->tvnorm), fsc8, adc_clock, vdec_clock, step_db, step_dr); set_pll(core,2,vdec_clock); dprintk(1,"set_tvnorm: MO_INPUT_FORMAT 0x%08x [old=0x%08x]\n", cxiformat, cx_read(MO_INPUT_FORMAT) & 0x0f); cx_andor(MO_INPUT_FORMAT, 0xf, cxiformat); // FIXME: as-is from DScaler dprintk(1,"set_tvnorm: MO_OUTPUT_FORMAT 0x%08x [old=0x%08x]\n", cxoformat, cx_read(MO_OUTPUT_FORMAT)); cx_write(MO_OUTPUT_FORMAT, cxoformat); // MO_SCONV_REG = adc clock / video dec clock * 2^17 tmp64 = adc_clock * (u64)(1 << 17); do_div(tmp64, vdec_clock); dprintk(1,"set_tvnorm: MO_SCONV_REG 0x%08x [old=0x%08x]\n", (u32)tmp64, cx_read(MO_SCONV_REG)); cx_write(MO_SCONV_REG, (u32)tmp64); // MO_SUB_STEP = 8 * fsc / video dec clock * 2^22 tmp64 = step_db * (u64)(1 << 22); do_div(tmp64, vdec_clock); dprintk(1,"set_tvnorm: MO_SUB_STEP 0x%08x [old=0x%08x]\n", (u32)tmp64, cx_read(MO_SUB_STEP)); cx_write(MO_SUB_STEP, (u32)tmp64); // MO_SUB_STEP_DR = 8 * 4406250 / video dec clock * 2^22 tmp64 = step_dr * (u64)(1 << 22); do_div(tmp64, vdec_clock); dprintk(1,"set_tvnorm: MO_SUB_STEP_DR 0x%08x [old=0x%08x]\n", (u32)tmp64, cx_read(MO_SUB_STEP_DR)); cx_write(MO_SUB_STEP_DR, (u32)tmp64); // bdelay + agcdelay bdelay = vdec_clock * 65 / 20000000 + 21; agcdelay = vdec_clock * 68 / 20000000 + 15; dprintk(1,"set_tvnorm: MO_AGC_BURST 0x%08x [old=0x%08x,bdelay=%d,agcdelay=%d]\n", (bdelay << 8) | agcdelay, cx_read(MO_AGC_BURST), bdelay, agcdelay); cx_write(MO_AGC_BURST, (bdelay << 8) | agcdelay); // htotal tmp64 = norm_htotal(norm) * (u64)vdec_clock; do_div(tmp64, fsc8); htotal = (u32)tmp64 | (HLNotchFilter4xFsc << 11); dprintk(1,"set_tvnorm: MO_HTOTAL 0x%08x [old=0x%08x,htotal=%d]\n", htotal, cx_read(MO_HTOTAL), (u32)tmp64); cx_write(MO_HTOTAL, htotal); // vbi stuff, set vbi offset to 10 (for 20 Clk*2 pixels), this makes // the effective vbi offset ~244 samples, the same as the Bt8x8 cx_write(MO_VBI_PACKET, (10<<11) | norm_vbipack(norm)); // this is needed as well to set all tvnorm parameter cx88_set_scale(core, 320, 240, V4L2_FIELD_INTERLACED); // audio set_tvaudio(core); // tell i2c chips cx88_call_i2c_clients(core,VIDIOC_S_STD,&norm); // done return 0; } /* ------------------------------------------------------------------ */ struct video_device *cx88_vdev_init(struct cx88_core *core, struct pci_dev *pci, struct video_device *template, char *type) { struct video_device *vfd; vfd = video_device_alloc(); if (NULL == vfd) return NULL; *vfd = *template; vfd->minor = -1; vfd->dev = &pci->dev; vfd->release = video_device_release; snprintf(vfd->name, sizeof(vfd->name), "%s %s (%s)", core->name, type, core->board.name); return vfd; } struct cx88_core* cx88_core_get(struct pci_dev *pci) { struct cx88_core *core; struct list_head *item; mutex_lock(&devlist); list_for_each(item,&cx88_devlist) { core = list_entry(item, struct cx88_core, devlist); if (pci->bus->number != core->pci_bus) continue; if (PCI_SLOT(pci->devfn) != core->pci_slot) continue; if (0 != cx88_get_resources(core, pci)) { mutex_unlock(&devlist); return NULL; } atomic_inc(&core->refcount); mutex_unlock(&devlist); return core; } core = cx88_core_create(pci, cx88_devcount); if (NULL != core) { cx88_devcount++; list_add_tail(&core->devlist, &cx88_devlist); } mutex_unlock(&devlist); return core; } void cx88_core_put(struct cx88_core *core, struct pci_dev *pci) { release_mem_region(pci_resource_start(pci,0), pci_resource_len(pci,0)); if (!atomic_dec_and_test(&core->refcount)) return; mutex_lock(&devlist); cx88_ir_fini(core); if (0 == core->i2c_rc) i2c_del_adapter(&core->i2c_adap); list_del(&core->devlist); iounmap(core->lmmio); cx88_devcount--; mutex_unlock(&devlist); kfree(core); } /* ------------------------------------------------------------------ */ EXPORT_SYMBOL(cx88_print_irqbits); EXPORT_SYMBOL(cx88_core_irq); EXPORT_SYMBOL(cx88_wakeup); EXPORT_SYMBOL(cx88_reset); EXPORT_SYMBOL(cx88_shutdown); EXPORT_SYMBOL(cx88_risc_buffer); EXPORT_SYMBOL(cx88_risc_databuffer); EXPORT_SYMBOL(cx88_risc_stopper); EXPORT_SYMBOL(cx88_free_buffer); EXPORT_SYMBOL(cx88_sram_channels); EXPORT_SYMBOL(cx88_sram_channel_setup); EXPORT_SYMBOL(cx88_sram_channel_dump); EXPORT_SYMBOL(cx88_set_tvnorm); EXPORT_SYMBOL(cx88_set_scale); EXPORT_SYMBOL(cx88_vdev_init); EXPORT_SYMBOL(cx88_core_get); EXPORT_SYMBOL(cx88_core_put); /* * Local variables: * c-basic-offset: 8 * End: * kate: eol "unix"; indent-width 3; remove-trailing-space on; replace-trailing-space-save on; tab-width 8; replace-tabs off; space-indent off; mixed-indent off */