/* * This file is part of UBIFS. * * Copyright (C) 2006-2008 Nokia Corporation. * * This program is free software; you can redistribute it and/or modify it * under the terms of the GNU General Public License version 2 as published by * the Free Software Foundation. * * This program is distributed in the hope that it will be useful, but WITHOUT * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for * more details. * * You should have received a copy of the GNU General Public License along with * this program; if not, write to the Free Software Foundation, Inc., 51 * Franklin St, Fifth Floor, Boston, MA 02110-1301 USA * * Authors: Adrian Hunter * Artem Bityutskiy (Битюцкий Артём) */ /* * This file implements the functions that access LEB properties and their * categories. LEBs are categorized based on the needs of UBIFS, and the * categories are stored as either heaps or lists to provide a fast way of * finding a LEB in a particular category. For example, UBIFS may need to find * an empty LEB for the journal, or a very dirty LEB for garbage collection. */ #include "ubifs.h" /** * get_heap_comp_val - get the LEB properties value for heap comparisons. * @lprops: LEB properties * @cat: LEB category */ static int get_heap_comp_val(struct ubifs_lprops *lprops, int cat) { switch (cat) { case LPROPS_FREE: return lprops->free; case LPROPS_DIRTY_IDX: return lprops->free + lprops->dirty; default: return lprops->dirty; } } /** * move_up_lpt_heap - move a new heap entry up as far as possible. * @c: UBIFS file-system description object * @heap: LEB category heap * @lprops: LEB properties to move * @cat: LEB category * * New entries to a heap are added at the bottom and then moved up until the * parent's value is greater. In the case of LPT's category heaps, the value * is either the amount of free space or the amount of dirty space, depending * on the category. */ static void move_up_lpt_heap(struct ubifs_info *c, struct ubifs_lpt_heap *heap, struct ubifs_lprops *lprops, int cat) { int val1, val2, hpos; hpos = lprops->hpos; if (!hpos) return; /* Already top of the heap */ val1 = get_heap_comp_val(lprops, cat); /* Compare to parent and, if greater, move up the heap */ do { int ppos = (hpos - 1) / 2; val2 = get_heap_comp_val(heap->arr[ppos], cat); if (val2 >= val1) return; /* Greater than parent so move up */ heap->arr[ppos]->hpos = hpos; heap->arr[hpos] = heap->arr[ppos]; heap->arr[ppos] = lprops; lprops->hpos = ppos; hpos = ppos; } while (hpos); } /** * adjust_lpt_heap - move a changed heap entry up or down the heap. * @c: UBIFS file-system description object * @heap: LEB category heap * @lprops: LEB properties to move * @hpos: heap position of @lprops * @cat: LEB category * * Changed entries in a heap are moved up or down until the parent's value is * greater. In the case of LPT's category heaps, the value is either the amount * of free space or the amount of dirty space, depending on the category. */ static void adjust_lpt_heap(struct ubifs_info *c, struct ubifs_lpt_heap *heap, struct ubifs_lprops *lprops, int hpos, int cat) { int val1, val2, val3, cpos; val1 = get_heap_comp_val(lprops, cat); /* Compare to parent and, if greater than parent, move up the heap */ if (hpos) { int ppos = (hpos - 1) / 2; val2 = get_heap_comp_val(heap->arr[ppos], cat); if (val1 > val2) { /* Greater than parent so move up */ while (1) { heap->arr[ppos]->hpos = hpos; heap->arr[hpos] = heap->arr[ppos]; heap->arr[ppos] = lprops; lprops->hpos = ppos; hpos = ppos; if (!hpos) return; ppos = (hpos - 1) / 2; val2 = get_heap_comp_val(heap->arr[ppos], cat); if (val1 <= val2) return; /* Still greater than parent so keep going */ } } } /* Not greater than parent, so compare to children */ while (1) { /* Compare to left child */ cpos = hpos * 2 + 1; if (cpos >= heap->cnt) return; val2 = get_heap_comp_val(heap->arr[cpos], cat); if (val1 < val2) { /* Less than left child, so promote biggest child */ if (cpos + 1 < heap->cnt) { val3 = get_heap_comp_val(heap->arr[cpos + 1], cat); if (val3 > val2) cpos += 1; /* Right child is bigger */ } heap->arr[cpos]->hpos = hpos; heap->arr[hpos] = heap->arr[cpos]; heap->arr[cpos] = lprops; lprops->hpos = cpos; hpos = cpos; continue; } /* Compare to right child */ cpos += 1; if (cpos >= heap->cnt) return; val3 = get_heap_comp_val(heap->arr[cpos], cat); if (val1 < val3) { /* Less than right child, so promote right child */ heap->arr[cpos]->hpos = hpos; heap->arr[hpos] = heap->arr[cpos]; heap->arr[cpos] = lprops; lprops->hpos = cpos; hpos = cpos; continue; } return; } } /** * add_to_lpt_heap - add LEB properties to a LEB category heap. * @c: UBIFS file-system description object * @lprops: LEB properties to add * @cat: LEB category * * This function returns %1 if @lprops is added to the heap for LEB category * @cat, otherwise %0 is returned because the heap is full. */ static int add_to_lpt_heap(struct ubifs_info *c, struct ubifs_lprops *lprops, int cat) { struct ubifs_lpt_heap *heap = &c->lpt_heap[cat - 1]; if (heap->cnt >= heap->max_cnt) { const int b = LPT_HEAP_SZ / 2 - 1; int cpos, val1, val2; /* Compare to some other LEB on the bottom of heap */ /* Pick a position kind of randomly */ cpos = (((size_t)lprops >> 4) & b) + b; ubifs_assert(cpos >= b); ubifs_assert(cpos < LPT_HEAP_SZ); ubifs_assert(cpos < heap->cnt); val1 = get_heap_comp_val(lprops, cat); val2 = get_heap_comp_val(heap->arr[cpos], cat); if (val1 > val2) { struct ubifs_lprops *lp; lp = heap->arr[cpos]; lp->flags &= ~LPROPS_CAT_MASK; lp->flags |= LPROPS_UNCAT; list_add(&lp->list, &c->uncat_list); lprops->hpos = cpos; heap->arr[cpos] = lprops; move_up_lpt_heap(c, heap, lprops, cat); dbg_check_heap(c, heap, cat, lprops->hpos); return 1; /* Added to heap */ } dbg_check_heap(c, heap, cat, -1); return 0; /* Not added to heap */ } else { lprops->hpos = heap->cnt++; heap->arr[lprops->hpos] = lprops; move_up_lpt_heap(c, heap, lprops, cat); dbg_check_heap(c, heap, cat, lprops->hpos); return 1; /* Added to heap */ } } /** * remove_from_lpt_heap - remove LEB properties from a LEB category heap. * @c: UBIFS file-system description object * @lprops: LEB properties to remove * @cat: LEB category */ static void remove_from_lpt_heap(struct ubifs_info *c, struct ubifs_lprops *lprops, int cat) { struct ubifs_lpt_heap *heap; int hpos = lprops->hpos; heap = &c->lpt_heap[cat - 1]; ubifs_assert(hpos >= 0 && hpos < heap->cnt); ubifs_assert(heap->arr[hpos] == lprops); heap->cnt -= 1; if (hpos < heap->cnt) { heap->arr[hpos] = heap->arr[heap->cnt]; heap->arr[hpos]->hpos = hpos; adjust_lpt_heap(c, heap, heap->arr[hpos], hpos, cat); } dbg_check_heap(c, heap, cat, -1); } /** * lpt_heap_replace - replace lprops in a category heap. * @c: UBIFS file-system description object * @old_lprops: LEB properties to replace * @new_lprops: LEB properties with which to replace * @cat: LEB category * * During commit it is sometimes necessary to copy a pnode (see dirty_cow_pnode) * and the lprops that the pnode contains. When that happens, references in * the category heaps to those lprops must be updated to point to the new * lprops. This function does that. */ static void lpt_heap_replace(struct ubifs_info *c, struct ubifs_lprops *old_lprops, struct ubifs_lprops *new_lprops, int cat) { struct ubifs_lpt_heap *heap; int hpos = new_lprops->hpos; heap = &c->lpt_heap[cat - 1]; heap->arr[hpos] = new_lprops; } /** * ubifs_add_to_cat - add LEB properties to a category list or heap. * @c: UBIFS file-system description object * @lprops: LEB properties to add * @cat: LEB category to which to add * * LEB properties are categorized to enable fast find operations. */ void ubifs_add_to_cat(struct ubifs_info *c, struct ubifs_lprops *lprops, int cat) { switch (cat) { case LPROPS_DIRTY: case LPROPS_DIRTY_IDX: case LPROPS_FREE: if (add_to_lpt_heap(c, lprops, cat)) break; /* No more room on heap so make it un-categorized */ cat = LPROPS_UNCAT; /* Fall through */ case LPROPS_UNCAT: list_add(&lprops->list, &c->uncat_list); break; case LPROPS_EMPTY: list_add(&lprops->list, &c->empty_list); break; case LPROPS_FREEABLE: list_add(&lprops->list, &c->freeable_list); c->freeable_cnt += 1; break; case LPROPS_FRDI_IDX: list_add(&lprops->list, &c->frdi_idx_list); break; default: ubifs_assert(0); } lprops->flags &= ~LPROPS_CAT_MASK; lprops->flags |= cat; } /** * ubifs_remove_from_cat - remove LEB properties from a category list or heap. * @c: UBIFS file-system description object * @lprops: LEB properties to remove * @cat: LEB category from which to remove * * LEB properties are categorized to enable fast find operations. */ static void ubifs_remove_from_cat(struct ubifs_info *c, struct ubifs_lprops *lprops, int cat) { switch (cat) { case LPROPS_DIRTY: case LPROPS_DIRTY_IDX: case LPROPS_FREE: remove_from_lpt_heap(c, lprops, cat); break; case LPROPS_FREEABLE: c->freeable_cnt -= 1; ubifs_assert(c->freeable_cnt >= 0); /* Fall through */ case LPROPS_UNCAT: case LPROPS_EMPTY: case LPROPS_FRDI_IDX: ubifs_assert(!list_empty(&lprops->list)); list_del(&lprops->list); break; default: ubifs_assert(0); } } /** * ubifs_replace_cat - replace lprops in a category list or heap. * @c: UBIFS file-system description object * @old_lprops: LEB properties to replace * @new_lprops: LEB properties with which to replace * * During commit it is sometimes necessary to copy a pnode (see dirty_cow_pnode) * and the lprops that the pnode contains. When that happens, references in * category lists and heaps must be replaced. This function does that. */ void ubifs_replace_cat(struct ubifs_info *c, struct ubifs_lprops *old_lprops, struct ubifs_lprops *new_lprops) { int cat; cat = new_lprops->flags & LPROPS_CAT_MASK; switch (cat) { case LPROPS_DIRTY: case LPROPS_DIRTY_IDX: case LPROPS_FREE: lpt_heap_replace(c, old_lprops, new_lprops, cat); break; case LPROPS_UNCAT: case LPROPS_EMPTY: case LPROPS_FREEABLE: case LPROPS_FRDI_IDX: list_replace(&old_lprops->list, &new_lprops->list); break; default: ubifs_assert(0); } } /** * ubifs_ensure_cat - ensure LEB properties are categorized. * @c: UBIFS file-system description object * @lprops: LEB properties * * A LEB may have fallen off of the bottom of a heap, and ended up as * un-categorized even though it has enough space for us now. If that is the * case this function will put the LEB back onto a heap. */ void ubifs_ensure_cat(struct ubifs_info *c, struct ubifs_lprops *lprops) { int cat = lprops->flags & LPROPS_CAT_MASK; if (cat != LPROPS_UNCAT) return; cat = ubifs_categorize_lprops(c, lprops); if (cat == LPROPS_UNCAT) return; ubifs_remove_from_cat(c, lprops, LPROPS_UNCAT); ubifs_add_to_cat(c, lprops, cat); } /** * ubifs_categorize_lprops - categorize LEB properties. * @c: UBIFS file-system description object * @lprops: LEB properties to categorize * * LEB properties are categorized to enable fast find operations. This function * returns the LEB category to which the LEB properties belong. Note however * that if the LEB category is stored as a heap and the heap is full, the * LEB properties may have their category changed to %LPROPS_UNCAT. */ int ubifs_categorize_lprops(const struct ubifs_info *c, const struct ubifs_lprops *lprops) { if (lprops->flags & LPROPS_TAKEN) return LPROPS_UNCAT; if (lprops->free == c->leb_size) { ubifs_assert(!(lprops->flags & LPROPS_INDEX)); return LPROPS_EMPTY; } if (lprops->free + lprops->dirty == c->leb_size) { if (lprops->flags & LPROPS_INDEX) return LPROPS_FRDI_IDX; else return LPROPS_FREEABLE; } if (lprops->flags & LPROPS_INDEX) { if (lprops->dirty + lprops->free >= c->min_idx_node_sz) return LPROPS_DIRTY_IDX; } else { if (lprops->dirty >= c->dead_wm && lprops->dirty > lprops->free) return LPROPS_DIRTY; if (lprops->free > 0) return LPROPS_FREE; } return LPROPS_UNCAT; } /** * change_category - change LEB properties category. * @c: UBIFS file-system description object * @lprops: LEB properties to re-categorize * * LEB properties are categorized to enable fast find operations. When the LEB * properties change they must be re-categorized. */ static void change_category(struct ubifs_info *c, struct ubifs_lprops *lprops) { int old_cat = lprops->flags & LPROPS_CAT_MASK; int new_cat = ubifs_categorize_lprops(c, lprops); if (old_cat == new_cat) { struct ubifs_lpt_heap *heap = &c->lpt_heap[new_cat - 1]; /* lprops on a heap now must be moved up or down */ if (new_cat < 1 || new_cat > LPROPS_HEAP_CNT) return; /* Not on a heap */ heap = &c->lpt_heap[new_cat - 1]; adjust_lpt_heap(c, heap, lprops, lprops->hpos, new_cat); } else { ubifs_remove_from_cat(c, lprops, old_cat); ubifs_add_to_cat(c, lprops, new_cat); } } /** * ubifs_calc_dark - calculate LEB dark space size. * @c: the UBIFS file-system description object * @spc: amount of free and dirty space in the LEB * * This function calculates and returns amount of dark space in an LEB which * has @spc bytes of free and dirty space. * * UBIFS is trying to account the space which might not be usable, and this * space is called "dark space". For example, if an LEB has only %512 free * bytes, it is dark space, because it cannot fit a large data node. */ int ubifs_calc_dark(const struct ubifs_info *c, int spc) { ubifs_assert(!(spc & 7)); if (spc < c->dark_wm) return spc; /* * If we have slightly more space then the dark space watermark, we can * anyway safely assume it we'll be able to write a node of the * smallest size there. */ if (spc - c->dark_wm < MIN_WRITE_SZ) return spc - MIN_WRITE_SZ; return c->dark_wm; } /** * is_lprops_dirty - determine if LEB properties are dirty. * @c: the UBIFS file-system description object * @lprops: LEB properties to test */ static int is_lprops_dirty(struct ubifs_info *c, struct ubifs_lprops *lprops) { struct ubifs_pnode *pnode; int pos; pos = (lprops->lnum - c->main_first) & (UBIFS_LPT_FANOUT - 1); pnode = (struct ubifs_pnode *)container_of(lprops - pos, struct ubifs_pnode, lprops[0]); return !test_bit(COW_ZNODE, &pnode->flags) && test_bit(DIRTY_CNODE, &pnode->flags); } /** * ubifs_change_lp - change LEB properties. * @c: the UBIFS file-system description object * @lp: LEB properties to change * @free: new free space amount * @dirty: new dirty space amount * @flags: new flags * @idx_gc_cnt: change to the count of @idx_gc list * * This function changes LEB properties (@free, @dirty or @flag). However, the * property which has the %LPROPS_NC value is not changed. Returns a pointer to * the updated LEB properties on success and a negative error code on failure. * * Note, the LEB properties may have had to be copied (due to COW) and * consequently the pointer returned may not be the same as the pointer * passed. */ const struct ubifs_lprops *ubifs_change_lp(struct ubifs_info *c, const struct ubifs_lprops *lp, int free, int dirty, int flags, int idx_gc_cnt) { /* * This is the only function that is allowed to change lprops, so we * discard the "const" qualifier. */ struct ubifs_lprops *lprops = (struct ubifs_lprops *)lp; dbg_lp("LEB %d, free %d, dirty %d, flags %d", lprops->lnum, free, dirty, flags); ubifs_assert(mutex_is_locked(&c->lp_mutex)); ubifs_assert(c->lst.empty_lebs >= 0 && c->lst.empty_lebs <= c->main_lebs); ubifs_assert(c->freeable_cnt >= 0); ubifs_assert(c->freeable_cnt <= c->main_lebs); ubifs_assert(c->lst.taken_empty_lebs >= 0); ubifs_assert(c->lst.taken_empty_lebs <= c->lst.empty_lebs); ubifs_assert(!(c->lst.total_free & 7) && !(c->lst.total_dirty & 7)); ubifs_assert(!(c->lst.total_dead & 7) && !(c->lst.total_dark & 7)); ubifs_assert(!(c->lst.total_used & 7)); ubifs_assert(free == LPROPS_NC || free >= 0); ubifs_assert(dirty == LPROPS_NC || dirty >= 0); if (!is_lprops_dirty(c, lprops)) { lprops = ubifs_lpt_lookup_dirty(c, lprops->lnum); if (IS_ERR(lprops)) return lprops; } else ubifs_assert(lprops == ubifs_lpt_lookup_dirty(c, lprops->lnum)); ubifs_assert(!(lprops->free & 7) && !(lprops->dirty & 7)); spin_lock(&c->space_lock); if ((lprops->flags & LPROPS_TAKEN) && lprops->free == c->leb_size) c->lst.taken_empty_lebs -= 1; if (!(lprops->flags & LPROPS_INDEX)) { int old_spc; old_spc = lprops->free + lprops->dirty; if (old_spc < c->dead_wm) c->lst.total_dead -= old_spc; else c->lst.total_dark -= ubifs_calc_dark(c, old_spc); c->lst.total_used -= c->leb_size - old_spc; } if (free != LPROPS_NC) { free = ALIGN(free, 8); c->lst.total_free += free - lprops->free; /* Increase or decrease empty LEBs counter if needed */ if (free == c->leb_size) { if (lprops->free != c->leb_size) c->lst.empty_lebs += 1; } else if (lprops->free == c->leb_size) c->lst.empty_lebs -= 1; lprops->free = free; } if (dirty != LPROPS_NC) { dirty = ALIGN(dirty, 8); c->lst.total_dirty += dirty - lprops->dirty; lprops->dirty = dirty; } if (flags != LPROPS_NC) { /* Take care about indexing LEBs counter if needed */ if ((lprops->flags & LPROPS_INDEX)) { if (!(flags & LPROPS_INDEX)) c->lst.idx_lebs -= 1; } else if (flags & LPROPS_INDEX) c->lst.idx_lebs += 1; lprops->flags = flags; } if (!(lprops->flags & LPROPS_INDEX)) { int new_spc; new_spc = lprops->free + lprops->dirty; if (new_spc < c->dead_wm) c->lst.total_dead += new_spc; else c->lst.total_dark += ubifs_calc_dark(c, new_spc); c->lst.total_used += c->leb_size - new_spc; } if ((lprops->flags & LPROPS_TAKEN) && lprops->free == c->leb_size) c->lst.taken_empty_lebs += 1; change_category(c, lprops); c->idx_gc_cnt += idx_gc_cnt; spin_unlock(&c->space_lock); return lprops; } /** * ubifs_get_lp_stats - get lprops statistics. * @c: UBIFS file-system description object * @st: return statistics */ void ubifs_get_lp_stats(struct ubifs_info *c, struct ubifs_lp_stats *lst) { spin_lock(&c->space_lock); memcpy(lst, &c->lst, sizeof(struct ubifs_lp_stats)); spin_unlock(&c->space_lock); } /** * ubifs_change_one_lp - change LEB properties. * @c: the UBIFS file-system description object * @lnum: LEB to change properties for * @free: amount of free space * @dirty: amount of dirty space * @flags_set: flags to set * @flags_clean: flags to clean * @idx_gc_cnt: change to the count of idx_gc list * * This function changes properties of LEB @lnum. It is a helper wrapper over * 'ubifs_change_lp()' which hides lprops get/release. The arguments are the * same as in case of 'ubifs_change_lp()'. Returns zero in case of success and * a negative error code in case of failure. */ int ubifs_change_one_lp(struct ubifs_info *c, int lnum, int free, int dirty, int flags_set, int flags_clean, int idx_gc_cnt) { int err = 0, flags; const struct ubifs_lprops *lp; ubifs_get_lprops(c); lp = ubifs_lpt_lookup_dirty(c, lnum); if (IS_ERR(lp)) { err = PTR_ERR(lp); goto out; } flags = (lp->flags | flags_set) & ~flags_clean; lp = ubifs_change_lp(c, lp, free, dirty, flags, idx_gc_cnt); if (IS_ERR(lp)) err = PTR_ERR(lp); out: ubifs_release_lprops(c); if (err) ubifs_err("cannot change properties of LEB %d, error %d", lnum, err); return err; } /** * ubifs_update_one_lp - update LEB properties. * @c: the UBIFS file-system description object * @lnum: LEB to change properties for * @free: amount of free space * @dirty: amount of dirty space to add * @flags_set: flags to set * @flags_clean: flags to clean * * This function is the same as 'ubifs_change_one_lp()' but @dirty is added to * current dirty space, not substitutes it. */ int ubifs_update_one_lp(struct ubifs_info *c, int lnum, int free, int dirty, int flags_set, int flags_clean) { int err = 0, flags; const struct ubifs_lprops *lp; ubifs_get_lprops(c); lp = ubifs_lpt_lookup_dirty(c, lnum); if (IS_ERR(lp)) { err = PTR_ERR(lp); goto out; } flags = (lp->flags | flags_set) & ~flags_clean; lp = ubifs_change_lp(c, lp, free, lp->dirty + dirty, flags, 0); if (IS_ERR(lp)) err = PTR_ERR(lp); out: ubifs_release_lprops(c); if (err) ubifs_err("cannot update properties of LEB %d, error %d", lnum, err); return err; } /** * ubifs_read_one_lp - read LEB properties. * @c: the UBIFS file-system description object * @lnum: LEB to read properties for * @lp: where to store read properties * * This helper function reads properties of a LEB @lnum and stores them in @lp. * Returns zero in case of success and a negative error code in case of * failure. */ int ubifs_read_one_lp(struct ubifs_info *c, int lnum, struct ubifs_lprops *lp) { int err = 0; const struct ubifs_lprops *lpp; ubifs_get_lprops(c); lpp = ubifs_lpt_lookup(c, lnum); if (IS_ERR(lpp)) { err = PTR_ERR(lpp); ubifs_err("cannot read properties of LEB %d, error %d", lnum, err); goto out; } memcpy(lp, lpp, sizeof(struct ubifs_lprops)); out: ubifs_release_lprops(c); return err; } /** * ubifs_fast_find_free - try to find a LEB with free space quickly. * @c: the UBIFS file-system description object * * This function returns LEB properties for a LEB with free space or %NULL if * the function is unable to find a LEB quickly. */ const struct ubifs_lprops *ubifs_fast_find_free(struct ubifs_info *c) { struct ubifs_lprops *lprops; struct ubifs_lpt_heap *heap; ubifs_assert(mutex_is_locked(&c->lp_mutex)); heap = &c->lpt_heap[LPROPS_FREE - 1]; if (heap->cnt == 0) return NULL; lprops = heap->arr[0]; ubifs_assert(!(lprops->flags & LPROPS_TAKEN)); ubifs_assert(!(lprops->flags & LPROPS_INDEX)); return lprops; } /** * ubifs_fast_find_empty - try to find an empty LEB quickly. * @c: the UBIFS file-system description object * * This function returns LEB properties for an empty LEB or %NULL if the * function is unable to find an empty LEB quickly. */ const struct ubifs_lprops *ubifs_fast_find_empty(struct ubifs_info *c) { struct ubifs_lprops *lprops; ubifs_assert(mutex_is_locked(&c->lp_mutex)); if (list_empty(&c->empty_list)) return NULL; lprops = list_entry(c->empty_list.next, struct ubifs_lprops, list); ubifs_assert(!(lprops->flags & LPROPS_TAKEN)); ubifs_assert(!(lprops->flags & LPROPS_INDEX)); ubifs_assert(lprops->free == c->leb_size); return lprops; } /** * ubifs_fast_find_freeable - try to find a freeable LEB quickly. * @c: the UBIFS file-system description object * * This function returns LEB properties for a freeable LEB or %NULL if the * function is unable to find a freeable LEB quickly. */ const struct ubifs_lprops *ubifs_fast_find_freeable(struct ubifs_info *c) { struct ubifs_lprops *lprops; ubifs_assert(mutex_is_locked(&c->lp_mutex)); if (list_empty(&c->freeable_list)) return NULL; lprops = list_entry(c->freeable_list.next, struct ubifs_lprops, list); ubifs_assert(!(lprops->flags & LPROPS_TAKEN)); ubifs_assert(!(lprops->flags & LPROPS_INDEX)); ubifs_assert(lprops->free + lprops->dirty == c->leb_size); ubifs_assert(c->freeable_cnt > 0); return lprops; } /** * ubifs_fast_find_frdi_idx - try to find a freeable index LEB quickly. * @c: the UBIFS file-system description object * * This function returns LEB properties for a freeable index LEB or %NULL if the * function is unable to find a freeable index LEB quickly. */ const struct ubifs_lprops *ubifs_fast_find_frdi_idx(struct ubifs_info *c) { struct ubifs_lprops *lprops; ubifs_assert(mutex_is_locked(&c->lp_mutex)); if (list_empty(&c->frdi_idx_list)) return NULL; lprops = list_entry(c->frdi_idx_list.next, struct ubifs_lprops, list); ubifs_assert(!(lprops->flags & LPROPS_TAKEN)); ubifs_assert((lprops->flags & LPROPS_INDEX)); ubifs_assert(lprops->free + lprops->dirty == c->leb_size); return lprops; } #ifdef CONFIG_UBIFS_FS_DEBUG /** * dbg_check_cats - check category heaps and lists. * @c: UBIFS file-system description object * * This function returns %0 on success and a negative error code on failure. */ int dbg_check_cats(struct ubifs_info *c) { struct ubifs_lprops *lprops; struct list_head *pos; int i, cat; if (!(ubifs_chk_flags & (UBIFS_CHK_GEN | UBIFS_CHK_LPROPS))) return 0; list_for_each_entry(lprops, &c->empty_list, list) { if (lprops->free != c->leb_size) { ubifs_err("non-empty LEB %d on empty list " "(free %d dirty %d flags %d)", lprops->lnum, lprops->free, lprops->dirty, lprops->flags); return -EINVAL; } if (lprops->flags & LPROPS_TAKEN) { ubifs_err("taken LEB %d on empty list " "(free %d dirty %d flags %d)", lprops->lnum, lprops->free, lprops->dirty, lprops->flags); return -EINVAL; } } i = 0; list_for_each_entry(lprops, &c->freeable_list, list) { if (lprops->free + lprops->dirty != c->leb_size) { ubifs_err("non-freeable LEB %d on freeable list " "(free %d dirty %d flags %d)", lprops->lnum, lprops->free, lprops->dirty, lprops->flags); return -EINVAL; } if (lprops->flags & LPROPS_TAKEN) { ubifs_err("taken LEB %d on freeable list " "(free %d dirty %d flags %d)", lprops->lnum, lprops->free, lprops->dirty, lprops->flags); return -EINVAL; } i += 1; } if (i != c->freeable_cnt) { ubifs_err("freeable list count %d expected %d", i, c->freeable_cnt); return -EINVAL; } i = 0; list_for_each(pos, &c->idx_gc) i += 1; if (i != c->idx_gc_cnt) { ubifs_err("idx_gc list count %d expected %d", i, c->idx_gc_cnt); return -EINVAL; } list_for_each_entry(lprops, &c->frdi_idx_list, list) { if (lprops->free + lprops->dirty != c->leb_size) { ubifs_err("non-freeable LEB %d on frdi_idx list " "(free %d dirty %d flags %d)", lprops->lnum, lprops->free, lprops->dirty, lprops->flags); return -EINVAL; } if (lprops->flags & LPROPS_TAKEN) { ubifs_err("taken LEB %d on frdi_idx list " "(free %d dirty %d flags %d)", lprops->lnum, lprops->free, lprops->dirty, lprops->flags); return -EINVAL; } if (!(lprops->flags & LPROPS_INDEX)) { ubifs_err("non-index LEB %d on frdi_idx list " "(free %d dirty %d flags %d)", lprops->lnum, lprops->free, lprops->dirty, lprops->flags); return -EINVAL; } } for (cat = 1; cat <= LPROPS_HEAP_CNT; cat++) { struct ubifs_lpt_heap *heap = &c->lpt_heap[cat - 1]; for (i = 0; i < heap->cnt; i++) { lprops = heap->arr[i]; if (!lprops) { ubifs_err("null ptr in LPT heap cat %d", cat); return -EINVAL; } if (lprops->hpos != i) { ubifs_err("bad ptr in LPT heap cat %d", cat); return -EINVAL; } if (lprops->flags & LPROPS_TAKEN) { ubifs_err("taken LEB in LPT heap cat %d", cat); return -EINVAL; } } } return 0; } void dbg_check_heap(struct ubifs_info *c, struct ubifs_lpt_heap *heap, int cat, int add_pos) { int i = 0, j, err = 0; if (!(ubifs_chk_flags & (UBIFS_CHK_GEN | UBIFS_CHK_LPROPS))) return; for (i = 0; i < heap->cnt; i++) { struct ubifs_lprops *lprops = heap->arr[i]; struct ubifs_lprops *lp; if (i != add_pos) if ((lprops->flags & LPROPS_CAT_MASK) != cat) { err = 1; goto out; } if (lprops->hpos != i) { err = 2; goto out; } lp = ubifs_lpt_lookup(c, lprops->lnum); if (IS_ERR(lp)) { err = 3; goto out; } if (lprops != lp) { dbg_msg("lprops %zx lp %zx lprops->lnum %d lp->lnum %d", (size_t)lprops, (size_t)lp, lprops->lnum, lp->lnum); err = 4; goto out; } for (j = 0; j < i; j++) { lp = heap->arr[j]; if (lp == lprops) { err = 5; goto out; } if (lp->lnum == lprops->lnum) { err = 6; goto out; } } } out: if (err) { dbg_msg("failed cat %d hpos %d err %d", cat, i, err); dbg_dump_stack(); dbg_dump_heap(c, heap, cat); } } /** * scan_check_cb - scan callback. * @c: the UBIFS file-system description object * @lp: LEB properties to scan * @in_tree: whether the LEB properties are in main memory * @lst: lprops statistics to update * * This function returns a code that indicates whether the scan should continue * (%LPT_SCAN_CONTINUE), whether the LEB properties should be added to the tree * in main memory (%LPT_SCAN_ADD), or whether the scan should stop * (%LPT_SCAN_STOP). */ static int scan_check_cb(struct ubifs_info *c, const struct ubifs_lprops *lp, int in_tree, struct ubifs_lp_stats *lst) { struct ubifs_scan_leb *sleb; struct ubifs_scan_node *snod; int cat, lnum = lp->lnum, is_idx = 0, used = 0, free, dirty, ret; void *buf = NULL; cat = lp->flags & LPROPS_CAT_MASK; if (cat != LPROPS_UNCAT) { cat = ubifs_categorize_lprops(c, lp); if (cat != (lp->flags & LPROPS_CAT_MASK)) { ubifs_err("bad LEB category %d expected %d", (lp->flags & LPROPS_CAT_MASK), cat); return -EINVAL; } } /* Check lp is on its category list (if it has one) */ if (in_tree) { struct list_head *list = NULL; switch (cat) { case LPROPS_EMPTY: list = &c->empty_list; break; case LPROPS_FREEABLE: list = &c->freeable_list; break; case LPROPS_FRDI_IDX: list = &c->frdi_idx_list; break; case LPROPS_UNCAT: list = &c->uncat_list; break; } if (list) { struct ubifs_lprops *lprops; int found = 0; list_for_each_entry(lprops, list, list) { if (lprops == lp) { found = 1; break; } } if (!found) { ubifs_err("bad LPT list (category %d)", cat); return -EINVAL; } } } /* Check lp is on its category heap (if it has one) */ if (in_tree && cat > 0 && cat <= LPROPS_HEAP_CNT) { struct ubifs_lpt_heap *heap = &c->lpt_heap[cat - 1]; if ((lp->hpos != -1 && heap->arr[lp->hpos]->lnum != lnum) || lp != heap->arr[lp->hpos]) { ubifs_err("bad LPT heap (category %d)", cat); return -EINVAL; } } buf = __vmalloc(c->leb_size, GFP_NOFS, PAGE_KERNEL); if (!buf) return -ENOMEM; /* * After an unclean unmount, empty and freeable LEBs * may contain garbage - do not scan them. */ if (lp->free == c->leb_size) { lst->empty_lebs += 1; lst->total_free += c->leb_size; lst->total_dark += ubifs_calc_dark(c, c->leb_size); return LPT_SCAN_CONTINUE; } if (lp->free + lp->dirty == c->leb_size && !(lp->flags & LPROPS_INDEX)) { lst->total_free += lp->free; lst->total_dirty += lp->dirty; lst->total_dark += ubifs_calc_dark(c, c->leb_size); return LPT_SCAN_CONTINUE; } sleb = ubifs_scan(c, lnum, 0, buf, 0); if (IS_ERR(sleb)) { ret = PTR_ERR(sleb); goto out; } is_idx = -1; list_for_each_entry(snod, &sleb->nodes, list) { int found, level = 0; cond_resched(); if (is_idx == -1) is_idx = (snod->type == UBIFS_IDX_NODE) ? 1 : 0; if (is_idx && snod->type != UBIFS_IDX_NODE) { ubifs_err("indexing node in data LEB %d:%d", lnum, snod->offs); goto out_destroy; } if (snod->type == UBIFS_IDX_NODE) { struct ubifs_idx_node *idx = snod->node; key_read(c, ubifs_idx_key(c, idx), &snod->key); level = le16_to_cpu(idx->level); } found = ubifs_tnc_has_node(c, &snod->key, level, lnum, snod->offs, is_idx); if (found) { if (found < 0) goto out_destroy; used += ALIGN(snod->len, 8); } } free = c->leb_size - sleb->endpt; dirty = sleb->endpt - used; if (free > c->leb_size || free < 0 || dirty > c->leb_size || dirty < 0) { ubifs_err("bad calculated accounting for LEB %d: " "free %d, dirty %d", lnum, free, dirty); goto out_destroy; } if (lp->free + lp->dirty == c->leb_size && free + dirty == c->leb_size) if ((is_idx && !(lp->flags & LPROPS_INDEX)) || (!is_idx && free == c->leb_size) || lp->free == c->leb_size) { /* * Empty or freeable LEBs could contain index * nodes from an uncompleted commit due to an * unclean unmount. Or they could be empty for * the same reason. Or it may simply not have been * unmapped. */ free = lp->free; dirty = lp->dirty; is_idx = 0; } if (is_idx && lp->free + lp->dirty == free + dirty && lnum != c->ihead_lnum) { /* * After an unclean unmount, an index LEB could have a different * amount of free space than the value recorded by lprops. That * is because the in-the-gaps method may use free space or * create free space (as a side-effect of using ubi_leb_change * and not writing the whole LEB). The incorrect free space * value is not a problem because the index is only ever * allocated empty LEBs, so there will never be an attempt to * write to the free space at the end of an index LEB - except * by the in-the-gaps method for which it is not a problem. */ free = lp->free; dirty = lp->dirty; } if (lp->free != free || lp->dirty != dirty) goto out_print; if (is_idx && !(lp->flags & LPROPS_INDEX)) { if (free == c->leb_size) /* Free but not unmapped LEB, it's fine */ is_idx = 0; else { ubifs_err("indexing node without indexing " "flag"); goto out_print; } } if (!is_idx && (lp->flags & LPROPS_INDEX)) { ubifs_err("data node with indexing flag"); goto out_print; } if (free == c->leb_size) lst->empty_lebs += 1; if (is_idx) lst->idx_lebs += 1; if (!(lp->flags & LPROPS_INDEX)) lst->total_used += c->leb_size - free - dirty; lst->total_free += free; lst->total_dirty += dirty; if (!(lp->flags & LPROPS_INDEX)) { int spc = free + dirty; if (spc < c->dead_wm) lst->total_dead += spc; else lst->total_dark += ubifs_calc_dark(c, spc); } ubifs_scan_destroy(sleb); vfree(buf); return LPT_SCAN_CONTINUE; out_print: ubifs_err("bad accounting of LEB %d: free %d, dirty %d flags %#x, " "should be free %d, dirty %d", lnum, lp->free, lp->dirty, lp->flags, free, dirty); dbg_dump_leb(c, lnum); out_destroy: ubifs_scan_destroy(sleb); ret = -EINVAL; out: vfree(buf); return ret; } /** * dbg_check_lprops - check all LEB properties. * @c: UBIFS file-system description object * * This function checks all LEB properties and makes sure they are all correct. * It returns zero if everything is fine, %-EINVAL if there is an inconsistency * and other negative error codes in case of other errors. This function is * called while the file system is locked (because of commit start), so no * additional locking is required. Note that locking the LPT mutex would cause * a circular lock dependency with the TNC mutex. */ int dbg_check_lprops(struct ubifs_info *c) { int i, err; struct ubifs_lp_stats lst; if (!(ubifs_chk_flags & UBIFS_CHK_LPROPS)) return 0; /* * As we are going to scan the media, the write buffers have to be * synchronized. */ for (i = 0; i < c->jhead_cnt; i++) { err = ubifs_wbuf_sync(&c->jheads[i].wbuf); if (err) return err; } memset(&lst, 0, sizeof(struct ubifs_lp_stats)); err = ubifs_lpt_scan_nolock(c, c->main_first, c->leb_cnt - 1, (ubifs_lpt_scan_callback)scan_check_cb, &lst); if (err && err != -ENOSPC) goto out; if (lst.empty_lebs != c->lst.empty_lebs || lst.idx_lebs != c->lst.idx_lebs || lst.total_free != c->lst.total_free || lst.total_dirty != c->lst.total_dirty || lst.total_used != c->lst.total_used) { ubifs_err("bad overall accounting"); ubifs_err("calculated: empty_lebs %d, idx_lebs %d, " "total_free %lld, total_dirty %lld, total_used %lld", lst.empty_lebs, lst.idx_lebs, lst.total_free, lst.total_dirty, lst.total_used); ubifs_err("read from lprops: empty_lebs %d, idx_lebs %d, " "total_free %lld, total_dirty %lld, total_used %lld", c->lst.empty_lebs, c->lst.idx_lebs, c->lst.total_free, c->lst.total_dirty, c->lst.total_used); err = -EINVAL; goto out; } if (lst.total_dead != c->lst.total_dead || lst.total_dark != c->lst.total_dark) { ubifs_err("bad dead/dark space accounting"); ubifs_err("calculated: total_dead %lld, total_dark %lld", lst.total_dead, lst.total_dark); ubifs_err("read from lprops: total_dead %lld, total_dark %lld", c->lst.total_dead, c->lst.total_dark); err = -EINVAL; goto out; } err = dbg_check_cats(c); out: return err; } #endif /* CONFIG_UBIFS_FS_DEBUG */