// SPDX-License-Identifier: GPL-2.0 /* * prepare to run common code * * Copyright (C) 2000 Andrea Arcangeli SuSE */ #define DISABLE_BRANCH_PROFILING /* cpu_feature_enabled() cannot be used this early */ #define USE_EARLY_PGTABLE_L5 #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include /* * Manage page tables very early on. */ extern pmd_t early_dynamic_pgts[EARLY_DYNAMIC_PAGE_TABLES][PTRS_PER_PMD]; static unsigned int __initdata next_early_pgt; pmdval_t early_pmd_flags = __PAGE_KERNEL_LARGE & ~(_PAGE_GLOBAL | _PAGE_NX); #ifdef CONFIG_X86_5LEVEL unsigned int __pgtable_l5_enabled __ro_after_init; unsigned int pgdir_shift __ro_after_init = 39; EXPORT_SYMBOL(pgdir_shift); unsigned int ptrs_per_p4d __ro_after_init = 1; EXPORT_SYMBOL(ptrs_per_p4d); #endif #ifdef CONFIG_DYNAMIC_MEMORY_LAYOUT unsigned long page_offset_base __ro_after_init = __PAGE_OFFSET_BASE_L4; EXPORT_SYMBOL(page_offset_base); unsigned long vmalloc_base __ro_after_init = __VMALLOC_BASE_L4; EXPORT_SYMBOL(vmalloc_base); unsigned long vmemmap_base __ro_after_init = __VMEMMAP_BASE_L4; EXPORT_SYMBOL(vmemmap_base); #endif static inline bool check_la57_support(void) { if (!IS_ENABLED(CONFIG_X86_5LEVEL)) return false; /* * 5-level paging is detected and enabled at kernel decompression * stage. Only check if it has been enabled there. */ if (!(native_read_cr4() & X86_CR4_LA57)) return false; RIP_REL_REF(__pgtable_l5_enabled) = 1; RIP_REL_REF(pgdir_shift) = 48; RIP_REL_REF(ptrs_per_p4d) = 512; RIP_REL_REF(page_offset_base) = __PAGE_OFFSET_BASE_L5; RIP_REL_REF(vmalloc_base) = __VMALLOC_BASE_L5; RIP_REL_REF(vmemmap_base) = __VMEMMAP_BASE_L5; return true; } static unsigned long __head sme_postprocess_startup(struct boot_params *bp, pmdval_t *pmd) { unsigned long vaddr, vaddr_end; int i; /* Encrypt the kernel and related (if SME is active) */ sme_encrypt_kernel(bp); /* * Clear the memory encryption mask from the .bss..decrypted section. * The bss section will be memset to zero later in the initialization so * there is no need to zero it after changing the memory encryption * attribute. */ if (sme_get_me_mask()) { vaddr = (unsigned long)__start_bss_decrypted; vaddr_end = (unsigned long)__end_bss_decrypted; for (; vaddr < vaddr_end; vaddr += PMD_SIZE) { /* * On SNP, transition the page to shared in the RMP table so that * it is consistent with the page table attribute change. * * __start_bss_decrypted has a virtual address in the high range * mapping (kernel .text). PVALIDATE, by way of * early_snp_set_memory_shared(), requires a valid virtual * address but the kernel is currently running off of the identity * mapping so use __pa() to get a *currently* valid virtual address. */ early_snp_set_memory_shared(__pa(vaddr), __pa(vaddr), PTRS_PER_PMD); i = pmd_index(vaddr); pmd[i] -= sme_get_me_mask(); } } /* * Return the SME encryption mask (if SME is active) to be used as a * modifier for the initial pgdir entry programmed into CR3. */ return sme_get_me_mask(); } /* Code in __startup_64() can be relocated during execution, but the compiler * doesn't have to generate PC-relative relocations when accessing globals from * that function. Clang actually does not generate them, which leads to * boot-time crashes. To work around this problem, every global pointer must * be accessed using RIP_REL_REF(). */ unsigned long __head __startup_64(unsigned long physaddr, struct boot_params *bp) { pmd_t (*early_pgts)[PTRS_PER_PMD] = RIP_REL_REF(early_dynamic_pgts); unsigned long pgtable_flags; unsigned long load_delta; pgdval_t *pgd; p4dval_t *p4d; pudval_t *pud; pmdval_t *pmd, pmd_entry; bool la57; int i; la57 = check_la57_support(); /* Is the address too large? */ if (physaddr >> MAX_PHYSMEM_BITS) for (;;); /* * Compute the delta between the address I am compiled to run at * and the address I am actually running at. */ load_delta = physaddr - (unsigned long)(_text - __START_KERNEL_map); RIP_REL_REF(phys_base) = load_delta; /* Is the address not 2M aligned? */ if (load_delta & ~PMD_MASK) for (;;); /* Include the SME encryption mask in the fixup value */ load_delta += sme_get_me_mask(); /* Fixup the physical addresses in the page table */ pgd = &RIP_REL_REF(early_top_pgt)->pgd; pgd[pgd_index(__START_KERNEL_map)] += load_delta; if (la57) { p4d = (p4dval_t *)&RIP_REL_REF(level4_kernel_pgt); p4d[MAX_PTRS_PER_P4D - 1] += load_delta; pgd[pgd_index(__START_KERNEL_map)] = (pgdval_t)p4d | _PAGE_TABLE; } RIP_REL_REF(level3_kernel_pgt)[PTRS_PER_PUD - 2].pud += load_delta; RIP_REL_REF(level3_kernel_pgt)[PTRS_PER_PUD - 1].pud += load_delta; for (i = FIXMAP_PMD_TOP; i > FIXMAP_PMD_TOP - FIXMAP_PMD_NUM; i--) RIP_REL_REF(level2_fixmap_pgt)[i].pmd += load_delta; /* * Set up the identity mapping for the switchover. These * entries should *NOT* have the global bit set! This also * creates a bunch of nonsense entries but that is fine -- * it avoids problems around wraparound. */ pud = &early_pgts[0]->pmd; pmd = &early_pgts[1]->pmd; RIP_REL_REF(next_early_pgt) = 2; pgtable_flags = _KERNPG_TABLE_NOENC + sme_get_me_mask(); if (la57) { p4d = &early_pgts[RIP_REL_REF(next_early_pgt)++]->pmd; i = (physaddr >> PGDIR_SHIFT) % PTRS_PER_PGD; pgd[i + 0] = (pgdval_t)p4d + pgtable_flags; pgd[i + 1] = (pgdval_t)p4d + pgtable_flags; i = physaddr >> P4D_SHIFT; p4d[(i + 0) % PTRS_PER_P4D] = (pgdval_t)pud + pgtable_flags; p4d[(i + 1) % PTRS_PER_P4D] = (pgdval_t)pud + pgtable_flags; } else { i = (physaddr >> PGDIR_SHIFT) % PTRS_PER_PGD; pgd[i + 0] = (pgdval_t)pud + pgtable_flags; pgd[i + 1] = (pgdval_t)pud + pgtable_flags; } i = physaddr >> PUD_SHIFT; pud[(i + 0) % PTRS_PER_PUD] = (pudval_t)pmd + pgtable_flags; pud[(i + 1) % PTRS_PER_PUD] = (pudval_t)pmd + pgtable_flags; pmd_entry = __PAGE_KERNEL_LARGE_EXEC & ~_PAGE_GLOBAL; /* Filter out unsupported __PAGE_KERNEL_* bits: */ pmd_entry &= RIP_REL_REF(__supported_pte_mask); pmd_entry += sme_get_me_mask(); pmd_entry += physaddr; for (i = 0; i < DIV_ROUND_UP(_end - _text, PMD_SIZE); i++) { int idx = i + (physaddr >> PMD_SHIFT); pmd[idx % PTRS_PER_PMD] = pmd_entry + i * PMD_SIZE; } /* * Fixup the kernel text+data virtual addresses. Note that * we might write invalid pmds, when the kernel is relocated * cleanup_highmap() fixes this up along with the mappings * beyond _end. * * Only the region occupied by the kernel image has so far * been checked against the table of usable memory regions * provided by the firmware, so invalidate pages outside that * region. A page table entry that maps to a reserved area of * memory would allow processor speculation into that area, * and on some hardware (particularly the UV platform) even * speculative access to some reserved areas is caught as an * error, causing the BIOS to halt the system. */ pmd = &RIP_REL_REF(level2_kernel_pgt)->pmd; /* invalidate pages before the kernel image */ for (i = 0; i < pmd_index((unsigned long)_text); i++) pmd[i] &= ~_PAGE_PRESENT; /* fixup pages that are part of the kernel image */ for (; i <= pmd_index((unsigned long)_end); i++) if (pmd[i] & _PAGE_PRESENT) pmd[i] += load_delta; /* invalidate pages after the kernel image */ for (; i < PTRS_PER_PMD; i++) pmd[i] &= ~_PAGE_PRESENT; return sme_postprocess_startup(bp, pmd); } /* Wipe all early page tables except for the kernel symbol map */ static void __init reset_early_page_tables(void) { memset(early_top_pgt, 0, sizeof(pgd_t)*(PTRS_PER_PGD-1)); next_early_pgt = 0; write_cr3(__sme_pa_nodebug(early_top_pgt)); } /* Create a new PMD entry */ bool __init __early_make_pgtable(unsigned long address, pmdval_t pmd) { unsigned long physaddr = address - __PAGE_OFFSET; pgdval_t pgd, *pgd_p; p4dval_t p4d, *p4d_p; pudval_t pud, *pud_p; pmdval_t *pmd_p; /* Invalid address or early pgt is done ? */ if (physaddr >= MAXMEM || read_cr3_pa() != __pa_nodebug(early_top_pgt)) return false; again: pgd_p = &early_top_pgt[pgd_index(address)].pgd; pgd = *pgd_p; /* * The use of __START_KERNEL_map rather than __PAGE_OFFSET here is * critical -- __PAGE_OFFSET would point us back into the dynamic * range and we might end up looping forever... */ if (!pgtable_l5_enabled()) p4d_p = pgd_p; else if (pgd) p4d_p = (p4dval_t *)((pgd & PTE_PFN_MASK) + __START_KERNEL_map - phys_base); else { if (next_early_pgt >= EARLY_DYNAMIC_PAGE_TABLES) { reset_early_page_tables(); goto again; } p4d_p = (p4dval_t *)early_dynamic_pgts[next_early_pgt++]; memset(p4d_p, 0, sizeof(*p4d_p) * PTRS_PER_P4D); *pgd_p = (pgdval_t)p4d_p - __START_KERNEL_map + phys_base + _KERNPG_TABLE; } p4d_p += p4d_index(address); p4d = *p4d_p; if (p4d) pud_p = (pudval_t *)((p4d & PTE_PFN_MASK) + __START_KERNEL_map - phys_base); else { if (next_early_pgt >= EARLY_DYNAMIC_PAGE_TABLES) { reset_early_page_tables(); goto again; } pud_p = (pudval_t *)early_dynamic_pgts[next_early_pgt++]; memset(pud_p, 0, sizeof(*pud_p) * PTRS_PER_PUD); *p4d_p = (p4dval_t)pud_p - __START_KERNEL_map + phys_base + _KERNPG_TABLE; } pud_p += pud_index(address); pud = *pud_p; if (pud) pmd_p = (pmdval_t *)((pud & PTE_PFN_MASK) + __START_KERNEL_map - phys_base); else { if (next_early_pgt >= EARLY_DYNAMIC_PAGE_TABLES) { reset_early_page_tables(); goto again; } pmd_p = (pmdval_t *)early_dynamic_pgts[next_early_pgt++]; memset(pmd_p, 0, sizeof(*pmd_p) * PTRS_PER_PMD); *pud_p = (pudval_t)pmd_p - __START_KERNEL_map + phys_base + _KERNPG_TABLE; } pmd_p[pmd_index(address)] = pmd; return true; } static bool __init early_make_pgtable(unsigned long address) { unsigned long physaddr = address - __PAGE_OFFSET; pmdval_t pmd; pmd = (physaddr & PMD_MASK) + early_pmd_flags; return __early_make_pgtable(address, pmd); } void __init do_early_exception(struct pt_regs *regs, int trapnr) { if (trapnr == X86_TRAP_PF && early_make_pgtable(native_read_cr2())) return; if (IS_ENABLED(CONFIG_AMD_MEM_ENCRYPT) && trapnr == X86_TRAP_VC && handle_vc_boot_ghcb(regs)) return; if (trapnr == X86_TRAP_VE && tdx_early_handle_ve(regs)) return; early_fixup_exception(regs, trapnr); } /* Don't add a printk in there. printk relies on the PDA which is not initialized yet. */ void __init clear_bss(void) { memset(__bss_start, 0, (unsigned long) __bss_stop - (unsigned long) __bss_start); memset(__brk_base, 0, (unsigned long) __brk_limit - (unsigned long) __brk_base); } static unsigned long get_cmd_line_ptr(void) { unsigned long cmd_line_ptr = boot_params.hdr.cmd_line_ptr; cmd_line_ptr |= (u64)boot_params.ext_cmd_line_ptr << 32; return cmd_line_ptr; } static void __init copy_bootdata(char *real_mode_data) { char * command_line; unsigned long cmd_line_ptr; /* * If SME is active, this will create decrypted mappings of the * boot data in advance of the copy operations. */ sme_map_bootdata(real_mode_data); memcpy(&boot_params, real_mode_data, sizeof(boot_params)); sanitize_boot_params(&boot_params); cmd_line_ptr = get_cmd_line_ptr(); if (cmd_line_ptr) { command_line = __va(cmd_line_ptr); memcpy(boot_command_line, command_line, COMMAND_LINE_SIZE); } /* * The old boot data is no longer needed and won't be reserved, * freeing up that memory for use by the system. If SME is active, * we need to remove the mappings that were created so that the * memory doesn't remain mapped as decrypted. */ sme_unmap_bootdata(real_mode_data); } asmlinkage __visible void __init __noreturn x86_64_start_kernel(char * real_mode_data) { /* * Build-time sanity checks on the kernel image and module * area mappings. (these are purely build-time and produce no code) */ BUILD_BUG_ON(MODULES_VADDR < __START_KERNEL_map); BUILD_BUG_ON(MODULES_VADDR - __START_KERNEL_map < KERNEL_IMAGE_SIZE); BUILD_BUG_ON(MODULES_LEN + KERNEL_IMAGE_SIZE > 2*PUD_SIZE); BUILD_BUG_ON((__START_KERNEL_map & ~PMD_MASK) != 0); BUILD_BUG_ON((MODULES_VADDR & ~PMD_MASK) != 0); BUILD_BUG_ON(!(MODULES_VADDR > __START_KERNEL)); MAYBE_BUILD_BUG_ON(!(((MODULES_END - 1) & PGDIR_MASK) == (__START_KERNEL & PGDIR_MASK))); BUILD_BUG_ON(__fix_to_virt(__end_of_fixed_addresses) <= MODULES_END); cr4_init_shadow(); /* Kill off the identity-map trampoline */ reset_early_page_tables(); clear_bss(); /* * This needs to happen *before* kasan_early_init() because latter maps stuff * into that page. */ clear_page(init_top_pgt); /* * SME support may update early_pmd_flags to include the memory * encryption mask, so it needs to be called before anything * that may generate a page fault. */ sme_early_init(); kasan_early_init(); /* * Flush global TLB entries which could be left over from the trampoline page * table. * * This needs to happen *after* kasan_early_init() as KASAN-enabled .configs * instrument native_write_cr4() so KASAN must be initialized for that * instrumentation to work. */ __native_tlb_flush_global(this_cpu_read(cpu_tlbstate.cr4)); idt_setup_early_handler(); /* Needed before cc_platform_has() can be used for TDX */ tdx_early_init(); copy_bootdata(__va(real_mode_data)); /* * Load microcode early on BSP. */ load_ucode_bsp(); /* set init_top_pgt kernel high mapping*/ init_top_pgt[511] = early_top_pgt[511]; x86_64_start_reservations(real_mode_data); } void __init __noreturn x86_64_start_reservations(char *real_mode_data) { /* version is always not zero if it is copied */ if (!boot_params.hdr.version) copy_bootdata(__va(real_mode_data)); x86_early_init_platform_quirks(); switch (boot_params.hdr.hardware_subarch) { case X86_SUBARCH_INTEL_MID: x86_intel_mid_early_setup(); break; default: break; } start_kernel(); } /* * Data structures and code used for IDT setup in head_64.S. The bringup-IDT is * used until the idt_table takes over. On the boot CPU this happens in * x86_64_start_kernel(), on secondary CPUs in start_secondary(). In both cases * this happens in the functions called from head_64.S. * * The idt_table can't be used that early because all the code modifying it is * in idt.c and can be instrumented by tracing or KASAN, which both don't work * during early CPU bringup. Also the idt_table has the runtime vectors * configured which require certain CPU state to be setup already (like TSS), * which also hasn't happened yet in early CPU bringup. */ static gate_desc bringup_idt_table[NUM_EXCEPTION_VECTORS] __page_aligned_data; /* This may run while still in the direct mapping */ static void __head startup_64_load_idt(void *vc_handler) { struct desc_ptr desc = { .address = (unsigned long)&RIP_REL_REF(bringup_idt_table), .size = sizeof(bringup_idt_table) - 1, }; struct idt_data data; gate_desc idt_desc; /* @vc_handler is set only for a VMM Communication Exception */ if (vc_handler) { init_idt_data(&data, X86_TRAP_VC, vc_handler); idt_init_desc(&idt_desc, &data); native_write_idt_entry((gate_desc *)desc.address, X86_TRAP_VC, &idt_desc); } native_load_idt(&desc); } /* This is used when running on kernel addresses */ void early_setup_idt(void) { void *handler = NULL; if (IS_ENABLED(CONFIG_AMD_MEM_ENCRYPT)) { setup_ghcb(); handler = vc_boot_ghcb; } startup_64_load_idt(handler); } /* * Setup boot CPU state needed before kernel switches to virtual addresses. */ void __head startup_64_setup_gdt_idt(void) { struct desc_struct *gdt = (void *)(__force unsigned long)init_per_cpu_var(gdt_page.gdt); void *handler = NULL; struct desc_ptr startup_gdt_descr = { .address = (unsigned long)&RIP_REL_REF(*gdt), .size = GDT_SIZE - 1, }; /* Load GDT */ native_load_gdt(&startup_gdt_descr); /* New GDT is live - reload data segment registers */ asm volatile("movl %%eax, %%ds\n" "movl %%eax, %%ss\n" "movl %%eax, %%es\n" : : "a"(__KERNEL_DS) : "memory"); if (IS_ENABLED(CONFIG_AMD_MEM_ENCRYPT)) handler = &RIP_REL_REF(vc_no_ghcb); startup_64_load_idt(handler); }