1
Commit Graph

10 Commits

Author SHA1 Message Date
Siddha, Suresh B
1e9f28fa1e [PATCH] sched: new sched domain for representing multi-core
Add a new sched domain for representing multi-core with shared caches
between cores.  Consider a dual package system, each package containing two
cores and with last level cache shared between cores with in a package.  If
there are two runnable processes, with this appended patch those two
processes will be scheduled on different packages.

On such systems, with this patch we have observed 8% perf improvement with
specJBB(2 warehouse) benchmark and 35% improvement with CFP2000 rate(with 2
users).

This new domain will come into play only on multi-core systems with shared
caches.  On other systems, this sched domain will be removed by domain
degeneration code.  This new domain can be also used for implementing power
savings policy (see OLS 2005 CMP kernel scheduler paper for more details..
I will post another patch for power savings policy soon)

Most of the arch/* file changes are for cpu_coregroup_map() implementation.

Signed-off-by: Suresh Siddha <suresh.b.siddha@intel.com>
Cc: Ingo Molnar <mingo@elte.hu>
Signed-off-by: Andrew Morton <akpm@osdl.org>
Signed-off-by: Linus Torvalds <torvalds@osdl.org>
2006-03-27 08:44:43 -08:00
James Bottomley
8b09fb3451 [PATCH] fix x86 topology export in sysfs for subarchitectures
The correct way to export hyperthreading based functions is to predicate
them on CONFIG_X86_HT.  Without this, the topology exporting patch breaks
the build on all non-PC x86 subarchitectures.

Signed-off-by: James Bottomley <James.Bottomley@SteelEye.com>
Signed-off-by: Andrew Morton <akpm@osdl.org>
Signed-off-by: Linus Torvalds <torvalds@osdl.org>
2006-02-14 16:09:34 -08:00
Zhang, Yanmin
69dcc99199 [PATCH] Export cpu topology in sysfs
The patch implements cpu topology exportation by sysfs.

Items (attributes) are similar to /proc/cpuinfo.

1) /sys/devices/system/cpu/cpuX/topology/physical_package_id:
	represent the physical package id of  cpu X;
2) /sys/devices/system/cpu/cpuX/topology/core_id:
	represent the cpu core id to cpu X;
3) /sys/devices/system/cpu/cpuX/topology/thread_siblings:
	represent the thread siblings to cpu X in the same core;
4) /sys/devices/system/cpu/cpuX/topology/core_siblings:
	represent the thread siblings to cpu X in the same physical package;

To implement it in an architecture-neutral way, a new source file,
driver/base/topology.c, is to export the 5 attributes.

If one architecture wants to support this feature, it just needs to
implement 4 defines, typically in file include/asm-XXX/topology.h.
The 4 defines are:
#define topology_physical_package_id(cpu)
#define topology_core_id(cpu)
#define topology_thread_siblings(cpu)
#define topology_core_siblings(cpu)

The type of **_id is int.
The type of siblings is cpumask_t.

To be consistent on all architectures, the 4 attributes should have
deafult values if their values are unavailable. Below is the rule.

1) physical_package_id: If cpu has no physical package id, -1 is the
default value.

2) core_id: If cpu doesn't support multi-core, its core id is 0.

3) thread_siblings: Just include itself, if the cpu doesn't support
HT/multi-thread.

4) core_siblings: Just include itself, if the cpu doesn't support
multi-core and HT/Multi-thread.

So be careful when declaring the 4 defines in include/asm-XXX/topology.h.

If an attribute isn't defined on an architecture, it won't be exported.

Thank Nathan, Greg, Andi, Paul and Venki.

The patch provides defines for i386/x86_64/ia64.

Signed-off-by: Zhang, Yanmin <yanmin.zhang@intel.com>
Cc: Ingo Molnar <mingo@elte.hu>
Cc: Nick Piggin <nickpiggin@yahoo.com.au>
Cc: Greg KH <greg@kroah.com>
Signed-off-by: Andrew Morton <akpm@osdl.org>
Signed-off-by: Linus Torvalds <torvalds@osdl.org>
2006-02-03 08:32:09 -08:00
akpm@osdl.org
198e2f1811 [PATCH] scheduler cache-hot-autodetect
)

From: Ingo Molnar <mingo@elte.hu>

This is the latest version of the scheduler cache-hot-auto-tune patch.

The first problem was that detection time scaled with O(N^2), which is
unacceptable on larger SMP and NUMA systems. To solve this:

- I've added a 'domain distance' function, which is used to cache
  measurement results. Each distance is only measured once. This means
  that e.g. on NUMA distances of 0, 1 and 2 might be measured, on HT
  distances 0 and 1, and on SMP distance 0 is measured. The code walks
  the domain tree to determine the distance, so it automatically follows
  whatever hierarchy an architecture sets up. This cuts down on the boot
  time significantly and removes the O(N^2) limit. The only assumption
  is that migration costs can be expressed as a function of domain
  distance - this covers the overwhelming majority of existing systems,
  and is a good guess even for more assymetric systems.

  [ People hacking systems that have assymetries that break this
    assumption (e.g. different CPU speeds) should experiment a bit with
    the cpu_distance() function. Adding a ->migration_distance factor to
    the domain structure would be one possible solution - but lets first
    see the problem systems, if they exist at all. Lets not overdesign. ]

Another problem was that only a single cache-size was used for measuring
the cost of migration, and most architectures didnt set that variable
up. Furthermore, a single cache-size does not fit NUMA hierarchies with
L3 caches and does not fit HT setups, where different CPUs will often
have different 'effective cache sizes'. To solve this problem:

- Instead of relying on a single cache-size provided by the platform and
  sticking to it, the code now auto-detects the 'effective migration
  cost' between two measured CPUs, via iterating through a wide range of
  cachesizes. The code searches for the maximum migration cost, which
  occurs when the working set of the test-workload falls just below the
  'effective cache size'. I.e. real-life optimized search is done for
  the maximum migration cost, between two real CPUs.

  This, amongst other things, has the positive effect hat if e.g. two
  CPUs share a L2/L3 cache, a different (and accurate) migration cost
  will be found than between two CPUs on the same system that dont share
  any caches.

(The reliable measurement of migration costs is tricky - see the source
for details.)

Furthermore i've added various boot-time options to override/tune
migration behavior.

Firstly, there's a blanket override for autodetection:

	migration_cost=1000,2000,3000

will override the depth 0/1/2 values with 1msec/2msec/3msec values.

Secondly, there's a global factor that can be used to increase (or
decrease) the autodetected values:

	migration_factor=120

will increase the autodetected values by 20%. This option is useful to
tune things in a workload-dependent way - e.g. if a workload is
cache-insensitive then CPU utilization can be maximized by specifying
migration_factor=0.

I've tested the autodetection code quite extensively on x86, on 3
P3/Xeon/2MB, and the autodetected values look pretty good:

Dual Celeron (128K L2 cache):

 ---------------------
 migration cost matrix (max_cache_size: 131072, cpu: 467 MHz):
 ---------------------
           [00]    [01]
 [00]:     -     1.7(1)
 [01]:   1.7(1)    -
 ---------------------
 cacheflush times [2]: 0.0 (0) 1.7 (1784008)
 ---------------------

Here the slow memory subsystem dominates system performance, and even
though caches are small, the migration cost is 1.7 msecs.

Dual HT P4 (512K L2 cache):

 ---------------------
 migration cost matrix (max_cache_size: 524288, cpu: 2379 MHz):
 ---------------------
           [00]    [01]    [02]    [03]
 [00]:     -     0.4(1)  0.0(0)  0.4(1)
 [01]:   0.4(1)    -     0.4(1)  0.0(0)
 [02]:   0.0(0)  0.4(1)    -     0.4(1)
 [03]:   0.4(1)  0.0(0)  0.4(1)    -
 ---------------------
 cacheflush times [2]: 0.0 (33900) 0.4 (448514)
 ---------------------

Here it can be seen that there is no migration cost between two HT
siblings (CPU#0/2 and CPU#1/3 are separate physical CPUs). A fast memory
system makes inter-physical-CPU migration pretty cheap: 0.4 msecs.

8-way P3/Xeon [2MB L2 cache]:

 ---------------------
 migration cost matrix (max_cache_size: 2097152, cpu: 700 MHz):
 ---------------------
           [00]    [01]    [02]    [03]    [04]    [05]    [06]    [07]
 [00]:     -    19.2(1) 19.2(1) 19.2(1) 19.2(1) 19.2(1) 19.2(1) 19.2(1)
 [01]:  19.2(1)    -    19.2(1) 19.2(1) 19.2(1) 19.2(1) 19.2(1) 19.2(1)
 [02]:  19.2(1) 19.2(1)    -    19.2(1) 19.2(1) 19.2(1) 19.2(1) 19.2(1)
 [03]:  19.2(1) 19.2(1) 19.2(1)    -    19.2(1) 19.2(1) 19.2(1) 19.2(1)
 [04]:  19.2(1) 19.2(1) 19.2(1) 19.2(1)    -    19.2(1) 19.2(1) 19.2(1)
 [05]:  19.2(1) 19.2(1) 19.2(1) 19.2(1) 19.2(1)    -    19.2(1) 19.2(1)
 [06]:  19.2(1) 19.2(1) 19.2(1) 19.2(1) 19.2(1) 19.2(1)    -    19.2(1)
 [07]:  19.2(1) 19.2(1) 19.2(1) 19.2(1) 19.2(1) 19.2(1) 19.2(1)    -
 ---------------------
 cacheflush times [2]: 0.0 (0) 19.2 (19281756)
 ---------------------

This one has huge caches and a relatively slow memory subsystem - so the
migration cost is 19 msecs.

Signed-off-by: Ingo Molnar <mingo@elte.hu>
Signed-off-by: Ashok Raj <ashok.raj@intel.com>
Signed-off-by: Ken Chen <kenneth.w.chen@intel.com>
Cc: <wilder@us.ibm.com>
Signed-off-by: John Hawkes <hawkes@sgi.com>
Signed-off-by: Andrew Morton <akpm@osdl.org>
Signed-off-by: Linus Torvalds <torvalds@osdl.org>
2006-01-12 09:08:50 -08:00
Andi Kleen
69e1a33f62 [PATCH] x86-64: Use ACPI PXM to parse PCI<->node assignments
Since this is shared code I had to implement it for i386 too

Signed-off-by: Andi Kleen <ak@suse.de>
Signed-off-by: Linus Torvalds <torvalds@osdl.org>
2005-09-12 10:49:57 -07:00
Nick Piggin
687f1661d3 [PATCH] sched: sched tuning
Do some basic initial tuning.

Signed-off-by: Nick Piggin <nickpiggin@yahoo.com.au>
Signed-off-by: Andrew Morton <akpm@osdl.org>
Signed-off-by: Linus Torvalds <torvalds@osdl.org>
2005-06-25 16:24:42 -07:00
Nick Piggin
cafb20c1f9 [PATCH] sched: no aggressive idle balancing
Remove the very aggressive idle stuff that has recently gone into 2.6 - it is
going against the direction we are trying to go.  Hopefully we can regain
performance through other methods.

Signed-off-by: Nick Piggin <nickpiggin@yahoo.com.au>
Signed-off-by: Andrew Morton <akpm@osdl.org>
Signed-off-by: Linus Torvalds <torvalds@osdl.org>
2005-06-25 16:24:42 -07:00
Nick Piggin
7897986bad [PATCH] sched: balance timers
Do CPU load averaging over a number of different intervals.  Allow each
interval to be chosen by sending a parameter to source_load and target_load.
0 is instantaneous, idx > 0 returns a decaying average with the most recent
sample weighted at 2^(idx-1).  To a maximum of 3 (could be easily increased).

So generally a higher number will result in more conservative balancing.

Signed-off-by: Nick Piggin <nickpiggin@yahoo.com.au>
Signed-off-by: Andrew Morton <akpm@osdl.org>
Signed-off-by: Linus Torvalds <torvalds@osdl.org>
2005-06-25 16:24:41 -07:00
Christoph Lameter
8c5a09082f [PATCH] x86/x86_64: pcibus_to_node
Define pcibus_to_node to be able to figure out which NUMA node contains a
given PCI device.  This defines pcibus_to_node(bus) in
include/linux/topology.h and adjusts the macros for i386 and x86_64 that
already provided a way to determine the cpumask of a pci device.

x86_64 was changed to not build an array of cpumasks anymore.  Instead an
array of nodes is build which can be used to generate the cpumask via
node_to_cpumask.

Signed-off-by: Christoph Lameter <christoph@lameter.com>
Signed-off-by: Andrew Morton <akpm@osdl.org>
Signed-off-by: Linus Torvalds <torvalds@osdl.org>
2005-06-23 09:45:08 -07:00
Linus Torvalds
1da177e4c3 Linux-2.6.12-rc2
Initial git repository build. I'm not bothering with the full history,
even though we have it. We can create a separate "historical" git
archive of that later if we want to, and in the meantime it's about
3.2GB when imported into git - space that would just make the early
git days unnecessarily complicated, when we don't have a lot of good
infrastructure for it.

Let it rip!
2005-04-16 15:20:36 -07:00