This patch adds reverse mapping feature for hugepage by introducing
mapcount for shared/private-mapped hugepage and anon_vma for
private-mapped hugepage.
While hugepage is not currently swappable, reverse mapping can be useful
for memory error handler.
Without this patch, memory error handler cannot identify processes
using the bad hugepage nor unmap it from them. That is:
- for shared hugepage:
we can collect processes using a hugepage through pagecache,
but can not unmap the hugepage because of the lack of mapcount.
- for privately mapped hugepage:
we can neither collect processes nor unmap the hugepage.
This patch solves these problems.
This patch include the bug fix given by commit 23be7468e8, so reverts it.
Dependency:
"hugetlb: move definition of is_vm_hugetlb_page() to hugepage_inline.h"
ChangeLog since May 24.
- create hugetlb_inline.h and move is_vm_hugetlb_index() in it.
- move functions setting up anon_vma for hugepage into mm/rmap.c.
ChangeLog since May 13.
- rebased to 2.6.34
- fix logic error (in case that private mapping and shared mapping coexist)
- move is_vm_hugetlb_page() into include/linux/mm.h to use this function
from linear_page_index()
- define and use linear_hugepage_index() instead of compound_order()
- use page_move_anon_rmap() in hugetlb_cow()
- copy exclusive switch of __set_page_anon_rmap() into hugepage counterpart.
- revert commit 24be7468 completely
Signed-off-by: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com>
Cc: Andi Kleen <andi@firstfloor.org>
Cc: Andrew Morton <akpm@linux-foundation.org>
Cc: Mel Gorman <mel@csn.ul.ie>
Cc: Andrea Arcangeli <aarcange@redhat.com>
Cc: Larry Woodman <lwoodman@redhat.com>
Cc: Lee Schermerhorn <Lee.Schermerhorn@hp.com>
Acked-by: Fengguang Wu <fengguang.wu@intel.com>
Acked-by: Mel Gorman <mel@csn.ul.ie>
Signed-off-by: Andi Kleen <ak@linux.intel.com>
* 'for-2.6.36' of git://git.kernel.dk/linux-2.6-block: (149 commits)
block: make sure that REQ_* types are seen even with CONFIG_BLOCK=n
xen-blkfront: fix missing out label
blkdev: fix blkdev_issue_zeroout return value
block: update request stacking methods to support discards
block: fix missing export of blk_types.h
writeback: fix bad _bh spinlock nesting
drbd: revert "delay probes", feature is being re-implemented differently
drbd: Initialize all members of sync_conf to their defaults [Bugz 315]
drbd: Disable delay probes for the upcomming release
writeback: cleanup bdi_register
writeback: add new tracepoints
writeback: remove unnecessary init_timer call
writeback: optimize periodic bdi thread wakeups
writeback: prevent unnecessary bdi threads wakeups
writeback: move bdi threads exiting logic to the forker thread
writeback: restructure bdi forker loop a little
writeback: move last_active to bdi
writeback: do not remove bdi from bdi_list
writeback: simplify bdi code a little
writeback: do not lose wake-ups in bdi threads
...
Fixed up pretty trivial conflicts in drivers/block/virtio_blk.c and
drivers/scsi/scsi_error.c as per Jens.
* 'kmemleak' of git://git.kernel.org/pub/scm/linux/kernel/git/cmarinas/linux-2.6-cm:
kmemleak: Fix typo in the comment
lib/scatterlist: Hook sg_kmalloc into kmemleak (v2)
kmemleak: Add DocBook style comments to kmemleak.c
kmemleak: Introduce a default off mode for kmemleak
kmemleak: Show more information for objects found by alias
* 'for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/viro/vfs-2.6: (96 commits)
no need for list_for_each_entry_safe()/resetting with superblock list
Fix sget() race with failing mount
vfs: don't hold s_umount over close_bdev_exclusive() call
sysv: do not mark superblock dirty on remount
sysv: do not mark superblock dirty on mount
btrfs: remove junk sb_dirt change
BFS: clean up the superblock usage
AFFS: wait for sb synchronization when needed
AFFS: clean up dirty flag usage
cifs: truncate fallout
mbcache: fix shrinker function return value
mbcache: Remove unused features
add f_flags to struct statfs(64)
pass a struct path to vfs_statfs
update VFS documentation for method changes.
All filesystems that need invalidate_inode_buffers() are doing that explicitly
convert remaining ->clear_inode() to ->evict_inode()
Make ->drop_inode() just return whether inode needs to be dropped
fs/inode.c:clear_inode() is gone
fs/inode.c:evict() doesn't care about delete vs. non-delete paths now
...
Fix up trivial conflicts in fs/nilfs2/super.c
When taking a memory snapshot in hibernate_snapshot(), all (directly
called) memory allocations use GFP_ATOMIC. Hence swap misusage during
hibernation never occurs.
But from a pessimistic point of view, there is no guarantee that no page
allcation has __GFP_WAIT. It is better to have a global indication "we
enter hibernation, don't use swap!".
This patch tries to freeze new-swap-allocation during hibernation. (All
user processes are frozenm so swapin is not a concern).
This way, no updates will happen to swap_map[] between
hibernate_snapshot() and save_image(). Swap is thawed when swsusp_free()
is called. We can be assured that swap corruption will not occur.
Signed-off-by: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
Cc: "Rafael J. Wysocki" <rjw@sisk.pl>
Cc: Hugh Dickins <hughd@google.com>
Cc: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com>
Cc: Ondrej Zary <linux@rainbow-software.org>
Cc: Balbir Singh <balbir@in.ibm.com>
Cc: Andrea Arcangeli <aarcange@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Since 2.6.31, swap_map[]'s refcounting was changed to show that a used
swap entry is just for swap-cache, can be reused. Then, while scanning
free entry in swap_map[], a swap entry may be able to be reclaimed and
reused. It was caused by commit c9e444103b ("mm: reuse unused swap
entry if necessary").
But this caused deta corruption at resume. The scenario is
- Assume a clean-swap cache, but mapped.
- at hibernation_snapshot[], clean-swap-cache is saved as
clean-swap-cache and swap_map[] is marked as SWAP_HAS_CACHE.
- then, save_image() is called. And reuse SWAP_HAS_CACHE entry to save
image, and break the contents.
After resume:
- the memory reclaim runs and finds clean-not-referenced-swap-cache and
discards it because it's marked as clean. But here, the contents on
disk and swap-cache is inconsistent.
Hance memory is corrupted.
This patch avoids the bug by not reclaiming swap-entry during hibernation.
This is a quick fix for backporting.
Signed-off-by: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
Cc: Rafael J. Wysocki <rjw@sisk.pl>
Reported-by: Ondreg Zary <linux@rainbow-software.org>
Tested-by: Ondreg Zary <linux@rainbow-software.org>
Tested-by: Andrea Gelmini <andrea.gelmini@gmail.com>
Acked-by: Hugh Dickins <hughd@google.com>
Cc: <stable@kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Use compile-allocated memory instead of dynamic allocated memory for
mm_slots_hash.
Use hash_ptr() instead divisions for bucket calculation.
Signed-off-by: Lai Jiangshan <laijs@cn.fujitsu.com>
Signed-off-by: Izik Eidus <ieidus@redhat.com>
Cc: Avi Kivity <avi@redhat.com>
Cc: Andrea Arcangeli <aarcange@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Fix "system goes unresponsive under memory pressure and lots of
dirty/writeback pages" bug.
http://lkml.org/lkml/2010/4/4/86
In the above thread, Andreas Mohr described that
Invoking any command locked up for minutes (note that I'm
talking about attempted additional I/O to the _other_,
_unaffected_ main system HDD - such as loading some shell
binaries -, NOT the external SSD18M!!).
This happens when the two conditions are both meet:
- under memory pressure
- writing heavily to a slow device
OOM also happens in Andreas' system. The OOM trace shows that 3 processes
are stuck in wait_on_page_writeback() in the direct reclaim path. One in
do_fork() and the other two in unix_stream_sendmsg(). They are blocked on
this condition:
(sc->order && priority < DEF_PRIORITY - 2)
which was introduced in commit 78dc583d (vmscan: low order lumpy reclaim
also should use PAGEOUT_IO_SYNC) one year ago. That condition may be too
permissive. In Andreas' case, 512MB/1024 = 512KB. If the direct reclaim
for the order-1 fork() allocation runs into a range of 512KB
hard-to-reclaim LRU pages, it will be stalled.
It's a severe problem in three ways.
Firstly, it can easily happen in daily desktop usage. vmscan priority can
easily go below (DEF_PRIORITY - 2) on _local_ memory pressure. Even if
the system has 50% globally reclaimable pages, it still has good
opportunity to have 0.1% sized hard-to-reclaim ranges. For example, a
simple dd can easily create a big range (up to 20%) of dirty pages in the
LRU lists. And order-1 to order-3 allocations are more than common with
SLUB. Try "grep -v '1 :' /proc/slabinfo" to get the list of high order
slab caches. For example, the order-1 radix_tree_node slab cache may
stall applications at swap-in time; the order-3 inode cache on most
filesystems may stall applications when trying to read some file; the
order-2 proc_inode_cache may stall applications when trying to open a
/proc file.
Secondly, once triggered, it will stall unrelated processes (not doing IO
at all) in the system. This "one slow USB device stalls the whole system"
avalanching effect is very bad.
Thirdly, once stalled, the stall time could be intolerable long for the
users. When there are 20MB queued writeback pages and USB 1.1 is writing
them in 1MB/s, wait_on_page_writeback() will stuck for up to 20 seconds.
Not to mention it may be called multiple times.
So raise the bar to only enable PAGEOUT_IO_SYNC when priority goes below
DEF_PRIORITY/3, or 6.25% LRU size. As the default dirty throttle ratio is
20%, it will hardly be triggered by pure dirty pages. We'd better treat
PAGEOUT_IO_SYNC as some last resort workaround -- its stall time is so
uncomfortably long (easily goes beyond 1s).
The bar is only raised for (order < PAGE_ALLOC_COSTLY_ORDER) allocations,
which are easy to satisfy in 1TB memory boxes. So, although 6.25% of
memory could be an awful lot of pages to scan on a system with 1TB of
memory, it won't really have to busy scan that much.
Andreas tested an older version of this patch and reported that it mostly
fixed his problem. Mel Gorman helped improve it and KOSAKI Motohiro will
fix it further in the next patch.
Reported-by: Andreas Mohr <andi@lisas.de>
Reviewed-by: Minchan Kim <minchan.kim@gmail.com>
Reviewed-by: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com>
Signed-off-by: Mel Gorman <mel@csn.ul.ie>
Signed-off-by: Wu Fengguang <fengguang.wu@intel.com>
Cc: Rik van Riel <riel@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
kmalloc() may fail, if so return -ENOMEM.
Signed-off-by: Kulikov Vasiliy <segooon@gmail.com>
Acked-by: Pekka Enberg <penberg@cs.helsinki.fi>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Memcg also need to trace page isolation information as global reclaim.
This patch does it.
Signed-off-by: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com>
Reviewed-by: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
Acked-by: Mel Gorman <mel@csn.ul.ie>
Acked-by: Balbir Singh <balbir@linux.vnet.ibm.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Memcg also need to trace reclaim progress as direct reclaim. This patch
add it.
Signed-off-by: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com>
Reviewed-by: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
Acked-by: Mel Gorman <mel@csn.ul.ie>
Acked-by: Balbir Singh <balbir@linux.vnet.ibm.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Presently shrink_slab() has the following scanning equation.
lru_scanned max_pass
basic_scan_objects = 4 x ------------- x -----------------------------
lru_pages shrinker->seeks (default:2)
scan_objects = min(basic_scan_objects, max_pass * 2)
If we pass very small value as lru_pages instead real number of lru pages,
shrink_slab() drop much objects rather than necessary. And now,
__zone_reclaim() pass 'order' as lru_pages by mistake. That produces a
bad result.
For example, if we receive very low memory pressure (scan = 32, order =
0), shrink_slab() via zone_reclaim() always drop _all_ icache/dcache
objects. (see above equation, very small lru_pages make very big
scan_objects result).
This patch fixes it.
[akpm@linux-foundation.org: fix layout, typos]
Signed-off-by: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com>
Reviewed-by: Minchan Kim <minchan.kim@gmail.com>
Acked-by: Christoph Lameter <cl@linux-foundation.org>
Acked-by: Rik van Riel <riel@redhat.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
It is not appropriate for apply_to_page_range() to directly call any mmu
notifiers, because it is a general purpose function whose effect depends
on what context it is called in and what the callback function does.
In particular, if it is being used as part of an mmu notifier
implementation, the recursive calls can be particularly problematic.
It is up to apply_to_page_range's caller to do any notifier calls if
necessary. It does not affect any in-tree users because they all operate
on init_mm, and mmu notifiers only pertain to usermode mappings.
[stefano.stabellini@eu.citrix.com: remove unused local `start']
Signed-off-by: Jeremy Fitzhardinge <jeremy.fitzhardinge@citrix.com>
Signed-off-by: Stefano Stabellini <stefano.stabellini@eu.citrix.com>
Cc: Andrea Arcangeli <aarcange@redhat.com>
Cc: Stefano Stabellini <stefano.stabellini@eu.citrix.com>
Cc: Avi Kivity <avi@qumranet.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Rik van Riel pointed out reading reclaim_stat should be protected
lru_lock, otherwise vmscan might sweep 2x much pages.
This fault was introduced by
commit 4f98a2fee8
Author: Rik van Riel <riel@redhat.com>
Date: Sat Oct 18 20:26:32 2008 -0700
vmscan: split LRU lists into anon & file sets
Signed-off-by: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com>
Cc: Rik van Riel <riel@redhat.com>
Reviewed-by: Minchan Kim <minchan.kim@gmail.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
'slab_reclaimable' and 'nr_pages' are unsigned. Subtraction is unsafe
because negative results would be misinterpreted.
Signed-off-by: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com>
Reviewed-by: Minchan Kim <minchan.kim@gmail.com>
Cc: Mel Gorman <mel@csn.ul.ie>
Cc: Rik van Riel <riel@redhat.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Set the flag if do_swap_page is decowing the page the same way do_wp_page
would too.
Signed-off-by: Andrea Arcangeli <aarcange@redhat.com>
Cc: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com>
Cc: Rik van Riel <riel@redhat.com>
Cc: Nick Piggin <nickpiggin@yahoo.com.au>
Cc: Hugh Dickins <hughd@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
On swapin it is fairly common for a page to be owned exclusively by one
process. In that case we want to add the page to the anon_vma of that
process's VMA, instead of to the root anon_vma.
This will reduce the amount of rmap searching that the swapout code needs
to do.
Signed-off-by: Rik van Riel <riel@redhat.com>
Cc: Andrea Arcangeli <aarcange@redhat.com>
Cc: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
This a complete rewrite of the oom killer's badness() heuristic which is
used to determine which task to kill in oom conditions. The goal is to
make it as simple and predictable as possible so the results are better
understood and we end up killing the task which will lead to the most
memory freeing while still respecting the fine-tuning from userspace.
Instead of basing the heuristic on mm->total_vm for each task, the task's
rss and swap space is used instead. This is a better indication of the
amount of memory that will be freeable if the oom killed task is chosen
and subsequently exits. This helps specifically in cases where KDE or
GNOME is chosen for oom kill on desktop systems instead of a memory
hogging task.
The baseline for the heuristic is a proportion of memory that each task is
currently using in memory plus swap compared to the amount of "allowable"
memory. "Allowable," in this sense, means the system-wide resources for
unconstrained oom conditions, the set of mempolicy nodes, the mems
attached to current's cpuset, or a memory controller's limit. The
proportion is given on a scale of 0 (never kill) to 1000 (always kill),
roughly meaning that if a task has a badness() score of 500 that the task
consumes approximately 50% of allowable memory resident in RAM or in swap
space.
The proportion is always relative to the amount of "allowable" memory and
not the total amount of RAM systemwide so that mempolicies and cpusets may
operate in isolation; they shall not need to know the true size of the
machine on which they are running if they are bound to a specific set of
nodes or mems, respectively.
Root tasks are given 3% extra memory just like __vm_enough_memory()
provides in LSMs. In the event of two tasks consuming similar amounts of
memory, it is generally better to save root's task.
Because of the change in the badness() heuristic's baseline, it is also
necessary to introduce a new user interface to tune it. It's not possible
to redefine the meaning of /proc/pid/oom_adj with a new scale since the
ABI cannot be changed for backward compatability. Instead, a new tunable,
/proc/pid/oom_score_adj, is added that ranges from -1000 to +1000. It may
be used to polarize the heuristic such that certain tasks are never
considered for oom kill while others may always be considered. The value
is added directly into the badness() score so a value of -500, for
example, means to discount 50% of its memory consumption in comparison to
other tasks either on the system, bound to the mempolicy, in the cpuset,
or sharing the same memory controller.
/proc/pid/oom_adj is changed so that its meaning is rescaled into the
units used by /proc/pid/oom_score_adj, and vice versa. Changing one of
these per-task tunables will rescale the value of the other to an
equivalent meaning. Although /proc/pid/oom_adj was originally defined as
a bitshift on the badness score, it now shares the same linear growth as
/proc/pid/oom_score_adj but with different granularity. This is required
so the ABI is not broken with userspace applications and allows oom_adj to
be deprecated for future removal.
Signed-off-by: David Rientjes <rientjes@google.com>
Cc: Nick Piggin <npiggin@suse.de>
Cc: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
Cc: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com>
Cc: Oleg Nesterov <oleg@redhat.com>
Cc: Balbir Singh <balbir@in.ibm.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Oleg pointed out current PF_EXITING check is wrong. Because PF_EXITING
is per-thread flag, not per-process flag. He said,
Two threads, group-leader L and its sub-thread T. T dumps the code.
In this case both threads have ->mm != NULL, L has PF_EXITING.
The first problem is, select_bad_process() always return -1 in this
case (even if the caller is T, this doesn't matter).
The second problem is that we should add TIF_MEMDIE to T, not L.
I think we can remove this dubious PF_EXITING check. but as first step,
This patch add the protection of multi threaded issue.
Signed-off-by: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com>
Cc: Oleg Nesterov <oleg@redhat.com>
Cc: Minchan Kim <minchan.kim@gmail.com>
Cc: David Rientjes <rientjes@google.com>
Cc: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
In a system under heavy load it was observed that even after the
oom-killer selects a task to die, the task may take a long time to die.
Right after sending a SIGKILL to the task selected by the oom-killer this
task has its priority increased so that it can exit() soon, freeing
memory. That is accomplished by:
/*
* We give our sacrificial lamb high priority and access to
* all the memory it needs. That way it should be able to
* exit() and clear out its resources quickly...
*/
p->rt.time_slice = HZ;
set_tsk_thread_flag(p, TIF_MEMDIE);
It sounds plausible giving the dying task an even higher priority to be
sure it will be scheduled sooner and free the desired memory. It was
suggested on LKML using SCHED_FIFO:1, the lowest RT priority so that this
task won't interfere with any running RT task.
If the dying task is already an RT task, leave it untouched. Another good
suggestion, implemented here, was to avoid boosting the dying task
priority in case of mem_cgroup OOM.
Signed-off-by: Luis Claudio R. Goncalves <lclaudio@uudg.org>
Signed-off-by: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com>
Reviewed-by: Minchan Kim <minchan.kim@gmail.com>
Cc: David Rientjes <rientjes@google.com>
Cc: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
Cc: Oleg Nesterov <oleg@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
The current "child->mm == p->mm" check prevents selection of vfork()ed
task. But we don't have any reason to don't consider vfork().
Removed.
Signed-off-by: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com>
Cc: Minchan Kim <minchan.kim@gmail.com>
Cc: David Rientjes <rientjes@google.com>
Cc: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
Cc: Oleg Nesterov <oleg@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
presently has_intersects_mems_allowed() has own thread iterate logic, but
it should use while_each_thread().
It slightly improve the code readability.
Signed-off-by: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com>
Reviewed-by: Minchan Kim <minchan.kim@gmail.com>
Cc: David Rientjes <rientjes@google.com>
Cc: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
Cc: Oleg Nesterov <oleg@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Presently if oom_kill_allocating_task is enabled and current have
OOM_DISABLED, following printk in oom_kill_process is called twice.
pr_err("%s: Kill process %d (%s) score %lu or sacrifice child\n",
message, task_pid_nr(p), p->comm, points);
So, OOM_DISABLE check should be more early.
Signed-off-by: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com>
Cc: Minchan Kim <minchan.kim@gmail.com>
Cc: David Rientjes <rientjes@google.com>
Cc: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
Cc: Oleg Nesterov <oleg@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
select_bad_process() and badness() have the same OOM_DISABLE check. This
patch kills one.
Signed-off-by: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com>
Reviewed-by: Minchan Kim <minchan.kim@gmail.com>
Cc: David Rientjes <rientjes@google.com>
Cc: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
Cc: Oleg Nesterov <oleg@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
If a kernel thread is using use_mm(), badness() returns a positive value.
This is not a big issue because caller take care of it correctly. But
there is one exception, /proc/<pid>/oom_score calls badness() directly and
doesn't care that the task is a regular process.
Another example, /proc/1/oom_score return !0 value. But it's unkillable.
This incorrectness makes administration a little confusing.
This patch fixes it.
Signed-off-by: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com>
Cc: Minchan Kim <minchan.kim@gmail.com>
Cc: David Rientjes <rientjes@google.com>
Cc: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
Cc: Oleg Nesterov <oleg@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
When oom_kill_allocating_task is enabled, an argument task of
oom_kill_process is not selected by select_bad_process(), It's just
out_of_memory() caller task. It mean the task can be unkillable. check
it first.
Signed-off-by: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com>
Reviewed-by: Minchan Kim <minchan.kim@gmail.com>
Cc: David Rientjes <rientjes@google.com>
Cc: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
Cc: Oleg Nesterov <oleg@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Presently we have the same task check in two places. Unify it.
Signed-off-by: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com>
Reviewed-by: Minchan Kim <minchan.kim@gmail.com>
Cc: David Rientjes <rientjes@google.com>
Cc: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
Cc: Oleg Nesterov <oleg@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Presently select_bad_process() has a PF_KTHREAD check, but
oom_kill_process doesn't. It mean oom_kill_process() may choose wrong
task, especially, when the child are using use_mm().
Signed-off-by: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com>
Reviewed-by: Minchan Kim <minchan.kim@gmail.com>
Cc: David Rientjes <rientjes@google.com>
Cc: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
Cc: Oleg Nesterov <oleg@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Presently, badness() doesn't care about either CPUSET nor mempolicy. Then
if the victim child process have disjoint nodemask, OOM Killer might kill
innocent process.
This patch fixes it.
[akpm@linux-foundation.org: coding-style fixes]
Signed-off-by: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com>
Reviewed-by: Minchan Kim <minchan.kim@gmail.com>
Cc: Minchan Kim <minchan.kim@gmail.com>
Cc: David Rientjes <rientjes@google.com>
Cc: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
Cc: Oleg Nesterov <oleg@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
When shrink_inactive_list() isolates pages, it updates a number of
counters using temporary variables to gather them. These consume stack
and it's in the main path that calls ->writepage(). This patch moves the
accounting updates outside of the main path to reduce stack usage.
Signed-off-by: Mel Gorman <mel@csn.ul.ie>
Reviewed-by: Johannes Weiner <hannes@cmpxchg.org>
Acked-by: Rik van Riel <riel@redhat.com>
Cc: Dave Chinner <david@fromorbit.com>
Cc: Chris Mason <chris.mason@oracle.com>
Cc: Nick Piggin <npiggin@suse.de>
Cc: Rik van Riel <riel@redhat.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Christoph Hellwig <hch@infradead.org>
Cc: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
Cc: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com>
Cc: Andrea Arcangeli <aarcange@redhat.com>
Cc: Michael Rubin <mrubin@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
shrink_page_list() sets up a pagevec to release pages as according as they
are free. It uses significant amounts of stack on the pagevec. This
patch adds pages to be freed via pagevec to a linked list which is then
freed en-masse at the end. This avoids using stack in the main path that
potentially calls writepage().
Signed-off-by: Mel Gorman <mel@csn.ul.ie>
Reviewed-by: Rik van Riel <riel@redhat.com>
Cc: Dave Chinner <david@fromorbit.com>
Cc: Chris Mason <chris.mason@oracle.com>
Cc: Nick Piggin <npiggin@suse.de>
Cc: Rik van Riel <riel@redhat.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Christoph Hellwig <hch@infradead.org>
Cc: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
Cc: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com>
Cc: Andrea Arcangeli <aarcange@redhat.com>
Cc: Michael Rubin <mrubin@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
shrink_inactive_list() sets up a pagevec to release unfreeable pages. It
uses significant amounts of stack doing this. This patch splits
shrink_inactive_list() to take the stack usage out of the main path so
that callers to writepage() do not contain an unused pagevec on the stack.
Signed-off-by: Mel Gorman <mel@csn.ul.ie>
Reviewed-by: Johannes Weiner <hannes@cmpxchg.org>
Acked-by: Rik van Riel <riel@redhat.com>
Cc: Dave Chinner <david@fromorbit.com>
Cc: Chris Mason <chris.mason@oracle.com>
Cc: Nick Piggin <npiggin@suse.de>
Cc: Rik van Riel <riel@redhat.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Christoph Hellwig <hch@infradead.org>
Cc: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
Cc: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com>
Cc: Andrea Arcangeli <aarcange@redhat.com>
Cc: Michael Rubin <mrubin@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Remove temporary variable that is only used once and does not help clarify
code.
[akpm@linux-foundation.org: coding-style fixes]
Signed-off-by: Mel Gorman <mel@csn.ul.ie>
Reviewed-by: Rik van Riel <riel@redhat.com>
Cc: Dave Chinner <david@fromorbit.com>
Cc: Chris Mason <chris.mason@oracle.com>
Cc: Nick Piggin <npiggin@suse.de>
Cc: Rik van Riel <riel@redhat.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Christoph Hellwig <hch@infradead.org>
Cc: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
Cc: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com>
Cc: Andrea Arcangeli <aarcange@redhat.com>
Cc: Michael Rubin <mrubin@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Now, max_scan of shrink_inactive_list() is always passed less than
SWAP_CLUSTER_MAX. then, we can remove scanning pages loop in it. This
patch also help stack diet.
detail
- remove "while (nr_scanned < max_scan)" loop
- remove nr_freed (now, we use nr_reclaimed directly)
- remove nr_scan (now, we use nr_scanned directly)
- rename max_scan to nr_to_scan
- pass nr_to_scan into isolate_pages() directly instead
using SWAP_CLUSTER_MAX
[akpm@linux-foundation.org: coding-style fixes]
Signed-off-by: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com>
Signed-off-by: Mel Gorman <mel@csn.ul.ie>
Reviewed-by: Johannes Weiner <hannes@cmpxchg.org>
Reviewed-by: Rik van Riel <riel@redhat.com>
Cc: Dave Chinner <david@fromorbit.com>
Cc: Chris Mason <chris.mason@oracle.com>
Cc: Nick Piggin <npiggin@suse.de>
Cc: Rik van Riel <riel@redhat.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Christoph Hellwig <hch@infradead.org>
Cc: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
Cc: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com>
Cc: Andrea Arcangeli <aarcange@redhat.com>
Cc: Michael Rubin <mrubin@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Since 2.6.28 zone->prev_priority is unused. Then it can be removed
safely. It reduce stack usage slightly.
Now I have to say that I'm sorry. 2 years ago, I thought prev_priority
can be integrate again, it's useful. but four (or more) times trying
haven't got good performance number. Thus I give up such approach.
The rest of this changelog is notes on prev_priority and why it existed in
the first place and why it might be not necessary any more. This information
is based heavily on discussions between Andrew Morton, Rik van Riel and
Kosaki Motohiro who is heavily quotes from.
Historically prev_priority was important because it determined when the VM
would start unmapping PTE pages. i.e. there are no balances of note within
the VM, Anon vs File and Mapped vs Unmapped. Without prev_priority, there
is a potential risk of unnecessarily increasing minor faults as a large
amount of read activity of use-once pages could push mapped pages to the
end of the LRU and get unmapped.
There is no proof this is still a problem but currently it is not considered
to be. Active files are not deactivated if the active file list is smaller
than the inactive list reducing the liklihood that file-mapped pages are
being pushed off the LRU and referenced executable pages are kept on the
active list to avoid them getting pushed out by read activity.
Even if it is a problem, prev_priority prev_priority wouldn't works
nowadays. First of all, current vmscan still a lot of UP centric code. it
expose some weakness on some dozens CPUs machine. I think we need more and
more improvement.
The problem is, current vmscan mix up per-system-pressure, per-zone-pressure
and per-task-pressure a bit. example, prev_priority try to boost priority to
other concurrent priority. but if the another task have mempolicy restriction,
it is unnecessary, but also makes wrong big latency and exceeding reclaim.
per-task based priority + prev_priority adjustment make the emulation of
per-system pressure. but it have two issue 1) too rough and brutal emulation
2) we need per-zone pressure, not per-system.
Another example, currently DEF_PRIORITY is 12. it mean the lru rotate about
2 cycle (1/4096 + 1/2048 + 1/1024 + .. + 1) before invoking OOM-Killer.
but if 10,0000 thrreads enter DEF_PRIORITY reclaim at the same time, the
system have higher memory pressure than priority==0 (1/4096*10,000 > 2).
prev_priority can't solve such multithreads workload issue. In other word,
prev_priority concept assume the sysmtem don't have lots threads."
Signed-off-by: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com>
Signed-off-by: Mel Gorman <mel@csn.ul.ie>
Reviewed-by: Johannes Weiner <hannes@cmpxchg.org>
Reviewed-by: Rik van Riel <riel@redhat.com>
Cc: Dave Chinner <david@fromorbit.com>
Cc: Chris Mason <chris.mason@oracle.com>
Cc: Nick Piggin <npiggin@suse.de>
Cc: Rik van Riel <riel@redhat.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Christoph Hellwig <hch@infradead.org>
Cc: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
Cc: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com>
Cc: Andrea Arcangeli <aarcange@redhat.com>
Cc: Michael Rubin <mrubin@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Add a trace event for when page reclaim queues a page for IO and records
whether it is synchronous or asynchronous. Excessive synchronous IO for a
process can result in noticeable stalls during direct reclaim. Excessive
IO from page reclaim may indicate that the system is seriously under
provisioned for the amount of dirty pages that exist.
Signed-off-by: Mel Gorman <mel@csn.ul.ie>
Acked-by: Rik van Riel <riel@redhat.com>
Acked-by: Larry Woodman <lwoodman@redhat.com>
Cc: Dave Chinner <david@fromorbit.com>
Cc: Chris Mason <chris.mason@oracle.com>
Cc: Nick Piggin <npiggin@suse.de>
Cc: Rik van Riel <riel@redhat.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Christoph Hellwig <hch@infradead.org>
Cc: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
Cc: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com>
Cc: Andrea Arcangeli <aarcange@redhat.com>
Cc: Michael Rubin <mrubin@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Add an event for when pages are isolated en-masse from the LRU lists.
This event augments the information available on LRU traffic and can be
used to evaluate lumpy reclaim.
[akpm@linux-foundation.org: coding-style fixes]
Signed-off-by: Mel Gorman <mel@csn.ul.ie>
Acked-by: Rik van Riel <riel@redhat.com>
Acked-by: Larry Woodman <lwoodman@redhat.com>
Cc: Dave Chinner <david@fromorbit.com>
Cc: Chris Mason <chris.mason@oracle.com>
Cc: Nick Piggin <npiggin@suse.de>
Cc: Rik van Riel <riel@redhat.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Christoph Hellwig <hch@infradead.org>
Cc: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
Cc: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com>
Cc: Andrea Arcangeli <aarcange@redhat.com>
Cc: Michael Rubin <mrubin@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Add two trace events for kswapd waking up and going asleep for the
purposes of tracking kswapd activity and two trace events for direct
reclaim beginning and ending. The information can be used to work out how
much time a process or the system is spending on the reclamation of pages
and in the case of direct reclaim, how many pages were reclaimed for that
process. High frequency triggering of these events could point to memory
pressure problems.
Signed-off-by: Mel Gorman <mel@csn.ul.ie>
Acked-by: Rik van Riel <riel@redhat.com>
Acked-by: Larry Woodman <lwoodman@redhat.com>
Cc: Dave Chinner <david@fromorbit.com>
Cc: Chris Mason <chris.mason@oracle.com>
Cc: Nick Piggin <npiggin@suse.de>
Cc: Rik van Riel <riel@redhat.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Christoph Hellwig <hch@infradead.org>
Cc: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
Cc: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com>
Cc: Andrea Arcangeli <aarcange@redhat.com>
Cc: Michael Rubin <mrubin@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
shrink_zones() need relatively long time and lru_pages can change
dramatically during shrink_zones(). So lru_pages should be recalculated
for each priority.
Signed-off-by: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com>
Acked-by: Rik van Riel <riel@redhat.com>
Reviewed-by: Minchan Kim <minchan.kim@gmail.com>
Acked-by: Johannes Weiner <hannes@cmpxchg.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Swap token don't works when zone reclaim is enabled since it was born.
Because __zone_reclaim() always call disable_swap_token() unconditionally.
This kill swap token feature completely. As far as I know, nobody want to
that. Remove it.
Signed-off-by: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com>
Acked-by: Rik van Riel <riel@redhat.com>
Reviewed-by: Minchan Kim <minchan.kim@gmail.com>
Cc: Christoph Lameter <cl@linux-foundation.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
We try to avoid livelocks of writeback when some steadily creates dirty
pages in a mapping we are writing out. For memory-cleaning writeback,
using nr_to_write works reasonably well but we cannot really use it for
data integrity writeback. This patch tries to solve the problem.
The idea is simple: Tag all pages that should be written back with a
special tag (TOWRITE) in the radix tree. This can be done rather quickly
and thus livelocks should not happen in practice. Then we start doing the
hard work of locking pages and sending them to disk only for those pages
that have TOWRITE tag set.
Note: Adding new radix tree tag grows radix tree node from 288 to 296
bytes for 32-bit archs and from 552 to 560 bytes for 64-bit archs.
However, the number of slab/slub items per page remains the same (13 and 7
respectively).
Signed-off-by: Jan Kara <jack@suse.cz>
Cc: Dave Chinner <david@fromorbit.com>
Cc: Nick Piggin <nickpiggin@yahoo.com.au>
Cc: Chris Mason <chris.mason@oracle.com>
Cc: Theodore Ts'o <tytso@mit.edu>
Cc: Jens Axboe <axboe@kernel.dk>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Verify the refcounting doesn't go wrong, and resurrect the check in
__page_check_anon_rmap as in old anon-vma code.
Signed-off-by: Andrea Arcangeli <aarcange@redhat.com>
Signed-off-by: Rik van Riel <riel@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
With root anon-vma it's trivial to keep doing the usual check as in
old-anon-vma code.
Signed-off-by: Andrea Arcangeli <aarcange@redhat.com>
Signed-off-by: Rik van Riel <riel@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Always use anon_vma->root pointer instead of anon_vma_chain.prev.
Also optimize the map-paths, if a mapping is already established no need
to overwrite it with root anon-vma list, we can keep the more finegrined
anon-vma and skip the overwrite: see the PageAnon check in !exclusive
case. This is also the optimization that hidden the ksm bug as this tends
to make ksm_might_need_to_copy skip the copy, but only the proper fix to
ksm_might_need_to_copy guarantees not triggering the ksm bug unless ksm is
in use. this is an optimization only...
[akpm@linux-foundation.org: coding-style fixes]
Signed-off-by: Andrea Arcangeli <aarcange@redhat.com>
Signed-off-by: Rik van Riel <riel@redhat.com>
[kamezawa.hiroyu@jp.fujitsu.com: fix false positive BUG_ON in __page_set_anon_rmap]
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Make sure to always add new VMAs at the end of the list. This is
important so rmap_walk does not miss a VMA that was created during the
rmap_walk.
The old code got this right most of the time due to luck, but was buggy
when anon_vma_prepare reused a mergeable anon_vma.
Signed-off-by: Andrea Arcangeli <aarcange@redhat.com>
Signed-off-by: Rik van Riel <riel@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
There's no anon-vma related mangling happening inside __vma_link anymore
so no need of anon_vma locking there.
Signed-off-by: Andrea Arcangeli <aarcange@redhat.com>
Signed-off-by: Rik van Riel <riel@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
I'm running a shmem pagefault test case (see attached file) under a 64 CPU
system. Profile shows shmem_inode_info->lock is heavily contented and
100% CPUs time are trying to get the lock. In the pagefault (no swap)
case, shmem_getpage gets the lock twice, the last one is avoidable if we
prealloc a page so we could reduce one time of locking. This is what
below patch does.
The result of the test case:
2.6.35-rc3: ~20s
2.6.35-rc3 + patch: ~12s
so this is 40% improvement.
One might argue if we could have better locking for shmem. But even shmem
is lockless, the pagefault will soon have pagecache lock heavily contented
because shmem must add new page to pagecache. So before we have better
locking for pagecache, improving shmem locking doesn't have too much
improvement. I did a similar pagefault test against a ramfs file, the
test result is ~10.5s.
[akpm@linux-foundation.org: fix comment, clean up code layout, elimintate code duplication]
Signed-off-by: Shaohua Li <shaohua.li@intel.com>
Cc: Hugh Dickins <hughd@google.com>
Cc: "Zhang, Yanmin" <yanmin.zhang@intel.com>
Cc: Tim Chen <tim.c.chen@linux.intel.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
The current implementation of tmpfs is not scalable. We found that
stat_lock is contended by multiple threads when we need to get a new page,
leading to useless spinning inside this spin lock.
This patch makes use of the percpu_counter library to maintain local count
of used blocks to speed up getting and returning of pages. So the
acquisition of stat_lock is unnecessary for getting and returning blocks,
improving the performance of tmpfs on system with large number of cpus.
On a 4 socket 32 core NHM-EX system, we saw improvement of 270%.
The implementation below has a slight chance of race between threads
causing a slight overshoot of the maximum configured blocks. However, any
overshoot is small, and is bounded by the number of cpus. This happens
when the number of used blocks is slightly below the maximum configured
blocks when a thread checks the used block count, and another thread
allocates the last block before the current thread does. This should not
be a problem for tmpfs, as the overshoot is most likely to be a few blocks
and bounded. If a strict limit is really desired, then configured the max
blocks to be the limit less the number of cpus in system.
Signed-off-by: Tim Chen <tim.c.chen@linux.intel.com>
Cc: Hugh Dickins <hughd@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
No real bugs, just some dead code and some fixups.
Signed-off-by: Andi Kleen <ak@linux.intel.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
migrate_pages() is using >500 bytes stack. Reduce it.
mm/mempolicy.c: In function 'sys_migrate_pages':
mm/mempolicy.c:1344: warning: the frame size of 528 bytes is larger than 512 bytes
[akpm@linux-foundation.org: don't play with a might-be-NULL pointer]
Signed-off-by: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com>
Reviewed-by: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
Reviewed-by: Christoph Lameter <cl@linux-foundation.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
The sum_vm_events passes cpumask for for_each_cpu(). But it's useless
since we have for_each_online_cpu. Althougth it's tirival overhead, it's
not good about coding consistency.
Let's use for_each_online_cpu instead of for_each_cpu with cpumask
argument.
Signed-off-by: Minchan Kim <minchan.kim@gmail.com>
Reviewed-by: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
Acked-by: Christoph Lameter <cl@linux-foundation.org>
Reviewed-by: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
__out_of_memory() only has a single caller, so fold it into
out_of_memory() and add a comment about locking for its call to
oom_kill_process().
Signed-off-by: David Rientjes <rientjes@google.com>
Cc: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
Acked-by: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
select_bad_process() and __out_of_memory() doe not need their enum
oom_constraint arguments: it's possible to pass a NULL nodemask if
constraint == CONSTRAINT_MEMORY_POLICY in the caller, out_of_memory().
Signed-off-by: David Rientjes <rientjes@google.com>
Cc: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
Acked-by: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
We have been used naming try_set_zone_oom and clear_zonelist_oom.
The role of functions is to lock of zonelist for preventing parallel
OOM. So clear_zonelist_oom makes sense but try_set_zone_oome is rather
awkward and unmatched with clear_zonelist_oom.
Let's change it with try_set_zonelist_oom.
Signed-off-by: Minchan Kim <minchan.kim@gmail.com>
Acked-by: David Rientjes <rientjes@google.com>
Reviewed-by: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com>
Cc: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Remove the redundancy in __oom_kill_task() since:
- init can never be passed to this function: it will never be PF_EXITING
or selectable from select_bad_process(), and
- it will never be passed a task from oom_kill_task() without an ->mm
and we're unconcerned about detachment from exiting tasks, there's no
reason to protect them against SIGKILL or access to memory reserves.
Also moves the kernel log message to a higher level since the verbosity is
not always emitted here; we need not print an error message if an exiting
task is given a longer timeslice.
__oom_kill_task() only has a single caller, so it can be merged into that
function at the same time.
Signed-off-by: David Rientjes <rientjes@google.com>
Reviewed-by: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
Cc: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
It is possible to remove the special pagefault oom handler by simply oom
locking all system zones and then calling directly into out_of_memory().
All populated zones must have ZONE_OOM_LOCKED set, otherwise there is a
parallel oom killing in progress that will lead to eventual memory freeing
so it's not necessary to needlessly kill another task. The context in
which the pagefault is allocating memory is unknown to the oom killer, so
this is done on a system-wide level.
If a task has already been oom killed and hasn't fully exited yet, this
will be a no-op since select_bad_process() recognizes tasks across the
system with TIF_MEMDIE set.
Signed-off-by: David Rientjes <rientjes@google.com>
Acked-by: Nick Piggin <npiggin@suse.de>
Acked-by: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com>
Cc: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
There are various points in the oom killer where the kernel must determine
whether to panic or not. It's better to extract this to a helper function
to remove all the confusion as to its semantics.
Also fix a call to dump_header() where tasklist_lock is not read- locked,
as required.
There's no functional change with this patch.
Acked-by: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com>
Signed-off-by: David Rientjes <rientjes@google.com>
Cc: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
If memory has been depleted in lowmem zones even with the protection
afforded to it by /proc/sys/vm/lowmem_reserve_ratio, it is unlikely that
killing current users will help. The memory is either reclaimable (or
migratable) already, in which case we should not invoke the oom killer at
all, or it is pinned by an application for I/O. Killing such an
application may leave the hardware in an unspecified state and there is no
guarantee that it will be able to make a timely exit.
Lowmem allocations are now failed in oom conditions when __GFP_NOFAIL is
not used so that the task can perhaps recover or try again later.
Previously, the heuristic provided some protection for those tasks with
CAP_SYS_RAWIO, but this is no longer necessary since we will not be
killing tasks for the purposes of ISA allocations.
high_zoneidx is gfp_zone(gfp_flags), meaning that ZONE_NORMAL will be the
default for all allocations that are not __GFP_DMA, __GFP_DMA32,
__GFP_HIGHMEM, and __GFP_MOVABLE on kernels configured to support those
flags. Testing for high_zoneidx being less than ZONE_NORMAL will only
return true for allocations that have either __GFP_DMA or __GFP_DMA32.
Acked-by: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com>
Signed-off-by: David Rientjes <rientjes@google.com>
Cc: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
The oom killer tasklist dump, enabled with the oom_dump_tasks sysctl, is
very helpful information in diagnosing why a user's task has been killed.
It emits useful information such as each eligible thread's memory usage
that can determine why the system is oom, so it should be enabled by
default.
Signed-off-by: David Rientjes <rientjes@google.com>
Acked-by: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com>
Cc: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
The oom killer presently kills current whenever there is no more memory
free or reclaimable on its mempolicy's nodes. There is no guarantee that
current is a memory-hogging task or that killing it will free any
substantial amount of memory, however.
In such situations, it is better to scan the tasklist for nodes that are
allowed to allocate on current's set of nodes and kill the task with the
highest badness() score. This ensures that the most memory-hogging task,
or the one configured by the user with /proc/pid/oom_adj, is always
selected in such scenarios.
Signed-off-by: David Rientjes <rientjes@google.com>
Reviewed-by: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com>
Cc: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
When a task is chosen for oom kill, the oom killer first attempts to
sacrifice a child not sharing its parent's memory instead. Unfortunately,
this often kills in a seemingly random fashion based on the ordering of
the selected task's child list. Additionally, it is not guaranteed at all
to free a large amount of memory that we need to prevent additional oom
killing in the very near future.
Instead, we now only attempt to sacrifice the worst child not sharing its
parent's memory, if one exists. The worst child is indicated with the
highest badness() score. This serves two advantages: we kill a
memory-hogging task more often, and we allow the configurable
/proc/pid/oom_adj value to be considered as a factor in which child to
kill.
Reviewers may observe that the previous implementation would iterate
through the children and attempt to kill each until one was successful and
then the parent if none were found while the new code simply kills the
most memory-hogging task or the parent. Note that the only time
oom_kill_task() fails, however, is when a child does not have an mm or has
a /proc/pid/oom_adj of OOM_DISABLE. badness() returns 0 for both cases,
so the final oom_kill_task() will always succeed.
Signed-off-by: David Rientjes <rientjes@google.com>
Acked-by: Rik van Riel <riel@redhat.com>
Acked-by: Nick Piggin <npiggin@suse.de>
Acked-by: Balbir Singh <balbir@linux.vnet.ibm.com>
Cc: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com>
Reviewed-by: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Tasks that do not share the same set of allowed nodes with the task that
triggered the oom should not be considered as candidates for oom kill.
Tasks in other cpusets with a disjoint set of mems would be unfairly
penalized otherwise because of oom conditions elsewhere; an extreme
example could unfairly kill all other applications on the system if a
single task in a user's cpuset sets itself to OOM_DISABLE and then uses
more memory than allowed.
Killing tasks outside of current's cpuset rarely would free memory for
current anyway. To use a sane heuristic, we must ensure that killing a
task would likely free memory for current and avoid needlessly killing
others at all costs just because their potential memory freeing is
unknown. It is better to kill current than another task needlessly.
Signed-off-by: David Rientjes <rientjes@google.com>
Acked-by: Rik van Riel <riel@redhat.com>
Acked-by: Nick Piggin <npiggin@suse.de>
Acked-by: Balbir Singh <balbir@linux.vnet.ibm.com>
Cc: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com>
Reviewed-by: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
It's unnecessary to SIGKILL a task that is already PF_EXITING and can
actually cause a NULL pointer dereference of the sighand if it has already
been detached. Instead, simply set TIF_MEMDIE so it has access to memory
reserves and can quickly exit as the comment implies.
Reviewed-by: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
Signed-off-by: David Rientjes <rientjes@google.com>
Cc: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
It's possible to livelock the page allocator if a thread has mm->mmap_sem
and fails to make forward progress because the oom killer selects another
thread sharing the same ->mm to kill that cannot exit until the semaphore
is dropped.
The oom killer will not kill multiple tasks at the same time; each oom
killed task must exit before another task may be killed. Thus, if one
thread is holding mm->mmap_sem and cannot allocate memory, all threads
sharing the same ->mm are blocked from exiting as well. In the oom kill
case, that means the thread holding mm->mmap_sem will never free
additional memory since it cannot get access to memory reserves and the
thread that depends on it with access to memory reserves cannot exit
because it cannot acquire the semaphore. Thus, the page allocators
livelocks.
When the oom killer is called and current happens to have a pending
SIGKILL, this patch automatically gives it access to memory reserves and
returns. Upon returning to the page allocator, its allocation will
hopefully succeed so it can quickly exit and free its memory. If not, the
page allocator will fail the allocation if it is not __GFP_NOFAIL.
Reviewed-by: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
Signed-off-by: David Rientjes <rientjes@google.com>
Cc: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
When find_lock_task_mm() returns a thread other than p in dump_tasks(),
its name should be displayed instead. This is the thread that will be
targeted by the oom killer, not its mm-less parent.
This also allows us to safely dereference task->comm without needing
get_task_comm().
While we're here, remove the cast on task_cpu(task) as Andrew suggested.
Signed-off-by: David Rientjes <rientjes@google.com>
Cc: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com>
Cc: Balbir Singh <balbir@in.ibm.com>
Cc: Oleg Nesterov <oleg@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
The comments in dump_tasks() should be updated to be more clear about why
tasks are filtered and how they are filtered by its argument.
An unnecessary comment concerning a check for is_global_init() is removed
since it isn't of importance.
Suggested-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: David Rientjes <rientjes@google.com>
Acked-by: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com>
Cc: Balbir Singh <balbir@in.ibm.com>
Cc: Oleg Nesterov <oleg@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
dump_task() should use find_lock_task_mm() too. It is necessary for
protecting task-exiting race.
dump_tasks() currently filters any task that does not have an attached
->mm since it incorrectly assumes that it must either be in the process of
exiting and has detached its memory or that it's a kernel thread;
multithreaded tasks may actually have subthreads that have a valid ->mm
pointer and thus those threads should actually be displayed. This change
finds those threads, if they exist, and emit their information along with
the rest of the candidate tasks for kill.
Signed-off-by: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com>
Signed-off-by: David Rientjes <rientjes@google.com>
Cc: Balbir Singh <balbir@in.ibm.com>
Cc: Oleg Nesterov <oleg@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Almost all ->mm == NULL checks in oom_kill.c are wrong.
The current code assumes that the task without ->mm has already released
its memory and ignores the process. However this is not necessarily true
when this process is multithreaded, other live sub-threads can use this
->mm.
- Remove the "if (!p->mm)" check in select_bad_process(), it is
just wrong.
- Add the new helper, find_lock_task_mm(), which finds the live
thread which uses the memory and takes task_lock() to pin ->mm
- change oom_badness() to use this helper instead of just checking
->mm != NULL.
- As David pointed out, select_bad_process() must never choose the
task without ->mm, but no matter what oom_badness() returns the
task can be chosen if nothing else has been found yet.
Change oom_badness() to return int, change it to return -1 if
find_lock_task_mm() fails, and change select_bad_process() to
check points >= 0.
Note! This patch is not enough, we need more changes.
- oom_badness() was fixed, but oom_kill_task() still ignores
the task without ->mm
- oom_forkbomb_penalty() should use find_lock_task_mm() too,
and it also needs other changes to actually find the first
first-descendant children
This will be addressed later.
[kosaki.motohiro@jp.fujitsu.com: use in badness(), __oom_kill_task()]
Signed-off-by: Oleg Nesterov <oleg@redhat.com>
Signed-off-by: David Rientjes <rientjes@google.com>
Signed-off-by: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
select_bad_process() checks PF_EXITING to detect the task which is going
to release its memory, but the logic is very wrong.
- a single process P with the dead group leader disables
select_bad_process() completely, it will always return
ERR_PTR() while P can live forever
- if the PF_EXITING task has already released its ->mm
it doesn't make sense to expect it is goiing to free
more memory (except task_struct/etc)
Change the code to ignore the PF_EXITING tasks without ->mm.
Signed-off-by: Oleg Nesterov <oleg@redhat.com>
Signed-off-by: David Rientjes <rientjes@google.com>
Cc: Balbir Singh <balbir@in.ibm.com>
Acked-by: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
select_bad_process() thinks a kernel thread can't have ->mm != NULL, this
is not true due to use_mm().
Change the code to check PF_KTHREAD.
Reviewed-by: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
Signed-off-by: Oleg Nesterov <oleg@redhat.com>
Signed-off-by: David Rientjes <rientjes@google.com>
Acked-by: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com>
Cc: Balbir Singh <balbir@in.ibm.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
KSM reference counts can cause an anon_vma to exist after the processe it
belongs to have already exited. Because the anon_vma lock now lives in
the root anon_vma, we need to ensure that the root anon_vma stays around
until after all the "child" anon_vmas have been freed.
The obvious way to do this is to have a "child" anon_vma take a reference
to the root in anon_vma_fork. When the anon_vma is freed at munmap or
process exit, we drop the refcount in anon_vma_unlink and possibly free
the root anon_vma.
The KSM anon_vma reference count function also needs to be modified to
deal with the possibility of freeing 2 levels of anon_vma. The easiest
way to do this is to break out the KSM magic and make it generic.
When compiling without CONFIG_KSM, this code is compiled out.
Signed-off-by: Rik van Riel <riel@redhat.com>
Tested-by: Larry Woodman <lwoodman@redhat.com>
Acked-by: Larry Woodman <lwoodman@redhat.com>
Reviewed-by: Minchan Kim <minchan.kim@gmail.com>
Cc: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
Acked-by: Mel Gorman <mel@csn.ul.ie>
Acked-by: Linus Torvalds <torvalds@linux-foundation.org>
Tested-by: Dave Young <hidave.darkstar@gmail.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Always (and only) lock the root (oldest) anon_vma whenever we do something
in an anon_vma. The recently introduced anon_vma scalability is due to
the rmap code scanning only the VMAs that need to be scanned. Many common
operations still took the anon_vma lock on the root anon_vma, so always
taking that lock is not expected to introduce any scalability issues.
However, always taking the same lock does mean we only need to take one
lock, which means rmap_walk on pages from any anon_vma in the vma is
excluded from occurring during an munmap, expand_stack or other operation
that needs to exclude rmap_walk and similar functions.
Also add the proper locking to vma_adjust.
Signed-off-by: Rik van Riel <riel@redhat.com>
Tested-by: Larry Woodman <lwoodman@redhat.com>
Acked-by: Larry Woodman <lwoodman@redhat.com>
Reviewed-by: Minchan Kim <minchan.kim@gmail.com>
Reviewed-by: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
Acked-by: Mel Gorman <mel@csn.ul.ie>
Acked-by: Linus Torvalds <torvalds@linux-foundation.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Track the root (oldest) anon_vma in each anon_vma tree. Because we only
take the lock on the root anon_vma, we cannot use the lock on higher-up
anon_vmas to lock anything. This makes it impossible to do an indirect
lookup of the root anon_vma, since the data structures could go away from
under us.
However, a direct pointer is safe because the root anon_vma is always the
last one that gets freed on munmap or exit, by virtue of the same_vma list
order and unlink_anon_vmas walking the list forward.
[akpm@linux-foundation.org: fix typo]
Signed-off-by: Rik van Riel <riel@redhat.com>
Acked-by: Mel Gorman <mel@csn.ul.ie>
Acked-by: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
Tested-by: Larry Woodman <lwoodman@redhat.com>
Acked-by: Larry Woodman <lwoodman@redhat.com>
Reviewed-by: Minchan Kim <minchan.kim@gmail.com>
Acked-by: Linus Torvalds <torvalds@linux-foundation.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Subsitute a direct call of spin_lock(anon_vma->lock) with an inline
function doing exactly the same.
This makes it easier to do the substitution to the root anon_vma lock in a
following patch.
We will deal with the handful of special locks (nested, dec_and_lock, etc)
separately.
Signed-off-by: Rik van Riel <riel@redhat.com>
Acked-by: Mel Gorman <mel@csn.ul.ie>
Acked-by: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
Tested-by: Larry Woodman <lwoodman@redhat.com>
Acked-by: Larry Woodman <lwoodman@redhat.com>
Reviewed-by: Minchan Kim <minchan.kim@gmail.com>
Acked-by: Linus Torvalds <torvalds@linux-foundation.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Rename anon_vma_lock to vma_lock_anon_vma. This matches the naming style
used in page_lock_anon_vma and will come in really handy further down in
this patch series.
Signed-off-by: Rik van Riel <riel@redhat.com>
Acked-by: Mel Gorman <mel@csn.ul.ie>
Acked-by: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
Tested-by: Larry Woodman <lwoodman@redhat.com>
Acked-by: Larry Woodman <lwoodman@redhat.com>
Reviewed-by: Minchan Kim <minchan.kim@gmail.com>
Acked-by: Linus Torvalds <torvalds@linux-foundation.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
When a copy-on-write occurs, we take one of two paths in handle_mm_fault:
through handle_pte_fault for normal pages, or through hugetlb_fault for
huge pages.
In the normal page case, we eventually get to do_wp_page and call mmu
notifiers via ptep_clear_flush_notify. There is no callout to the mmmu
notifiers in the huge page case. This patch fixes that.
Signed-off-by: Doug Doan <dougd@cray.com>
Acked-by: Mel Gorman <mel@csn.ul.ie>
Cc: Andrea Arcangeli <aarcange@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Provide an INIT_MM_CONTEXT intializer macro which can be used to
statically initialize mm_struct:mm_context of init_mm. This way we can
get rid of code which will do the initialization at run time (on s390).
In addition the current code can be found at a place where it is not
expected. So let's have a common initializer which architectures
can use if needed.
This is based on a patch from Suzuki Poulose.
Signed-off-by: Heiko Carstens <heiko.carstens@de.ibm.com>
Cc: Martin Schwidefsky <schwidefsky@de.ibm.com>
Cc: Suzuki Poulose <suzuki@in.ibm.com>
Cc: Alexey Dobriyan <adobriyan@gmail.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Use ERR_CAST(x) rather than ERR_PTR(PTR_ERR(x)). The former makes more
clear what is the purpose of the operation, which otherwise looks like a
no-op.
The semantic patch that makes this change is as follows:
(http://coccinelle.lip6.fr/)
// <smpl>
@@
type T;
T x;
identifier f;
@@
T f (...) { <+...
- ERR_PTR(PTR_ERR(x))
+ x
...+> }
@@
expression x;
@@
- ERR_PTR(PTR_ERR(x))
+ ERR_CAST(x)
// </smpl>
Signed-off-by: Julia Lawall <julia@diku.dk>
Cc: Nick Piggin <nickpiggin@yahoo.com.au>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Use memdup_user when user data is immediately copied into the
allocated region.
The semantic patch that makes this change is as follows:
(http://coccinelle.lip6.fr/)
// <smpl>
@@
expression from,to,size,flag;
position p;
identifier l1,l2;
@@
- to = \(kmalloc@p\|kzalloc@p\)(size,flag);
+ to = memdup_user(from,size);
if (
- to==NULL
+ IS_ERR(to)
|| ...) {
<+... when != goto l1;
- -ENOMEM
+ PTR_ERR(to)
...+>
}
- if (copy_from_user(to, from, size) != 0) {
- <+... when != goto l2;
- -EFAULT
- ...+>
- }
// </smpl>
Signed-off-by: Julia Lawall <julia@diku.dk>
Cc: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Make sure we check the truncate constraints early on in ->setattr by adding
those checks to inode_change_ok. Also clean up and document inode_change_ok
to make this obvious.
As a fallout we don't have to call inode_newsize_ok from simple_setsize and
simplify it down to a truncate_setsize which doesn't return an error. This
simplifies a lot of setattr implementations and means we use truncate_setsize
almost everywhere. Get rid of fat_setsize now that it's trivial and mark
ext2_setsize static to make the calling convention obvious.
Keep the inode_newsize_ok in vmtruncate for now as all callers need an
audit for its removal anyway.
Note: setattr code in ecryptfs doesn't call inode_change_ok at all and
needs a deeper audit, but that is left for later.
Signed-off-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: Al Viro <viro@zeniv.linux.org.uk>
Make sure we call inode_change_ok before doing any changes in ->setattr,
and make sure to call it even if our fs wants to ignore normal UNIX
permissions, but use the ATTR_FORCE to skip those.
Signed-off-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: Al Viro <viro@zeniv.linux.org.uk>
Despite its name it's now a generic implementation of ->setattr, but
rather a helper to copy attributes from a struct iattr to the inode.
Rename it to setattr_copy to reflect this fact.
Signed-off-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: Al Viro <viro@zeniv.linux.org.uk>
This patch fixes alignment of slab objects in case CONFIG_DEBUG_PAGEALLOC is
active.
Before this spot in kmem_cache_create, we have this situation:
- align contains the required alignment of the object
- cachep->obj_offset is 0 or equals align in case of CONFIG_DEBUG_SLAB
- size equals the size of the object, or object plus trailing redzone in case
of CONFIG_DEBUG_SLAB
This spot tries to fill one page per object if the object is in certain size
limits, however setting obj_offset to PAGE_SIZE - size does break the object
alignment since size may not be aligned with the required alignment.
This patch simply adds an ALIGN(size, align) to the equation and fixes the
object size detection accordingly.
This code in drivers/s390/cio/qdio_setup_init has lead to incorrectly aligned
slab objects (sizeof(struct qdio_q) equals 1792):
qdio_q_cache = kmem_cache_create("qdio_q", sizeof(struct qdio_q),
256, 0, NULL);
Acked-by: Christoph Lameter <cl@linux.com>
Signed-off-by: Carsten Otte <cotte@de.ibm.com>
Signed-off-by: Pekka Enberg <penberg@kernel.org>
All callers expect a boolean result which is true if the region
overlaps a reserved region. However, the implementation actually
returns -1 if there is no overlap, and a region index (0 based)
if there is.
Make it behave as callers (and common sense) expect.
Signed-off-by: Benjamin Herrenschmidt <benh@kernel.crashing.org>
Fix a bug where a lock is _bh nested within another _bh lock,
but forgets to use the _bh variant for unlock.
Further more, it's not necessary to test _bh locks, the inner lock
can just use spin_lock(). So fix up the bug by making that change.
Signed-off-by: Jens Axboe <jaxboe@fusionio.com>
This patch makes sure we first initialize everything and set the BDI_registered
flag, and only after this we add the bdi to 'bdi_list'. Current code adds the
bdi to the list too early, and as a result I the
WARN(!test_bit(BDI_registered, &bdi->state)
in bdi forker is triggered. Also, it is in general good practice to make things
visible only when they are fully initialized.
Also, this patch does few micro clean-ups:
1. Removes the 'exit' label which does not do anything, just returns. This
allows to get rid of few braces and 'ret' variable and make the code smaller.
2. If 'kthread_run()' fails, remove the error code it returns, not hard-coded
'-ENOMEM'. Theoretically, some day 'kthread_run()' can return something
else. Also, in case of failure it is not necessary to set 'bdi->wb.task' to
NULL.
Signed-off-by: Artem Bityutskiy <Artem.Bityutskiy@nokia.com>
Signed-off-by: Jens Axboe <jaxboe@fusionio.com>
Add 2 new trace points to the periodic write-back wake up case, just like we do
in the 'bdi_queue_work()' function. Namely, introduce:
1. trace_writeback_wake_thread(bdi)
2. trace_writeback_wake_forker_thread(bdi)
The first event is triggered every time we wake up a bdi thread to start
periodic background write-out. The second event is triggered only when the bdi
thread does not exist and should be created by the forker thread.
This patch was suggested by Dave Chinner and Christoph Hellwig.
Signed-off-by: Artem Bityutskiy <Artem.Bityutskiy@nokia.com>
Signed-off-by: Jens Axboe <jaxboe@fusionio.com>
The 'setup_timer()' function also calls 'init_timer()', so the extra
'init_timer()' call is not needed. Indeed, 'setup_timer()' is basically
'init_timer()' plus callback function and data pointers initialization.
Signed-off-by: Artem Bityutskiy <Artem.Bityutskiy@nokia.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: Jens Axboe <jaxboe@fusionio.com>
Whe the first inode for a bdi is marked dirty, we wake up the bdi thread which
should take care of the periodic background write-out. However, the write-out
will actually start only 'dirty_writeback_interval' centisecs later, so we can
delay the wake-up.
This change was requested by Nick Piggin who pointed out that if we delay the
wake-up, we weed out 2 unnecessary contex switches, which matters because
'__mark_inode_dirty()' is a hot-path function.
This patch introduces a new function - 'bdi_wakeup_thread_delayed()', which
sets up a timer to wake-up the bdi thread and returns. So the wake-up is
delayed.
We also delete the timer in bdi threads just before writing-back. And
synchronously delete it when unregistering bdi. At the unregister point the bdi
does not have any users, so no one can arm it again.
Since now we take 'bdi->wb_lock' in the timer, which can execute in softirq
context, we have to use 'spin_lock_bh()' for 'bdi->wb_lock'. This patch makes
this change as well.
This patch also moves the 'bdi_wb_init()' function down in the file to avoid
forward-declaration of 'bdi_wakeup_thread_delayed()'.
Signed-off-by: Artem Bityutskiy <Artem.Bityutskiy@nokia.com>
Signed-off-by: Jens Axboe <jaxboe@fusionio.com>
Finally, we can get rid of unnecessary wake-ups in bdi threads, which are very
bad for battery-driven devices.
There are two types of activities bdi threads do:
1. process bdi works from the 'bdi->work_list'
2. periodic write-back
So there are 2 sources of wake-up events for bdi threads:
1. 'bdi_queue_work()' - submits bdi works
2. '__mark_inode_dirty()' - adds dirty I/O to bdi's
The former already has bdi wake-up code. The latter does not, and this patch
adds it.
'__mark_inode_dirty()' is hot-path function, but this patch adds another
'spin_lock(&bdi->wb_lock)' there. However, it is taken only in rare cases when
the bdi has no dirty inodes. So adding this spinlock should be fine and should
not affect performance.
This patch makes sure bdi threads and the forker thread do not wake-up if there
is nothing to do. The forker thread will nevertheless wake up at least every
5 min. to check whether it has to kill a bdi thread. This can also be optimized,
but is not worth it.
This patch also tidies up the warning about unregistered bid, and turns it from
an ugly crocodile to a simple 'WARN()' statement.
Signed-off-by: Artem Bityutskiy <Artem.Bityutskiy@nokia.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: Jens Axboe <jaxboe@fusionio.com>
Currently, bdi threads can decide to exit if there were no useful activities
for 5 minutes. However, this causes nasty races: we can easily oops in the
'bdi_queue_work()' if the bdi thread decides to exit while we are waking it up.
And even if we do not oops, but the bdi tread exits immediately after we wake
it up, we'd lose the wake-up event and have an unnecessary delay (up to 5 secs)
in the bdi work processing.
This patch makes the forker thread to be the central place which not only
creates bdi threads, but also kills them if they were inactive long enough.
This better design-wise.
Another reason why this change was done is to prepare for the further changes
which will prevent the bdi threads from waking up every 5 sec and wasting
power. Indeed, when the task does not wake up periodically anymore, it won't be
able to exit either.
This patch also moves the the 'wake_up_bit()' call from the bdi thread to the
forker thread as well. So now the forker thread sets the BDI_pending bit, then
forks the task or kills it, then clears the bit and wakes up the waiting
process.
The only process which may wain on the bit is 'bdi_wb_shutdown()'. This
function was changed as well - now it first removes the bdi from the
'bdi_list', then waits on the 'BDI_pending' bit. Once it wakes up, it is
guaranteed that the forker thread won't race with it, because the bdi is not
visible. Note, the forker thread sets the 'BDI_pending' bit under the
'bdi->wb_lock' which is essential for proper serialization.
And additionally, when we change 'bdi->wb.task', we now take the
'bdi->work_lock', to make sure that we do not lose wake-ups which we otherwise
would when raced with, say, 'bdi_queue_work()'.
Signed-off-by: Artem Bityutskiy <Artem.Bityutskiy@nokia.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: Jens Axboe <jaxboe@fusionio.com>
This patch re-structures the bdi forker a little:
1. Add 'bdi_cap_flush_forker(bdi)' condition check to the bdi loop. The reason
for this is that the forker thread can start _before_ the 'BDI_registered'
flag is set (see 'bdi_register()'), so the WARN() statement will fire for
the default bdi. I observed this warning at boot-up.
2. Introduce an enum 'action' and use "switch" statement in the outer loop.
This is a preparation to the further patch which will teach the forker
thread killing bdi threads, so we'll have another case in the "switch"
statement. This change was suggested by Christoph Hellwig.
This patch is just a small step towards the coming change where the forker
thread will kill the bdi threads. It should simplify reviewing the following
changes, which would otherwise be larger.
This patch also amends comments a little.
Signed-off-by: Artem Bityutskiy <Artem.Bityutskiy@nokia.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: Jens Axboe <jaxboe@fusionio.com>
The forker thread removes bdis from 'bdi_list' before forking the bdi thread.
But this is wrong for at least 2 reasons.
Reason #1: if we temporary remove a bdi from the list, we may miss works which
would otherwise be given to us.
Reason #2: this is racy; indeed, 'bdi_wb_shutdown()' expects that bdis are
always in the 'bdi_list' (see 'bdi_remove_from_list()'), and when
it races with the forker thread, it can shut down the bdi thread
at the same time as the forker creates it.
This patch makes sure the forker thread never removes bdis from 'bdi_list'
(which was suggested by Christoph Hellwig).
In order to make sure that we do not race with 'bdi_wb_shutdown()', we have to
hold the 'bdi_lock' while walking the 'bdi_list' and setting the 'BDI_pending'
flag.
NOTE! The error path is interesting. Currently, when we fail to create a bdi
thread, we move the bdi to the tail of 'bdi_list'. But if we never remove the
bdi from the list, we cannot move it to the tail either, because then we can
mess up the RCU readers which walk the list. And also, we'll have the race
described above in "Reason #2".
But I not think that adding to the tail is any important so I just do not do
that.
Signed-off-by: Artem Bityutskiy <Artem.Bityutskiy@nokia.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: Jens Axboe <jaxboe@fusionio.com>
This patch simplifies bdi code a little by removing the 'pending_list' which is
redundant. Indeed, currently the forker thread ('bdi_forker_thread()') is
working like this:
1. In a loop, fetch all bdi's which have works but have no writeback thread and
move them to the 'pending_list'.
2. If the list is empty, sleep for 5 sec.
3. Otherwise, take one bdi from the list, fork the writeback thread for this
bdi, and repeat the loop.
IOW, it first moves everything to the 'pending_list', then process only one
element, and so on. This patch simplifies the algorithm, which is now as
follows.
1. Find the first bdi which has a work and remove it from the global list of
bdi's (bdi_list).
2. If there was not such bdi, sleep 5 sec.
3. Fork the writeback thread for this bdi and repeat the loop.
IOW, now we find the first bdi to process, process it, and so on. This is
simpler and involves less lists.
The bonus now is that we can get rid of a couple of functions, as well as
remove complications which involve 'rcu_call()' and 'bdi->rcu_head'.
This patch also makes sure we use 'list_add_tail_rcu()', instead of plain
'list_add_tail()', but this piece of code is going to be removed in the next
patch anyway.
Signed-off-by: Artem Bityutskiy <Artem.Bityutskiy@nokia.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: Jens Axboe <jaxboe@fusionio.com>
Currently, if someone submits jobs for the default bdi, we can lose wake-up
events. E.g., this can happen if 'bdi_queue_work()' is called when
'bdi_forker_thread()' is executing code after 'wb_do_writeback(me, 0)', but
before 'set_current_state(TASK_INTERRUPTIBLE)'.
This situation is unlikely, and the result is not very severe - we'll just
delay the execution of the work, but this is still not very nice.
This patch fixes the issue by checking whether the default bdi has works before
the forker thread goes sleep.
Signed-off-by: Artem Bityutskiy <Artem.Bityutskiy@nokia.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: Jens Axboe <jaxboe@fusionio.com>
Currently the forker thread can lose wake-ups which may lead to unnecessary
delays in processing bdi works. E.g., consider the following scenario.
1. 'bdi_forker_thread()' walks the 'bdi_list', finds out there is nothing to
do, and is about to finish the loop.
2. A bdi thread decides to exit because it was inactive for long time.
3. 'bdi_queue_work()' adds a work to the bdi which just exited, so it wakes up
the forker thread.
4. but 'bdi_forker_thread()' executes 'set_current_state(TASK_INTERRUPTIBLE)'
and goes sleep. We lose a wake-up.
Losing the wake-up is not fatal, but this means that the bdi work processing
will be delayed by up to 5 sec. This race is theoretical, I never hit it, but
it is worth fixing.
The fix is to execute 'set_current_state(TASK_INTERRUPTIBLE)' _before_ walking
'bdi_list', not after.
Signed-off-by: Artem Bityutskiy <Artem.Bityutskiy@nokia.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: Jens Axboe <jaxboe@fusionio.com>
This patch fixes a very unlikely race condition on the bdi forker thread error
path: when bdi thread creation fails, 'bdi->wb.task' may contain the error code
for a short period of time. If at the same time someone submits a work to this
bdi, we can end up with an oops 'bdi_queue_work()' while executing
'wake_up_process(wb->task)'.
This patch fixes the issue by introducing a temporary variable 'task' and
storing the possible error code there, so that 'wb->task' would never take
erroneous values.
Note, this race is very unlikely and I never hit it, so it is theoretical, but
nevertheless worth fixing.
This patch also merges 2 comments which were previously separate.
Signed-off-by: Artem Bityutskiy <Artem.Bityutskiy@nokia.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: Jens Axboe <jaxboe@fusionio.com>
The write-back code mixes words "thread" and "task" for the same things. This
is not a big deal, but still an inconsistency.
hch: a convention I tend to use and I've seen in various places
is to always use _task for the storage of the task_struct pointer,
and thread everywhere else. This especially helps with having
foo_thread for the actual thread and foo_task for a global
variable keeping the task_struct pointer
This patch renames:
* 'bdi_add_default_flusher_task()' -> 'bdi_add_default_flusher_thread()'
* 'bdi_forker_task()' -> 'bdi_forker_thread()'
because bdi threads are 'bdi_writeback_thread()', so these names are more
consistent.
This patch also amends commentaries and makes them refer the forker and bdi
threads as "thread", not "task".
Also, while on it, make 'bdi_add_default_flusher_thread()' declaration use
'static void' instead of 'void static' and make checkpatch.pl happy.
Signed-off-by: Artem Bityutskiy <Artem.Bityutskiy@nokia.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: Jens Axboe <jaxboe@fusionio.com>
Add a trace event to the ->writepage loop in write_cache_pages to give
visibility into how the ->writepage call is changing variables within the
writeback control structure. Of most interest is how wbc->nr_to_write changes
from call to call, especially with filesystems that write multiple pages
in ->writepage.
Signed-off-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: Jens Axboe <jaxboe@fusionio.com>
Tracing high level background writeback events is good, but it doesn't
give the entire picture. Add visibility into write throttling to catch IO
dispatched by foreground throttling of processing dirtying lots of pages.
Signed-off-by: Dave Chinner <dchinner@redhat.com>
Signed-off-by: Jens Axboe <jaxboe@fusionio.com>
Trace queue/sched/exec parts of the writeback loop. This provides
insight into when and why flusher threads are scheduled to run. e.g
a sync invocation leaves traces like:
sync-[...]: writeback_queue: bdi 8:0: sb_dev 8:1 nr_pages=7712 sync_mode=0 kupdate=0 range_cyclic=0 background=0
flush-8:0-[...]: writeback_exec: bdi 8:0: sb_dev 8:1 nr_pages=7712 sync_mode=0 kupdate=0 range_cyclic=0 background=0
This also lays the foundation for adding more writeback tracing to
provide deeper insight into the whole writeback path.
The original tracing code is from Jens Axboe, though this version is
a rewrite as a result of the code being traced changing
significantly.
Signed-off-by: Dave Chinner <dchinner@redhat.com>
Signed-off-by: Jens Axboe <jaxboe@fusionio.com>
Move all code for the writeback thread into fs/fs-writeback.c instead of
splitting it over two functions in two files.
Signed-off-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: Jens Axboe <jaxboe@fusionio.com>
The wb_list member of struct backing_device_info always has exactly one
element. Just use the direct bdi->wb pointer instead and simplify some
code.
Also remove bdi_task_init which is now trivial to prepare for the next
patch.
Signed-off-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: Jens Axboe <jaxboe@fusionio.com>
Remove the current bio flags and reuse the request flags for the bio, too.
This allows to more easily trace the type of I/O from the filesystem
down to the block driver. There were two flags in the bio that were
missing in the requests: BIO_RW_UNPLUG and BIO_RW_AHEAD. Also I've
renamed two request flags that had a superflous RW in them.
Note that the flags are in bio.h despite having the REQ_ name - as
blkdev.h includes bio.h that is the only way to go for now.
Signed-off-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: Jens Axboe <jaxboe@fusionio.com>
* 'for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/penberg/slab-2.6:
slub: Allow removal of slab caches during boot
Revert "slub: Allow removal of slab caches during boot"
slub numa: Fix rare allocation from unexpected node
slab: use deferable timers for its periodic housekeeping
slub: Use kmem_cache flags to detect if slab is in debugging mode.
slub: Allow removal of slab caches during boot
slub: Check kasprintf results in kmem_cache_init()
SLUB: Constants need UL
slub: Use a constant for a unspecified node.
SLOB: Free objects to their own list
slab: fix caller tracking on !CONFIG_DEBUG_SLAB && CONFIG_TRACING
* 'x86-mm-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/linux-2.6-tip:
x86: Ioremap: fix wrong physical address handling in PAT code
x86, tlb: Clean up and correct used type
x86, iomap: Fix wrong page aligned size calculation in ioremapping code
x86, mm: Create symbolic index into address_markers array
x86, ioremap: Fix normal ram range check
x86, ioremap: Fix incorrect physical address handling in PAE mode
x86-64, mm: Initialize VDSO earlier on 64 bits
x86, kmmio/mmiotrace: Fix double free of kmmio_fault_pages
* 'perf-core-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/linux-2.6-tip: (162 commits)
tracing/kprobes: unregister_trace_probe needs to be called under mutex
perf: expose event__process function
perf events: Fix mmap offset determination
perf, powerpc: fsl_emb: Restore setting perf_sample_data.period
perf, powerpc: Convert the FSL driver to use local64_t
perf tools: Don't keep unreferenced maps when unmaps are detected
perf session: Invalidate last_match when removing threads from rb_tree
perf session: Free the ref_reloc_sym memory at the right place
x86,mmiotrace: Add support for tracing STOS instruction
perf, sched migration: Librarize task states and event headers helpers
perf, sched migration: Librarize the GUI class
perf, sched migration: Make the GUI class client agnostic
perf, sched migration: Make it vertically scrollable
perf, sched migration: Parameterize cpu height and spacing
perf, sched migration: Fix key bindings
perf, sched migration: Ignore unhandled task states
perf, sched migration: Handle ignored migrate out events
perf: New migration tool overview
tracing: Drop cpparg() macro
perf: Use tracepoint_synchronize_unregister() to flush any pending tracepoint call
...
Fix up trivial conflicts in Makefile and drivers/cpufreq/cpufreq.c
* 'core-rcu-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/linux-2.6-tip:
Revert "net: Make accesses to ->br_port safe for sparse RCU"
mce: convert to rcu_dereference_index_check()
net: Make accesses to ->br_port safe for sparse RCU
vfs: add fs.h to define struct file
lockdep: Add an in_workqueue_context() lockdep-based test function
rcu: add __rcu API for later sparse checking
rcu: add an rcu_dereference_index_check()
tree/tiny rcu: Add debug RCU head objects
mm: remove all rcu head initializations
fs: remove all rcu head initializations, except on_stack initializations
powerpc: remove all rcu head initializations
* 'for_linus' of git://git.kernel.org/pub/scm/linux/kernel/git/jwessel/linux-2.6-kgdb:
debug_core,kdb: fix crash when arch does not have single step
kgdb,x86: use macro HBP_NUM to replace magic number 4
kgdb,mips: remove unused kgdb_cpu_doing_single_step operations
mm,kdb,kgdb: Add a debug reference for the kdb kmap usage
KGDB: Remove set but unused newPC
ftrace,kdb: Allow dumping a specific cpu's buffer with ftdump
ftrace,kdb: Extend kdb to be able to dump the ftrace buffer
kgdb,powerpc: Replace hardcoded offset by BREAK_INSTR_SIZE
arm,kgdb: Add ability to trap into debugger on notify_die
gdbstub: do not directly use dbg_reg_def[] in gdb_cmd_reg_set()
gdbstub: Implement gdbserial 'p' and 'P' packets
kgdb,arm: Individual register get/set for arm
kgdb,mips: Individual register get/set for mips
kgdb,x86: Individual register get/set for x86
kgdb,kdb: individual register set and and get API
gdbstub: Optimize kgdb's "thread:" response for the gdb serial protocol
kgdb: remove custom hex_to_bin()implementation
The kdb kmap should never get used outside of the kernel debugger
exception context.
Signed-off-by: Jason Wessel<jason.wessel@windriver.com>
CC: Andrew Morton <akpm@linux-foundation.org>
CC: Ingo Molnar <mingo@elte.hu>
CC: linux-mm@kvack.org
This is a wrapper for memblock_find_base() using slightly different
arguments (start,end instead of start,size for example) in order to
make it easier to convert existing arch/x86 code.
Signed-off-by: Yinghai Lu <yinghai@kernel.org>
Signed-off-by: Benjamin Herrenschmidt <benh@kernel.crashing.org>
Arch code can define ARCH_DISCARD_MEMBLOCK in asm/memblock.h,
which in turns causes memblock code and data to go respectively
into the .init and .initdata sections. This will be used by the
x86 architecture.
If ARCH_DISCARD_MEMBLOCK is defined, the debugfs files to inspect
the memblock arrays after boot are not created.
Signed-off-by: Yinghai Lu <yinghai@kernel.org>
Signed-off-by: Benjamin Herrenschmidt <benh@kernel.crashing.org>
And ensure we don't hand out 0 as a valid allocation. We put the
low limit at PAGE_SIZE arbitrarily.
Signed-off-by: Benjamin Herrenschmidt <benh@kernel.crashing.org>
will used by x86 memblock_x86_find_in_range_node and nobootmem replacement
Signed-off-by: Yinghai Lu <yinghai@kernel.org>
Signed-off-by: Benjamin Herrenschmidt <benh@kernel.crashing.org>
Print out the location info in addition to which array is being
resized. Also use memblocK_dbg() to put that under control of
the memblock_debug flag.
Signed-off-by: Yinghai Lu <yinghai@kernel.org>
Signed-off-by: Benjamin Herrenschmidt <benh@kernel.crashing.org>
This exposes memblock_debug and associated memblock_dbg() macro,
along with memblock_can_resize so that x86 can use these when
ported to use memblock
Signed-off-by: Yinghai Lu <yinghai@kernel.org>
Signed-off-by: Benjamin Herrenschmidt <benh@kernel.crashing.org>
memblock_alloc_nid() used to fallback to allocating anywhere by using
memblock_alloc() as a fallback.
However, some of my previous patches limit memblock_alloc() to the region
covered by MEMBLOCK_ALLOC_ACCESSIBLE which is not quite what we want
for memblock_alloc_try_nid().
So we fix it by explicitely using MEMBLOCK_ALLOC_ANYWHERE.
Not that so far only sparc uses memblock_alloc_nid() and it hasn't been updated
to clamp the accessible zone yet. Thus the temporary "breakage" should have
no effect.
Signed-off-by: Benjamin Herrenschmidt <benh@kernel.crashing.org>
The former is now strict, it will fail if it cannot honor the allocation
within the node, while the later implements the previous semantic which
falls back to allocating anywhere.
Signed-off-by: Benjamin Herrenschmidt <benh@kernel.crashing.org>
We now provide a default (weak) implementation of memblock_nid_range()
which uses the early_pfn_map[] if CONFIG_ARCH_POPULATES_NODE_MAP
is set. Sparc still needs to use its own method due to the way
the pages can be scattered between nodes.
This implementation is inefficient due to our main algorithm and
callback construct wanting to work on an ascending addresses bases
while early_pfn_map[] would rather work with nid's (it's unsorted
at that stage). But it should work and we can look into improving
it subsequently, possibly using arch compile options to chose a
different algorithm alltogether.
Signed-off-by: Benjamin Herrenschmidt <benh@kernel.crashing.org>
To constraint the search of a region between two boundaries,
which will be used by the new NUMA aware allocator among others.
Signed-off-by: Benjamin Herrenschmidt <benh@kernel.crashing.org>
Some archs such as ARM want to avoid coalescing accross things such
as the lowmem/highmem boundary or similar. This provides the option
to control it via an arch callback for which a weak default is provided
which always allows coalescing.
Signed-off-by: Benjamin Herrenschmidt <benh@kernel.crashing.org>
When one of the array gets full, we resize it. After much thinking and
a few iterations of that code, I went back to on-demand resizing using
the (new) internal memblock_find_base() function, which is pretty much what
Yinghai initially proposed, though there some differences in the details.
To work this relies on the default alloc limit being set sensibly by
the architecture.
Signed-off-by: Benjamin Herrenschmidt <benh@kernel.crashing.org>
Some shuffling is needed for doing array resize so we may as well
put some sense into the ordering of the functions in the whole memblock.c
file. No code change. Added some comments.
Signed-off-by: Benjamin Herrenschmidt <benh@kernel.crashing.org>
This will be used by the array resize code and might prove useful
to some arch code as well at which point it can be made non-static.
Also add comment as to why aligning size is important
Signed-off-by: Benjamin Herrenschmidt <benh@kernel.crashing.org>
---
v2. Fix loss of size alignment
v3. Fix result code
This function will be used to locate a free area to put the new memblock
arrays when attempting to resize them. memblock_alloc_region() is gone,
the two callsites now call memblock_add_region().
Signed-off-by: Benjamin Herrenschmidt <benh@kernel.crashing.org>
---
v2. Fix membase_alloc_nid_region() conversion
Since we allocate one more than needed, why not do a bit of sanity checking
here to ensure we don't walk past the end of the array ?
Signed-off-by: Benjamin Herrenschmidt <benh@kernel.crashing.org>
This is in preparation for having resizable arrays.
Note that we still allocate one more than needed, this is unchanged from
the previous implementation.
Signed-off-by: Benjamin Herrenschmidt <benh@kernel.crashing.org>
Right now, both the "memory" and "reserved" memblock_type structures have
a "size" member. It represents the calculated memory size in the former
case and is unused in the latter.
This moves it out to the main memblock structure instead
Signed-off-by: Benjamin Herrenschmidt <benh@kernel.crashing.org>
Let's not waste space and cycles on archs that don't support >32-bit
physical address space.
Signed-off-by: Benjamin Herrenschmidt <benh@kernel.crashing.org>
The RMA (RMO is a misnomer) is a concept specific to ppc64 (in fact
server ppc64 though I hijack it on embedded ppc64 for similar purposes)
and represents the area of memory that can be accessed in real mode
(aka with MMU off), or on embedded, from the exception vectors (which
is bolted in the TLB) which pretty much boils down to the same thing.
We take that out of the generic MEMBLOCK data structure and move it into
arch/powerpc where it belongs, renaming it to "RMA" while at it.
Signed-off-by: Benjamin Herrenschmidt <benh@kernel.crashing.org>
This introduce memblock.current_limit which is used to limit allocations
from memblock_alloc() or memblock_alloc_base(..., MEMBLOCK_ALLOC_ACCESSIBLE).
The old MEMBLOCK_ALLOC_ANYWHERE changes value from 0 to ~(u64)0 and can still
be used with memblock_alloc_base() to allocate really anywhere.
It is -no-longer- cropped to MEMBLOCK_REAL_LIMIT which disappears.
Note to archs: I'm leaving the default limit to MEMBLOCK_ALLOC_ANYWHERE. I
strongly recommend that you ensure that you set an appropriate limit
during boot in order to guarantee that an memblock_alloc() at any time
results in something that is accessible with a simple __va().
The reason is that a subsequent patch will introduce the ability for
the array to resize itself by reallocating itself. The MEMBLOCK core will
honor the current limit when performing those allocations.
Signed-off-by: Benjamin Herrenschmidt <benh@kernel.crashing.org>
* 'for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tj/percpu:
percpu: allow limited allocation before slab is online
percpu: make @dyn_size always mean min dyn_size in first chunk init functions
To make it fast, we steal ARM's binary search for memblock_is_memory()
and we use that to also the replace existing implementation of
memblock_is_reserved().
Signed-off-by: Benjamin Herrenschmidt <benh@kernel.crashing.org>
All callers expect a boolean result which is true if the region
overlaps a reserved region. However, the implementation actually
returns -1 if there is no overlap, and a region index (0 based)
if there is.
Make it behave as callers (and common sense) expect.
Signed-off-by: Benjamin Herrenschmidt <benh@kernel.crashing.org>
Serialize kmem_cache_create and kmem_cache_destroy using the slub_lock. Only
possible after the use of the slub_lock during dynamic dma creation has been
removed.
Then make sure that the setup of the slab sysfs entries does not race
with kmem_cache_create and kmem_cache destroy.
If a slab cache is removed before we have setup sysfs then simply skip over
the sysfs handling.
Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org>
Cc: Roland Dreier <rdreier@cisco.com>
Signed-off-by: Christoph Lameter <cl@linux-foundation.org>
Signed-off-by: Pekka Enberg <penberg@cs.helsinki.fi>
is_hwpoison_address accesses the page table, so the caller must hold
current->mm->mmap_sem in read mode. So fix its usage in hva_to_pfn of
kvm accordingly.
Comment is_hwpoison_address to remind other users.
Reported-by: Avi Kivity <avi@redhat.com>
Signed-off-by: Huang Ying <ying.huang@intel.com>
Signed-off-by: Avi Kivity <avi@redhat.com>
In common cases, guest SRAO MCE will cause corresponding poisoned page
be un-mapped and SIGBUS be sent to QEMU-KVM, then QEMU-KVM will relay
the MCE to guest OS.
But it is reported that if the poisoned page is accessed in guest
after unmapping and before MCE is relayed to guest OS, userspace will
be killed.
The reason is as follows. Because poisoned page has been un-mapped,
guest access will cause guest exit and kvm_mmu_page_fault will be
called. kvm_mmu_page_fault can not get the poisoned page for fault
address, so kernel and user space MMIO processing is tried in turn. In
user MMIO processing, poisoned page is accessed again, then userspace
is killed by force_sig_info.
To fix the bug, kvm_mmu_page_fault send HWPOISON signal to QEMU-KVM
and do not try kernel and user space MMIO processing for poisoned
page.
[xiao: fix warning introduced by avi]
Reported-by: Max Asbock <masbock@linux.vnet.ibm.com>
Signed-off-by: Huang Ying <ying.huang@intel.com>
Signed-off-by: Xiao Guangrong <xiaoguangrong@cn.fujitsu.com>
Signed-off-by: Marcelo Tosatti <mtosatti@redhat.com>
Signed-off-by: Avi Kivity <avi@redhat.com>
Debian's ia64 autobuilders have been seeing kernel freeze or reboot
when running the gdb testsuite (Debian bug 588574): dannf bisected to
2.6.32 62eede62da "mm: ZERO_PAGE without
PTE_SPECIAL"; and reproduced it with gdb's gcore on a simple target.
I'd missed updating the gate_vma handling in __get_user_pages(): that
happens to use vm_normal_page() (nowadays failing on the zero page),
yet reported success even when it failed to get a page - boom when
access_process_vm() tried to copy that to its intermediate buffer.
Fix this, resisting cleanups: in particular, leave it for now reporting
success when not asked to get any pages - very probably safe to change,
but let's not risk it without testing exposure.
Why did ia64 crash with 16kB pages, but succeed with 64kB pages?
Because setup_gate() pads each 64kB of its gate area with zero pages.
Reported-by: Andreas Barth <aba@not.so.argh.org>
Bisected-by: dann frazier <dannf@debian.org>
Signed-off-by: Hugh Dickins <hughd@google.com>
Tested-by: dann frazier <dannf@dannf.org>
Cc: stable@kernel.org
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
The network developers have seen sporadic allocations resulting in objects
coming from unexpected NUMA nodes despite asking for objects from a
specific node.
This is due to get_partial() calling get_any_partial() if partial
slabs are exhausted for a node even if a node was specified and therefore
one would expect allocations only from the specified node.
get_any_partial() sporadically may return a slab from a foreign
node to gradually reduce the size of partial lists on remote nodes
and thereby reduce total memory use for a slab cache.
The behavior is controlled by the remote_defrag_ratio of each cache.
Strictly speaking this is permitted behavior since __GFP_THISNODE was
not specified for the allocation but it is certain surprising.
This patch makes sure that the remote defrag behavior only occurs
if no node was specified.
Signed-off-by: Christoph Lameter <cl@linux-foundation.org>
Signed-off-by: Pekka Enberg <penberg@cs.helsinki.fi>
Add a flag to force lazy_max_pages() to zero to prevent any outstanding
mapped pages. We'll need this for Xen.
Signed-off-by: Jeremy Fitzhardinge <jeremy.fitzhardinge@citrix.com>
Signed-off-by: Konrad Rzeszutek Wilk <konrad.wilk@oracle.com>
Acked-by: Nick Piggin <npiggin@suse.de>
We need lock_page_nosync() here because we have no reference to the
mapping when taking the page lock.
Signed-off-by: Nick Piggin <npiggin@suse.de>
Reviewed-by: Johannes Weiner <hannes@cmpxchg.org>
Cc: Mel Gorman <mel@csn.ul.ie>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
slab has a "once every 2 second" timer for its housekeeping.
As the number of logical processors is growing, its more and more
common that this 2 second timer becomes the primary wakeup source.
This patch turns this housekeeping timer into a deferable timer,
which means that the timer does not interrupt idle, but just runs
at the next event that wakes the cpu up.
The impact is that the timer likely runs a bit later, but during the
delay no code is running so there's not all that much reason for
a difference in housekeeping to occur because of this delay.
Signed-off-by: Arjan van de Ven <arjan@linux.intel.com>
Signed-off-by: Pekka Enberg <penberg@cs.helsinki.fi>
The description and parameters of the kmemleak API weren't obvious. This
patch adds comments clarifying the API usage.
Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
Acked-by: Pekka Enberg <penberg@cs.helsinki.fi>
Introduce a new DEBUG_KMEMLEAK_DEFAULT_OFF config parameter that allows
kmemleak to be disabled by default, but enabled on the command line
via: kmemleak=on. Although a reboot is required to turn it on, its still
useful to not require a re-compile.
Signed-off-by: Jason Baron <jbaron@redhat.com>
Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
Acked-by: Pekka Enberg <penberg@cs.helsinki.fi>
There may be situations when an object is freed using a pointer inside
the memory block. Kmemleak should show more information to help with
debugging.
Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
Acked-by: Pekka Enberg <penberg@cs.helsinki.fi>
With commits 08677214 and 59be5a8e, alloc_bootmem()/free_bootmem() and
friends use the early_res functions for memory management when
NO_BOOTMEM is enabled. This patch adds the kmemleak calls in the
corresponding code paths for bootmem allocations.
Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
Acked-by: Pekka Enberg <penberg@cs.helsinki.fi>
Acked-by: Yinghai Lu <yinghai@kernel.org>
Cc: H. Peter Anvin <hpa@zytor.com>
Cc: stable@kernel.org
The pointer to the page_cgroup table allocated in
init_section_page_cgroup() is stored in section->page_cgroup as (base -
pfn). Since this value does not point to the beginning or inside the
allocated memory block, kmemleak reports a false positive.
This was reported in bugzilla.kernel.org as #16297.
Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
Reported-by: Adrien Dessemond <adrien.dessemond@gmail.com>
Reviewed-by: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
Cc: Pekka Enberg <penberg@cs.helsinki.fi>
Cc: Andrew Morton <akpm@linux-foundation.org>
The current shrinker implementation requires the registered callback
to have global state to work from. This makes it difficult to shrink
caches that are not global (e.g. per-filesystem caches). Pass the shrinker
structure to the callback so that users can embed the shrinker structure
in the context the shrinker needs to operate on and get back to it in the
callback via container_of().
Signed-off-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>
* 'kmemleak' of git://git.kernel.org/pub/scm/linux/kernel/git/cmarinas/linux-2.6-cm:
kmemleak: Add support for NO_BOOTMEM configurations
kmemleak: Annotate false positive in init_section_page_cgroup()
The cacheline with the flags is reachable from the hot paths after the
percpu allocator changes went in. So there is no need anymore to put a
flag into each slab page. Get rid of the SlubDebug flag and use
the flags in kmem_cache instead.
Acked-by: David Rientjes <rientjes@google.com>
Signed-off-by: Christoph Lameter <cl@linux-foundation.org>
Signed-off-by: Pekka Enberg <penberg@cs.helsinki.fi>
If a slab cache is removed before we have setup sysfs then simply skip over
the sysfs handling.
Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org>
Cc: Roland Dreier <rdreier@cisco.com>
Acked-by: David Rientjes <rientjes@google.com>
Signed-off-by: Christoph Lameter <cl@linux-foundation.org>
Signed-off-by: Pekka Enberg <penberg@cs.helsinki.fi>
Small allocations may fail during slab bringup which is fatal. Add a BUG_ON()
so that we fail immediately rather than failing later during sysfs
processing.
Acked-by: David Rientjes <rientjes@google.com>
Signed-off-by: Christoph Lameter <cl@linux-foundation.org>
Signed-off-by: Pekka Enberg <penberg@cs.helsinki.fi>
UL suffix is missing in some constants. Conform to how slab.h uses constants.
Acked-by: David Rientjes <rientjes@google.com>
Signed-off-by: Christoph Lameter <cl@linux-foundation.org>
Signed-off-by: Pekka Enberg <penberg@cs.helsinki.fi>
kmalloc_node() and friends can be passed a constant -1 to indicate
that no choice was made for the node from which the object needs to
come.
Use NUMA_NO_NODE instead of -1.
CC: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
Signed-off-by: David Rientjes <rientjes@google.com>
Signed-off-by: Christoph Lameter <cl@linux-foundation.org>
Signed-off-by: Pekka Enberg <penberg@cs.helsinki.fi>
SLOB has alloced smaller objects from their own list in reduce overall external
fragmentation and increase repeatability, free to their own list also.
This is /proc/meminfo result in my test machine:
without this patch:
===
MemTotal: 1030720 kB
MemFree: 750012 kB
Buffers: 15496 kB
Cached: 160396 kB
SwapCached: 0 kB
Active: 105024 kB
Inactive: 145604 kB
Active(anon): 74816 kB
Inactive(anon): 2180 kB
Active(file): 30208 kB
Inactive(file): 143424 kB
Unevictable: 16 kB
....
with this patch:
===
MemTotal: 1030720 kB
MemFree: 751908 kB
Buffers: 15492 kB
Cached: 160280 kB
SwapCached: 0 kB
Active: 102720 kB
Inactive: 146140 kB
Active(anon): 73168 kB
Inactive(anon): 2180 kB
Active(file): 29552 kB
Inactive(file): 143960 kB
Unevictable: 16 kB
...
The result shows an improvement of 1 MB!
And when I tested it on a embeded system with 64 MB, I found this path is never
called during kernel bootup.
Acked-by: Matt Mackall <mpm@selenic.com>
Signed-off-by: Bob Liu <lliubbo@gmail.com>
Signed-off-by: Pekka Enberg <penberg@cs.helsinki.fi>
via following scripts
FILES=$(find * -type f | grep -vE 'oprofile|[^K]config')
sed -i \
-e 's/lmb/memblock/g' \
-e 's/LMB/MEMBLOCK/g' \
$FILES
for N in $(find . -name lmb.[ch]); do
M=$(echo $N | sed 's/lmb/memblock/g')
mv $N $M
done
and remove some wrong change like lmbench and dlmb etc.
also move memblock.c from lib/ to mm/
Suggested-by: Ingo Molnar <mingo@elte.hu>
Acked-by: "H. Peter Anvin" <hpa@zytor.com>
Acked-by: Benjamin Herrenschmidt <benh@kernel.crashing.org>
Acked-by: Linus Torvalds <torvalds@linux-foundation.org>
Signed-off-by: Yinghai Lu <yinghai@kernel.org>
Signed-off-by: Benjamin Herrenschmidt <benh@kernel.crashing.org>
Current x86 ioremap() doesn't handle physical address higher than
32-bit properly in X86_32 PAE mode. When physical address higher than
32-bit is passed to ioremap(), higher 32-bits in physical address is
cleared wrongly. Due to this bug, ioremap() can map wrong address to
linear address space.
In my case, 64-bit MMIO region was assigned to a PCI device (ioat
device) on my system. Because of the ioremap()'s bug, wrong physical
address (instead of MMIO region) was mapped to linear address space.
Because of this, loading ioatdma driver caused unexpected behavior
(kernel panic, kernel hangup, ...).
Signed-off-by: Kenji Kaneshige <kaneshige.kenji@jp.fujitsu.com>
LKML-Reference: <4C1AE680.7090408@jp.fujitsu.com>
Signed-off-by: H. Peter Anvin <hpa@linux.intel.com>
* 'for-linus' of git://git.kernel.dk/linux-2.6-block:
writeback: simplify the write back thread queue
writeback: split writeback_inodes_wb
writeback: remove writeback_inodes_wbc
fs-writeback: fix kernel-doc warnings
splice: check f_mode for seekable file
splice: direct_splice_actor() should not use pos in sd
First remove items from work_list as soon as we start working on them. This
means we don't have to track any pending or visited state and can get
rid of all the RCU magic freeing the work items - we can simply free
them once the operation has finished. Second use a real completion for
tracking synchronous requests - if the caller sets the completion pointer
we complete it, otherwise use it as a boolean indicator that we can free
the work item directly. Third unify struct wb_writeback_args and struct
bdi_work into a single data structure, wb_writeback_work. Previous we
set all parameters into a struct wb_writeback_args, copied it into
struct bdi_work, copied it again on the stack to use it there. Instead
of just allocate one structure dynamically or on the stack and use it
all the way through the stack.
Signed-off-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: Jens Axboe <jaxboe@fusionio.com>
This was just an odd wrapper around writeback_inodes_wb. Removing this
also allows to get rid of the bdi member of struct writeback_control
which was rather out of place there.
Signed-off-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: Jens Axboe <jaxboe@fusionio.com>
Conflicts:
fs/fs-writeback.c
Merge reason: Resolve the conflict
Note, i picked the version from Linus's tree, which effectively reverts
the fs-writeback.c bits of:
b97181f: fs: remove all rcu head initializations, except on_stack initializations
As the upstream changes to this file changed this code heavily and the
first attempt to resolve the conflict resulted in a non-booting kernel.
It's safer to re-try this portion of the commit cleanly.
Signed-off-by: Ingo Molnar <mingo@elte.hu>
My patch to "Factor out duplicate put/frees in mpol_shared_policy_init()
to a common return path"; and Dan Carpenter's fix thereto both left a
dangling reference to the incoming tmpfs superblock mempolicy structure.
A similar leak was introduced earlier when the nodemask was moved offstack
to the scratch area despite the note in the comment block regarding the
incoming ref.
Move the remaining 'put of the incoming "mpol" to the common exit path to
drop the reference.
Signed-off-by: Lee Schermerhorn <lee.schermerhorn@hp.com>
Acked-by: Dan Carpenter <error27@gmail.com>
Cc: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com>
Cc: David Rientjes <rientjes@google.com>
Cc: Christoph Lameter <cl@linux-foundation.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
OOM-waitqueue should be waken up when oom_disable is canceled. This is a
fix for 3c11ecf448 ("memcg: oom kill disable and oom status").
How to test:
Create a cgroup A...
1. set memory.limit and memory.memsw.limit to be small value
2. echo 1 > /cgroup/A/memory.oom_control, this disables oom-kill.
3. run a program which must cause OOM.
A program executed in 3 will sleep by oom_waiqueue in memcg. Then, how to
wake it up is problem.
1. echo 0 > /cgroup/A/memory.oom_control (enable OOM-killer)
2. echo big mem > /cgroup/A/memory.memsw.limit_in_bytes(allow more swap)
etc..
Without the patch, a task in slept can not be waken up.
Signed-off-by: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
Acked-by: Daisuke Nishimura <nishimura@mxp.nes.nec.co.jp>
Cc: Balbir Singh <balbir@in.ibm.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
* 'for-linus' of git://git.kernel.dk/linux-2.6-block:
block: Don't count_vm_events for discard bio in submit_bio.
cfq: fix recursive call in cfq_blkiocg_update_completion_stats()
cfq-iosched: Fixed boot warning with BLK_CGROUP=y and CFQ_GROUP_IOSCHED=n
cfq: Don't allow queue merges for queues that have no process references
block: fix DISCARD_BARRIER requests
cciss: set SCSI max cmd len to 16, as default is wrong
cpqarray: fix two more wrong section type
cpqarray: fix wrong __init type on pci probe function
drbd: Fixed a race between disk-attach and unexpected state changes
writeback: fix pin_sb_for_writeback
writeback: add missing requeue_io in writeback_inodes_wb
writeback: simplify and split bdi_start_writeback
writeback: simplify wakeup_flusher_threads
writeback: fix writeback_inodes_wb from writeback_inodes_sb
writeback: enforce s_umount locking in writeback_inodes_sb
writeback: queue work on stack in writeback_inodes_sb
writeback: fix writeback completion notifications
This patch updates percpu allocator such that it can serve limited
amount of allocation before slab comes online. This is primarily to
allow slab to depend on working percpu allocator.
Two parameters, PERCPU_DYNAMIC_EARLY_SIZE and SLOTS, determine how
much memory space and allocation map slots are reserved. If this
reserved area is exhausted, WARN_ON_ONCE() will trigger and allocation
will fail till slab comes online.
The following changes are made to implement early alloc.
* pcpu_mem_alloc() now checks slab_is_available()
* Chunks are allocated using pcpu_mem_alloc()
* Init paths make sure ai->dyn_size is at least as large as
PERCPU_DYNAMIC_EARLY_SIZE.
* Initial alloc maps are allocated in __initdata and copied to
kmalloc'd areas once slab is online.
Signed-off-by: Tejun Heo <tj@kernel.org>
Cc: Christoph Lameter <cl@linux-foundation.org>
In pcpu_build_alloc_info() and pcpu_embed_first_chunk(), @dyn_size was
ssize_t, -1 meant auto-size, 0 forced 0 and positive meant minimum
size. There's no use case for forcing 0 and the upcoming early alloc
support always requires non-zero dynamic size. Make @dyn_size always
mean minimum dyn_size.
While at it, make pcpu_build_alloc_info() static which doesn't have
any external caller as suggested by David Rientjes.
Signed-off-by: Tejun Heo <tj@kernel.org>
Cc: David Rientjes <rientjes@google.com>
per_cpu_ptr_to_phys() determines whether the passed in @addr belongs
to the first_chunk or not by just matching the address against the
address range of the base unit (unit0, used by cpu0). When an adress
from another cpu was passed in, it will always determine that the
address doesn't belong to the first chunk even when it does. This
makes the function return a bogus physical address which may lead to
crash.
This problem was discovered by Cliff Wickman while investigating a
crash during kdump on a SGI UV system.
Signed-off-by: Tejun Heo <tj@kernel.org>
Reported-by: Cliff Wickman <cpw@sgi.com>
Tested-by: Cliff Wickman <cpw@sgi.com>
Cc: stable@kernel.org
Fix the following two trivial bugs in pcpu_build_alloc_info()
* we should memset group_cnt to 0 by size of group_cnt, not size of
group_map (both are of the same size, so the bug isn't dangerous)
* we can delete useless variable group_cnt_max.
Signed-off-by: Pavel V. Panteleev <pp_84@mail.ru>
Signed-off-by: Tejun Heo <tj@kernel.org>
Remove all rcu head inits. We don't care about the RCU head state before passing
it to call_rcu() anyway. Only leave the "on_stack" variants so debugobjects can
keep track of objects on stack.
Signed-off-by: Alexey Dobriyan <adobriyan@gmail.com>
Signed-off-by: Mathieu Desnoyers <mathieu.desnoyers@efficios.com>
Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
Cc: Christoph Lameter <cl@linux-foundation.org>
Cc: Pekka Enberg <penberg@cs.helsinki.fi>
Cc: Matt Mackall <mpm@selenic.com>
Cc: Andrew Morton <akpm@linux-foundation.org>
bdi_start_writeback now never gets a superblock passed, so we can just remove
that case. And to further untangle the code and flatten the call stack
split it into two trivial helpers for it's two callers.
Signed-off-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: Jens Axboe <jaxboe@fusionio.com>
We have been resisting new ftrace plugins and removing existing
ones, and kmemtrace has been superseded by kmem trace events
and perf-kmem, so we remove it.
Signed-off-by: Li Zefan <lizf@cn.fujitsu.com>
Acked-by: Pekka Enberg <penberg@cs.helsinki.fi>
Acked-by: Eduard - Gabriel Munteanu <eduard.munteanu@linux360.ro>
Cc: Ingo Molnar <mingo@elte.hu>
Cc: Steven Rostedt <rostedt@goodmis.org>
[ remove kmemtrace from the makefile, handle slob too ]
Signed-off-by: Frederic Weisbecker <fweisbec@gmail.com>
Add the capacility to track data mmap()s. This can be used together
with PERF_SAMPLE_ADDR for data profiling.
Signed-off-by: Anton Blanchard <anton@samba.org>
[Updated code for stable perf ABI]
Signed-off-by: Eric B Munson <ebmunson@us.ibm.com>
Signed-off-by: Peter Zijlstra <a.p.zijlstra@chello.nl>
Cc: Arnaldo Carvalho de Melo <acme@redhat.com>
Cc: Frederic Weisbecker <fweisbec@gmail.com>
Cc: Paul Mackerras <paulus@samba.org>
Cc: Mike Galbraith <efault@gmx.de>
Cc: Steven Rostedt <rostedt@goodmis.org>
LKML-Reference: <1274193049-25997-1-git-send-email-ebmunson@us.ibm.com>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
sync can currently take a really long time if a concurrent writer is
extending a file. The problem is that the dirty pages on the address
space grow in the same direction as write_cache_pages scans, so if
the writer keeps ahead of writeback, the writeback will not
terminate until the writer stops adding dirty pages.
For a data integrity sync, we only need to write the pages dirty at
the time we start the writeback, so we can stop scanning once we get
to the page that was at the end of the file at the time the scan
started.
This will prevent operations like copying a large file preventing
sync from completing as it will not write back pages that were
dirtied after the sync was started. This does not impact the
existing integrity guarantees, as any dirty page (old or new)
within the EOF range at the start of the scan will still be
captured.
This patch will not prevent sync from blocking on large writes into
holes. That requires more complex intervention while this patch only
addresses the common append-case of this sync holdoff.
Signed-off-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
If a filesystem writes more than one page in ->writepage, write_cache_pages
fails to notice this and continues to attempt writeback when wbc->nr_to_write
has gone negative - this trace was captured from XFS:
wbc_writeback_start: towrt=1024
wbc_writepage: towrt=1024
wbc_writepage: towrt=0
wbc_writepage: towrt=-1
wbc_writepage: towrt=-5
wbc_writepage: towrt=-21
wbc_writepage: towrt=-85
This has adverse effects on filesystem writeback behaviour. write_cache_pages()
needs to terminate after a certain number of pages are written, not after a
certain number of calls to ->writepage are made. This is a regression
introduced by 17bc6c30cf ("vfs: Add
no_nrwrite_index_update writeback control flag"), but cannot be reverted
directly due to subsequent bug fixes that have gone in on top of it.
Signed-off-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
* 'for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/viro/vfs-2.6:
Minix: Clean up left over label
fix truncate inode time modification breakage
fix setattr error handling in sysfs, configfs
fcntl: return -EFAULT if copy_to_user fails
wrong type for 'magic' argument in simple_fill_super()
fix the deadlock in qib_fs
mqueue doesn't need make_bad_inode()
* 'for-linus' of git://git.kernel.dk/linux-2.6-block: (27 commits)
block: make blk_init_free_list and elevator_init idempotent
block: avoid unconditionally freeing previously allocated request_queue
pipe: change /proc/sys/fs/pipe-max-pages to byte sized interface
pipe: change the privilege required for growing a pipe beyond system max
pipe: adjust minimum pipe size to 1 page
block: disable preemption before using sched_clock()
cciss: call BUG() earlier
Preparing 8.3.8rc2
drbd: Reduce verbosity
drbd: use drbd specific ratelimit instead of global printk_ratelimit
drbd: fix hang on local read errors while disconnected
drbd: Removed the now empty w_io_error() function
drbd: removed duplicated #includes
drbd: improve usage of MSG_MORE
drbd: need to set socket bufsize early to take effect
drbd: improve network latency, TCP_QUICKACK
drbd: Revert "drbd: Create new current UUID as late as possible"
brd: support discard
Revert "writeback: fix WB_SYNC_NONE writeback from umount"
Revert "writeback: ensure that WB_SYNC_NONE writeback with sb pinned is sync"
...
Greg Thelen reported recent Johannes's stack diet patch makes kernel hang.
His test is following.
mount -t cgroup none /cgroups -o memory
mkdir /cgroups/cg1
echo $$ > /cgroups/cg1/tasks
dd bs=1024 count=1024 if=/dev/null of=/data/foo
echo $$ > /cgroups/tasks
echo 1 > /cgroups/cg1/memory.force_empty
Actually, This OOM hard to try logic have been corrupted since following
two years old patch.
commit a41f24ea9f
Author: Nishanth Aravamudan <nacc@us.ibm.com>
Date: Tue Apr 29 00:58:25 2008 -0700
page allocator: smarter retry of costly-order allocations
Original intention was "return success if the system have shrinkable zones
though priority==0 reclaim was failure". But the above patch changed to
"return nr_reclaimed if .....". Oh, That forgot nr_reclaimed may be 0 if
priority==0 reclaim failure.
And Johannes's patch 0aeb2339e5 ("vmscan: remove all_unreclaimable scan
control") made it more corrupt. Originally, priority==0 reclaim failure
on memcg return 0, but this patch changed to return 1. It totally
confused memcg.
This patch fixes it completely.
Reported-by: Greg Thelen <gthelen@google.com>
Signed-off-by: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com>
Acked-by: Johannes Weiner <hannes@cmpxchg.org>
Acked-by: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
Tested-by: Greg Thelen <gthelen@google.com>
Acked-by: Balbir Singh <balbir@linux.vnet.ibm.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
mtime and ctime should be changed only if the file size has actually
changed. Patches changing ext2 and tmpfs from vmtruncate to new truncate
sequence has caused regressions where they always update timestamps.
There is some strange cases in POSIX where truncate(2) must not update
times unless the size has acutally changed, see 6e656be89.
This area is all still rather buggy in different ways in a lot of
filesystems and needs a cleanup and audit (ideally the vfs will provide
a simple attribute or call to direct all filesystems exactly which
attributes to change). But coming up with the best solution will take a
while and is not appropriate for rc anyway.
So fix recent regression for now.
Signed-off-by: Nick Piggin <npiggin@suse.de>
Signed-off-by: Al Viro <viro@zeniv.linux.org.uk>