Counter mode is a stream cipher chaining mode that is typically used
with inputs that are of arbitrarily length, and so a tail block which
is smaller than a full AES block is rule rather than exception.
The current ctr(aes) implementation for arm64 always makes a separate
call into the assembler routine to process this tail block, which is
suboptimal, given that it requires reloading of the AES round keys,
and prevents us from handling this tail block using the 5-way stride
that we use for better performance on deep pipelines.
So let's update the assembler routine so it can handle any input size,
and uses NEON permutation instructions and overlapping loads and stores
to handle the tail block. This results in a ~16% speedup for 1420 byte
blocks on cores with deep pipelines such as ThunderX2.
Signed-off-by: Ard Biesheuvel <ardb@kernel.org>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
Commit 69b6f2e817 ("crypto: arm64/aes-neon - limit exposed routines if
faster driver is enabled") intended to hide modes from the plain NEON
driver that are also implemented by the faster bit sliced NEON one if
both are enabled. However, the defined() CPP function does not detect
if the bit sliced NEON driver is enabled as a module. So instead, let's
use IS_ENABLED() here.
Fixes: 69b6f2e817 ("crypto: arm64/aes-neon - limit exposed routines if ...")
Signed-off-by: Ard Biesheuvel <ardb@kernel.org>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
Currently <crypto/sha.h> contains declarations for both SHA-1 and SHA-2,
and <crypto/sha3.h> contains declarations for SHA-3.
This organization is inconsistent, but more importantly SHA-1 is no
longer considered to be cryptographically secure. So to the extent
possible, SHA-1 shouldn't be grouped together with any of the other SHA
versions, and usage of it should be phased out.
Therefore, split <crypto/sha.h> into two headers <crypto/sha1.h> and
<crypto/sha2.h>, and make everyone explicitly specify whether they want
the declarations for SHA-1, SHA-2, or both.
This avoids making the SHA-1 declarations visible to files that don't
want anything to do with SHA-1. It also prepares for potentially moving
sha1.h into a new insecure/ or dangerous/ directory.
Signed-off-by: Eric Biggers <ebiggers@google.com>
Acked-by: Ard Biesheuvel <ardb@kernel.org>
Acked-by: Jason A. Donenfeld <Jason@zx2c4.com>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
Instead of copying the calculated authentication tag to memory and
calling crypto_memneq() to verify it, use vector bytewise compare and
min across vector instructions to decide whether the tag is valid. This
is more efficient, and given that the tag is only transiently held in a
NEON register, it is also safer, given that calculated tags for failed
decryptions should be withheld.
Signed-off-by: Ard Biesheuvel <ardb@kernel.org>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
Based on lessons learnt from optimizing the 32-bit version of this driver,
we can simplify the arm64 version considerably, by reordering the final
two stores when the last block is not a multiple of 64 bytes. This removes
the need to use permutation instructions to calculate the elements that are
clobbered by the final overlapping store, given that the store of the
penultimate block now follows it, and that one carries the correct values
for those elements already.
While at it, simplify the overlapping loads as well, by calculating the
address of the final overlapping load upfront, and switching to this
address for every load that would otherwise extend past the end of the
source buffer.
There is no impact on performance, but the resulting code is substantially
smaller and easier to follow.
Cc: Eric Biggers <ebiggers@google.com>
Cc: "Jason A . Donenfeld" <Jason@zx2c4.com>
Signed-off-by: Ard Biesheuvel <ardb@kernel.org>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
PAC pointer authentication signs the return address against the value
of the stack pointer, to prevent stack overrun exploits from corrupting
the control flow. However, this requires that the AUTIASP is issued with
SP holding the same value as it held when the PAC value was generated.
The Poly1305 NEON code got this wrong, resulting in crashes on PAC
capable hardware.
Fixes: f569ca1647 ("crypto: arm64/poly1305 - incorporate OpenSSL/CRYPTOGAMS ...")
Signed-off-by: Ard Biesheuvel <ardb@kernel.org>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
Without the barrier_data() inside memzero_explicit(), the compiler may
optimize away the state-clearing if it can tell that the state is not
used afterwards.
Signed-off-by: Arvind Sankar <nivedita@alum.mit.edu>
Acked-by: Ard Biesheuvel <ardb@kernel.org>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
Pull crypto updates from Herbert Xu:
"API:
- Allow DRBG testing through user-space af_alg
- Add tcrypt speed testing support for keyed hashes
- Add type-safe init/exit hooks for ahash
Algorithms:
- Mark arc4 as obsolete and pending for future removal
- Mark anubis, khazad, sead and tea as obsolete
- Improve boot-time xor benchmark
- Add OSCCA SM2 asymmetric cipher algorithm and use it for integrity
Drivers:
- Fixes and enhancement for XTS in caam
- Add support for XIP8001B hwrng in xiphera-trng
- Add RNG and hash support in sun8i-ce/sun8i-ss
- Allow imx-rngc to be used by kernel entropy pool
- Use crypto engine in omap-sham
- Add support for Ingenic X1830 with ingenic"
* 'linus' of git://git.kernel.org/pub/scm/linux/kernel/git/herbert/crypto-2.6: (205 commits)
X.509: Fix modular build of public_key_sm2
crypto: xor - Remove unused variable count in do_xor_speed
X.509: fix error return value on the failed path
crypto: bcm - Verify GCM/CCM key length in setkey
crypto: qat - drop input parameter from adf_enable_aer()
crypto: qat - fix function parameters descriptions
crypto: atmel-tdes - use semicolons rather than commas to separate statements
crypto: drivers - use semicolons rather than commas to separate statements
hwrng: mxc-rnga - use semicolons rather than commas to separate statements
hwrng: iproc-rng200 - use semicolons rather than commas to separate statements
hwrng: stm32 - use semicolons rather than commas to separate statements
crypto: xor - use ktime for template benchmarking
crypto: xor - defer load time benchmark to a later time
crypto: hisilicon/zip - fix the uninitalized 'curr_qm_qp_num'
crypto: hisilicon/zip - fix the return value when device is busy
crypto: hisilicon/zip - fix zero length input in GZIP decompress
crypto: hisilicon/zip - fix the uncleared debug registers
lib/mpi: Fix unused variable warnings
crypto: x86/poly1305 - Remove assignments with no effect
hwrng: npcm - modify readl to readb
...
The AES code uses a 'br x7' as part of a function called by
a macro. That branch needs a bti_j as a target. This results
in a panic as seen below. Using x16 (or x17) with an indirect
branch keeps the target bti_c.
Bad mode in Synchronous Abort handler detected on CPU1, code 0x34000003 -- BTI
CPU: 1 PID: 265 Comm: cryptomgr_test Not tainted 5.8.11-300.fc33.aarch64 #1
pstate: 20400c05 (nzCv daif +PAN -UAO BTYPE=j-)
pc : aesbs_encrypt8+0x0/0x5f0 [aes_neon_bs]
lr : aesbs_xts_encrypt+0x48/0xe0 [aes_neon_bs]
sp : ffff80001052b730
aesbs_encrypt8+0x0/0x5f0 [aes_neon_bs]
__xts_crypt+0xb0/0x2dc [aes_neon_bs]
xts_encrypt+0x28/0x3c [aes_neon_bs]
crypto_skcipher_encrypt+0x50/0x84
simd_skcipher_encrypt+0xc8/0xe0
crypto_skcipher_encrypt+0x50/0x84
test_skcipher_vec_cfg+0x224/0x5f0
test_skcipher+0xbc/0x120
alg_test_skcipher+0xa0/0x1b0
alg_test+0x3dc/0x47c
cryptomgr_test+0x38/0x60
Fixes: 0e89640b64 ("crypto: arm64 - Use modern annotations for assembly functions")
Cc: <stable@vger.kernel.org> # 5.6.x-
Signed-off-by: Jeremy Linton <jeremy.linton@arm.com>
Suggested-by: Dave P Martin <Dave.Martin@arm.com>
Reviewed-by: Ard Biesheuvel <ardb@kernel.org>
Reviewed-by: Mark Brown <broonie@kernel.org>
Link: https://lore.kernel.org/r/20201006163326.2780619-1-jeremy.linton@arm.com
Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
This patch changes a couple u128's to be128 which is the correct
type to use and fixes a few sparse warnings.
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
Acked-by: Ard Biesheuvel <ardb@kernel.org>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
This patch adds declarations for variables only used by assembly
code to silence compiler warnings:
CC [M] arch/arm64/crypto/sha1-ce-glue.o
AS [M] arch/arm64/crypto/sha1-ce-core.o
CC [M] arch/arm64/crypto/sha2-ce-glue.o
AS [M] arch/arm64/crypto/sha2-ce-core.o
CHECK ../arch/arm64/crypto/sha1-ce-glue.c
CHECK ../arch/arm64/crypto/sha2-ce-glue.c
../arch/arm64/crypto/sha1-ce-glue.c:38:11: warning: symbol 'sha1_ce_offsetof_count' was not declared. Should it be static?
../arch/arm64/crypto/sha1-ce-glue.c:39:11: warning: symbol 'sha1_ce_offsetof_finalize' was not declared. Should it be static?
../arch/arm64/crypto/sha2-ce-glue.c:38:11: warning: symbol 'sha256_ce_offsetof_count' was not declared. Should it be static?
../arch/arm64/crypto/sha2-ce-glue.c:40:11: warning: symbol 'sha256_ce_offsetof_finalize' was not declared. Should it be static?
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
Acked-by: Ard Biesheuvel <ardb@kernel.org>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
Introduce an inline wrapper for ghash_do_update() that incorporates
the indirect call to the asm routine that is passed as an argument,
and keep the non-SIMD fallback code out of line. This ensures that
all references to the function pointer are inlined where the address
is taken, removing the need for any indirect calls to begin with.
Signed-off-by: Ard Biesheuvel <ardb@kernel.org>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
Now that the ghash and gcm drivers are split, we no longer need to allocate
a key struct for the former that carries powers of H that are only used by
the latter. Also, take this opportunity to clean up the code a little bit.
Signed-off-by: Ard Biesheuvel <ardb@kernel.org>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
The remaining ghash implementation does not support aggregation, and so
there is no point in including the precomputed powers of H in the key
struct. So move that into the GCM setkey routine, and get rid of the
shared sub-routine entirely.
Signed-off-by: Ard Biesheuvel <ardb@kernel.org>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
There are two ways to implement SIMD accelerated GCM on arm64:
- using the PMULL instructions for carryless 64x64->128 multiplication,
in which case the architecture guarantees that the AES instructions are
available as well, and so we can use the AEAD implementation that combines
both,
- using the PMULL instructions for carryless 8x8->16 bit multiplication,
which is implemented as a shash, and can be combined with any ctr(aes)
implementation by the generic GCM AEAD template driver.
So let's drop the 64x64->128 shash driver, which is never needed for GCM,
and not suitable for use anywhere else.
Signed-off-by: Ard Biesheuvel <ardb@kernel.org>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
Pull crypto updates from Herbert Xu:
"API:
- Introduce crypto_shash_tfm_digest() and use it wherever possible.
- Fix use-after-free and race in crypto_spawn_alg.
- Add support for parallel and batch requests to crypto_engine.
Algorithms:
- Update jitter RNG for SP800-90B compliance.
- Always use jitter RNG as seed in drbg.
Drivers:
- Add Arm CryptoCell driver cctrng.
- Add support for SEV-ES to the PSP driver in ccp"
* 'linus' of git://git.kernel.org/pub/scm/linux/kernel/git/herbert/crypto-2.6: (114 commits)
crypto: hisilicon - fix driver compatibility issue with different versions of devices
crypto: engine - do not requeue in case of fatal error
crypto: cavium/nitrox - Fix a typo in a comment
crypto: hisilicon/qm - change debugfs file name from qm_regs to regs
crypto: hisilicon/qm - add DebugFS for xQC and xQE dump
crypto: hisilicon/zip - add debugfs for Hisilicon ZIP
crypto: hisilicon/hpre - add debugfs for Hisilicon HPRE
crypto: hisilicon/sec2 - add debugfs for Hisilicon SEC
crypto: hisilicon/qm - add debugfs to the QM state machine
crypto: hisilicon/qm - add debugfs for QM
crypto: stm32/crc32 - protect from concurrent accesses
crypto: stm32/crc32 - don't sleep in runtime pm
crypto: stm32/crc32 - fix multi-instance
crypto: stm32/crc32 - fix run-time self test issue.
crypto: stm32/crc32 - fix ext4 chksum BUG_ON()
crypto: hisilicon/zip - Use temporary sqe when doing work
crypto: hisilicon - add device error report through abnormal irq
crypto: hisilicon - remove codes of directly report device errors through MSI
crypto: hisilicon - QM memory management optimization
crypto: hisilicon - unify initial value assignment into QM
...
<linux/cryptohash.h> sounds very generic and important, like it's the
header to include if you're doing cryptographic hashing in the kernel.
But actually it only includes the library implementation of the SHA-1
compression function (not even the full SHA-1). This should basically
never be used anymore; SHA-1 is no longer considered secure, and there
are much better ways to do cryptographic hashing in the kernel.
Most files that include this header don't actually need it. So in
preparation for removing it, remove all these unneeded includes of it.
Signed-off-by: Eric Biggers <ebiggers@google.com>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
Instead of manually allocating a 'struct shash_desc' on the stack and
calling crypto_shash_digest(), switch to using the new helper function
crypto_shash_tfm_digest() which does this for us.
Signed-off-by: Eric Biggers <ebiggers@google.com>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
Rather than chunking via PAGE_SIZE, this commit changes the arch
implementations to chunk in explicit 4k parts, so that calculations on
maximum acceptable latency don't suddenly become invalid on platforms
where PAGE_SIZE isn't 4k, such as arm64.
Fixes: 0f961f9f67 ("crypto: x86/nhpoly1305 - add AVX2 accelerated NHPoly1305")
Fixes: 012c82388c ("crypto: x86/nhpoly1305 - add SSE2 accelerated NHPoly1305")
Fixes: a00fa0c887 ("crypto: arm64/nhpoly1305 - add NEON-accelerated NHPoly1305")
Fixes: 16aae3595a ("crypto: arm/nhpoly1305 - add NEON-accelerated NHPoly1305")
Cc: stable@vger.kernel.org
Signed-off-by: Jason A. Donenfeld <Jason@zx2c4.com>
Reviewed-by: Eric Biggers <ebiggers@google.com>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
The initial Zinc patchset, after some mailing list discussion, contained
code to ensure that kernel_fpu_enable would not be kept on for more than
a 4k chunk, since it disables preemption. The choice of 4k isn't totally
scientific, but it's not a bad guess either, and it's what's used in
both the x86 poly1305, blake2s, and nhpoly1305 code already (in the form
of PAGE_SIZE, which this commit corrects to be explicitly 4k for the
former two).
Ard did some back of the envelope calculations and found that
at 5 cycles/byte (overestimate) on a 1ghz processor (pretty slow), 4k
means we have a maximum preemption disabling of 20us, which Sebastian
confirmed was probably a good limit.
Unfortunately the chunking appears to have been left out of the final
patchset that added the glue code. So, this commit adds it back in.
Fixes: 84e03fa39f ("crypto: x86/chacha - expose SIMD ChaCha routine as library function")
Fixes: b3aad5bad2 ("crypto: arm64/chacha - expose arm64 ChaCha routine as library function")
Fixes: a44a3430d7 ("crypto: arm/chacha - expose ARM ChaCha routine as library function")
Fixes: d7d7b85356 ("crypto: x86/poly1305 - wire up faster implementations for kernel")
Fixes: f569ca1647 ("crypto: arm64/poly1305 - incorporate OpenSSL/CRYPTOGAMS NEON implementation")
Fixes: a6b803b3dd ("crypto: arm/poly1305 - incorporate OpenSSL/CRYPTOGAMS NEON implementation")
Fixes: ed0356eda1 ("crypto: blake2s - x86_64 SIMD implementation")
Cc: Eric Biggers <ebiggers@google.com>
Cc: Sebastian Andrzej Siewior <bigeasy@linutronix.de>
Cc: stable@vger.kernel.org
Signed-off-by: Jason A. Donenfeld <Jason@zx2c4.com>
Reviewed-by: Ard Biesheuvel <ardb@kernel.org>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
Currently most of the crypto files enable the crypto extension using the
.arch directive but crct10dif-ce-core.S uses .cpu instead. Move that over
to .arch for consistency.
Signed-off-by: Mark Brown <broonie@kernel.org>
Acked-by: Ard Biesheuvel <ardb@kernel.org>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
Here are 3 SPDX patches for 5.7-rc1.
One fixes up the SPDX tag for a single driver, while the other two go
through the tree and add SPDX tags for all of the .gitignore files as
needed.
Nothing too complex, but you will get a merge conflict with your current
tree, that should be trivial to handle (one file modified by two things,
one file deleted.)
All 3 of these have been in linux-next for a while, with no reported
issues other than the merge conflict.
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
-----BEGIN PGP SIGNATURE-----
iG0EABECAC0WIQT0tgzFv3jCIUoxPcsxR9QN2y37KQUCXodg5A8cZ3JlZ0Brcm9h
aC5jb20ACgkQMUfUDdst+ykySQCgy9YDrkz7nWq6v3Gohl6+lW/L+rMAnRM4uTZm
m5AuCzO3Azt9KBi7NL+L
=2Lm5
-----END PGP SIGNATURE-----
Merge tag 'spdx-5.7-rc1' of git://git.kernel.org/pub/scm/linux/kernel/git/gregkh/spdx
Pull SPDX updates from Greg KH:
"Here are three SPDX patches for 5.7-rc1.
One fixes up the SPDX tag for a single driver, while the other two go
through the tree and add SPDX tags for all of the .gitignore files as
needed.
Nothing too complex, but you will get a merge conflict with your
current tree, that should be trivial to handle (one file modified by
two things, one file deleted.)
All three of these have been in linux-next for a while, with no
reported issues other than the merge conflict"
* tag 'spdx-5.7-rc1' of git://git.kernel.org/pub/scm/linux/kernel/git/gregkh/spdx:
ASoC: MT6660: make spdxcheck.py happy
.gitignore: add SPDX License Identifier
.gitignore: remove too obvious comments
Pull crypto updates from Herbert Xu:
"API:
- Fix out-of-sync IVs in self-test for IPsec AEAD algorithms
Algorithms:
- Use formally verified implementation of x86/curve25519
Drivers:
- Enhance hwrng support in caam
- Use crypto_engine for skcipher/aead/rsa/hash in caam
- Add Xilinx AES driver
- Add uacce driver
- Register zip engine to uacce in hisilicon
- Add support for OCTEON TX CPT engine in marvell"
* 'linus' of git://git.kernel.org/pub/scm/linux/kernel/git/herbert/crypto-2.6: (162 commits)
crypto: af_alg - bool type cosmetics
crypto: arm[64]/poly1305 - add artifact to .gitignore files
crypto: caam - limit single JD RNG output to maximum of 16 bytes
crypto: caam - enable prediction resistance in HRWNG
bus: fsl-mc: add api to retrieve mc version
crypto: caam - invalidate entropy register during RNG initialization
crypto: caam - check if RNG job failed
crypto: caam - simplify RNG implementation
crypto: caam - drop global context pointer and init_done
crypto: caam - use struct hwrng's .init for initialization
crypto: caam - allocate RNG instantiation descriptor with GFP_DMA
crypto: ccree - remove duplicated include from cc_aead.c
crypto: chelsio - remove set but not used variable 'adap'
crypto: marvell - enable OcteonTX cpt options for build
crypto: marvell - add the Virtual Function driver for CPT
crypto: marvell - add support for OCTEON TX CPT engine
crypto: marvell - create common Kconfig and Makefile for Marvell
crypto: arm/neon - memzero_explicit aes-cbc key
crypto: bcm - Use scnprintf() for avoiding potential buffer overflow
crypto: atmel-i2c - Fix wakeup fail
...
- In-kernel Pointer Authentication support (previously only offered to
user space).
- ARM Activity Monitors (AMU) extension support allowing better CPU
utilisation numbers for the scheduler (frequency invariance).
- Memory hot-remove support for arm64.
- Lots of asm annotations (SYM_*) in preparation for the in-kernel
Branch Target Identification (BTI) support.
- arm64 perf updates: ARMv8.5-PMU 64-bit counters, refactoring the PMU
init callbacks, support for new DT compatibles.
- IPv6 header checksum optimisation.
- Fixes: SDEI (software delegated exception interface) double-lock on
hibernate with shared events.
- Minor clean-ups and refactoring: cpu_ops accessor, cpu_do_switch_mm()
converted to C, cpufeature finalisation helper.
- sys_mremap() comment explaining the asymmetric address untagging
behaviour.
-----BEGIN PGP SIGNATURE-----
iQIzBAABCgAdFiEE5RElWfyWxS+3PLO2a9axLQDIXvEFAl6DVyIACgkQa9axLQDI
XvHkqRAAiZA2EYKiQL4M1DJ1cNTADjT7xKX9+UtYBXj7GMVhgVWdunpHVE6qtfgk
cT6avmKrS/6PDqizJgr+Z1yX8x3Kvs57G4BvmIUKIw97mkdewvFQ9JKv6VA1vb86
7Qrl1WzqsGg5Kj9uUfI4h+ZoT1H4C/9PQeFxJwgZRtF9DxRh8O7VeZI+JCu8Aub2
lIkjI8rh+EpTsGT9h/PMGWUcawnKQloZ1/F+GfMAuYBvIv2RNN2xVreJtTmm4NyJ
VcpL0KCNyAI2lGdaJg5nBLRDyGuXDm5i+PLsCSXMquI4fie00txXeD8sjbeuO0ks
YTJ0EhmUUhbSE17go+SxYiEFE0v09i+lD5ud+B4Vmojp0KTczTta9VSgURlbb2/9
n9biq5G3PPDNIrZqiTT2Tf4AMz1350nkbzL2gzKecM5aIzR/u3y5yII5CgfZtFnj
7bGbyFpFpcqI7UaISPsNCxmknbTt/7ff0WM3+7SbecxI3AD2mnxsOdN9JTLyhDp+
owjyiaWxl5zMWF9DhplLG/9BKpNWSxh3skazdOdELd8GTq2MbJlXrVG2XgXTAOh3
y1s6RQrfw8zXh8TSqdmmzauComXIRWTum/sbVB3U8Z3AUsIeq/NTSbN5X9JyIbOP
HOabhlVhhkI6omN1grqPX4jwUiZLZoNfn7Ez4q71549KVK/uBtA=
=LJVX
-----END PGP SIGNATURE-----
Merge tag 'arm64-upstream' of git://git.kernel.org/pub/scm/linux/kernel/git/arm64/linux
Pull arm64 updates from Catalin Marinas:
"The bulk is in-kernel pointer authentication, activity monitors and
lots of asm symbol annotations. I also queued the sys_mremap() patch
commenting the asymmetry in the address untagging.
Summary:
- In-kernel Pointer Authentication support (previously only offered
to user space).
- ARM Activity Monitors (AMU) extension support allowing better CPU
utilisation numbers for the scheduler (frequency invariance).
- Memory hot-remove support for arm64.
- Lots of asm annotations (SYM_*) in preparation for the in-kernel
Branch Target Identification (BTI) support.
- arm64 perf updates: ARMv8.5-PMU 64-bit counters, refactoring the
PMU init callbacks, support for new DT compatibles.
- IPv6 header checksum optimisation.
- Fixes: SDEI (software delegated exception interface) double-lock on
hibernate with shared events.
- Minor clean-ups and refactoring: cpu_ops accessor,
cpu_do_switch_mm() converted to C, cpufeature finalisation helper.
- sys_mremap() comment explaining the asymmetric address untagging
behaviour"
* tag 'arm64-upstream' of git://git.kernel.org/pub/scm/linux/kernel/git/arm64/linux: (81 commits)
mm/mremap: Add comment explaining the untagging behaviour of mremap()
arm64: head: Convert install_el2_stub to SYM_INNER_LABEL
arm64: Introduce get_cpu_ops() helper function
arm64: Rename cpu_read_ops() to init_cpu_ops()
arm64: Declare ACPI parking protocol CPU operation if needed
arm64: move kimage_vaddr to .rodata
arm64: use mov_q instead of literal ldr
arm64: Kconfig: verify binutils support for ARM64_PTR_AUTH
lkdtm: arm64: test kernel pointer authentication
arm64: compile the kernel with ptrauth return address signing
kconfig: Add support for 'as-option'
arm64: suspend: restore the kernel ptrauth keys
arm64: __show_regs: strip PAC from lr in printk
arm64: unwind: strip PAC from kernel addresses
arm64: mask PAC bits of __builtin_return_address
arm64: initialize ptrauth keys for kernel booting task
arm64: initialize and switch ptrauth kernel keys
arm64: enable ptrauth earlier
arm64: cpufeature: handle conflicts based on capability
arm64: cpufeature: Move cpu capability helpers inside C file
...
Pull crypto fix from Herbert Xu:
"This fixes a correctness bug in the ARM64 version of ChaCha for
lib/crypto used by WireGuard"
* 'linus' of git://git.kernel.org/pub/scm/linux/kernel/git/herbert/crypto-2.6:
crypto: arm64/chacha - correctly walk through blocks
At function exit, do not leave the expanded key in the rk struct
which got allocated on the stack.
Signed-off-by: Torsten Duwe <duwe@suse.de>
Acked-by: Will Deacon <will@kernel.org>
Acked-by: Ard Biesheuvel <ardb@kernel.org>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
Prior, passing in chunks of 2, 3, or 4, followed by any additional
chunks would result in the chacha state counter getting out of sync,
resulting in incorrect encryption/decryption, which is a pretty nasty
crypto vuln: "why do images look weird on webpages?" WireGuard users
never experienced this prior, because we have always, out of tree, used
a different crypto library, until the recent Frankenzinc addition. This
commit fixes the issue by advancing the pointers and state counter by
the actual size processed. It also fixes up a bug in the (optional,
costly) stride test that prevented it from running on arm64.
Fixes: b3aad5bad2 ("crypto: arm64/chacha - expose arm64 ChaCha routine as library function")
Reported-and-tested-by: Emil Renner Berthing <kernel@esmil.dk>
Cc: Ard Biesheuvel <ardb@kernel.org>
Cc: stable@vger.kernel.org # v5.5+
Signed-off-by: Jason A. Donenfeld <Jason@zx2c4.com>
Reviewed-by: Eric Biggers <ebiggers@google.com>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
Now that the rest of the code has been converted to the modern START/END
macros the AES_ENTRY() and AES_ENDPROC() macros look out of place and
like they need updating. Rename them to AES_FUNC_START() and AES_FUNC_END()
to line up with the modern style assembly macros.
Signed-off-by: Mark Brown <broonie@kernel.org>
Reviewed-by: Ard Biesheuvel <ardb@kernel.org>
Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
A couple of functions were missed in the modernisation of assembly macros,
update them too.
Signed-off-by: Mark Brown <broonie@kernel.org>
Reviewed-by: Ard Biesheuvel <ardb@kernel.org>
Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
When an ahash algorithm fallback to another ahash and that fallback is
shaXXX-CE, doing export/import lead to error like this:
alg: ahash: sha1-sun8i-ce export() overran state buffer on test vector 0, cfg=\"import/export\"
This is due to the descsize of shaxxx-ce being larger than struct shaxxx_state
off by an u32.
For fixing this, let's implement export/import which rip the finalize
variant instead of using generic export/import.
Fixes: 6ba6c74dfc ("arm64/crypto: SHA-224/SHA-256 using ARMv8 Crypto Extensions")
Fixes: 2c98833a42 ("arm64/crypto: SHA-1 using ARMv8 Crypto Extensions")
Signed-off-by: Corentin Labbe <clabbe@baylibre.com>
Reviewed-by: Ard Biesheuvel <ardb@kernel.org>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
Pull crypto updates from Herbert Xu:
"API:
- Removed CRYPTO_TFM_RES flags
- Extended spawn grabbing to all algorithm types
- Moved hash descsize verification into API code
Algorithms:
- Fixed recursive pcrypt dead-lock
- Added new 32 and 64-bit generic versions of poly1305
- Added cryptogams implementation of x86/poly1305
Drivers:
- Added support for i.MX8M Mini in caam
- Added support for i.MX8M Nano in caam
- Added support for i.MX8M Plus in caam
- Added support for A33 variant of SS in sun4i-ss
- Added TEE support for Raven Ridge in ccp
- Added in-kernel API to submit TEE commands in ccp
- Added AMD-TEE driver
- Added support for BCM2711 in iproc-rng200
- Added support for AES256-GCM based ciphers for chtls
- Added aead support on SEC2 in hisilicon"
* 'linus' of git://git.kernel.org/pub/scm/linux/kernel/git/herbert/crypto-2.6: (244 commits)
crypto: arm/chacha - fix build failured when kernel mode NEON is disabled
crypto: caam - add support for i.MX8M Plus
crypto: x86/poly1305 - emit does base conversion itself
crypto: hisilicon - fix spelling mistake "disgest" -> "digest"
crypto: chacha20poly1305 - add back missing test vectors and test chunking
crypto: x86/poly1305 - fix .gitignore typo
tee: fix memory allocation failure checks on drv_data and amdtee
crypto: ccree - erase unneeded inline funcs
crypto: ccree - make cc_pm_put_suspend() void
crypto: ccree - split overloaded usage of irq field
crypto: ccree - fix PM race condition
crypto: ccree - fix FDE descriptor sequence
crypto: ccree - cc_do_send_request() is void func
crypto: ccree - fix pm wrongful error reporting
crypto: ccree - turn errors to debug msgs
crypto: ccree - fix AEAD decrypt auth fail
crypto: ccree - fix typo in comment
crypto: ccree - fix typos in error msgs
crypto: atmel-{aes,sha,tdes} - Retire crypto_platform_data
crypto: x86/sha - Eliminate casts on asm implementations
...
The CRYPTO_TFM_RES_BAD_KEY_LEN flag was apparently meant as a way to
make the ->setkey() functions provide more information about errors.
However, no one actually checks for this flag, which makes it pointless.
Also, many algorithms fail to set this flag when given a bad length key.
Reviewing just the generic implementations, this is the case for
aes-fixed-time, cbcmac, echainiv, nhpoly1305, pcrypt, rfc3686, rfc4309,
rfc7539, rfc7539esp, salsa20, seqiv, and xcbc. But there are probably
many more in arch/*/crypto/ and drivers/crypto/.
Some algorithms can even set this flag when the key is the correct
length. For example, authenc and authencesn set it when the key payload
is malformed in any way (not just a bad length), the atmel-sha and ccree
drivers can set it if a memory allocation fails, and the chelsio driver
sets it for bad auth tag lengths, not just bad key lengths.
So even if someone actually wanted to start checking this flag (which
seems unlikely, since it's been unused for a long time), there would be
a lot of work needed to get it working correctly. But it would probably
be much better to go back to the drawing board and just define different
return values, like -EINVAL if the key is invalid for the algorithm vs.
-EKEYREJECTED if the key was rejected by a policy like "no weak keys".
That would be much simpler, less error-prone, and easier to test.
So just remove this flag.
Signed-off-by: Eric Biggers <ebiggers@google.com>
Reviewed-by: Horia Geantă <horia.geanta@nxp.com>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
In an effort to clarify and simplify the annotation of assembly functions
in the kernel new macros have been introduced. These replace ENTRY and
ENDPROC and also add a new annotation for static functions which previously
had no ENTRY equivalent. Update the annotations in the crypto code to the
new macros.
There are a small number of files imported from OpenSSL where the assembly
is generated using perl programs, these are not currently annotated at all
and have not been modified.
Signed-off-by: Mark Brown <broonie@kernel.org>
Acked-by: Ard Biesheuvel <ardb@kernel.org>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
The SIMD based GHASH implementation for arm64 is typically much faster
than the generic one, and doesn't use any lookup tables, so it is
clearly preferred when available. So bump the priority to reflect that.
Fixes: 5a22b198cd ("crypto: arm64/ghash - register PMULL variants ...")
Signed-off-by: Ard Biesheuvel <ardb@kernel.org>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
Instead of casting pointers to callback functions, add C wrappers
to avoid type mismatch failures with Control-Flow Integrity (CFI)
checking.
Signed-off-by: Sami Tolvanen <samitolvanen@google.com>
Reviewed-by: Ard Biesheuvel <ardb@kernel.org>
Reviewed-by: Eric Biggers <ebiggers@kernel.org>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
CONFIG_PREEMPTION is selected by CONFIG_PREEMPT and by CONFIG_PREEMPT_RT.
Both PREEMPT and PREEMPT_RT require the same functionality which today
depends on CONFIG_PREEMPT.
Switch the Kconfig dependency, entry code and preemption handling over
to use CONFIG_PREEMPTION. Add PREEMPT_RT output in show_stack().
[bigeasy: +traps.c, Kconfig]
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Sebastian Andrzej Siewior <bigeasy@linutronix.de>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Cc: Catalin Marinas <catalin.marinas@arm.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Will Deacon <will@kernel.org>
Cc: linux-arm-kernel@lists.infradead.org
Link: https://lore.kernel.org/r/20191015191821.11479-3-bigeasy@linutronix.de
Signed-off-by: Ingo Molnar <mingo@kernel.org>
For glue code that's used by Zinc, the actual Crypto API functions might
not necessarily exist, and don't need to exist either. Before this
patch, there are valid build configurations that lead to a unbuildable
kernel. This fixes it to conditionalize those symbols on the existence
of the proper config entry.
Signed-off-by: Jason A. Donenfeld <Jason@zx2c4.com>
Acked-by: Ard Biesheuvel <ardb@kernel.org>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
This is a straight import of the OpenSSL/CRYPTOGAMS Poly1305 implementation
for NEON authored by Andy Polyakov, and contributed by him to the OpenSSL
project. The file 'poly1305-armv8.pl' is taken straight from this upstream
GitHub repository [0] at commit ec55a08dc0244ce570c4fc7cade330c60798952f,
and already contains all the changes required to build it as part of a
Linux kernel module.
[0] https://github.com/dot-asm/cryptogams
Co-developed-by: Andy Polyakov <appro@cryptogams.org>
Signed-off-by: Andy Polyakov <appro@cryptogams.org>
Signed-off-by: Ard Biesheuvel <ardb@kernel.org>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
Instead of falling back to the generic ChaCha skcipher driver for
non-SIMD cases, use a fast scalar implementation for ARM authored
by Eric Biggers. This removes the module dependency on chacha-generic
altogether, which also simplifies things when we expose the ChaCha
library interface from this module.
Signed-off-by: Ard Biesheuvel <ardb@kernel.org>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
Expose the accelerated NEON ChaCha routine directly as a symbol
export so that users of the ChaCha library API can use it directly.
Given that calls into the library API will always go through the
routines in this module if it is enabled, switch to static keys
to select the optimal implementation available (which may be none
at all, in which case we defer to the generic implementation for
all invocations).
Signed-off-by: Ard Biesheuvel <ardb@kernel.org>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
Depend on the generic ChaCha library routines instead of pulling in the
generic ChaCha skcipher driver, which is more than we need, and makes
managing the dependencies between the generic library, generic driver,
accelerated library and driver more complicated.
While at it, drop the logic to prefer the scalar code on short inputs.
Turning the NEON on and off is cheap these days, and one major use case
for ChaCha20 is ChaCha20-Poly1305, which is guaranteed to hit the scalar
path upon every invocation (when doing the Poly1305 nonce generation)
Signed-off-by: Ard Biesheuvel <ardb@kernel.org>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
Currently, our generic ChaCha implementation consists of a permute
function in lib/chacha.c that operates on the 64-byte ChaCha state
directly [and which is always included into the core kernel since it
is used by the /dev/random driver], and the crypto API plumbing to
expose it as a skcipher.
In order to support in-kernel users that need the ChaCha streamcipher
but have no need [or tolerance] for going through the abstractions of
the crypto API, let's expose the streamcipher bits via a library API
as well, in a way that permits the implementation to be superseded by
an architecture specific one if provided.
So move the streamcipher code into a separate module in lib/crypto,
and expose the init() and crypt() routines to users of the library.
Signed-off-by: Ard Biesheuvel <ardb@kernel.org>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
Now that the blkcipher algorithm type has been removed in favor of
skcipher, rename the crypto_blkcipher kernel module to crypto_skcipher,
and rename the config options accordingly:
CONFIG_CRYPTO_BLKCIPHER => CONFIG_CRYPTO_SKCIPHER
CONFIG_CRYPTO_BLKCIPHER2 => CONFIG_CRYPTO_SKCIPHER2
Signed-off-by: Eric Biggers <ebiggers@google.com>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
A warning is found by the static code analysis tool:
"Identical condition 'err', second condition is always false"
Fix this by adding return value of skcipher_walk_done().
Fixes: 67cfa5d3b7 ("crypto: arm64/aes-neonbs - implement ciphertext stealing for XTS")
Signed-off-by: Yunfeng Ye <yeyunfeng@huawei.com>
Acked-by: Ard Biesheuvel <ard.biesheuvel@linaro.org>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
To improve performance on cores with deep pipelines such as ThunderX2,
reimplement gcm(aes) using a 4-way interleave rather than the 2-way
interleave we use currently.
This comes down to a complete rewrite of the GCM part of the combined
GCM/GHASH driver, and instead of interleaving two invocations of AES
with the GHASH handling at the instruction level, the new version
uses a more coarse grained approach where each chunk of 64 bytes is
encrypted first and then ghashed (or ghashed and then decrypted in
the converse case).
The core NEON routine is now able to consume inputs of any size,
and tail blocks of less than 64 bytes are handled using overlapping
loads and stores, and processed by the same 4-way encryption and
hashing routines. This gets rid of most of the branches, and avoids
having to return to the C code to handle the tail block using a
stack buffer.
The table below compares the performance of the old driver and the new
one on various micro-architectures and running in various modes.
| AES-128 | AES-192 | AES-256 |
#bytes | 512 | 1500 | 4k | 512 | 1500 | 4k | 512 | 1500 | 4k |
-------+-----+------+-----+-----+------+-----+-----+------+-----+
TX2 | 35% | 23% | 11% | 34% | 20% | 9% | 38% | 25% | 16% |
EMAG | 11% | 6% | 3% | 12% | 4% | 2% | 11% | 4% | 2% |
A72 | 8% | 5% | -4% | 9% | 4% | -5% | 7% | 4% | -5% |
A53 | 11% | 6% | -1% | 10% | 8% | -1% | 10% | 8% | -2% |
Signed-off-by: Ard Biesheuvel <ard.biesheuvel@linaro.org>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
Update the AES-XTS implementation based on NEON instructions so that it
can deal with inputs whose size is not a multiple of the cipher block
size. This is part of the original XTS specification, but was never
implemented before in the Linux kernel.
Since the bit slicing driver is only faster if it can operate on at
least 7 blocks of input at the same time, let's reuse the alternate
path we are adding for CTS to process any data tail whose size is
not a multiple of 128 bytes.
Signed-off-by: Ard Biesheuvel <ard.biesheuvel@linaro.org>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
Add the missing support for ciphertext stealing in the implementation
of AES-XTS, which is part of the XTS specification but was omitted up
until now due to lack of a need for it.
The asm helpers are updated so they can deal with any input size, as
long as the last full block and the final partial block are presented
at the same time. The glue code is updated so that the common case of
operating on a sector or page is mostly as before. When CTS is needed,
the walk is split up into two pieces, unless the entire input is covered
by a single step.
Signed-off-by: Ard Biesheuvel <ard.biesheuvel@linaro.org>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
Since the CTS-CBC code completes synchronously, there is no point in
keeping part of the scratch data it uses in the request context, so
move it to the stack instead.
Signed-off-by: Ard Biesheuvel <ard.biesheuvel@linaro.org>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
Optimize away one of the tbl instructions in the decryption path,
which turns out to be unnecessary.
Signed-off-by: Ard Biesheuvel <ard.biesheuvel@linaro.org>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
The pure NEON AES implementation predates the bit-slicing one, and is
generally slower, unless the algorithm in question can only execute
sequentially.
So advertising the skciphers that the bit-slicing driver implements as
well serves no real purpose, and we can just disable them. Note that the
bit-slicing driver also has a link time dependency on the pure NEON
driver, for CBC encryption and for XTS tweak calculation, so we still
need both drivers on systems that do not implement the Crypto Extensions.
At the same time, expose those modaliases for the AES instruction based
driver. This is necessary since otherwise, we may end up loading the
wrong driver when any of the skciphers are instantiated before the CPU
capability based module loading has completed.
Finally, add the missing modalias for cts(cbc(aes)) so requests for
this algorithm will autoload the correct module.
Signed-off-by: Ard Biesheuvel <ard.biesheuvel@linaro.org>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
Replace the vector load from memory sequence with a simple instruction
sequence to compose the tweak vector directly.
Signed-off-by: Ard Biesheuvel <ard.biesheuvel@linaro.org>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
PTR_ERR_OR_ZERO contains if(IS_ERR(...)) + PTR_ERR. It is better to
use it directly. hence just replace it.
Signed-off-by: zhong jiang <zhongjiang@huawei.com>
Acked-by: Will Deacon <will@kernel.org>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
Rename static / file-local functions so that they do not conflict with
the functions declared in crypto/sha256.h.
This is a preparation patch for folding crypto/sha256.h into crypto/sha.h.
Signed-off-by: Hans de Goede <hdegoede@redhat.com>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
Add an accelerated version of the 'essiv(cbc(aes),sha256)' skcipher,
which is used by fscrypt or dm-crypt on systems where CBC mode is
signficantly more performant than XTS mode (e.g., when using a h/w
accelerator which supports the former but not the latter) This avoids
a separate call into the AES cipher for every invocation.
Signed-off-by: Ard Biesheuvel <ard.biesheuvel@linaro.org>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
The plain CBC driver and the CTS one share some code that iterates over
a scatterwalk and invokes the CBC asm code to do the processing. The
upcoming ESSIV/CBC mode will clone that pattern for the third time, so
let's factor it out first.
Signed-off-by: Ard Biesheuvel <ard.biesheuvel@linaro.org>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
Instead of calling into the table based scalar AES code in situations
where the SIMD unit may not be used, use the generic AES code, which
is more appropriate since it is less likely to be susceptible to
timing attacks.
Signed-off-by: Ard Biesheuvel <ard.biesheuvel@linaro.org>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
In preparation of duplicating the sync ctr(aes) functionality to modules
under arch/arm, move the helper function from a inline .h file to the
AES library, which is already depended upon by the drivers that use this
fallback.
Signed-off-by: Ard Biesheuvel <ard.biesheuvel@linaro.org>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
Switch to the new AES library that also provides an implementation of
the AES key expansion routine. This removes the dependency on the
generic AES cipher, allowing it to be omitted entirely in the future.
While at it, remove some references to the table based arm64 version
of AES and replace them with AES library calls as well.
Signed-off-by: Ard Biesheuvel <ard.biesheuvel@linaro.org>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
Switch to the new AES library that also provides an implementation of
the AES key expansion routine. This removes the dependency on the
generic AES cipher, allowing it to be omitted entirely in the future.
Signed-off-by: Ard Biesheuvel <ard.biesheuvel@linaro.org>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
The CCM code calls directly into the scalar table based AES cipher for
arm64 from the fallback path, and since this implementation is known to
be non-time invariant, doing so from a time invariant SIMD cipher is a
bit nasty.
So let's switch to the AES library - this makes the code more robust,
and drops the dependency on the generic AES cipher, allowing us to
omit it entirely in the future.
Signed-off-by: Ard Biesheuvel <ard.biesheuvel@linaro.org>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
The GHASH code uses the generic AES key expansion routines, and calls
directly into the scalar table based AES cipher for arm64 from the
fallback path, and since this implementation is known to be non-time
invariant, doing so from a time invariant SIMD cipher is a bit nasty.
So let's switch to the AES library - this makes the code more robust,
and drops the dependency on the generic AES cipher, allowing us to
omit it entirely in the future.
Signed-off-by: Ard Biesheuvel <ard.biesheuvel@linaro.org>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
Rename some local AES encrypt/decrypt routines so they don't clash with
the names we are about to introduce for the routines exposed by the
generic AES library.
Signed-off-by: Ard Biesheuvel <ard.biesheuvel@linaro.org>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
Pull crypto updates from Herbert Xu:
"Here is the crypto update for 5.3:
API:
- Test shash interface directly in testmgr
- cra_driver_name is now mandatory
Algorithms:
- Replace arc4 crypto_cipher with library helper
- Implement 5 way interleave for ECB, CBC and CTR on arm64
- Add xxhash
- Add continuous self-test on noise source to drbg
- Update jitter RNG
Drivers:
- Add support for SHA204A random number generator
- Add support for 7211 in iproc-rng200
- Fix fuzz test failures in inside-secure
- Fix fuzz test failures in talitos
- Fix fuzz test failures in qat"
* 'linus' of git://git.kernel.org/pub/scm/linux/kernel/git/herbert/crypto-2.6: (143 commits)
crypto: stm32/hash - remove interruptible condition for dma
crypto: stm32/hash - Fix hmac issue more than 256 bytes
crypto: stm32/crc32 - rename driver file
crypto: amcc - remove memset after dma_alloc_coherent
crypto: ccp - Switch to SPDX license identifiers
crypto: ccp - Validate the the error value used to index error messages
crypto: doc - Fix formatting of new crypto engine content
crypto: doc - Add parameter documentation
crypto: arm64/aes-ce - implement 5 way interleave for ECB, CBC and CTR
crypto: arm64/aes-ce - add 5 way interleave routines
crypto: talitos - drop icv_ool
crypto: talitos - fix hash on SEC1.
crypto: talitos - move struct talitos_edesc into talitos.h
lib/scatterlist: Fix mapping iterator when sg->offset is greater than PAGE_SIZE
crypto/NX: Set receive window credits to max number of CRBs in RxFIFO
crypto: asymmetric_keys - select CRYPTO_HASH where needed
crypto: serpent - mark __serpent_setkey_sbox noinline
crypto: testmgr - dynamically allocate crypto_shash
crypto: testmgr - dynamically allocate testvec_config
crypto: talitos - eliminate unneeded 'done' functions at build time
...
This implements 5-way interleaving for ECB, CBC decryption and CTR,
resulting in a speedup of ~11% on Marvell ThunderX2, which has a
very deep pipeline and therefore a high issue latency for NEON
instructions operating on the same registers.
Note that XTS is left alone: implementing 5-way interleave there
would either involve spilling of the calculated tweaks to the
stack, or recalculating them after the encryption operation, and
doing either of those would most likely penalize low end cores.
For ECB, this is not a concern at all, given that we have plenty
of spare registers. For CTR and CBC decryption, we take advantage
of the fact that v16 is not used by the CE version of the code
(which is the only one targeted by the optimization), and so we
can reshuffle the code a bit and avoid having to spill to memory
(with the exception of one extra reload in the CBC routine)
Signed-off-by: Ard Biesheuvel <ard.biesheuvel@linaro.org>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
In preparation of tweaking the accelerated AES chaining mode routines
to be able to use a 5-way stride, implement the core routines to
support processing 5 blocks of input at a time. While at it, drop
the 2 way versions, which have been unused for a while now.
Signed-off-by: Ard Biesheuvel <ard.biesheuvel@linaro.org>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
Based on 2 normalized pattern(s):
this program is free software you can redistribute it and or modify
it under the terms of the gnu general public license version 2 as
published by the free software foundation
this program is free software you can redistribute it and or modify
it under the terms of the gnu general public license version 2 as
published by the free software foundation #
extracted by the scancode license scanner the SPDX license identifier
GPL-2.0-only
has been chosen to replace the boilerplate/reference in 4122 file(s).
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Reviewed-by: Enrico Weigelt <info@metux.net>
Reviewed-by: Kate Stewart <kstewart@linuxfoundation.org>
Reviewed-by: Allison Randal <allison@lohutok.net>
Cc: linux-spdx@vger.kernel.org
Link: https://lkml.kernel.org/r/20190604081206.933168790@linutronix.de
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
Constify the ctx and iv arguments to crypto_chacha_init() and the
various chacha*_stream_xor() functions. This makes it clear that they
are not modified.
Signed-off-by: Eric Biggers <ebiggers@google.com>
Acked-by: Ard Biesheuvel <ard.biesheuvel@linaro.org>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
The sha256-ce finup implementation for ARM64 produces wrong digest
for empty input (len=0). Expected: the actual digest, result: initial
value of SHA internal state. The error is in sha256_ce_finup:
for empty data `finalize` will be 1, so the code is relying on
sha2_ce_transform to make the final round. However, in
sha256_base_do_update, the block function will not be called when
len == 0.
Fix it by setting finalize to 0 if data is empty.
Fixes: 03802f6a80 ("crypto: arm64/sha2-ce - move SHA-224/256 ARMv8 implementation to base layer")
Cc: stable@vger.kernel.org
Signed-off-by: Elena Petrova <lenaptr@google.com>
Reviewed-by: Ard Biesheuvel <ard.biesheuvel@linaro.org>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
The sha1-ce finup implementation for ARM64 produces wrong digest
for empty input (len=0). Expected: da39a3ee..., result: 67452301...
(initial value of SHA internal state). The error is in sha1_ce_finup:
for empty data `finalize` will be 1, so the code is relying on
sha1_ce_transform to make the final round. However, in
sha1_base_do_update, the block function will not be called when
len == 0.
Fix it by setting finalize to 0 if data is empty.
Fixes: 07eb54d306 ("crypto: arm64/sha1-ce - move SHA-1 ARMv8 implementation to base layer")
Cc: stable@vger.kernel.org
Signed-off-by: Elena Petrova <lenaptr@google.com>
Reviewed-by: Ard Biesheuvel <ard.biesheuvel@linaro.org>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
Based on 1 normalized pattern(s):
this program is free software you can redistribute it and or modify
it under the terms of the gnu general public license as published by
the free software foundation either version 2 of the license or at
your option any later version
extracted by the scancode license scanner the SPDX license identifier
GPL-2.0-or-later
has been chosen to replace the boilerplate/reference in 3029 file(s).
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Reviewed-by: Allison Randal <allison@lohutok.net>
Cc: linux-spdx@vger.kernel.org
Link: https://lkml.kernel.org/r/20190527070032.746973796@linutronix.de
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
Pull crypto update from Herbert Xu:
"API:
- Add support for AEAD in simd
- Add fuzz testing to testmgr
- Add panic_on_fail module parameter to testmgr
- Use per-CPU struct instead multiple variables in scompress
- Change verify API for akcipher
Algorithms:
- Convert x86 AEAD algorithms over to simd
- Forbid 2-key 3DES in FIPS mode
- Add EC-RDSA (GOST 34.10) algorithm
Drivers:
- Set output IV with ctr-aes in crypto4xx
- Set output IV in rockchip
- Fix potential length overflow with hashing in sun4i-ss
- Fix computation error with ctr in vmx
- Add SM4 protected keys support in ccree
- Remove long-broken mxc-scc driver
- Add rfc4106(gcm(aes)) cipher support in cavium/nitrox"
* 'linus' of git://git.kernel.org/pub/scm/linux/kernel/git/herbert/crypto-2.6: (179 commits)
crypto: ccree - use a proper le32 type for le32 val
crypto: ccree - remove set but not used variable 'du_size'
crypto: ccree - Make cc_sec_disable static
crypto: ccree - fix spelling mistake "protedcted" -> "protected"
crypto: caam/qi2 - generate hash keys in-place
crypto: caam/qi2 - fix DMA mapping of stack memory
crypto: caam/qi2 - fix zero-length buffer DMA mapping
crypto: stm32/cryp - update to return iv_out
crypto: stm32/cryp - remove request mutex protection
crypto: stm32/cryp - add weak key check for DES
crypto: atmel - remove set but not used variable 'alg_name'
crypto: picoxcell - Use dev_get_drvdata()
crypto: crypto4xx - get rid of redundant using_sd variable
crypto: crypto4xx - use sync skcipher for fallback
crypto: crypto4xx - fix cfb and ofb "overran dst buffer" issues
crypto: crypto4xx - fix ctr-aes missing output IV
crypto: ecrdsa - select ASN1 and OID_REGISTRY for EC-RDSA
crypto: ux500 - use ccflags-y instead of CFLAGS_<basename>.o
crypto: ccree - handle tee fips error during power management resume
crypto: ccree - add function to handle cryptocell tee fips error
...
If the user-provided IV needs to be aligned to the algorithm's
alignmask, then skcipher_walk_virt() copies the IV into a new aligned
buffer walk.iv. But skcipher_walk_virt() can fail afterwards, and then
if the caller unconditionally accesses walk.iv, it's a use-after-free.
xts-aes-neonbs doesn't set an alignmask, so currently it isn't affected
by this despite unconditionally accessing walk.iv. However this is more
subtle than desired, and unconditionally accessing walk.iv has caused a
real problem in other algorithms. Thus, update xts-aes-neonbs to start
checking the return value of skcipher_walk_virt().
Fixes: 1abee99eaf ("crypto: arm64/aes - reimplement bit-sliced ARM/NEON implementation for arm64")
Cc: <stable@vger.kernel.org> # v4.11+
Signed-off-by: Eric Biggers <ebiggers@google.com>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
As we will exhaust the first 32 bits of AT_HWCAP let's start
exposing AT_HWCAP2 to userspace to give us up to 64 caps.
Whilst it's possible to use the remaining 32 bits of AT_HWCAP, we
prefer to expand into AT_HWCAP2 in order to provide a consistent
view to userspace between ILP32 and LP64. However internal to the
kernel we prefer to continue to use the full space of elf_hwcap.
To reduce complexity and allow for future expansion, we now
represent hwcaps in the kernel as ordinals and use a
KERNEL_HWCAP_ prefix. This allows us to support automatic feature
based module loading for all our hwcaps.
We introduce cpu_set_feature to set hwcaps which complements the
existing cpu_have_feature helper. These helpers allow us to clean
up existing direct uses of elf_hwcap and reduce any future effort
required to move beyond 64 caps.
For convenience we also introduce cpu_{have,set}_named_feature which
makes use of the cpu_feature macro to allow providing a hwcap name
without a {KERNEL_}HWCAP_ prefix.
Signed-off-by: Andrew Murray <andrew.murray@arm.com>
[will: use const_ilog2() and tweak documentation]
Signed-off-by: Will Deacon <will.deacon@arm.com>
My patches to make testmgr fuzz algorithms against their generic
implementation detected that the arm64 implementations of "cbcmac(aes)"
handle empty messages differently from the cbcmac template. Namely, the
arm64 implementations return the encrypted initial value, but the cbcmac
template returns the initial value directly.
This isn't actually a meaningful case because any user of cbcmac needs
to prepend the message length, as CCM does; otherwise it's insecure.
However, we should keep the behavior consistent; at the very least this
makes testing easier.
Do it the easy way, which is to change the arm64 implementations to have
the same behavior as the cbcmac template.
For what it's worth, ghash does things essentially the same way: it
returns its initial value when given an empty message, even though in
practice ghash is never passed an empty message.
Signed-off-by: Eric Biggers <ebiggers@google.com>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
Replace all calls to may_use_simd() in the arm64 crypto code with
crypto_simd_usable(), in order to allow testing the no-SIMD code paths.
Signed-off-by: Eric Biggers <ebiggers@google.com>
Reviewed-by: Ard Biesheuvel <ard.biesheuvel@linaro.org>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
The arm64 gcm-aes-ce algorithm is failing the extra crypto self-tests
following my patches to test the !may_use_simd() code paths, which
previously were untested. The problem is that in the !may_use_simd()
case, an odd number of AES blocks can be processed within each step of
the skcipher_walk. However, the skcipher_walk is being done with a
"stride" of 2 blocks and is advanced by an even number of blocks after
each step. This causes the encryption to produce the wrong ciphertext
and authentication tag, and causes the decryption to incorrectly fail.
Fix it by only processing an even number of blocks per step.
Fixes: c2b24c36e0 ("crypto: arm64/aes-gcm-ce - fix scatterwalk API violation")
Fixes: 71e52c278c ("crypto: arm64/aes-ce-gcm - operate on two input blocks at a time")
Cc: <stable@vger.kernel.org> # v4.19+
Signed-off-by: Eric Biggers <ebiggers@google.com>
Reviewed-by: Ard Biesheuvel <ard.biesheuvel@linaro.org>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
Pull crypto update from Herbert Xu:
"API:
- Add helper for simple skcipher modes.
- Add helper to register multiple templates.
- Set CRYPTO_TFM_NEED_KEY when setkey fails.
- Require neither or both of export/import in shash.
- AEAD decryption test vectors are now generated from encryption
ones.
- New option CONFIG_CRYPTO_MANAGER_EXTRA_TESTS that includes random
fuzzing.
Algorithms:
- Conversions to skcipher and helper for many templates.
- Add more test vectors for nhpoly1305 and adiantum.
Drivers:
- Add crypto4xx prng support.
- Add xcbc/cmac/ecb support in caam.
- Add AES support for Exynos5433 in s5p.
- Remove sha384/sha512 from artpec7 as hardware cannot do partial
hash"
[ There is a merge of the Freescale SoC tree in order to pull in changes
required by patches to the caam/qi2 driver. ]
* 'linus' of git://git.kernel.org/pub/scm/linux/kernel/git/herbert/crypto-2.6: (174 commits)
crypto: s5p - add AES support for Exynos5433
dt-bindings: crypto: document Exynos5433 SlimSSS
crypto: crypto4xx - add missing of_node_put after of_device_is_available
crypto: cavium/zip - fix collision with generic cra_driver_name
crypto: af_alg - use struct_size() in sock_kfree_s()
crypto: caam - remove redundant likely/unlikely annotation
crypto: s5p - update iv after AES-CBC op end
crypto: x86/poly1305 - Clear key material from stack in SSE2 variant
crypto: caam - generate hash keys in-place
crypto: caam - fix DMA mapping xcbc key twice
crypto: caam - fix hash context DMA unmap size
hwrng: bcm2835 - fix probe as platform device
crypto: s5p-sss - Use AES_BLOCK_SIZE define instead of number
crypto: stm32 - drop pointless static qualifier in stm32_hash_remove()
crypto: chelsio - Fixed Traffic Stall
crypto: marvell - Remove set but not used variable 'ivsize'
crypto: ccp - Update driver messages to remove some confusion
crypto: adiantum - add 1536 and 4096-byte test vectors
crypto: nhpoly1305 - add a test vector with len % 16 != 0
crypto: arm/aes-ce - update IV after partial final CTR block
...
On big endian arm64 kernels, the xchacha20-neon and xchacha12-neon
self-tests fail because hchacha_block_neon() outputs little endian words
but the C code expects native endianness. Fix it to output the words in
native endianness (which also makes it match the arm32 version).
Fixes: cc7cf991e9 ("crypto: arm64/chacha20 - add XChaCha20 support")
Signed-off-by: Eric Biggers <ebiggers@google.com>
Reviewed-by: Ard Biesheuvel <ard.biesheuvel@linaro.org>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
The change to encrypt a fifth ChaCha block using scalar instructions
caused the chacha20-neon, xchacha20-neon, and xchacha12-neon self-tests
to start failing on big endian arm64 kernels. The bug is that the
keystream block produced in 32-bit scalar registers is directly XOR'd
with the data words, which are loaded and stored in native endianness.
Thus in big endian mode the data bytes end up XOR'd with the wrong
bytes. Fix it by byte-swapping the keystream words in big endian mode.
Fixes: 2fe55987b2 ("crypto: arm64/chacha - use combined SIMD/ALU routine for more speed")
Signed-off-by: Eric Biggers <ebiggers@google.com>
Reviewed-by: Ard Biesheuvel <ard.biesheuvel@linaro.org>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
Make the arm64 ctr-aes-neon and ctr-aes-ce algorithms update the IV
buffer to contain the next counter after processing a partial final
block, rather than leave it as the last counter. This makes these
algorithms pass the updated AES-CTR tests.
Signed-off-by: Eric Biggers <ebiggers@google.com>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
The arm64 NEON bit-sliced implementation of AES-CTR fails the improved
skcipher tests because it sometimes produces the wrong ciphertext. The
bug is that the final keystream block isn't returned from the assembly
code when the number of non-final blocks is zero. This can happen if
the input data ends a few bytes after a page boundary. In this case the
last bytes get "encrypted" by XOR'ing them with uninitialized memory.
Fix the assembly code to return the final keystream block when needed.
Fixes: 88a3f582be ("crypto: arm64/aes - don't use IV buffer to return final keystream block")
Cc: <stable@vger.kernel.org> # v4.11+
Reviewed-by: Ard Biesheuvel <ard.biesheuvel@linaro.org>
Signed-off-by: Eric Biggers <ebiggers@google.com>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
The x86, arm, and arm64 asm implementations of crct10dif are very
difficult to understand partly because many of the comments, labels, and
macros are named incorrectly: the lengths mentioned are usually off by a
factor of two from the actual code. Many other things are unnecessarily
convoluted as well, e.g. there are many more fold constants than
actually needed and some aren't fully reduced.
This series therefore cleans up all these implementations to be much
more maintainable. I also made some small optimizations where I saw
opportunities, resulting in slightly better performance.
This patch cleans up the arm64 version.
Acked-by: Ard Biesheuvel <ard.biesheuvel@linaro.org>
Signed-off-by: Eric Biggers <ebiggers@google.com>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
The arm64 CRC-T10DIF implementation either uses 8-bit or 64-bit
polynomial multiplication instructions, since the latter are
faster but not mandatory in the architecture.
Since that prevents us from testing both implementations on the
same system, let's expose both implementations to the crypto API,
with the priorities reflecting that the P64 version is the
preferred one if available.
Signed-off-by: Ard Biesheuvel <ard.biesheuvel@linaro.org>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
Remove some code that is no longer called now that we make sure never
to invoke the SIMD routine with less than 16 bytes of input.
Reviewed-by: Eric Biggers <ebiggers@kernel.org>
Signed-off-by: Ard Biesheuvel <ard.biesheuvel@linaro.org>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
The SIMD routine ported from x86 used to have a special code path
for inputs < 16 bytes, which got lost somewhere along the way.
Instead, the current glue code aligns the input pointer to 16 bytes,
which is not really necessary on this architecture (although it
could be beneficial to performance to expose aligned data to the
the NEON routine), but this could result in inputs of less than
16 bytes to be passed in. This not only fails the new extended
tests that Eric has implemented, it also results in the code
reading past the end of the input, which could potentially result
in crashes when dealing with less than 16 bytes of input at the
end of a page which is followed by an unmapped page.
So update the glue code to only invoke the NEON routine if the
input is at least 16 bytes.
Reported-by: Eric Biggers <ebiggers@kernel.org>
Reviewed-by: Eric Biggers <ebiggers@kernel.org>
Fixes: 6ef5737f39 ("crypto: arm64/crct10dif - port x86 SSE implementation to arm64")
Cc: <stable@vger.kernel.org> # v4.10+
Signed-off-by: Ard Biesheuvel <ard.biesheuvel@linaro.org>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
The arm64 GHASH implementation either uses 8-bit or 64-bit
polynomial multiplication instructions, since the latter are
faster but not mandatory in the architecture.
Since that prevents us from testing both implementations on the
same system, let's expose both implementations to the crypto API,
with the priorities reflecting that the P64 version is the
preferred one if available.
Signed-off-by: Ard Biesheuvel <ard.biesheuvel@linaro.org>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
When the AES-CCM code was first added, the NEON register were saved
and restored eagerly, and so the code avoided doing so, and executed
the scatterwalk in atomic context inside the kernel_neon_begin/end
section.
This has been changed in the meantime, so switch to non-atomic
scatterwalks.
Fixes: bd2ad885e3 ("crypto: arm64/aes-ce-ccm - move kernel mode neon ...")
Signed-off-by: Ard Biesheuvel <ard.biesheuvel@linaro.org>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
Commit 5092fcf349 ("crypto: arm64/aes-ce-ccm: add non-SIMD generic
fallback") introduced C fallback code to replace the NEON routines
when invoked from a context where the NEON is not available (i.e.,
from the context of a softirq taken while the NEON is already being
used in kernel process context)
Fix two logical flaws in the MAC calculation of the associated data.
Reported-by: Eric Biggers <ebiggers@kernel.org>
Fixes: 5092fcf349 ("crypto: arm64/aes-ce-ccm: add non-SIMD generic fallback")
Cc: stable@vger.kernel.org
Signed-off-by: Ard Biesheuvel <ard.biesheuvel@linaro.org>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
The NEON MAC calculation routine fails to handle the case correctly
where there is some data in the buffer, and the input fills it up
exactly. In this case, we enter the loop at the end with w8 == 0,
while a negative value is assumed, and so the loop carries on until
the increment of the 32-bit counter wraps around, which is quite
obviously wrong.
So omit the loop altogether in this case, and exit right away.
Reported-by: Eric Biggers <ebiggers@kernel.org>
Fixes: a3fd82105b ("arm64/crypto: AES in CCM mode using ARMv8 Crypto ...")
Cc: stable@vger.kernel.org
Signed-off-by: Ard Biesheuvel <ard.biesheuvel@linaro.org>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
To some degree, most known AArch64 micro-architectures appear to be
able to issue ALU instructions in parellel to SIMD instructions
without affecting the SIMD throughput. This means we can use the ALU
to process a fifth ChaCha block while the SIMD is processing four
blocks in parallel.
Signed-off-by: Ard Biesheuvel <ard.biesheuvel@linaro.org>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
Update the 4-way NEON ChaCha routine so it can handle input of any
length >64 bytes in its entirety, rather than having to call into
the 1-way routine and/or memcpy()s via temp buffers to handle the
tail of a ChaCha invocation that is not a multiple of 256 bytes.
On inputs that are a multiple of 256 bytes (and thus in tcrypt
benchmarks), performance drops by around 1% on Cortex-A57, while
performance for inputs drawn randomly from the range [64, 1024)
increases by around 30%.
Signed-off-by: Ard Biesheuvel <ard.biesheuvel@linaro.org>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
Now that the ARM64 NEON implementation of ChaCha20 and XChaCha20 has
been refactored to support varying the number of rounds, add support for
XChaCha12. This is identical to XChaCha20 except for the number of
rounds, which is 12 instead of 20. This can be used by Adiantum.
Reviewed-by: Ard Biesheuvel <ard.biesheuvel@linaro.org>
Signed-off-by: Eric Biggers <ebiggers@google.com>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
In preparation for adding XChaCha12 support, rename/refactor the ARM64
NEON implementation of ChaCha20 to support different numbers of rounds.
Reviewed-by: Ard Biesheuvel <ard.biesheuvel@linaro.org>
Signed-off-by: Eric Biggers <ebiggers@google.com>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
Add an XChaCha20 implementation that is hooked up to the ARM64 NEON
implementation of ChaCha20. This can be used by Adiantum.
A NEON implementation of single-block HChaCha20 is also added so that
XChaCha20 can use it rather than the generic implementation. This
required refactoring the ChaCha20 permutation into its own function.
Signed-off-by: Eric Biggers <ebiggers@google.com>
Reviewed-by: Ard Biesheuvel <ard.biesheuvel@linaro.org>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
Add an ARM64 NEON implementation of NHPoly1305, an ε-almost-∆-universal
hash function used in the Adiantum encryption mode. For now, only the
NH portion is actually NEON-accelerated; the Poly1305 part is less
performance-critical so is just implemented in C.
Reviewed-by: Ard Biesheuvel <ard.biesheuvel@linaro.org>
Tested-by: Ard Biesheuvel <ard.biesheuvel@linaro.org> # big-endian
Signed-off-by: Eric Biggers <ebiggers@google.com>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
In commit 54a702f705 ("kbuild: mark $(targets) as .SECONDARY and
remove .PRECIOUS markers"), I missed one important feature of the
.SECONDARY target:
.SECONDARY with no prerequisites causes all targets to be
treated as secondary.
... which agrees with the policy of Kbuild.
Let's move it to scripts/Kbuild.include, with no prerequisites.
Note:
If an intermediate file is generated by $(call if_changed,...), you
still need to add it to "targets" so its .*.cmd file is included.
The arm/arm64 crypto files are generated by $(call cmd,shipped),
so they do not need to be added to "targets", but need to be added
to "clean-files" so "make clean" can properly clean them away.
Signed-off-by: Masahiro Yamada <yamada.masahiro@socionext.com>
In preparation for adding XChaCha12 support, rename/refactor
chacha20-generic to support different numbers of rounds. The
justification for needing XChaCha12 support is explained in more detail
in the patch "crypto: chacha - add XChaCha12 support".
The only difference between ChaCha{8,12,20} are the number of rounds
itself; all other parts of the algorithm are the same. Therefore,
remove the "20" from all definitions, structures, functions, files, etc.
that will be shared by all ChaCha versions.
Also make ->setkey() store the round count in the chacha_ctx (previously
chacha20_ctx). The generic code then passes the round count through to
chacha_block(). There will be a ->setkey() function for each explicitly
allowed round count; the encrypt/decrypt functions will be the same. I
decided not to do it the opposite way (same ->setkey() function for all
round counts, with different encrypt/decrypt functions) because that
would have required more boilerplate code in architecture-specific
implementations of ChaCha and XChaCha.
Reviewed-by: Ard Biesheuvel <ard.biesheuvel@linaro.org>
Acked-by: Martin Willi <martin@strongswan.org>
Signed-off-by: Eric Biggers <ebiggers@google.com>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
Commit 2e5d2f33d1 ("crypto: arm64/aes-blk - improve XTS mask handling")
optimized away some reloads of the XTS mask vector, but failed to take
into account that calls into the XTS en/decrypt routines will take a
slightly different code path if a single block of input is split across
different buffers. So let's ensure that the first load occurs
unconditionally, and move the reload to the end so it doesn't occur
needlessly.
Fixes: 2e5d2f33d1 ("crypto: arm64/aes-blk - improve XTS mask handling")
Signed-off-by: Ard Biesheuvel <ard.biesheuvel@linaro.org>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
In the new arm64 CTS-CBC implementation, return an error code rather
than crashing on inputs shorter than AES_BLOCK_SIZE bytes. Also set
cra_blocksize to AES_BLOCK_SIZE (like is done in the cts template) to
indicate the minimum input size.
Fixes: dd597fb33f ("crypto: arm64/aes-blk - add support for CTS-CBC mode")
Signed-off-by: Eric Biggers <ebiggers@google.com>
Reviewed-by: Ard Biesheuvel <ard.biesheuvel@linaro.org>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
The Crypto Extension instantiation of the aes-modes.S collection of
skciphers uses only 15 NEON registers for the round key array, whereas
the pure NEON flavor uses 16 NEON registers for the AES S-box.
This means we have a spare register available that we can use to hold
the XTS mask vector, removing the need to reload it at every iteration
of the inner loop.
Since the pure NEON version does not permit this optimization, tweak
the macros so we can factor out this functionality. Also, replace the
literal load with a short sequence to compose the mask vector.
On Cortex-A53, this results in a ~4% speedup.
Signed-off-by: Ard Biesheuvel <ard.biesheuvel@linaro.org>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
Currently, we rely on the generic CTS chaining mode wrapper to
instantiate the cts(cbc(aes)) skcipher. Due to the high performance
of the ARMv8 Crypto Extensions AES instructions (~1 cycles per byte),
any overhead in the chaining mode layers is amplified, and so it pays
off considerably to fold the CTS handling into the SIMD routines.
On Cortex-A53, this results in a ~50% speedup for smaller input sizes.
Signed-off-by: Ard Biesheuvel <ard.biesheuvel@linaro.org>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
The reasoning of commit f10dc56c64 ("crypto: arm64 - revert NEON yield
for fast AEAD implementations") applies equally to skciphers: the walk
API already guarantees that the input size of each call into the NEON
code is bounded to the size of a page, and so there is no need for an
additional TIF_NEED_RESCHED flag check inside the inner loop. So revert
the skcipher changes to aes-modes.S (but retain the mac ones)
This partially reverts commit 0c8f838a52.
Signed-off-by: Ard Biesheuvel <ard.biesheuvel@linaro.org>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
For some reason, the asmlinkage prototypes of the NEON routines take
u8[] arguments for the round key arrays, while the actual round keys
are arrays of u32, and so passing them into those routines requires
u8* casts at each occurrence. Fix that.
Signed-off-by: Ard Biesheuvel <ard.biesheuvel@linaro.org>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
The arm64 implementation of the CRC-T10DIF algorithm uses the 64x64 bit
polynomial multiplication instructions, which are optional in the
architecture, and if these instructions are not available, we fall back
to the C routine which is slow and inefficient.
So let's reuse the 64x64 bit PMULL alternative from the GHASH driver that
uses a sequence of ~40 instructions involving 8x8 bit PMULL and some
shifting and masking. This is a lot slower than the original, but it is
still twice as fast as the current [unoptimized] C code on Cortex-A53,
and it is time invariant and much easier on the D-cache.
Signed-off-by: Ard Biesheuvel <ard.biesheuvel@linaro.org>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
Reorganize the CRC-T10DIF asm routine so we can easily instantiate an
alternative version based on 8x8 polynomial multiplication in a
subsequent patch.
Signed-off-by: Ard Biesheuvel <ard.biesheuvel@linaro.org>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
Now that the scalar fallbacks have been moved out of this driver into
the core crc32()/crc32c() routines, we are left with a CRC32 crypto API
driver for arm64 that is based only on 64x64 polynomial multiplication,
which is an optional instruction in the ARMv8 architecture, and is less
and less likely to be available on cores that do not also implement the
CRC32 instructions, given that those are mandatory in the architecture
as of ARMv8.1.
Since the scalar instructions do not require the special handling that
SIMD instructions do, and since they turn out to be considerably faster
on some cores (Cortex-A53) as well, there is really no point in keeping
this code around so let's just remove it.
Signed-off-by: Ard Biesheuvel <ard.biesheuvel@linaro.org>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
Replace the literal load of the addend vector with a sequence that
performs each add individually. This sequence is only 2 instructions
longer than the original, and 2% faster on Cortex-A53.
This is an improvement by itself, but also works around a Clang issue,
whose integrated assembler does not implement the GNU ARM asm syntax
completely, and does not support the =literal notation for FP registers
(more info at https://bugs.llvm.org/show_bug.cgi?id=38642)
Cc: Nick Desaulniers <ndesaulniers@google.com>
Signed-off-by: Ard Biesheuvel <ard.biesheuvel@linaro.org>
Reviewed-by: Nick Desaulniers <ndesaulniers@google.com>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
These are unused, undesired, and have never actually been used by
anybody. The original authors of this code have changed their mind about
its inclusion. While originally proposed for disk encryption on low-end
devices, the idea was discarded [1] in favor of something else before
that could really get going. Therefore, this patch removes Speck.
[1] https://marc.info/?l=linux-crypto-vger&m=153359499015659
Signed-off-by: Jason A. Donenfeld <Jason@zx2c4.com>
Acked-by: Eric Biggers <ebiggers@google.com>
Cc: stable@vger.kernel.org
Acked-by: Ard Biesheuvel <ard.biesheuvel@linaro.org>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
Commit 71e52c278c ("crypto: arm64/aes-ce-gcm - operate on
two input blocks at a time") modified the granularity at which
the AES/GCM code processes its input to allow subsequent changes
to be applied that improve performance by using aggregation to
process multiple input blocks at once.
For this reason, it doubled the algorithm's 'chunksize' property
to 2 x AES_BLOCK_SIZE, but retained the non-SIMD fallback path that
processes a single block at a time. In some cases, this violates the
skcipher scatterwalk API, by calling skcipher_walk_done() with a
non-zero residue value for a chunk that is expected to be handled
in its entirety. This results in a WARN_ON() to be hit by the TLS
self test code, but is likely to break other user cases as well.
Unfortunately, none of the current test cases exercises this exact
code path at the moment.
Fixes: 71e52c278c ("crypto: arm64/aes-ce-gcm - operate on two ...")
Reported-by: Vakul Garg <vakul.garg@nxp.com>
Signed-off-by: Ard Biesheuvel <ard.biesheuvel@linaro.org>
Tested-by: Vakul Garg <vakul.garg@nxp.com>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
ARMv8.2 specifies special instructions for the SM3 cryptographic hash
and the SM4 symmetric cipher. While it is unlikely that a core would
implement one and not the other, we should only use SM4 instructions
if the SM4 CPU feature bit is set, and we currently check the SM3
feature bit instead. So fix that.
Fixes: e99ce921c4 ("crypto: arm64 - add support for SM4...")
Cc: <stable@vger.kernel.org>
Signed-off-by: Ard Biesheuvel <ard.biesheuvel@linaro.org>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
Enhance the GHASH implementation that uses 64-bit polynomial
multiplication by adding support for 4-way aggregation. This
more than doubles the performance, from 2.4 cycles per byte
to 1.1 cpb on Cortex-A53.
Signed-off-by: Ard Biesheuvel <ard.biesheuvel@linaro.org>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
Checking the TIF_NEED_RESCHED flag is disproportionately costly on cores
with fast crypto instructions and comparatively slow memory accesses.
On algorithms such as GHASH, which executes at ~1 cycle per byte on
cores that implement support for 64 bit polynomial multiplication,
there is really no need to check the TIF_NEED_RESCHED particularly
often, and so we can remove the NEON yield check from the assembler
routines.
However, unlike the AEAD or skcipher APIs, the shash/ahash APIs take
arbitrary input lengths, and so there needs to be some sanity check
to ensure that we don't hog the CPU for excessive amounts of time.
So let's simply cap the maximum input size that is processed in one go
to 64 KB.
Signed-off-by: Ard Biesheuvel <ard.biesheuvel@linaro.org>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
Squeeze out another 5% of performance by minimizing the number
of invocations of kernel_neon_begin()/kernel_neon_end() on the
common path, which also allows some reloads of the key schedule
to be optimized away.
The resulting code runs at 2.3 cycles per byte on a Cortex-A53.
Signed-off-by: Ard Biesheuvel <ard.biesheuvel@linaro.org>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
Implement a faster version of the GHASH transform which amortizes
the reduction modulo the characteristic polynomial across two
input blocks at a time.
On a Cortex-A53, the gcm(aes) performance increases 24%, from
3.0 cycles per byte to 2.4 cpb for large input sizes.
Signed-off-by: Ard Biesheuvel <ard.biesheuvel@linaro.org>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
Update the core AES/GCM transform and the associated plumbing to operate
on 2 AES/GHASH blocks at a time. By itself, this is not expected to
result in a noticeable speedup, but it paves the way for reimplementing
the GHASH component using 2-way aggregation.
Signed-off-by: Ard Biesheuvel <ard.biesheuvel@linaro.org>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
As it turns out, checking the TIF_NEED_RESCHED flag after each
iteration results in a significant performance regression (~10%)
when running fast algorithms (i.e., ones that use special instructions
and operate in the < 4 cycles per byte range) on in-order cores with
comparatively slow memory accesses such as the Cortex-A53.
Given the speed of these ciphers, and the fact that the page based
nature of the AEAD scatterwalk API guarantees that the core NEON
transform is never invoked with more than a single page's worth of
input, we can estimate the worst case duration of any resulting
scheduling blackout: on a 1 GHz Cortex-A53 running with 64k pages,
processing a page's worth of input at 4 cycles per byte results in
a delay of ~250 us, which is a reasonable upper bound.
So let's remove the yield checks from the fused AES-CCM and AES-GCM
routines entirely.
This reverts commit 7b67ae4d5c and
partially reverts commit 7c50136a8a.
Fixes: 7c50136a8a ("crypto: arm64/aes-ghash - yield NEON after every ...")
Fixes: 7b67ae4d5c ("crypto: arm64/aes-ccm - yield NEON after every ...")
Signed-off-by: Ard Biesheuvel <ard.biesheuvel@linaro.org>
Acked-by: Herbert Xu <herbert@gondor.apana.org.au>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
Calling pmull_gcm_encrypt_block() requires kernel_neon_begin() and
kernel_neon_end() to be used since the routine touches the NEON
register file. Add the missing calls.
Also, since NEON register contents are not preserved outside of
a kernel mode NEON region, pass the key schedule array again.
Fixes: 7c50136a8a ("crypto: arm64/aes-ghash - yield NEON after every ...")
Acked-by: Herbert Xu <herbert@gondor.apana.org.au>
Signed-off-by: Ard Biesheuvel <ard.biesheuvel@linaro.org>
Signed-off-by: Will Deacon <will.deacon@arm.com>
Commit b73b7ac0a7 ("crypto: sha256_generic - add cra_priority") gave
sha256-generic and sha224-generic a cra_priority of 100, to match the
convention for generic implementations. But sha256-arm64 and
sha224-arm64 also have priority 100, so their order relative to the
generic implementations became ambiguous.
Therefore, increase their priority to 125 so that they have higher
priority than the generic implementations but lower priority than the
NEON implementations which have priority 150.
Signed-off-by: Eric Biggers <ebiggers@google.com>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
Many shash algorithms set .cra_flags = CRYPTO_ALG_TYPE_SHASH. But this
is redundant with the C structure type ('struct shash_alg'), and
crypto_register_shash() already sets the type flag automatically,
clearing any type flag that was already there. Apparently the useless
assignment has just been copy+pasted around.
So, remove the useless assignment from all the shash algorithms.
This patch shouldn't change any actual behavior.
Signed-off-by: Eric Biggers <ebiggers@google.com>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
Several source files have been taken from OpenSSL. In some of them a
comment that "permission to use under GPL terms is granted" was
included below a contradictory license statement. In several cases,
there was no indication that the license of the code was compatible
with the GPLv2.
This change clarifies the licensing for all of these files. I've
confirmed with the author (Andy Polyakov) that a) he has licensed the
files with the GPLv2 comment under that license and b) that he's also
happy to license the other files under GPLv2 too. In one case, the
file is already contained in his CRYPTOGAMS bundle, which has a GPLv2
option, and so no special measures are needed.
In all cases, the license status of code has been clarified by making
the GPLv2 license prominent.
The .S files have been regenerated from the updated .pl files.
This is a comment-only change. No code is changed.
Signed-off-by: Adam Langley <agl@chromium.org>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
Avoid excessive scheduling delays under a preemptible kernel by
conditionally yielding the NEON after every block of input.
Signed-off-by: Ard Biesheuvel <ard.biesheuvel@linaro.org>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
Avoid excessive scheduling delays under a preemptible kernel by
conditionally yielding the NEON after every block of input.
Signed-off-by: Ard Biesheuvel <ard.biesheuvel@linaro.org>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
Avoid excessive scheduling delays under a preemptible kernel by
yielding the NEON after every block of input.
Signed-off-by: Ard Biesheuvel <ard.biesheuvel@linaro.org>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
Avoid excessive scheduling delays under a preemptible kernel by
yielding the NEON after every block of input.
Signed-off-by: Ard Biesheuvel <ard.biesheuvel@linaro.org>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
Avoid excessive scheduling delays under a preemptible kernel by
yielding the NEON after every block of input.
Signed-off-by: Ard Biesheuvel <ard.biesheuvel@linaro.org>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
Avoid excessive scheduling delays under a preemptible kernel by
yielding the NEON after every block of input.
Signed-off-by: Ard Biesheuvel <ard.biesheuvel@linaro.org>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
Avoid excessive scheduling delays under a preemptible kernel by
yielding the NEON after every block of input.
Signed-off-by: Ard Biesheuvel <ard.biesheuvel@linaro.org>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
Avoid excessive scheduling delays under a preemptible kernel by
yielding the NEON after every block of input.
Signed-off-by: Ard Biesheuvel <ard.biesheuvel@linaro.org>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
Avoid excessive scheduling delays under a preemptible kernel by
yielding the NEON after every block of input.
Signed-off-by: Ard Biesheuvel <ard.biesheuvel@linaro.org>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
Avoid excessive scheduling delays under a preemptible kernel by
yielding the NEON after every block of input.
Signed-off-by: Ard Biesheuvel <ard.biesheuvel@linaro.org>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
Add support for the SM4 symmetric cipher implemented using the special
SM4 instructions introduced in ARM architecture revision 8.2.
Signed-off-by: Ard Biesheuvel <ard.biesheuvel@linaro.org>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
GNU Make automatically deletes intermediate files that are updated
in a chain of pattern rules.
Example 1) %.dtb.o <- %.dtb.S <- %.dtb <- %.dts
Example 2) %.o <- %.c <- %.c_shipped
A couple of makefiles mark such targets as .PRECIOUS to prevent Make
from deleting them, but the correct way is to use .SECONDARY.
.SECONDARY
Prerequisites of this special target are treated as intermediate
files but are never automatically deleted.
.PRECIOUS
When make is interrupted during execution, it may delete the target
file it is updating if the file was modified since make started.
If you mark the file as precious, make will never delete the file
if interrupted.
Both can avoid deletion of intermediate files, but the difference is
the behavior when Make is interrupted; .SECONDARY deletes the target,
but .PRECIOUS does not.
The use of .PRECIOUS is relatively rare since we do not want to keep
partially constructed (possibly corrupted) targets.
Another difference is that .PRECIOUS works with pattern rules whereas
.SECONDARY does not.
.PRECIOUS: $(obj)/%.lex.c
works, but
.SECONDARY: $(obj)/%.lex.c
has no effect. However, for the reason above, I do not want to use
.PRECIOUS which could cause obscure build breakage.
The targets specified as .SECONDARY must be explicit. $(targets)
contains all targets that need to include .*.cmd files. So, the
intermediates you want to keep are mostly in there. Therefore, mark
$(targets) as .SECONDARY. It means primary targets are also marked
as .SECONDARY, but I do not see any drawback for this.
I replaced some .SECONDARY / .PRECIOUS markers with 'targets'. This
will make Kbuild search for non-existing .*.cmd files, but this is
not a noticeable performance issue.
Signed-off-by: Masahiro Yamada <yamada.masahiro@socionext.com>
Acked-by: Frank Rowand <frowand.list@gmail.com>
Acked-by: Ingo Molnar <mingo@kernel.org>
The decision to rebuild .S_shipped is made based on the relative
timestamps of .S_shipped and .pl files but git makes this essentially
random. This means that the perl script might run anyway (usually at
most once per checkout), defeating the whole purpose of _shipped.
Fix by skipping the rule unless explicit make variables are provided:
REGENERATE_ARM_CRYPTO or REGENERATE_ARM64_CRYPTO.
This can produce nasty occasional build failures downstream, for example
for toolchains with broken perl. The solution is minimally intrusive to
make it easier to push into stable.
Another report on a similar issue here: https://lkml.org/lkml/2018/3/8/1379
Signed-off-by: Leonard Crestez <leonard.crestez@nxp.com>
Cc: <stable@vger.kernel.org>
Reviewed-by: Masahiro Yamada <yamada.masahiro@socionext.com>
Acked-by: Ard Biesheuvel <ard.biesheuvel@linaro.org>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
Tweak the SHA256 update routines to invoke the SHA256 block transform
block by block, to avoid excessive scheduling delays caused by the
NEON algorithm running with preemption disabled.
Also, remove a stale comment which no longer applies now that kernel
mode NEON is actually disallowed in some contexts.
Signed-off-by: Ard Biesheuvel <ard.biesheuvel@linaro.org>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
CBC MAC is strictly sequential, and so the current AES code simply
processes the input one block at a time. However, we are about to add
yield support, which adds a bit of overhead, and which we prefer to
align with other modes in terms of granularity (i.e., it is better to
have all routines yield every 64 bytes and not have an exception for
CBC MAC which yields every 16 bytes)
So unroll the loop by 4. We still cannot perform the AES algorithm in
parallel, but we can at least merge the loads and stores.
Signed-off-by: Ard Biesheuvel <ard.biesheuvel@linaro.org>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
CBC encryption is strictly sequential, and so the current AES code
simply processes the input one block at a time. However, we are
about to add yield support, which adds a bit of overhead, and which
we prefer to align with other modes in terms of granularity (i.e.,
it is better to have all routines yield every 64 bytes and not have
an exception for CBC encrypt which yields every 16 bytes)
So unroll the loop by 4. We still cannot perform the AES algorithm in
parallel, but we can at least merge the loads and stores.
Signed-off-by: Ard Biesheuvel <ard.biesheuvel@linaro.org>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
The AES block mode implementation using Crypto Extensions or plain NEON
was written before real hardware existed, and so its interleave factor
was made build time configurable (as well as an option to instantiate
all interleaved sequences inline rather than as subroutines)
We ended up using INTERLEAVE=4 with inlining disabled for both flavors
of the core AES routines, so let's stick with that, and remove the option
to configure this at build time. This makes the code easier to modify,
which is nice now that we're adding yield support.
Signed-off-by: Ard Biesheuvel <ard.biesheuvel@linaro.org>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
When kernel mode NEON was first introduced on arm64, the preserve and
restore of the userland NEON state was completely unoptimized, and
involved saving all registers on each call to kernel_neon_begin(),
and restoring them on each call to kernel_neon_end(). For this reason,
the NEON crypto code that was introduced at the time keeps the NEON
enabled throughout the execution of the crypto API methods, which may
include calls back into the crypto API that could result in memory
allocation or other actions that we should avoid when running with
preemption disabled.
Since then, we have optimized the kernel mode NEON handling, which now
restores lazily (upon return to userland), and so the preserve action
is only costly the first time it is called after entering the kernel.
So let's put the kernel_neon_begin() and kernel_neon_end() calls around
the actual invocations of the NEON crypto code, and run the remainder of
the code with kernel mode NEON disabled (and preemption enabled)
Signed-off-by: Ard Biesheuvel <ard.biesheuvel@linaro.org>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
When kernel mode NEON was first introduced on arm64, the preserve and
restore of the userland NEON state was completely unoptimized, and
involved saving all registers on each call to kernel_neon_begin(),
and restoring them on each call to kernel_neon_end(). For this reason,
the NEON crypto code that was introduced at the time keeps the NEON
enabled throughout the execution of the crypto API methods, which may
include calls back into the crypto API that could result in memory
allocation or other actions that we should avoid when running with
preemption disabled.
Since then, we have optimized the kernel mode NEON handling, which now
restores lazily (upon return to userland), and so the preserve action
is only costly the first time it is called after entering the kernel.
So let's put the kernel_neon_begin() and kernel_neon_end() calls around
the actual invocations of the NEON crypto code, and run the remainder of
the code with kernel mode NEON disabled (and preemption enabled)
Signed-off-by: Ard Biesheuvel <ard.biesheuvel@linaro.org>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
When kernel mode NEON was first introduced on arm64, the preserve and
restore of the userland NEON state was completely unoptimized, and
involved saving all registers on each call to kernel_neon_begin(),
and restoring them on each call to kernel_neon_end(). For this reason,
the NEON crypto code that was introduced at the time keeps the NEON
enabled throughout the execution of the crypto API methods, which may
include calls back into the crypto API that could result in memory
allocation or other actions that we should avoid when running with
preemption disabled.
Since then, we have optimized the kernel mode NEON handling, which now
restores lazily (upon return to userland), and so the preserve action
is only costly the first time it is called after entering the kernel.
So let's put the kernel_neon_begin() and kernel_neon_end() calls around
the actual invocations of the NEON crypto code, and run the remainder of
the code with kernel mode NEON disabled (and preemption enabled)
Note that this requires some reshuffling of the registers in the asm
code, because the XTS routines can no longer rely on the registers to
retain their contents between invocations.
Signed-off-by: Ard Biesheuvel <ard.biesheuvel@linaro.org>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
When kernel mode NEON was first introduced on arm64, the preserve and
restore of the userland NEON state was completely unoptimized, and
involved saving all registers on each call to kernel_neon_begin(),
and restoring them on each call to kernel_neon_end(). For this reason,
the NEON crypto code that was introduced at the time keeps the NEON
enabled throughout the execution of the crypto API methods, which may
include calls back into the crypto API that could result in memory
allocation or other actions that we should avoid when running with
preemption disabled.
Since then, we have optimized the kernel mode NEON handling, which now
restores lazily (upon return to userland), and so the preserve action
is only costly the first time it is called after entering the kernel.
So let's put the kernel_neon_begin() and kernel_neon_end() calls around
the actual invocations of the NEON crypto code, and run the remainder of
the code with kernel mode NEON disabled (and preemption enabled)
Signed-off-by: Ard Biesheuvel <ard.biesheuvel@linaro.org>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>