1
Commit Graph

94 Commits

Author SHA1 Message Date
Gautam Menghani
e1f288d2f9 KVM: PPC: Book3S HV nestedv2: Add support for reading VPA counters for pseries guests
PAPR hypervisor has introduced three new counters in the VPA area of
LPAR CPUs for KVM L2 guest (see [1] for terminology) observability - two
for context switches from host to guest and vice versa, and one counter
for getting the total time spent inside the KVM guest. Add a tracepoint
that enables reading the counters for use by ftrace/perf. Note that this
tracepoint is only available for nestedv2 API (i.e, KVM on PowerVM).

[1] Terminology:
a. L1 refers to the VM (LPAR) booted on top of PAPR hypervisor
b. L2 refers to the KVM guest booted on top of L1.

Reviewed-by: Nicholas Piggin <npiggin@gmail.com>
Acked-by: Naveen N Rao <naveen@kernel.org>
Signed-off-by: Vaibhav Jain <vaibhav@linux.ibm.com>
Signed-off-by: Gautam Menghani <gautam@linux.ibm.com>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
Link: https://msgid.link/20240520175742.196329-1-gautam@linux.ibm.com
2024-06-03 22:06:28 +10:00
Jordan Niethe
db1dcfae1d KVM: PPC: Book3S HV nestedv2: Register the VPA with the L0
In the nestedv2 case, the L1 may register the L2's VPA with the L0. This
allows the L0 to manage the L2's dispatch count, as well as enable
possible performance optimisations by seeing if certain resources are
not being used by the L2 (such as the PMCs).

Use the H_GUEST_SET_STATE call to inform the L0 of the L2's VPA
address. This can not be done in the H_GUEST_VCPU_RUN input buffer.

Signed-off-by: Jordan Niethe <jniethe5@gmail.com>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
Link: https://msgid.link/20231201132618.555031-11-vaibhav@linux.ibm.com
2023-12-07 23:33:08 +11:00
Jordan Niethe
19d31c5f11 KVM: PPC: Add support for nestedv2 guests
A series of hcalls have been added to the PAPR which allow a regular
guest partition to create and manage guest partitions of its own. KVM
already had an interface that allowed this on powernv platforms. This
existing interface will now be called "nestedv1". The newly added PAPR
interface will be called "nestedv2".  PHYP will support the nestedv2
interface. At this time the host side of the nestedv2 interface has not
been implemented on powernv but there is no technical reason why it
could not be added.

The nestedv1 interface is still supported.

Add support to KVM to utilize these hcalls to enable running nested
guests as a pseries guest on PHYP.

Overview of the new hcall usage:

- L1 and L0 negotiate capabilities with
  H_GUEST_{G,S}ET_CAPABILITIES()

- L1 requests the L0 create a L2 with
  H_GUEST_CREATE() and receives a handle to use in future hcalls

- L1 requests the L0 create a L2 vCPU with
  H_GUEST_CREATE_VCPU()

- L1 sets up the L2 using H_GUEST_SET and the
  H_GUEST_VCPU_RUN input buffer

- L1 requests the L0 runs the L2 vCPU using H_GUEST_VCPU_RUN()

- L2 returns to L1 with an exit reason and L1 reads the
  H_GUEST_VCPU_RUN output buffer populated by the L0

- L1 handles the exit using H_GET_STATE if necessary

- L1 reruns L2 vCPU with H_GUEST_VCPU_RUN

- L1 frees the L2 in the L0 with H_GUEST_DELETE()

Support for the new API is determined by trying
H_GUEST_GET_CAPABILITIES. On a successful return, use the nestedv2
interface.

Use the vcpu register state setters for tracking modified guest state
elements and copy the thread wide values into the H_GUEST_VCPU_RUN input
buffer immediately before running a L2. The guest wide
elements can not be added to the input buffer so send them with a
separate H_GUEST_SET call if necessary.

Make the vcpu register getter load the corresponding value from the real
host with H_GUEST_GET. To avoid unnecessarily calling H_GUEST_GET, track
which values have already been loaded between H_GUEST_VCPU_RUN calls. If
an element is present in the H_GUEST_VCPU_RUN output buffer it also does
not need to be loaded again.

Tested-by: Sachin Sant <sachinp@linux.ibm.com>
Signed-off-by: Vaibhav Jain <vaibhav@linux.ibm.com>
Signed-off-by: Gautam Menghani <gautam@linux.ibm.com>
Signed-off-by: Kautuk Consul <kconsul@linux.vnet.ibm.com>
Signed-off-by: Amit Machhiwal <amachhiw@linux.vnet.ibm.com>
Signed-off-by: Jordan Niethe <jniethe5@gmail.com>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
Link: https://msgid.link/20230914030600.16993-11-jniethe5@gmail.com
2023-09-14 22:04:24 +10:00
Jordan Niethe
dfcaacc8f9 KVM: PPC: Book3s HV: Hold LPIDs in an unsigned long
The LPID register is 32 bits long. The host keeps the lpids for each
guest in an unsigned word struct kvm_arch. Currently, LPIDs are already
limited by mmu_lpid_bits and KVM_MAX_NESTED_GUESTS_SHIFT.

The nestedv2 API returns a 64 bit "Guest ID" to be used be the L1 host
for each L2 guest. This value is used as an lpid, e.g. it is the
parameter used by H_RPT_INVALIDATE. To minimize needless special casing
it makes sense to keep this "Guest ID" in struct kvm_arch::lpid.

This means that struct kvm_arch::lpid is too small so prepare for this
and make it an unsigned long. This is not a problem for the KVM-HV and
nestedv1 cases as their lpid values are already limited to valid ranges
so in those contexts the lpid can be used as an unsigned word safely as
needed.

In the PAPR, the H_RPT_INVALIDATE pid/lpid parameter is already
specified as an unsigned long so change pseries_rpt_invalidate() to
match that.  Update the callers of pseries_rpt_invalidate() to also take
an unsigned long if they take an lpid value.

Signed-off-by: Jordan Niethe <jniethe5@gmail.com>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
Link: https://msgid.link/20230914030600.16993-10-jniethe5@gmail.com
2023-09-14 22:04:24 +10:00
Chao Peng
20ec3ebd70 KVM: Rename mmu_notifier_* to mmu_invalidate_*
The motivation of this renaming is to make these variables and related
helper functions less mmu_notifier bound and can also be used for non
mmu_notifier based page invalidation. mmu_invalidate_* was chosen to
better describe the purpose of 'invalidating' a page that those
variables are used for.

  - mmu_notifier_seq/range_start/range_end are renamed to
    mmu_invalidate_seq/range_start/range_end.

  - mmu_notifier_retry{_hva} helper functions are renamed to
    mmu_invalidate_retry{_hva}.

  - mmu_notifier_count is renamed to mmu_invalidate_in_progress to
    avoid confusion with mn_active_invalidate_count.

  - While here, also update kvm_inc/dec_notifier_count() to
    kvm_mmu_invalidate_begin/end() to match the change for
    mmu_notifier_count.

No functional change intended.

Signed-off-by: Chao Peng <chao.p.peng@linux.intel.com>
Message-Id: <20220816125322.1110439-3-chao.p.peng@linux.intel.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2022-08-19 04:05:41 -04:00
Michael Ellerman
7f921a2d6c KVM: PPC: Move kvmhv_on_pseries() into kvm_ppc.h
We recently introduced a usage of kvmhv_on_pseries() in powerpc.c, which
causes a build error for ppc64_book3e_allmodconfig:

  arch/powerpc/kvm/powerpc.c:716:8: error: implicit declaration of function ‘kvmhv_on_pseries’
    716 |    if (kvmhv_on_pseries()) {
        |        ^~~~~~~~~~~~~~~~

Fix it by moving kvmhv_on_pseries() into kvm_ppc.h so that the stub
version is available for book3e builds.

Fixes: f771b55731 ("KVM: PPC: Use KVM_CAP_PPC_AIL_MODE_3")
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
2022-04-03 22:12:52 +10:00
Nicholas Piggin
22f7ff0dea KVM: PPC: Book3S HV Nested: Fix nested HFSCR being clobbered with multiple vCPUs
The L0 is storing HFSCR requested by the L1 for the L2 in struct
kvm_nested_guest when the L1 requests a vCPU enter L2. kvm_nested_guest
is not a per-vCPU structure. Hilarity ensues.

Fix it by moving the nested hfscr into the vCPU structure together with
the other per-vCPU nested fields.

Fixes: 8b210a880b ("KVM: PPC: Book3S HV Nested: Make nested HFSCR state accessible")
Cc: stable@vger.kernel.org # v5.15+
Signed-off-by: Nicholas Piggin <npiggin@gmail.com>
Reviewed-by: Fabiano Rosas <farosas@linux.ibm.com>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
Link: https://lore.kernel.org/r/20220122105530.3477250-1-npiggin@gmail.com
2022-01-25 16:39:41 +11:00
Nicholas Piggin
434398ab5e KVM: PPC: Book3S HV P9: Avoid cpu_in_guest atomics on entry and exit
cpu_in_guest is set to determine if a CPU needs to be IPI'ed to exit
the guest and notice the need_tlb_flush bit.

This can be implemented as a global per-CPU pointer to the currently
running guest instead of per-guest cpumasks, saving 2 atomics per
entry/exit. P7/8 doesn't require cpu_in_guest, nor does a nested HV
(only the L0 does), so move it to the P9 HV path.

Signed-off-by: Nicholas Piggin <npiggin@gmail.com>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
Link: https://lore.kernel.org/r/20211123095231.1036501-50-npiggin@gmail.com
2021-11-24 21:09:02 +11:00
Nicholas Piggin
b49c65c5f9 KVM: PPC: Book3S HV P9: Improve mfmsr performance on entry
Rearrange the MSR saving on entry so it does not follow the mtmsrd to
disable interrupts, avoiding a possible RAW scoreboard stall.

Signed-off-by: Nicholas Piggin <npiggin@gmail.com>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
Link: https://lore.kernel.org/r/20211123095231.1036501-46-npiggin@gmail.com
2021-11-24 21:09:02 +11:00
Nicholas Piggin
cb2553a093 KVM: PPC: Book3S HV P9: Optimise timebase reads
Reduce the number of mfTB executed by passing the current timebase
around entry and exit code rather than read it multiple times.

Signed-off-by: Nicholas Piggin <npiggin@gmail.com>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
Link: https://lore.kernel.org/r/20211123095231.1036501-25-npiggin@gmail.com
2021-11-24 21:08:59 +11:00
Nicholas Piggin
322fda0405 KVM: PPC: Book3S HV: H_ENTER filter out reserved HPTE[B] value
The HPTE B field is a 2-bit field with values 0b10 and 0b11 reserved.
This field is also taken from the HPTE and used when KVM executes
TLBIEs to set the B field of those instructions.

Disallow the guest setting B to a reserved value with H_ENTER by
rejecting it. This is the same approach already taken for rejecting
reserved (unsupported) LLP values. This prevents the guest from being
able to induce the host to execute TLBIE with reserved values, which
is not known to be a problem with current processors but in theory it
could prevent the TLBIE from working correctly in a future processor.

Signed-off-by: Nicholas Piggin <npiggin@gmail.com>
Reviewed-by: Fabiano Rosas <farosas@linux.ibm.com>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
Link: https://lore.kernel.org/r/20211004145749.1331331-1-npiggin@gmail.com
2021-10-13 13:08:16 +11:00
Nicholas Piggin
8b210a880b KVM: PPC: Book3S HV Nested: Make nested HFSCR state accessible
When the L0 runs a nested L2, there are several permutations of HFSCR
that can be relevant. The HFSCR that the L1 vcpu L1 requested, the
HFSCR that the L1 vcpu may use, and the HFSCR that is actually being
used to run the L2.

The L1 requested HFSCR is not accessible outside the nested hcall
handler, so copy that into a new kvm_nested_guest.hfscr field.

The permitted HFSCR is taken from the HFSCR that the L1 runs with,
which is also not accessible while the hcall is being made. Move
this into a new kvm_vcpu_arch.hfscr_permitted field.

These will be used by the next patch to improve facility handling
for nested guests, and later by facility demand faulting patches.

Signed-off-by: Nicholas Piggin <npiggin@gmail.com>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
Link: https://lore.kernel.org/r/20210811160134.904987-7-npiggin@gmail.com
2021-08-25 16:37:18 +10:00
Nicholas Piggin
c00366e237 KVM: PPC: Book3S HV P9: inline kvmhv_load_hv_regs_and_go into __kvmhv_vcpu_entry_p9
Now the initial C implementation is done, inline more HV code to make
rearranging things easier.

And rename __kvmhv_vcpu_entry_p9 to drop the leading underscores as it's
now C, and is now a more complete vcpu entry.

Signed-off-by: Nicholas Piggin <npiggin@gmail.com>
Reviewed-by: Fabiano Rosas <farosas@linux.ibm.com>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
Link: https://lore.kernel.org/r/20210528090752.3542186-16-npiggin@gmail.com
2021-06-10 22:12:13 +10:00
Nicholas Piggin
89d35b2391 KVM: PPC: Book3S HV P9: Implement the rest of the P9 path in C
Almost all logic is moved to C, by introducing a new in_guest mode for
the P9 path that branches very early in the KVM interrupt handler to P9
exit code.

The main P9 entry and exit assembly is now only about 160 lines of low
level stack setup and register save/restore, plus a bad-interrupt
handler.

There are two motivations for this, the first is just make the code more
maintainable being in C. The second is to reduce the amount of code
running in a special KVM mode, "realmode". In quotes because with radix
it is no longer necessarily real-mode in the MMU, but it still has to be
treated specially because it may be in real-mode, and has various
important registers like PID, DEC, TB, etc set to guest. This is hostile
to the rest of Linux and can't use arbitrary kernel functionality or be
instrumented well.

This initial patch is a reasonably faithful conversion of the asm code,
but it does lack any loop to return quickly back into the guest without
switching out of realmode in the case of unimportant or easily handled
interrupts. As explained in previous changes, handling HV interrupts
very quickly in this low level realmode is not so important for P9
performance, and are important to avoid for security, observability,
debugability reasons.

Signed-off-by: Nicholas Piggin <npiggin@gmail.com>
Reviewed-by: Alexey Kardashevskiy <aik@ozlabs.ru>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
Link: https://lore.kernel.org/r/20210528090752.3542186-15-npiggin@gmail.com
2021-06-10 22:12:13 +10:00
Aneesh Kumar K.V
bf8036a409 powerpc/book3s64/kvm: Fix secondary page table walk warning during migration
This patch fixes the below warning reported during migration:

  find_kvm_secondary_pte called with kvm mmu_lock not held
  CPU: 23 PID: 5341 Comm: qemu-system-ppc Tainted: G        W         5.7.0-rc5-kvm-00211-g9ccf10d6d088 #432
  NIP:  c008000000fe848c LR: c008000000fe8488 CTR: 0000000000000000
  REGS: c000001e19f077e0 TRAP: 0700   Tainted: G        W          (5.7.0-rc5-kvm-00211-g9ccf10d6d088)
  MSR:  9000000000029033 <SF,HV,EE,ME,IR,DR,RI,LE>  CR: 42222422  XER: 20040000
  CFAR: c00000000012f5ac IRQMASK: 0
  GPR00: c008000000fe8488 c000001e19f07a70 c008000000ffe200 0000000000000039
  GPR04: 0000000000000001 c000001ffc8b4900 0000000000018840 0000000000000007
  GPR08: 0000000000000003 0000000000000001 0000000000000007 0000000000000001
  GPR12: 0000000000002000 c000001fff6d9400 000000011f884678 00007fff70b70000
  GPR16: 00007fff7137cb90 00007fff7dcb4410 0000000000000001 0000000000000000
  GPR20: 000000000ffe0000 0000000000000000 0000000000000001 0000000000000000
  GPR24: 8000000000000000 0000000000000001 c000001e1f67e600 c000001e1fd82410
  GPR28: 0000000000001000 c000001e2e410000 0000000000000fff 0000000000000ffe
  NIP [c008000000fe848c] kvmppc_hv_get_dirty_log_radix+0x2e4/0x340 [kvm_hv]
  LR [c008000000fe8488] kvmppc_hv_get_dirty_log_radix+0x2e0/0x340 [kvm_hv]
  Call Trace:
  [c000001e19f07a70] [c008000000fe8488] kvmppc_hv_get_dirty_log_radix+0x2e0/0x340 [kvm_hv] (unreliable)
  [c000001e19f07b50] [c008000000fd42e4] kvm_vm_ioctl_get_dirty_log_hv+0x33c/0x3c0 [kvm_hv]
  [c000001e19f07be0] [c008000000eea878] kvm_vm_ioctl_get_dirty_log+0x30/0x50 [kvm]
  [c000001e19f07c00] [c008000000edc818] kvm_vm_ioctl+0x2b0/0xc00 [kvm]
  [c000001e19f07d50] [c00000000046e148] ksys_ioctl+0xf8/0x150
  [c000001e19f07da0] [c00000000046e1c8] sys_ioctl+0x28/0x80
  [c000001e19f07dc0] [c00000000003652c] system_call_exception+0x16c/0x240
  [c000001e19f07e20] [c00000000000d070] system_call_common+0xf0/0x278
  Instruction dump:
  7d3a512a 4200ffd0 7ffefb78 4bfffdc4 60000000 3c820000 e8848468 3c620000
  e86384a8 38840010 4800673d e8410018 <0fe00000> 4bfffdd4 60000000 60000000

Reported-by: Paul Mackerras <paulus@ozlabs.org>
Signed-off-by: Aneesh Kumar K.V <aneesh.kumar@linux.ibm.com>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
Link: https://lore.kernel.org/r/20200528080456.87797-1-aneesh.kumar@linux.ibm.com
2020-05-29 16:09:27 +10:00
Aneesh Kumar K.V
0e11df9649 powerpc/kvm/book3s: Use pte_present instead of opencoding _PAGE_PRESENT check
This adds _PAGE_PTE check and makes sure we validate the pte value returned via
find_kvm_host_pte.

NOTE: this also considers _PAGE_INVALID to the software valid bit.

Signed-off-by: Aneesh Kumar K.V <aneesh.kumar@linux.ibm.com>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
Link: https://lore.kernel.org/r/20200505071729.54912-20-aneesh.kumar@linux.ibm.com
2020-05-05 21:20:16 +10:00
Aneesh Kumar K.V
35528876a9 powerpc/kvm/book3s: Add helper for host page table walk
Signed-off-by: Aneesh Kumar K.V <aneesh.kumar@linux.ibm.com>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
Link: https://lore.kernel.org/r/20200505071729.54912-13-aneesh.kumar@linux.ibm.com
2020-05-05 21:20:15 +10:00
Aneesh Kumar K.V
6cdf30375f powerpc/kvm/book3s: Use kvm helpers to walk shadow or secondary table
update kvmppc_hv_handle_set_rc to use find_kvm_nested_guest_pte and
find_kvm_secondary_pte

Signed-off-by: Aneesh Kumar K.V <aneesh.kumar@linux.ibm.com>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
Link: https://lore.kernel.org/r/20200505071729.54912-12-aneesh.kumar@linux.ibm.com
2020-05-05 21:20:15 +10:00
Aneesh Kumar K.V
4b99412ed6 powerpc/kvm/book3s: Add helper to walk partition scoped linux page table.
The locking rules for walking partition scoped table is different from process
scoped table. Hence add a helper for secondary linux page table walk and also
add check whether we are holding the right locks.

Signed-off-by: Aneesh Kumar K.V <aneesh.kumar@linux.ibm.com>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
Link: https://lore.kernel.org/r/20200505071729.54912-10-aneesh.kumar@linux.ibm.com
2020-05-05 21:20:15 +10:00
Joel Fernandes (Google)
0a5b99f578 treewide: Rename rcu_dereference_raw_notrace() to _check()
The rcu_dereference_raw_notrace() API name is confusing.  It is equivalent
to rcu_dereference_raw() except that it also does sparse pointer checking.

There are only a few users of rcu_dereference_raw_notrace(). This patches
renames all of them to be rcu_dereference_raw_check() with the "_check()"
indicating sparse checking.

Signed-off-by: Joel Fernandes (Google) <joel@joelfernandes.org>
[ paulmck: Fix checkpatch warnings about parentheses. ]
Signed-off-by: Paul E. McKenney <paulmck@linux.ibm.com>
2019-08-01 14:16:21 -07:00
Thomas Gleixner
d94d71cb45 treewide: Replace GPLv2 boilerplate/reference with SPDX - rule 266
Based on 1 normalized pattern(s):

  this program is free software you can redistribute it and or modify
  it under the terms of the gnu general public license version 2 as
  published by the free software foundation this program is
  distributed in the hope that it will be useful but without any
  warranty without even the implied warranty of merchantability or
  fitness for a particular purpose see the gnu general public license
  for more details you should have received a copy of the gnu general
  public license along with this program if not write to the free
  software foundation 51 franklin street fifth floor boston ma 02110
  1301 usa

extracted by the scancode license scanner the SPDX license identifier

  GPL-2.0-only

has been chosen to replace the boilerplate/reference in 67 file(s).

Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Reviewed-by: Allison Randal <allison@lohutok.net>
Reviewed-by: Richard Fontana <rfontana@redhat.com>
Reviewed-by: Alexios Zavras <alexios.zavras@intel.com>
Cc: linux-spdx@vger.kernel.org
Link: https://lkml.kernel.org/r/20190529141333.953658117@linutronix.de
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2019-06-05 17:30:28 +02:00
Suraj Jitindar Singh
90165d3da0 KVM: PPC: Book3S HV: Introduce kvmhv_update_nest_rmap_rc_list()
Introduce a function kvmhv_update_nest_rmap_rc_list() which for a given
nest_rmap list will traverse it, find the corresponding pte in the shadow
page tables, and if it still maps the same host page update the rc bits
accordingly.

Signed-off-by: Suraj Jitindar Singh <sjitindarsingh@gmail.com>
Signed-off-by: Paul Mackerras <paulus@ozlabs.org>
2018-12-21 14:39:35 +11:00
Suraj Jitindar Singh
d232afebf9 KVM: PPC: Book3S HV: Add function kvmhv_vcpu_is_radix()
There exists a function kvm_is_radix() which is used to determine if a
kvm instance is using the radix mmu. However this only applies to the
first level (L1) guest. Add a function kvmhv_vcpu_is_radix() which can
be used to determine if the current execution context of the vcpu is
radix, accounting for if the vcpu is running a nested guest.

Currently all nested guests must be radix but this may change in the
future.

Signed-off-by: Suraj Jitindar Singh <sjitindarsingh@gmail.com>
Signed-off-by: Paul Mackerras <paulus@ozlabs.org>
2018-12-17 11:33:49 +11:00
Paul Mackerras
c43c3a8683 KVM: PPC: Book3S HV: Cleanups - constify memslots, fix comments
This adds 'const' to the declarations for the struct kvm_memory_slot
pointer parameters of some functions, which will make it possible to
call those functions from kvmppc_core_commit_memory_region_hv()
in the next patch.

This also fixes some comments about locking.

Signed-off-by: Paul Mackerras <paulus@ozlabs.org>
Reviewed-by: Suraj Jitindar Singh <sjitindarsingh@gmail.com>
Reviewed-by: David Gibson <david@gibson.dropbear.id.au>
Signed-off-by: Paul Mackerras <paulus@ozlabs.org>
2018-12-17 10:58:43 +11:00
Paul Mackerras
83a055104e KVM: PPC: Book3S HV: Add nested shadow page tables to debugfs
This adds a list of valid shadow PTEs for each nested guest to
the 'radix' file for the guest in debugfs.  This can be useful for
debugging.

Reviewed-by: David Gibson <david@gibson.dropbear.id.au>
Signed-off-by: Paul Mackerras <paulus@ozlabs.org>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
2018-10-09 16:04:27 +11:00
Suraj Jitindar Singh
9d0b048da7 KVM: PPC: Book3S HV: Invalidate TLB when nested vcpu moves physical cpu
This is only done at level 0, since only level 0 knows which physical
CPU a vcpu is running on.  This does for nested guests what L0 already
did for its own guests, which is to flush the TLB on a pCPU when it
goes to run a vCPU there, and there is another vCPU in the same VM
which previously ran on this pCPU and has now started to run on another
pCPU.  This is to handle the situation where the other vCPU touched
a mapping, moved to another pCPU and did a tlbiel (local-only tlbie)
on that new pCPU and thus left behind a stale TLB entry on this pCPU.

This introduces a limit on the the vcpu_token values used in the
H_ENTER_NESTED hcall -- they must now be less than NR_CPUS.

[paulus@ozlabs.org - made prev_cpu array be short[] to reduce
 memory consumption.]

Reviewed-by: David Gibson <david@gibson.dropbear.id.au>
Signed-off-by: Suraj Jitindar Singh <sjitindarsingh@gmail.com>
Signed-off-by: Paul Mackerras <paulus@ozlabs.org>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
2018-10-09 16:04:27 +11:00
Paul Mackerras
690ed4cad8 KVM: PPC: Book3S HV: Use hypercalls for TLB invalidation when nested
This adds code to call the H_TLB_INVALIDATE hypercall when running as
a guest, in the cases where we need to invalidate TLBs (or other MMU
caches) as part of managing the mappings for a nested guest.  Calling
H_TLB_INVALIDATE lets the nested hypervisor inform the parent
hypervisor about changes to partition-scoped page tables or the
partition table without needing to do hypervisor-privileged tlbie
instructions.

Reviewed-by: David Gibson <david@gibson.dropbear.id.au>
Signed-off-by: Paul Mackerras <paulus@ozlabs.org>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
2018-10-09 16:04:27 +11:00
Suraj Jitindar Singh
8cf531ed48 KVM: PPC: Book3S HV: Introduce rmap to track nested guest mappings
When a host (L0) page which is mapped into a (L1) guest is in turn
mapped through to a nested (L2) guest we keep a reverse mapping (rmap)
so that these mappings can be retrieved later.

Whenever we create an entry in a shadow_pgtable for a nested guest we
create a corresponding rmap entry and add it to the list for the
L1 guest memslot at the index of the L1 guest page it maps. This means
at the L1 guest memslot we end up with lists of rmaps.

When we are notified of a host page being invalidated which has been
mapped through to a (L1) guest, we can then walk the rmap list for that
guest page, and find and invalidate all of the corresponding
shadow_pgtable entries.

In order to reduce memory consumption, we compress the information for
each rmap entry down to 52 bits -- 12 bits for the LPID and 40 bits
for the guest real page frame number -- which will fit in a single
unsigned long.  To avoid a scenario where a guest can trigger
unbounded memory allocations, we scan the list when adding an entry to
see if there is already an entry with the contents we need.  This can
occur, because we don't ever remove entries from the middle of a list.

A struct nested guest rmap is a list pointer and an rmap entry;
----------------
| next pointer |
----------------
| rmap entry   |
----------------

Thus the rmap pointer for each guest frame number in the memslot can be
either NULL, a single entry, or a pointer to a list of nested rmap entries.

gfn	 memslot rmap array
 	-------------------------
 0	| NULL			|	(no rmap entry)
 	-------------------------
 1	| single rmap entry	|	(rmap entry with low bit set)
 	-------------------------
 2	| list head pointer	|	(list of rmap entries)
 	-------------------------

The final entry always has the lowest bit set and is stored in the next
pointer of the last list entry, or as a single rmap entry.
With a list of rmap entries looking like;

-----------------	-----------------	-------------------------
| list head ptr	| ----> | next pointer	| ---->	| single rmap entry	|
-----------------	-----------------	-------------------------
			| rmap entry	|	| rmap entry		|
			-----------------	-------------------------

Signed-off-by: Suraj Jitindar Singh <sjitindarsingh@gmail.com>
Signed-off-by: Paul Mackerras <paulus@ozlabs.org>
Reviewed-by: David Gibson <david@gibson.dropbear.id.au>

Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
2018-10-09 16:04:27 +11:00
Suraj Jitindar Singh
fd10be2573 KVM: PPC: Book3S HV: Handle page fault for a nested guest
Consider a normal (L1) guest running under the main hypervisor (L0),
and then a nested guest (L2) running under the L1 guest which is acting
as a nested hypervisor. L0 has page tables to map the address space for
L1 providing the translation from L1 real address -> L0 real address;

	L1
	|
	| (L1 -> L0)
	|
	----> L0

There are also page tables in L1 used to map the address space for L2
providing the translation from L2 real address -> L1 read address. Since
the hardware can only walk a single level of page table, we need to
maintain in L0 a "shadow_pgtable" for L2 which provides the translation
from L2 real address -> L0 real address. Which looks like;

	L2				L2
	|				|
	| (L2 -> L1)			|
	|				|
	----> L1			| (L2 -> L0)
	      |				|
	      | (L1 -> L0)		|
	      |				|
	      ----> L0			--------> L0

When a page fault occurs while running a nested (L2) guest we need to
insert a pte into this "shadow_pgtable" for the L2 -> L0 mapping. To
do this we need to:

1. Walk the pgtable in L1 memory to find the L2 -> L1 mapping, and
   provide a page fault to L1 if this mapping doesn't exist.
2. Use our L1 -> L0 pgtable to convert this L1 address to an L0 address,
   or try to insert a pte for that mapping if it doesn't exist.
3. Now we have a L2 -> L0 mapping, insert this into our shadow_pgtable

Once this mapping exists we can take rc faults when hardware is unable
to automatically set the reference and change bits in the pte. On these
we need to:

1. Check the rc bits on the L2 -> L1 pte match, and otherwise reflect
   the fault down to L1.
2. Set the rc bits in the L1 -> L0 pte which corresponds to the same
   host page.
3. Set the rc bits in the L2 -> L0 pte.

As we reuse a large number of functions in book3s_64_mmu_radix.c for
this we also needed to refactor a number of these functions to take
an lpid parameter so that the correct lpid is used for tlb invalidations.
The functionality however has remained the same.

Reviewed-by: David Gibson <david@gibson.dropbear.id.au>
Signed-off-by: Suraj Jitindar Singh <sjitindarsingh@gmail.com>
Signed-off-by: Paul Mackerras <paulus@ozlabs.org>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
2018-10-09 16:04:27 +11:00
Paul Mackerras
8e3f5fc104 KVM: PPC: Book3S HV: Framework and hcall stubs for nested virtualization
This starts the process of adding the code to support nested HV-style
virtualization.  It defines a new H_SET_PARTITION_TABLE hypercall which
a nested hypervisor can use to set the base address and size of a
partition table in its memory (analogous to the PTCR register).
On the host (level 0 hypervisor) side, the H_SET_PARTITION_TABLE
hypercall from the guest is handled by code that saves the virtual
PTCR value for the guest.

This also adds code for creating and destroying nested guests and for
reading the partition table entry for a nested guest from L1 memory.
Each nested guest has its own shadow LPID value, different in general
from the LPID value used by the nested hypervisor to refer to it.  The
shadow LPID value is allocated at nested guest creation time.

Nested hypervisor functionality is only available for a radix guest,
which therefore means a radix host on a POWER9 (or later) processor.

Signed-off-by: Paul Mackerras <paulus@ozlabs.org>
Reviewed-by: David Gibson <david@gibson.dropbear.id.au>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
2018-10-09 16:04:27 +11:00
Paul Mackerras
fd0944baad KVM: PPC: Use ccr field in pt_regs struct embedded in vcpu struct
When the 'regs' field was added to struct kvm_vcpu_arch, the code
was changed to use several of the fields inside regs (e.g., gpr, lr,
etc.) but not the ccr field, because the ccr field in struct pt_regs
is 64 bits on 64-bit platforms, but the cr field in kvm_vcpu_arch is
only 32 bits.  This changes the code to use the regs.ccr field
instead of cr, and changes the assembly code on 64-bit platforms to
use 64-bit loads and stores instead of 32-bit ones.

Reviewed-by: David Gibson <david@gibson.dropbear.id.au>
Signed-off-by: Paul Mackerras <paulus@ozlabs.org>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
2018-10-09 16:04:27 +11:00
Paul Mackerras
9a94d3ee2d KVM: PPC: Book3S HV: Add a debugfs file to dump radix mappings
This adds a file called 'radix' in the debugfs directory for the
guest, which when read gives all of the valid leaf PTEs in the
partition-scoped radix tree for a radix guest, in human-readable
format.  It is analogous to the existing 'htab' file which dumps
the HPT entries for a HPT guest.

Reviewed-by: David Gibson <david@gibson.dropbear.id.au>
Signed-off-by: Paul Mackerras <paulus@ozlabs.org>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
2018-10-09 16:04:27 +11:00
Simon Guo
173c520a04 KVM: PPC: Move nip/ctr/lr/xer registers to pt_regs in kvm_vcpu_arch
This patch moves nip/ctr/lr/xer registers from scattered places in
kvm_vcpu_arch to pt_regs structure.

cr register is "unsigned long" in pt_regs and u32 in vcpu->arch.
It will need more consideration and may move in later patches.

Signed-off-by: Simon Guo <wei.guo.simon@gmail.com>
Signed-off-by: Paul Mackerras <paulus@ozlabs.org>
2018-05-18 15:38:23 +10:00
Simon Guo
1143a70665 KVM: PPC: Add pt_regs into kvm_vcpu_arch and move vcpu->arch.gpr[] into it
Current regs are scattered at kvm_vcpu_arch structure and it will
be more neat to organize them into pt_regs structure.

Also it will enable reimplementation of MMIO emulation code with
analyse_instr() later.

Signed-off-by: Simon Guo <wei.guo.simon@gmail.com>
Signed-off-by: Paul Mackerras <paulus@ozlabs.org>
2018-05-18 15:38:23 +10:00
Paul Mackerras
4bb3c7a020 KVM: PPC: Book3S HV: Work around transactional memory bugs in POWER9
POWER9 has hardware bugs relating to transactional memory and thread
reconfiguration (changes to hardware SMT mode).  Specifically, the core
does not have enough storage to store a complete checkpoint of all the
architected state for all four threads.  The DD2.2 version of POWER9
includes hardware modifications designed to allow hypervisor software
to implement workarounds for these problems.  This patch implements
those workarounds in KVM code so that KVM guests see a full, working
transactional memory implementation.

The problems center around the use of TM suspended state, where the
CPU has a checkpointed state but execution is not transactional.  The
workaround is to implement a "fake suspend" state, which looks to the
guest like suspended state but the CPU does not store a checkpoint.
In this state, any instruction that would cause a transition to
transactional state (rfid, rfebb, mtmsrd, tresume) or would use the
checkpointed state (treclaim) causes a "soft patch" interrupt (vector
0x1500) to the hypervisor so that it can be emulated.  The trechkpt
instruction also causes a soft patch interrupt.

On POWER9 DD2.2, we avoid returning to the guest in any state which
would require a checkpoint to be present.  The trechkpt in the guest
entry path which would normally create that checkpoint is replaced by
either a transition to fake suspend state, if the guest is in suspend
state, or a rollback to the pre-transactional state if the guest is in
transactional state.  Fake suspend state is indicated by a flag in the
PACA plus a new bit in the PSSCR.  The new PSSCR bit is write-only and
reads back as 0.

On exit from the guest, if the guest is in fake suspend state, we still
do the treclaim instruction as we would in real suspend state, in order
to get into non-transactional state, but we do not save the resulting
register state since there was no checkpoint.

Emulation of the instructions that cause a softpatch interrupt is
handled in two paths.  If the guest is in real suspend mode, we call
kvmhv_p9_tm_emulation_early() to handle the cases where the guest is
transitioning to transactional state.  This is called before we do the
treclaim in the guest exit path; because we haven't done treclaim, we
can get back to the guest with the transaction still active.  If the
instruction is a case that kvmhv_p9_tm_emulation_early() doesn't
handle, or if the guest is in fake suspend state, then we proceed to
do the complete guest exit path and subsequently call
kvmhv_p9_tm_emulation() in host context with the MMU on.  This handles
all the cases including the cases that generate program interrupts
(illegal instruction or TM Bad Thing) and facility unavailable
interrupts.

The emulation is reasonably straightforward and is mostly concerned
with checking for exception conditions and updating the state of
registers such as MSR and CR0.  The treclaim emulation takes care to
ensure that the TEXASR register gets updated as if it were the guest
treclaim instruction that had done failure recording, not the treclaim
done in hypervisor state in the guest exit path.

With this, the KVM_CAP_PPC_HTM capability returns true (1) even if
transactional memory is not available to host userspace.

Signed-off-by: Paul Mackerras <paulus@ozlabs.org>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
2018-03-24 00:39:13 +11:00
Paul Mackerras
cda2eaa359 KVM: PPC: Book3S HV: Avoid shifts by negative amounts
The kvmppc_hpte_page_shifts function decodes the actual and base page
sizes for a HPTE, returning -1 if it doesn't recognize the page size
encoding.  This then gets used as a shift amount in various places,
which is undefined behaviour.  This was reported by Coverity.

In fact this should never occur, since we should only get HPTEs in the
HPT which have a recognized page size encoding.  The only place where
this might not be true is in the call to kvmppc_actual_pgsz() near the
beginning of kvmppc_do_h_enter(), where we are validating the HPTE
value passed in from the guest.

So to fix this and eliminate the undefined behaviour, we make
kvmppc_hpte_page_shifts return 0 for unrecognized page size encodings,
and make kvmppc_actual_pgsz() detect that case and return 0 for the
page size, which will then cause kvmppc_do_h_enter() to return an
error and refuse to insert any HPTE with an unrecognized page size
encoding.

To ensure that we don't get undefined behaviour in compute_tlbie_rb(),
we take the 4k page size path for any unrecognized page size encoding.
This should never be hit in practice because it is only used on HPTE
values which have previously been checked for having a recognized
page size encoding.

Signed-off-by: Paul Mackerras <paulus@ozlabs.org>
2017-11-23 14:23:00 +11:00
Paul Mackerras
e641a31783 KVM: PPC: Book3S HV: Unify dirty page map between HPT and radix
Currently, the HPT code in HV KVM maintains a dirty bit per guest page
in the rmap array, whether or not dirty page tracking has been enabled
for the memory slot.  In contrast, the radix code maintains a dirty
bit per guest page in memslot->dirty_bitmap, and only does so when
dirty page tracking has been enabled.

This changes the HPT code to maintain the dirty bits in the memslot
dirty_bitmap like radix does.  This results in slightly less code
overall, and will mean that we do not lose the dirty bits when
transitioning between HPT and radix mode in future.

There is one minor change to behaviour as a result.  With HPT, when
dirty tracking was enabled for a memslot, we would previously clear
all the dirty bits at that point (both in the HPT entries and in the
rmap arrays), meaning that a KVM_GET_DIRTY_LOG ioctl immediately
following would show no pages as dirty (assuming no vcpus have run
in the meantime).  With this change, the dirty bits on HPT entries
are not cleared at the point where dirty tracking is enabled, so
KVM_GET_DIRTY_LOG would show as dirty any guest pages that are
resident in the HPT and dirty.  This is consistent with what happens
on radix.

This also fixes a bug in the mark_pages_dirty() function for radix
(in the sense that the function no longer exists).  In the case where
a large page of 64 normal pages or more is marked dirty, the
addressing of the dirty bitmap was incorrect and could write past
the end of the bitmap.  Fortunately this case was never hit in
practice because a 2MB large page is only 32 x 64kB pages, and we
don't support backing the guest with 1GB huge pages at this point.

Signed-off-by: Paul Mackerras <paulus@ozlabs.org>
2017-11-01 15:36:21 +11:00
Paul Mackerras
8dc6cca556 KVM: PPC: Book3S HV: Don't rely on host's page size information
This removes the dependence of KVM on the mmu_psize_defs array (which
stores information about hardware support for various page sizes) and
the things derived from it, chiefly hpte_page_sizes[], hpte_page_size(),
hpte_actual_page_size() and get_sllp_encoding().  We also no longer
rely on the mmu_slb_size variable or the MMU_FTR_1T_SEGMENTS feature
bit.

The reason for doing this is so we can support a HPT guest on a radix
host.  In a radix host, the mmu_psize_defs array contains information
about page sizes supported by the MMU in radix mode rather than the
page sizes supported by the MMU in HPT mode.  Similarly, mmu_slb_size
and the MMU_FTR_1T_SEGMENTS bit are not set.

Instead we hard-code knowledge of the behaviour of the HPT MMU in the
POWER7, POWER8 and POWER9 processors (which are the only processors
supported by HV KVM) - specifically the encoding of the LP fields in
the HPT and SLB entries, and the fact that they have 32 SLB entries
and support 1TB segments.

Signed-off-by: Paul Mackerras <paulus@ozlabs.org>
2017-11-01 15:36:06 +11:00
Aneesh Kumar K.V
82228e362f powerpc/pseries: Skip using reserved virtual address range
Now that we use all the available virtual address range, we need to make
sure we don't generate VSID such that it overlaps with the reserved vsid
range. Reserved vsid range include the virtual address range used by the
adjunct partition and also the VRMA virtual segment. We find the context
value that can result in generating such a VSID and reserve it early in
boot.

We don't look at the adjunct range, because for now we disable the
adjunct usage in a Linux LPAR via CAS interface.

Signed-off-by: Aneesh Kumar K.V <aneesh.kumar@linux.vnet.ibm.com>
[mpe: Rewrite hash__reserve_context_id(), move the rest into pseries]
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
2017-04-01 21:12:27 +11:00
David Gibson
aae0777f1e KVM: PPC: Book3S HV: Split HPT allocation from activation
Currently, kvmppc_alloc_hpt() both allocates a new hashed page table (HPT)
and sets it up as the active page table for a VM.  For the upcoming HPT
resize implementation we're going to want to allocate HPTs separately from
activating them.

So, split the allocation itself out into kvmppc_allocate_hpt() and perform
the activation with a new kvmppc_set_hpt() function.  Likewise we split
kvmppc_free_hpt(), which just frees the HPT, from kvmppc_release_hpt()
which unsets it as an active HPT, then frees it.

We also move the logic to fall back to smaller HPT sizes if the first try
fails into the single caller which used that behaviour,
kvmppc_hv_setup_htab_rma().  This introduces a slight semantic change, in
that previously if the initial attempt at CMA allocation failed, we would
fall back to attempting smaller sizes with the page allocator.  Now, we
try first CMA, then the page allocator at each size.  As far as I can tell
this change should be harmless.

To match, we make kvmppc_free_hpt() just free the actual HPT itself.  The
call to kvmppc_free_lpid() that was there, we move to the single caller.

Signed-off-by: David Gibson <david@gibson.dropbear.id.au>
Signed-off-by: Paul Mackerras <paulus@ozlabs.org>
2017-01-31 21:59:39 +11:00
David Gibson
3d089f84c6 KVM: PPC: Book3S HV: Don't store values derivable from HPT order
Currently the kvm_hpt_info structure stores the hashed page table's order,
and also the number of HPTEs it contains and a mask for its size.  The
last two can be easily derived from the order, so remove them and just
calculate them as necessary with a couple of helper inlines.

Signed-off-by: David Gibson <david@gibson.dropbear.id.au>
Reviewed-by: Thomas Huth <thuth@redhat.com>
Signed-off-by: Paul Mackerras <paulus@ozlabs.org>
2017-01-31 21:59:34 +11:00
Paul Mackerras
9e04ba69be KVM: PPC: Book3S HV: Add basic infrastructure for radix guests
This adds a field in struct kvm_arch and an inline helper to
indicate whether a guest is a radix guest or not, plus a new file
to contain the radix MMU code, which currently contains just a
translate function which knows how to traverse the guest page
tables to translate an address.

Signed-off-by: Paul Mackerras <paulus@ozlabs.org>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
2017-01-31 19:11:48 +11:00
Balbir Singh
4f053d06dc KVM: PPC: Book3S: Remove duplicate setting of the B field in tlbie
Remove duplicate setting of the the "B" field when doing a tlbie(l).
In compute_tlbie_rb(), the "B" field is set again just before
returning the rb value to be used for tlbie(l).

Signed-off-by: Balbir Singh <bsingharora@gmail.com>
Signed-off-by: Paul Mackerras <paulus@ozlabs.org>
2016-09-27 15:14:29 +10:00
Paul Mackerras
0eeede0c63 powerpc/mm: Speed up computation of base and actual page size for a HPTE
This replaces a 2-D search through an array with a simple 8-bit table
lookup for determining the actual and/or base page size for a HPT entry.

The encoding in the second doubleword of the HPTE is designed to encode
the actual and base page sizes without using any more bits than would be
needed for a 4k page number, by using between 1 and 8 low-order bits of
the RPN (real page number) field to encode the page sizes.  A single
"large page" bit in the first doubleword indicates that these low-order
bits are to be interpreted like this.

We can determine the page sizes by using the low-order 8 bits of the RPN
to look up a 256-entry table.  For actual page sizes less than 1MB, some
of the upper bits of these 8 bits are going to be real address bits, but
we can cope with that by replicating the entries for those smaller page
sizes.

While we're at it, let's move the hpte_page_size() and hpte_base_page_size()
functions from a KVM-specific header to a header for 64-bit HPT systems,
since this computation doesn't have anything specifically to do with KVM.

Reviewed-by: Aneesh Kumar K.V <aneesh.kumar@linux.vnet.ibm.com>
Signed-off-by: Paul Mackerras <paulus@ozlabs.org>
2016-09-09 16:14:48 +10:00
Aneesh Kumar K.V
138ee7ee01 powerpc/mm/hash: Add helper for finding SLBE LLP encoding
Replace opencoding of the same at multiple places with the helper.
No functional change with this patch.

Signed-off-by: Aneesh Kumar K.V <aneesh.kumar@linux.vnet.ibm.com>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
2016-08-01 11:15:08 +10:00
Aneesh Kumar K.V
945537df7a powerpc/mm/book3s: Rename hash specific PTE bits to carry H_ prefix
This helps to make following hash only pte bits easier.

We have kept _PAGE_CHG_MASK, _HPAGE_CHG_MASK and _PAGE_PROT_BITS as it
is in this patch eventhough they use hash specific bits. Using them in
radix as it is should be ok, because with radix we expect those bit
positions to be zero.

Only renames in this patch, no change in functionality.

Signed-off-by: Aneesh Kumar K.V <aneesh.kumar@linux.vnet.ibm.com>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
2016-05-01 18:32:43 +10:00
Aneesh Kumar K.V
30bda41aba powerpc/mm: Drop WIMG in favour of new constants
PowerISA 3.0 introduces two pte bits with the below meaning for radix:
  00 -> Normal Memory
  01 -> Strong Access Order (SAO)
  10 -> Non idempotent I/O (Cache inhibited and guarded)
  11 -> Tolerant I/O (Cache inhibited)

We drop the existing WIMG bits in the Linux page table in favour of the
above constants. We loose _PAGE_WRITETHRU with this conversion. We only
use writethru via pgprot_cached_wthru() which is used by
fbdev/controlfb.c which is Apple control display and also PPC32.

With respect to _PAGE_COHERENCE, we have been marking hpte always
coherent for some time now. htab_convert_pte_flags() always added
HPTE_R_M.

NOTE: KVM changes need closer review.

Signed-off-by: Aneesh Kumar K.V <aneesh.kumar@linux.vnet.ibm.com>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
2016-05-01 18:32:33 +10:00
Michael Ellerman
3910a7f485 powerpc/mm: Add pte_xchg() helper
We have five locations in 64-bit hash MMU code that do a cmpxchg() of a
PTE. Currently doing it inline OK, but in a future patch we will be
converting the PTEs to __be64 in some configs. In that case we will need
casts at every cmpxchg() site in order to keep sparse happy.

So move the logic into a helper, this is a reasonably nice cleanup on
its own.

Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
2016-05-01 18:32:16 +10:00
Alexey Kardashevskiy
462ee11e58 KVM: PPC: Replace SPAPR_TCE_SHIFT with IOMMU_PAGE_SHIFT_4K
SPAPR_TCE_SHIFT is used in few places only and since IOMMU_PAGE_SHIFT_4K
can be easily used instead, remove SPAPR_TCE_SHIFT.

Signed-off-by: Alexey Kardashevskiy <aik@ozlabs.ru>
Reviewed-by: David Gibson <david@gibson.dropbear.id.au>
Signed-off-by: Paul Mackerras <paulus@samba.org>
2016-02-16 13:44:26 +11:00
Paolo Bonzini
f481b069e6 KVM: implement multiple address spaces
Only two ioctls have to be modified; the address space id is
placed in the higher 16 bits of their slot id argument.

As of this patch, no architecture defines more than one
address space; x86 will be the first.

Reviewed-by: Radim Krčmář <rkrcmar@redhat.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2015-06-05 17:26:35 +02:00