This allows the user to see what filesystem was involved with a
particular ext4_da_writepage() error. Also, use KERN_CRIT which is
more appropriate than KERN_EMERG.
Signed-off-by: "Theodore Ts'o" <tytso@mit.edu>
* 'hwpoison' of git://git.kernel.org/pub/scm/linux/kernel/git/ak/linux-mce-2.6: (21 commits)
HWPOISON: Enable error_remove_page on btrfs
HWPOISON: Add simple debugfs interface to inject hwpoison on arbitary PFNs
HWPOISON: Add madvise() based injector for hardware poisoned pages v4
HWPOISON: Enable error_remove_page for NFS
HWPOISON: Enable .remove_error_page for migration aware file systems
HWPOISON: The high level memory error handler in the VM v7
HWPOISON: Add PR_MCE_KILL prctl to control early kill behaviour per process
HWPOISON: shmem: call set_page_dirty() with locked page
HWPOISON: Define a new error_remove_page address space op for async truncation
HWPOISON: Add invalidate_inode_page
HWPOISON: Refactor truncate to allow direct truncating of page v2
HWPOISON: check and isolate corrupted free pages v2
HWPOISON: Handle hardware poisoned pages in try_to_unmap
HWPOISON: Use bitmask/action code for try_to_unmap behaviour
HWPOISON: x86: Add VM_FAULT_HWPOISON handling to x86 page fault handler v2
HWPOISON: Add poison check to page fault handling
HWPOISON: Add basic support for poisoned pages in fault handler v3
HWPOISON: Add new SIGBUS error codes for hardware poison signals
HWPOISON: Add support for poison swap entries v2
HWPOISON: Export some rmap vma locking to outside world
...
* 'for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/jikos/trivial: (34 commits)
trivial: fix typo in aic7xxx comment
trivial: fix comment typo in drivers/ata/pata_hpt37x.c
trivial: typo in kernel-parameters.txt
trivial: fix typo in tracing documentation
trivial: add __init/__exit macros in drivers/gpio/bt8xxgpio.c
trivial: add __init macro/ fix of __exit macro location in ipmi_poweroff.c
trivial: remove unnecessary semicolons
trivial: Fix duplicated word "options" in comment
trivial: kbuild: remove extraneous blank line after declaration of usage()
trivial: improve help text for mm debug config options
trivial: doc: hpfall: accept disk device to unload as argument
trivial: doc: hpfall: reduce risk that hpfall can do harm
trivial: SubmittingPatches: Fix reference to renumbered step
trivial: fix typos "man[ae]g?ment" -> "management"
trivial: media/video/cx88: add __init/__exit macros to cx88 drivers
trivial: fix typo in CONFIG_DEBUG_FS in gcov doc
trivial: fix missing printk space in amd_k7_smp_check
trivial: fix typo s/ketymap/keymap/ in comment
trivial: fix typo "to to" in multiple files
trivial: fix typos in comments s/DGBU/DBGU/
...
There's no reason to redefine the maximum allowable offset
in an extent-based file just for defrag;
EXT_MAX_BLOCK already does this.
Signed-off-by: Eric Sandeen <sandeen@redhat.com>
Signed-off-by: "Theodore Ts'o" <tytso@mit.edu>
In an attempt to avoid doing an unneeded flush after opening a
(previously non-existent) file with O_CREAT|O_TRUNC, the code only
triggered the hueristic if ei->disksize was non-zero. Turns out that
the VFS doesn't call ->truncate() if the file doesn't exist, and
ei->disksize is always zero even if the file previously existed. So
remove the test, since it isn't necessary and in fact disabled the
hueristic.
Thanks to Clemens Eisserer that he was seeing problems with files
written using kwrite and eclipse after sudden crashes caused by a
buggy Intel video driver.
Signed-off-by: "Theodore Ts'o" <tytso@mit.edu>
EXT4_EXT_MIGRATE is only intended to be used for an in-memory flag,
and the hex value assigned to it collides with FS_DIRECTIO_FL (which
is also stored in i_flags). There's no reason for the
EXT4_EXT_MIGRATE bit to be stored in i_flags, so we switch it to use
i_state instead.
Cc: "Aneesh Kumar K.V" <aneesh.kumar@linux.vnet.ibm.com>
Signed-off-by: "Theodore Ts'o" <tytso@mit.edu>
Today, the ext4 allocator will happily allocate blocks past
2^32 for indirect-block files, which results in the block
numbers getting truncated, and corruption ensues.
This patch limits such allocations to < 2^32, and adds
BUG_ONs if we do get blocks larger than that.
This should address RH Bug 519471, ext4 bitmap allocator
must limit blocks to < 2^32
* ext4_find_goal() is modified to choose a goal < UINT_MAX,
so that our starting point is in an acceptable range.
* ext4_xattr_block_set() is modified such that the goal block
is < UINT_MAX, as above.
* ext4_mb_regular_allocator() is modified so that the group
search does not continue into groups which are too high
* ext4_mb_use_preallocated() has a check that we don't use
preallocated space which is too far out
* ext4_alloc_blocks() and ext4_xattr_block_set() add some BUG_ONs
No attempt has been made to limit inode locations to < 2^32,
so we may wind up with blocks far from their inodes. Doing
this much already will lead to some odd ENOSPC issues when the
"lower 32" gets full, and further restricting inodes could
make that even weirder.
For high inodes, choosing a goal of the original, % UINT_MAX,
may be a bit odd, but then we're in an odd situation anyway,
and I don't know of a better heuristic.
Signed-off-by: Eric Sandeen <sandeen@redhat.com>
Signed-off-by: "Theodore Ts'o" <tytso@mit.edu>
If logical block offset of original file which is passed to
EXT4_IOC_MOVE_EXT is different from donor file's,
a calculation error occurs in ext4_calc_swap_extents(),
therefore wrong block is exchanged between original file and donor file.
As a result, we hit ext4_error() in check_block_validity().
To detect the logical offset difference in EXT4_IOC_MOVE_EXT,
add checks to mext_calc_swap_extents() and handle it as error,
since data exchange must be done between the same blocks in EXT4_IOC_MOVE_EXT.
Reported-by: Peng Tao <bergwolf@gmail.com>
Signed-off-by: Akira Fujita <a-fujita@rs.jp.nec.com>
Signed-off-by: "Theodore Ts'o" <tytso@mit.edu>
There is the possibility that path structure which is taken
by ext4_ext_find_extent() indicates null extents.
Because during data block exchanging in ext4_move_extents(),
constitution of an extent tree may be changed.
As a solution, the patch adds null extent check
to ext_get_path().
Reported-by: Peng Tao <bergwolf@gmail.com>
Signed-off-by: Akira Fujita <a-fujita@rs.jp.nec.com>
Signed-off-by: "Theodore Ts'o" <tytso@mit.edu>
Replace BUG_ON calls with a call to ext4_error()
to print an error message if EXT4_IOC_MOVE_EXT failed
with some kind of reasons. This will help to debug.
Ted pointed this out, thanks.
Signed-off-by: Akira Fujita <a-fujita@rs.jp.nec.com>
Signed-off-by: "Theodore Ts'o" <tytso@mit.edu>
Replace get_ext_path macro with an inline function,
since this macro looks like a function call but its arguments
get modified. Ted pointed this out, thanks.
Signed-off-by: Akira Fujita <a-fujita@rs.jp.nec.com>
Signed-off-by: "Theodore Ts'o" <tytso@mit.edu>
Enable removing of corrupted pages through truncation
for a bunch of file systems: ext*, xfs, gfs2, ocfs2, ntfs
These should cover most server needs.
I chose the set of migration aware file systems for this
for now, assuming they have been especially audited.
But in general it should be safe for all file systems
on the data area that support read/write and truncate.
Caveat: the hardware error handler does not take i_mutex
for now before calling the truncate function. Is that ok?
Cc: tytso@mit.edu
Cc: hch@infradead.org
Cc: mfasheh@suse.com
Cc: aia21@cantab.net
Cc: hugh.dickins@tiscali.co.uk
Cc: swhiteho@redhat.com
Signed-off-by: Andi Kleen <ak@linux.intel.com>
Using relative pathnames in #include statements interacts badly with
SystemTap, since the fs/ext4/*.h header files are not packaged up as
part of a distribution kernel's header files. Since systemtap doesn't
use TP_fast_assign(), we can use a blind structure definition and then
make sure the needed header files are defined before the ext4 source
files #include the trace/events/ext4.h header file.
https://bugzilla.redhat.com/show_bug.cgi?id=512478
Signed-off-by: "Theodore Ts'o" <tytso@mit.edu>
The syncing is now properly handled by generic_file_aio_write() so
no special ext4 code is needed.
CC: linux-ext4@vger.kernel.org
CC: tytso@mit.edu
Signed-off-by: Jan Kara <jack@suse.cz>
The s_flex_groups array should have been initialized using atomic_add
to sum up the free counts from the block groups that make up a
flex_bg. By using atomic_set, the value of the s_flex_groups array
was set to the values of the last block group in the flex_bg.
The impact of this bug is that the block and inode allocation
algorithms might not pick the best flex_bg for new allocation.
Thanks to Damien Guibouret for pointing out this problem!
Signed-off-by: "Theodore Ts'o" <tytso@mit.edu>
When ext4_dx_add_entry() has to split an index node, it has to ensure that
name_len of dx_node's fake_dirent is also zero, because otherwise e2fsck
won't recognise it as an intermediate htree node and consider the htree to
be corrupted.
Signed-off-by: Andreas Schlick <schlick@lavabit.com>
Signed-off-by: "Theodore Ts'o" <tytso@mit.edu>
This avoids updating the superblock write time when we are mounting
the root file system read/only but we need to replay the journal; at
that point, for people who are east of GMT and who make their clock
tick in localtime for Windows bug-for-bug compatibility, and this will
cause e2fsck to complain and force a full file system check.
Signed-off-by: "Theodore Ts'o" <tytso@mit.edu>
We don't need to take the alloc_sem lock when we are adding new
groups, since mballoc won't see the new group added until we bump
sbi->s_groups_count.
Signed-off-by: "Theodore Ts'o" <tytso@mit.edu>
Signed-off-by: Aneesh Kumar K.V <aneesh.kumar@linux.vnet.ibm.com>
We should check for need init flag with the group's alloc_sem held, to
make sure while we are loading the buddy cache and holding a reference
to it, a file system resize can't add new blocks to same group.
The patch also drops the need init flag check in
ext4_mb_regular_allocator() because doing the check without holding
alloc_sem is racy.
Signed-off-by: "Theodore Ts'o" <tytso@mit.edu>
Signed-off-by: Aneesh Kumar K.V <aneesh.kumar@linux.vnet.ibm.com>
This moves the function around so that it can be called from
ext4_mb_load_buddy().
Signed-off-by: Aneesh Kumar K.V <aneesh.kumar@linux.vnet.ibm.com>
Signed-off-by: "Theodore Ts'o" <tytso@mit.edu>
Teach ext4_write_inode() and ext4_do_update_inode() about non-journal
mode: If we're not using a journal, ext4_write_inode() now calls
ext4_do_update_inode() (after getting the iloc via ext4_get_inode_loc())
with a new "do_sync" parameter. If that parameter is nonzero _and_ we're
not using a journal, ext4_do_update_inode() calls sync_dirty_buffer()
instead of ext4_handle_dirty_metadata().
This problem was found in power-fail testing, checking the amount of
loss of files and blocks after a power failure when using fsync() and
when not using fsync(). It turned out that using fsync() was actually
worse than not doing so, possibly because it increased the likelihood
that the inodes would remain unflushed and would therefore be lost at
the power failure.
Signed-off-by: Frank Mayhar <fmayhar@google.com>
Signed-off-by: "Theodore Ts'o" <tytso@mit.edu>
When there is no journal present, we must attach buffer heads
associated with extent tree and indirect blocks to the inode's
mapping->private_list via mark_buffer_dirty_inode() so that
ext4_sync_file() --- which is called to service fsync() and
fdatasync() system calls --- can write out the inode's metadata blocks
by calling sync_mapping_buffers().
Signed-off-by: "Theodore Ts'o" <tytso@mit.edu>
When ext4 is using a journal, a metadata block which is deallocated
must be passed into the journal layer so it can be dropped from the
current transaction and/or revoked. This is done by calling the
functions ext4_journal_forget() and ext4_journal_revoke(), which call
jbd2_journal_forget(), and jbd2_journal_revoke(), respectively.
Since the jbd2_journal_forget() and jbd2_journal_revoke() call
bforget(), if ext4 is not using a journal, ext4_journal_forget() and
ext4_journal_revoke() must call bforget() to avoid a dirty metadata
block overwriting a block after it has been reallocated and reused for
another inode's data block.
Signed-off-by: "Theodore Ts'o" <tytso@mit.edu>
Don't implement per-filesystem 'extX_permission()' functions that have
to be called for every path component operation, and instead just expose
the actual ACL checking so that the VFS layer can now do it for us.
Reviewed-by: James Morris <jmorris@namei.org>
Acked-by: Serge Hallyn <serue@us.ibm.com>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Drop the WARN_ON(1), as he stack trace is not appropriate, since it is
triggered by file system corruption, and it misleads users into
thinking there is a kernel bug. In addition, change the message
displayed by ext4_error() to make it clear that this is a file system
corruption problem.
Signed-off-by: "Theodore Ts'o" <tytso@mit.edu>
In order to check whether the buffer_heads are mapped we need to hold
page lock. Otherwise a reclaim can cleanup the attached buffer_heads.
Signed-off-by: Aneesh Kumar K.V <aneesh.kumar@linux.vnet.ibm.com>
Signed-off-by: "Theodore Ts'o" <tytso@mit.edu>
This function means moving extents every page, so change its name from
move_exgtent_par_page().
Signed-off-by: Akira Fujita <a-fujita@rs.jp.nec.co.jp>
Signed-off-by: "Theodore Ts'o" <tytso@mit.edu>
Return exchanged blocks count (moved_len) to user space,
if ext4_move_extents() failed on the way.
Signed-off-by: Akira Fujita <a-fujita@rs.jp.nec.com>
Signed-off-by: "Theodore Ts'o" <tytso@mit.edu>
The ext4_move_extents() functions checks with BUG_ON() whether the
exchanged blocks count accords with request blocks count. But, if the
target range (orig_start + len) includes sparse block(s), 'moved_len'
(exchanged blocks count) does not agree with 'len' (request blocks
count), since sparse block is not counted in 'moved_len'. This causes
us to hit the BUG_ON(), even though the function succeeded.
Signed-off-by: Akira Fujita <a-fujita@rs.jp.nec.com>
Signed-off-by: "Theodore Ts'o" <tytso@mit.edu>
The mext_check_arguments() function in move_extents.c has wrong
comparisons. orig_start which is passed from user-space is block
unit, but i_size of inode is byte unit, therefore the checks do not
work fine. This mis-check leads to the overflow of 'len' and then
hits BUG_ON() in ext4_move_extents(). The patch fixes this issue.
Signed-off-by: Akira Fujita <a-fujita@rs.jp.nec.com>
Reviewed-by: Greg Freemyer <greg.freemyer@gmail.com>
Signed-off-by: "Theodore Ts'o" <tytso@mit.edu>
We need to flush the write cache unconditionally in ->fsync, otherwise
writes into already allocated blocks can get lost. Writes into fully
allocated files are very common when using disk images for
virtualization, and without this fix can easily lose data after
an fdatasync, which is the typical implementation for a cache flush on
the virtual drive.
Signed-off-by: Christoph Hellwig <hch@lst.de>
Acked-by: Eric Sandeen <sandeen@redhat.com>
Signed-off-by: "Theodore Ts'o" <tytso@mit.edu>
There's no real cost for the journal checksum feature, and we should
make sure it is enabled all the time.
Signed-off-by: "Theodore Ts'o" <tytso@mit.edu>
Add a new tracepoint which shows the pages that will be written using
write_cache_pages() by ext4_da_writepages().
Signed-off-by: "Theodore Ts'o" <tytso@mit.edu>
To solve a lock inversion problem, we implement part of the
range_cyclic algorithm in ext4_da_writepages(). (See commit 2acf2c26
for more details.)
As part of that change wbc->range_start was modified by ext4's
writepages function, which causes its callers to get confused since
they aren't expecting the filesystem to modify it. The simplest fix
is to save and restore wbc->range_start in ext4_da_writepages.
Signed-off-by: "Theodore Ts'o" <tytso@mit.edu>
In ext4_link we need to check using EXT4_LINK_MAX, and not
EXT4_DIR_LINK_MAX(), since ext4_link() is creating hard links of
regular files, and not directories.
Signed-off-by: "Theodore Ts'o" <tytso@mit.edu>
Use EXT4_DIR_LINK_MAX so that rename() can move a directory into new
parent directory without running into the EXT4_LINK_MAX limit.
Signed-off-by: Aneesh Kumar K.V <aneesh.kumar@linux.vnet.ibm.com>
Signed-off-by: "Theodore Ts'o" <tytso@mit.edu>
The extents sanity-checking code depends on the ext4_ext_space_*()
functions returning the maximum alloable size for eh_max; however,
when the debugging #ifdef AGGRESSIVE_TEST is enabled to test the
extent tree handling code, this prevents a normally created ext4
filesystem from being mounted with the errors:
Aug 26 15:43:50 bsd086 kernel: [ 96.070277] EXT4-fs error (device sda8): ext4_ext_check_inode: bad header/extent in inode #8: too large eh_max - magic f30a, entries 1, max 4(3), depth 0(0)
Aug 26 15:43:50 bsd086 kernel: [ 96.070526] EXT4-fs (sda8): no journal found
Bug reported by Akira Fujita.
Signed-off-by: "Theodore Ts'o" <tytso@mit.edu>
unsigned short is potentially too small to track blocks within
a group; today it is safe due to restrictions in e2fsprogs but
we have _lo / _hi bits for group blocks with the intent to go
up to 32 bits, so clean this up now.
There are many more places where we use unsigned/int/unsigned int
to contain a group block but this should at least fix all the
short types.
I added a few comments to the struct ext4_group_info definition
as well.
Signed-off-by: Eric Sandeen <sandeen@redhat.com>
Signed-off-by: "Theodore Ts'o" <tytso@mit.edu>
Precursor to changing some types; to keep things in sync, it
seems better to allocate/memset based on the size of the
variables we are using rather than on some disconnected
basic type like "unsigned short"
Signed-off-by: Eric Sandeen <sandeen@redhat.com>
A user reported that although his root ext4 filesystem was mounting
fine, other filesystems would not mount, with the:
"Filesystem with huge files cannot be mounted RDWR without CONFIG_LBDAF"
error on his 32-bit box built without CONFIG_LBDAF. This is because
the test at mount time for this situation was not being re-checked
on remount, and the normal boot process makes an ro->rw transition,
so this was being missed.
Refactor to make a common helper function to test the filesystem
features against the type of mount request (RO vs. RW) so that we
stay consistent.
Addresses Red-Hat-Bugzilla: #517650
Signed-off-by: Eric Sandeen <sandeen@redhat.com>
Signed-off-by: "Theodore Ts'o" <tytso@mit.edu>
While reading through some of the mballoc code it seems that a couple
spots in the size normalization function could be streamlined.
The test for non-overlapping PAs can be or'd for the start & end
conditions, and the tests for adjacent PAs can be else-if'd -
it's essentially independently testing:
if (A + B <= C)
...
if (A > C)
...
These cannot both be true so it seems like the else-if might
be slightly more efficient and/or informative.
Signed-off-by: Eric Sandeen <sandeen@redhat.com>
Signed-off-by: "Theodore Ts'o" <tytso@mit.edu>
ext4_mb_update_group_info is only called in one place, and it's
extremely simple. There's no reason to have it in a separate function
in a separate file as far as I can tell, it just obfuscates what's
really going on.
Perhaps it was intended to keep the grp->bb_* manipulation local to
mballoc.c but we're already accessing other grp-> fields in balloc.c
directly so this seems ok.
Signed-off-by: Eric Sandeen <sandeen@redhat.com>
Signed-off-by: "Theodore Ts'o" <tytso@mit.edu>
ext4 will happily mount a > 16T filesystem on a 32-bit box, but
this is not safe; writes to the block device will wrap past 16T
and the page cache can't index past 16T (232 index * 4k pages).
Adding another test to the existing "too many sectors" test
should do the trick.
Add a comment, a relevant return value, and fix the reference
to the CONFIG_LBD(AF) option as well.
Signed-off-by: Eric Sandeen <sandeen@redhat.com>
Signed-off-by: "Theodore Ts'o" <tytso@mit.edu>
During truncate we are sometimes forced to start a new transaction as
the amount of blocks to be journaled is both quite large and hard to
predict. So far we restarted a transaction while holding i_data_sem
and that violates lock ordering because i_data_sem ranks below a
transaction start (and it can lead to a real deadlock with
ext4_get_blocks() mapping blocks in some page while having a
transaction open).
We fix the problem by dropping the i_data_sem before restarting the
transaction and acquire it afterwards. It's slightly subtle that this
works:
1) By the time ext4_truncate() is called, all the page cache for the
truncated part of the file is dropped so get_block() should not be
called on it (we only have to invalidate extent cache after we
reacquire i_data_sem because some extent from not-truncated part could
extend also into the part we are going to truncate).
2) Writes, migrate or defrag hold i_mutex so they are stopped for all
the time of the truncate.
This bug has been found and analyzed by Theodore Tso <tytso@mit.edu>.
Signed-off-by: Jan Kara <jack@suse.cz>
Signed-off-by: "Theodore Ts'o" <tytso@mit.edu>
ext4_ext_show_leaf() will display the leaf extents when extent
debugging is enabled.
Printing out the unwritten bit is useful for debugging unwritten
extent, allow us to see the unwritten extents vs written extents,
after the unwritten extents are splitted or converted.
Signed-off-by: Mingming Cao <cmm@us.ibm.com>
When EXT_DEBUG is enabled I received the following compile warning on
PPC64:
CC [M] fs/ext4/inode.o
CC [M] fs/ext4/extents.o
fs/ext4/extents.c: In function ‘ext4_ext_rm_leaf’:
fs/ext4/extents.c:2097: warning: format ‘%lu’ expects type ‘long unsigned int’, but argument 2 has type ‘ext4_lblk_t’
fs/ext4/extents.c: In function ‘ext4_ext_get_blocks’:
fs/ext4/extents.c:2789: warning: format ‘%u’ expects type ‘unsigned int’, but argument 4 has type ‘long unsigned int’
fs/ext4/extents.c:2852: warning: format ‘%lu’ expects type ‘long unsigned int’, but argument 3 has type ‘ext4_lblk_t’
fs/ext4/extents.c:2953: warning: format ‘%lu’ expects type ‘long unsigned int’, but argument 4 has type ‘unsigned int’
CC [M] fs/ext4/migrate.o
The patch fixes compile warning.
Signed-off-by: Mingming Cao <cmm@us.ibm.com>
Signed-off-by: "Theodore Ts'o" <tytso@mit.edu>
Index: linux-2.6.31-rc4/fs/ext4/extents.c
===================================================================
Currently the group preallocation code tries to find a large (512)
free block from which to do per-cpu group allocation for small files.
The problem with this scheme is that it leaves the filesystem horribly
fragmented. In the worst case, if the filesystem is unmounted and
remounted (after a system shutdown, for example) we forget the fact
that wee were using a particular (now-partially filled) 512 block
extent. So the next time we try to allocate space for a small file,
we will find *another* completely free 512 block chunk to allocate
small files. Given that there are 32,768 blocks in a block group,
after 64 iterations of "mount, write one 4k file in a directory,
unmount", the block group will have 64 files, each separated by 511
blocks, and the block group will no longer have any free 512
completely free chunks of blocks for group preallocation space.
So if we try to allocate blocks for a file that has been closed, such
that we know the final size of the file, and the filesystem is not
busy, avoid using group preallocation.
Signed-off-by: "Theodore Ts'o" <tytso@mit.edu>
The logic around sbi->s_mb_last_group and sbi->s_mb_last_start was all
screwed up. These fields were getting unconditionally all the time,
set even when stream allocation had not taken place, and if they were
being used when the file was smaller than s_mb_stream_request, which
is when the allocation should _not_ be doing stream allocation.
Fix this by determining whether or not we stream allocation should
take place once, in ext4_mb_group_or_file(), and setting a flag which
gets used in ext4_mb_regular_allocator() and ext4_mb_use_best_found().
This simplifies the code and assures that we are consistently using
(or not using) the stream allocation logic.
Signed-off-by: "Theodore Ts'o" <tytso@mit.edu>
move_extent_par_page calls a_ops->write_begin() to increase journal
handler's reference count. However, if either mext_replace_branches()
or ext4_get_block fails, the increased reference count isn't
decreased. This will cause a later attempt to umount of the fs to hang
forever. The patch addresses the issue by calling ext4_journal_stop()
if page is not NULL (which means a_ops->write_end() isn't invoked).
Signed-off-by: Peng Tao <bergwolf@gmail.com>
Signed-off-by: "Theodore Ts'o" <tytso@mit.edu>
When compiling with EXT4FS_DEBUG on, gcc will complain with following warnings:
linux-2.6/fs/ext4/ialloc.c: In function ‘ext4_count_free_inodes’:
linux-2.6/fs/ext4/ialloc.c:1192: warning: format ‘%lu’ expects type
‘long unsigned int’, but argument 2 has type ‘ext4_group_t’
So add a type cast to suppress it.
Signed-off-by: Peng Tao <bergwolf@gmail.com>
Signed-off-by: "Theodore Ts'o" <tytso@mit.edu>
* 'for_linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tytso/ext4:
jbd2: fix race between write_metadata_buffer and get_write_access
ext4: Fix ext4_mb_initialize_context() to initialize all fields
ext4: fix null handler of ioctls in no journal mode
ext4: Fix buffer head reference leak in no-journal mode
ext4: Move __ext4_journalled_writepage() to avoid forward declaration
ext4: Fix mmap/truncate race when blocksize < pagesize && !nodellaoc
ext4: Fix mmap/truncate race when blocksize < pagesize && delayed allocation
ext4: Don't look at buffer_heads outside i_size.
ext4: Fix goal inum check in the inode allocator
ext4: fix no journal corruption with locale-gen
ext4: Calculate required journal credits for inserting an extent properly
ext4: Fix truncation of symlinks after failed write
jbd2: Fix a race between checkpointing code and journal_get_write_access()
ext4: Use rcu_barrier() on module unload.
ext4: naturally align struct ext4_allocation_request
ext4: mark several more functions in mballoc.c as noinline
ext4: Fix potential reclaim deadlock when truncating partial block
jbd2: Remove GFP_ATOMIC kmalloc from inside spinlock critical region
ext4: Fix type warning on 64-bit platforms in tracing events header
Pavel Roskin pointed out that kmemcheck indicated that
ext4_mb_store_history() was accessing uninitialized values of
ac->ac_tail and ac->ac_buddy leading to garbage in the mballoc
history. Fix this by initializing the entire structure to all zeros
first.
Also, two fields were getting doubly initialized by the caller of
ext4_mb_initialize_context, so remove them for efficiency's sake.
Signed-off-by: "Theodore Ts'o" <tytso@mit.edu>
The EXT4_IOC_GROUP_ADD and EXT4_IOC_GROUP_EXTEND ioctls should not
flush the journal in no_journal mode. Otherwise, running resize2fs on
a mounted no_journal partition triggers the following error messages:
BUG: unable to handle kernel NULL pointer dereference at 00000014
IP: [<c039d282>] _spin_lock+0x8/0x19
*pde = 00000000
Oops: 0002 [#1] SMP
Signed-off-by: Peng Tao <bergwolf@gmail.com>
Signed-off-by: "Theodore Ts'o" <tytso@mit.edu>
We found a problem with buffer head reference leaks when using an ext4
partition without a journal. In particular, calls to ext4_forget() would
not to a brelse() on the input buffer head, which will cause pages they
belong to to not be reclaimable.
Further investigation showed that all places where ext4_journal_forget() and
ext4_journal_revoke() are called are subject to the same problem. The patch
below changes __ext4_journal_forget/__ext4_journal_revoke to do an explicit
release of the buffer head when the journal handle isn't valid.
Signed-off-by: Curt Wohlgemuth <curtw@google.com>
Signed-off-by: "Theodore Ts'o" <tytso@mit.edu>
* Remove smp_lock.h from files which don't need it (including some headers!)
* Add smp_lock.h to files which do need it
* Make smp_lock.h include conditional in hardirq.h
It's needed only for one kernel_locked() usage which is under CONFIG_PREEMPT
This will make hardirq.h inclusion cheaper for every PREEMPT=n config
(which includes allmodconfig/allyesconfig, BTW)
Signed-off-by: Alexey Dobriyan <adobriyan@gmail.com>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
When MB_DEBUG is enabled, we get some compile warnings because
ext4_group_t is unsigned int. This patch fixes them.
Signed-off-by Akira Fujita <a-fujita@rs.jp.nec.com>
Signed-off-by: "Theodore Ts'o" <tytso@mit.edu>
After the patch I posted last week regarding buffer head ref leaks in
no-journal mode, I looked at all the code that uses buffer heads and
searched for more potential leaks.
The patch below fixes the issues I found; these can occur even when a
journal is present.
The change to inode.c fixes a double release if
ext4_journal_get_create_access() fails.
The changes to namei.c are more complicated. add_dirent_to_buf() will
release the input buffer head EXCEPT when it returns -ENOSPC. There are
some callers of this routine that don't always do the brelse() in the event
that -ENOSPC is returned. Unfortunately, to put this fix into ext4_add_entry()
required capturing the return value of make_indexed_dir() and
add_dirent_to_buf().
Signed-off-by: Curt Wohlgemuth <curtw@google.com>
Signed-off-by: "Theodore Ts'o" <tytso@mit.edu>
We need to check to make sure a journal is present before checking the
journal flags in ext4_decode_error().
Signed-off-by: Eric Sesterhenn <eric.sesterhenn@lsexperts.de>
Signed-off-by: "Theodore Ts'o" <tytso@mit.edu>
The allocation of the ext4_group_info array was moved to a new
function ext4_mb_add_group_info() in commit 5f21b0e6 so that online
resize would use a common (and correct) codepath. Unfortunately, the
call to the new ext4_mb_add_group_info() function was added without
removing the code which originally allocated the array. This caused a
memory leak each time an ext4 filesystem was mounted.
The fix is simple; remove the code that did the original allocation,
since it is no longer needed.
Reported-by: Catalin Marinas <catalin.marinas@arm.com>
Tested-by: Catalin Marinas <catalin.marinas@arm.com>
Signed-off-by: Aneesh Kumar K.V <aneesh.kumar@linux.vnet.ibm.com>
Signed-off-by: "Theodore Ts'o" <tytso@mit.edu>
helpers: get_cached_acl(inode, type), set_cached_acl(inode, type, acl),
forget_cached_acl(inode, type).
ubifs/xattr.c needed includes reordered, the rest is a plain switchover.
Signed-off-by: Al Viro <viro@zeniv.linux.org.uk>
Follow-up to "block: enable by default support for large devices
and files on 32-bit archs".
Rename CONFIG_LBD to CONFIG_LBDAF to:
- allow update of existing [def]configs for "default y" change
- reflect that it is used also for large files support nowadays
Signed-off-by: Bartlomiej Zolnierkiewicz <bzolnier@gmail.com>
Signed-off-by: Jens Axboe <jens.axboe@oracle.com>
If a filesystem supports POSIX ACL's, the VFS layer expects the filesystem
to do POSIX ACL checks on any files not owned by the caller, and it does
this for every single pathname component that it looks up.
That obviously can be pretty expensive if the filesystem isn't careful
about it, especially with locking. That's doubly sad, since the common
case tends to be that there are no ACL's associated with the files in
question.
ext4 already caches the ACL data so that it doesn't have to look it up
over and over again, but it does so by taking the inode->i_lock spinlock
on every lookup. Which is a noticeable overhead even if it's a private
lock, especially on CPU's where the serialization is expensive (eg Intel
Netburst aka 'P4').
For the special case of not actually having any ACL's, all that locking is
unnecessary. Even if somebody else were to be changing the ACL's on
another CPU, we simply don't care - if we've seen a NULL ACL, we might as
well use it.
So just load the ACL speculatively without any locking, and if it was
NULL, just use it. If it's non-NULL (either because we had a cached
entry, or because the cache hasn't been filled in at all), it means that
we'll need to get the lock and re-load it properly.
(This commit was ported from a patch originally authored by Linus for
ext3.)
Signed-off-by: "Theodore Ts'o" <tytso@mit.edu>
Signed-off-by: Al Viro <viro@zeniv.linux.org.uk>
The VFS handles updating ctime, so we don't need to update the inode's
ctime in ext4_splace_branch() to update the direct or indirect blocks.
This was harmless when we did this in ext3, but in ext4, thanks to
delayed allocation, updating the ctime in ext4_splice_branch() can
cause the ctime to mysteriously jump when the blocks are finally
allocated.
Thanks to Björn Steinbrink for pointing out this problem on the git
mailing list.
Signed-off-by: "Theodore Ts'o" <tytso@mit.edu>
This patch fixes the mmap/truncate race that was fixed for delayed
allocation by merging ext4_{journalled,normal,da}_writepage() into
ext4_writepage().
Signed-off-by: Aneesh Kumar K.V <aneesh.kumar@linux.vnet.ibm.com>
Acked-by: Jan Kara <jack@suse.cz>
Signed-off-by: "Theodore Ts'o" <tytso@mit.edu>
It is possible to see buffer_heads which are not mapped in the
writepage callback in the following scneario (where the fs blocksize
is 1k and the page size is 4k):
1) truncate(f, 1024)
2) mmap(f, 0, 4096)
3) a[0] = 'a'
4) truncate(f, 4096)
5) writepage(...)
Now if we get a writepage callback immediately after (4) and before an
attempt to write at any other offset via mmap address (which implies we
are yet to get a pagefault and do a get_block) what we would have is the
page which is dirty have first block allocated and the other three
buffer_heads unmapped.
In the above case the writepage should go ahead and try to write the
first blocks and clear the page_dirty flag. Further attempts to write
to the page will again create a fault and result in allocating blocks
and marking page dirty. If we don't write any other offset via mmap
address we would still have written the first block to the disk and
rest of the space will be considered as a hole.
So to address this, we change all of the places where we look for
delayed, unmapped, or unwritten buffer heads, and only check for
delayed or unwritten buffer heads instead.
Signed-off-by: Aneesh Kumar K.V <aneesh.kumar@linux.vnet.ibm.com>
Acked-by: Jan Kara <jack@suse.cz>
Signed-off-by: "Theodore Ts'o" <tytso@mit.edu>
The function ext4_mb_free_blocks() was using an "unsigned long" to
pass a block number; this will cause 64-bit block numbers to get
truncated on x86 and other 32-bit platforms.
Signed-off-by: "Theodore Ts'o" <tytso@mit.edu>
Reviewed-by: Eric Sandeen <sandeen@redhat.com>
Enhance the inode allocator to take a goal inode number as a
paremeter; if it is specified, it takes precedence over Orlov or
parent directory inode allocation algorithms.
The extents migration function uses the goal inode number so that the
extent trees allocated the migration function use the correct flex_bg.
In the future, the goal inode functionality will also be used to
allocate an adjacent inode for the extended attributes.
Also, for testing purposes the goal inode number can be specified via
/sys/fs/{dev}/inode_goal. This can be useful for testing inode
allocation beyond 2^32 blocks on very large filesystems.
Signed-off-by: Andreas Dilger <adilger@sun.com>
Signed-off-by: "Theodore Ts'o" <tytso@mit.edu>
Instead of using a random number to determine the goal parent grop for
the Orlov top directories, use a hash of the directory name. This
allows for repeatable results when trying to benchmark filesystem
layout algorithms.
Signed-off-by: "Theodore Ts'o" <tytso@mit.edu>
We're running out of space in the mount options word, and
EXT4_MOUNT_ABORT isn't really a mount option, but a run-time flag. So
move it to become EXT4_MF_FS_ABORTED in s_mount_flags.
Also remove bogus ext2_fs.h / ext4.h simultaneous #include protection,
which can never happen.
Signed-off-by: "Theodore Ts'o" <tytso@mit.edu>
This field can be very helpful when a system administrator is trying
to sort through large numbers of block devices or filesystem images.
What is stored in this field can be ambiguous if multiple filesystem
namespaces are in play; what we store in practice is the mountpoint
interpreted by the process's namespace which first opens a file in the
filesystem.
Signed-off-by: "Theodore Ts'o" <tytso@mit.edu>
We can only fit 32 options in s_mount_opt because an unsigned long is
32-bits on a x86 machine. So use an unsigned int to save space on
64-bit platforms.
Signed-off-by: "Theodore Ts'o" <tytso@mit.edu>
The EXT4_IOC_MOVE_EXT exchanges the blocks between orig_fd and donor_fd,
and then write the file data of orig_fd to donor_fd.
ext4_mext_move_extent() is the main fucntion of ext4 online defrag,
and this patch includes all functions related to ext4 online defrag.
Signed-off-by: Akira Fujita <a-fujita@rs.jp.nec.com>
Signed-off-by: Takashi Sato <t-sato@yk.jp.nec.com>
Signed-off-by: Kazuya Mio <k-mio@sx.jp.nec.com>
Signed-off-by: "Theodore Ts'o" <tytso@mit.edu>
Push down lock_super into ->write_super instances and remove it from the
caller.
Following filesystem don't need ->s_lock in ->write_super and are skipped:
* bfs, nilfs2 - no other uses of s_lock and have internal locks in
->write_super
* ext2 - uses BKL in ext2_write_super and has internal calls without s_lock
* reiserfs - no other uses of s_lock as has reiserfs_write_lock (BKL) in
->write_super
* xfs - no other uses of s_lock and uses internal lock (buffer lock on
superblock buffer) to serialize ->write_super. Also xfs_fs_write_super
is superflous and will go away in the next merge window
Signed-off-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: Al Viro <viro@zeniv.linux.org.uk>
Note that since we can't run into contention between remount_fs and write_super
(due to exclusion on s_umount), we have to care only about filesystems that
touch lock_super() on their own. Out of those ext3, ext4, hpfs, sysv and ufs
do need it; fat doesn't since its ->remount_fs() only accesses assign-once
data (basically, it's "we have no atime on directories and only have atime on
files for vfat; force nodiratime and possibly noatime into *flags").
[folded a build fix from hch]
Signed-off-by: Al Viro <viro@zeniv.linux.org.uk>
Move BKL into ->put_super from the only caller. A couple of
filesystems had trivial enough ->put_super (only kfree and NULLing of
s_fs_info + stuff in there) to not get any locking: coda, cramfs, efs,
hugetlbfs, omfs, qnx4, shmem, all others got the full treatment. Most
of them probably don't need it, but I'd rather sort that out individually.
Preferably after all the other BKL pushdowns in that area.
[AV: original used to move lock_super() down as well; these changes are
removed since we don't do lock_super() at all in generic_shutdown_super()
now]
[AV: fuse, btrfs and xfs are known to need no damn BKL, exempt]
Signed-off-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: Al Viro <viro@zeniv.linux.org.uk>
We can't run into contention on it. All other callers of lock_super()
either hold s_umount (and we have it exclusive) or hold an active
reference to superblock in question, which prevents the call of
generic_shutdown_super() while the reference is held. So we can
replace lock_super(s) with get_fs_excl() in generic_shutdown_super()
(and corresponding change for unlock_super(), of course).
Since ext4 expects s_lock held for its put_super, take lock_super()
into it. The rest of filesystems do not care at all.
Signed-off-by: Al Viro <viro@zeniv.linux.org.uk>
We just did a full fs writeout using sync_filesystem before, and if
that's not enough for the filesystem it can perform it's own writeout
in ->put_super, which many filesystems already do.
Move a call to foofs_write_super into every foofs_put_super for now to
guarantee identical behaviour until it's cleaned up by the individual
filesystem maintainers.
Exceptions:
- affs already has identical copy & pasted code at the beginning of
affs_put_super so no need to do it twice.
- xfs does the right thing without it and I have changes pending for
the xfs tree touching this are so I don't really need conflicts
here..
Signed-off-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: Al Viro <viro@zeniv.linux.org.uk>
* 'for-2.6.31' of git://git.kernel.dk/linux-2.6-block: (153 commits)
block: add request clone interface (v2)
floppy: fix hibernation
ramdisk: remove long-deprecated "ramdisk=" boot-time parameter
fs/bio.c: add missing __user annotation
block: prevent possible io_context->refcount overflow
Add serial number support for virtio_blk, V4a
block: Add missing bounce_pfn stacking and fix comments
Revert "block: Fix bounce limit setting in DM"
cciss: decode unit attention in SCSI error handling code
cciss: Remove no longer needed sendcmd reject processing code
cciss: change SCSI error handling routines to work with interrupts enabled.
cciss: separate error processing and command retrying code in sendcmd_withirq_core()
cciss: factor out fix target status processing code from sendcmd functions
cciss: simplify interface of sendcmd() and sendcmd_withirq()
cciss: factor out core of sendcmd_withirq() for use by SCSI error handling code
cciss: Use schedule_timeout_uninterruptible in SCSI error handling code
block: needs to set the residual length of a bidi request
Revert "block: implement blkdev_readpages"
block: Fix bounce limit setting in DM
Removed reference to non-existing file Documentation/PCI/PCI-DMA-mapping.txt
...
Manually fix conflicts with tracing updates in:
block/blk-sysfs.c
drivers/ide/ide-atapi.c
drivers/ide/ide-cd.c
drivers/ide/ide-floppy.c
drivers/ide/ide-tape.c
include/trace/events/block.h
kernel/trace/blktrace.c
The unitialized bit was not properly getting preserved in in an extent
which is partially truncated because the it was geting set to the
value of the first extent to be removed or truncated as part of the
truncate operation, and if there are multiple extents are getting
removed or modified as part of the truncate operation, it is only the
last extent which will might be partially truncated, and its
uninitalized bit is not necessarily the same as the first extent to be
truncated.
Signed-off-by: Aneesh Kumar K.V <aneesh.kumar@linux.vnet.ibm.com>
Signed-off-by: "Theodore Ts'o" <tytso@mit.edu>
If a non-existent file is opened via O_WRONLY|O_CREAT|O_TRUNC, there's
no need to treat this as a true file truncation, so we shouldn't
activate the replace-via-truncate hueristic.
Signed-off-by: "Theodore Ts'o" <tytso@mit.edu>
The dx_map_entry structure doesn't support over 64KB block size by
current usage of its member("offs"). Because "offs" treats an offset
of copies of the ext4_dir_entry_2 structure as is. This member size is
16 bits. But real offset for over 64KB(256KB) block size needs 18
bits. However, real offset keeps 4 byte boundary, so lower 2 bits is
not used.
Therefore, we do the following to fix this limitation:
For "store":
we divide the real offset by 4 and then store this result to "offs"
member.
For "use":
we multiply "offs" member by 4 and then use this result
as real offset.
Signed-off-by: Toshiyuki Okajima <toshi.okajima@jp.fujitsu.com>
Signed-off-by: "Theodore Ts'o" <tytso@mit.edu>
In generic_perform_write if we fail to copy the user data we don't
update the inode->i_size. We should truncate the file in the above
case so that we don't have blocks allocated outside inode->i_size. Add
the inode to orphan list in the same transaction as block allocation
This ensures that if we crash in between the recovery would do the
truncate.
Signed-off-by: Aneesh Kumar K.V <aneesh.kumar@linux.vnet.ibm.com>
CC: Jan Kara <jack@suse.cz>
Signed-off-by: "Theodore Ts'o" <tytso@mit.edu>
We should add inode to the orphan list in the same transaction
as block allocation. This ensures that if we crash after a failed
block allocation and before we do a vmtruncate we don't leak block
(ie block marked as used in bitmap but not claimed by the inode).
Signed-off-by: Aneesh Kumar K.V <aneesh.kumar@linux.vnet.ibm.com>
CC: Jan Kara <jack@suse.cz>
Signed-off-by: "Theodore Ts'o" <tytso@mit.edu>
This patch changes ext4 super.c to include the device name with all
warning/error messages, by using a new utility function ext4_msg.
It's a rather large patch, but very mechanic. I left debug printks
alone.
This is a straightforward port of a patch which Andi Kleen did for
ext3.
Cc: Andi Kleen <ak@linux.intel.com>
Signed-off-by: Eric Sandeen <sandeen@redhat.com>
Signed-off-by: "Theodore Ts'o" <tytso@mit.edu>
Get rid of EXTEND_DISKSIZE flag of ext4_get_blocks_handle(). This
seems to be a relict from some old days and setting disksize in this
function does not make much sense. Currently it was set only by
ext4_getblk(). Since the parameter has some effect only if create ==
1, it is easy to check by grepping through the sources that the three
callers which end up calling ext4_getblk() with create == 1
(ext4_append, ext4_quota_write, ext4_mkdir) do the right thing and set
disksize themselves.
Signed-off-by: Jan Kara <jack@suse.cz>
Signed-off-by: "Theodore Ts'o" <tytso@mit.edu>
Buffer heads outside i_size will be unmapped. So when we
are doing "walk_page_buffers" limit ourself to i_size.
Signed-off-by: Aneesh Kumar K.V <aneesh.kumar@linux.vnet.ibm.com>
Reviewed-by: Josef Bacik <jbacik@redhat.com>
Acked-by: Jan Kara <jack@suse.cz>
Signed-off-by: "Theodore Ts'o" <tytso@mit.edu>
----
The goal inode is specificed by inode number which belongs
to [1; s_inodes_count].
Signed-off-by: Johann Lombardi <johann@sun.com>
Signed-off-by: "Theodore Ts'o" <tytso@mit.edu>
If there is no journal, ext4_should_writeback_data() should return
TRUE. This will fix ext4_set_aops() to set ext4_da_ops in the case of
delayed allocation; otherwise ext4_journaled_aops gets used by
default, which doesn't handle delayed allocation properly.
The advantage of using ext4_should_writeback_data() approach is that
it should handle nobh better as well.
Thanks to Curt Wohlgemuth for investigating this problem, and Aneesh
Kumar for suggesting this approach.
Signed-off-by: "Theodore Ts'o" <tytso@mit.edu>
When we have space in the extent tree leaf node we should be able to
insert the extent with much less journal credits. The code was doing
proper calculation but missed a return statement.
Reported-by: Andreas Dilger <adilger@sun.com>
Signed-off-by: Aneesh Kumar K.V <aneesh.kumar@linux.vnet.ibm.com>
Signed-off-by: "Theodore Ts'o" <tytso@mit.edu>
Contents of long symlinks is written via standard write methods. So
when the write fails, we add inode to orphan list. But symlinks don't
have .truncate method defined so nobody properly removes them from the
on disk orphan list.
Fix this by calling ext4_truncate() directly instead of calling
vmtruncate() (which is saner anyway since we don't need anything
vmtruncate() does except from calling .truncate in these paths). We
also add inode to orphan list only if ext4_can_truncate() is true
(currently, it can be false for symlinks when there are no blocks
allocated) - otherwise orphan list processing will complain and
ext4_truncate() will not remove inode from on-disk orphan list.
Signed-off-by: Jan Kara <jack@suse.cz>
Signed-off-by: "Theodore Ts'o" <tytso@mit.edu>
The ext4 module uses rcu_call() thus it should use rcu_barrier()on
module unload.
The kmem cache ext4_pspace_cachep is sometimes free'ed using
call_rcu() callbacks. Thus, we must wait for completion of call_rcu()
before doing kmem_cache_destroy().
Signed-off-by: Jesper Dangaard Brouer <hawk@comx.dk>
Signed-off-by: "Theodore Ts'o" <tytso@mit.edu>
Ted noticed a stack-deep callchain through
writepages->ext4_mb_regular_allocator->ext4_mb_init_cache->submit_bh ...
With all the static functions in mballoc.c, gcc helpfully
inlines for us, and we get something like this:
ext4_mb_regular_allocator (232 bytes stack)
ext4_mb_init_cache (232 bytes stack)
submit_bh (starts 464 deeper)
the 2 ext4 functions here get several others inlined; by telling
gcc not to inline them, we can save stack space for when we
head off into submit_bh land and associated block layer callchains.
The following noinlined functions are only called once, so this
won't impact any other callchains:
ext4_mb_regular_allocator (104) (was 232)
ext4_mb_find_by_goal (56) (noinlined)
ext4_mb_init_group (24) (noinlined)
ext4_mb_init_cache (136) (was 232)
ext4_mb_generate_buddy (88) (noinlined)
ext4_mb_generate_from_pa (40) (noinlined)
submit_bh
ext4_mb_simple_scan_group (24) (noinlined)
ext4_mb_scan_aligned (56) (noinlined)
ext4_mb_complex_scan_group (40) (noinlined)
ext4_mb_try_best_found (24) (noinlined)
now when we head off into submit_bh() we're only 264 bytes deeper
in stack than when we entered ext4_mb_regular_allocator()
(vs. 464 bytes before). Every 200 bytes helps. :)
Signed-off-by: Eric Sandeen <sandeen@redhat.com>
Signed-off-by: "Theodore Ts'o" <tytso@mit.edu>
Cleanup of whitespace and formatting. Initially driven by confusing indents
for the ext4_{block,inode}_bitmap() et. al. helper routines, but figured I'd
cleanup some other 80-column wrapping and other indenting problems at the
same time.
Signed-off-by: Andreas Dilger <adilger@sun.com>
Signed-off-by: "Theodore Ts'o" <tytso@mit.edu>
If the caller isn't planning on modifying the block group descriptors,
there's no need to pass in a pointer to a struct buffer_head. Nuking
this saves a tiny amount of CPU time and stack space usage.
Signed-off-by: "Theodore Ts'o" <tytso@mit.edu>
The __ext4_write_dirty_metadata() function was introduced by commit
0390131b, "ext4: Allow ext4 to run without a journal", but nothing
ever used the function, either then or since. So let's remove it and
save a bit of space.
Cc: Frank Mayhar <fmayhar@google.com>
Signed-off-by: "Theodore Ts'o" <tytso@mit.edu>
Until now we have had a 1:1 mapping between storage device physical
block size and the logical block sized used when addressing the device.
With SATA 4KB drives coming out that will no longer be the case. The
sector size will be 4KB but the logical block size will remain
512-bytes. Hence we need to distinguish between the physical block size
and the logical ditto.
This patch renames hardsect_size to logical_block_size.
Signed-off-by: Martin K. Petersen <martin.petersen@oracle.com>
Signed-off-by: Jens Axboe <jens.axboe@oracle.com>
Not sure why I put this in as down_write originally; all we are
doing is walking the tree, nothing will change under us and
concurrent reads should be no problem.
Signed-off-by: Eric Sandeen <sandeen@redhat.com>
Signed-off-by: "Theodore Ts'o" <tytso@mit.edu>
To catch filesystem bugs or corruption which could lead to the
filesystem getting severly damaged, this patch adds a facility for
tracking all of the filesystem metadata blocks by contiguous regions
in a red-black tree. This allows quick searching of the tree to
locate extents which might overlap with filesystem metadata blocks.
This facility is also used by the multi-block allocator to assure that
it is not allocating blocks out of the system zone, as well as by the
routines used when reading indirect blocks and extents information
from disk to make sure their contents are valid.
Signed-off-by: "Theodore Ts'o" <tytso@mit.edu>
If two CPU's simultaneously call ext4_ext_get_blocks() at the same
time, there is nothing protecting the i_cached_extent structure from
being used and updated at the same time. This could potentially cause
the wrong location on disk to be read or written to, including
potentially causing the corruption of the block group descriptors
and/or inode table.
This bug has been in the ext4 code since almost the very beginning of
ext4's development. Fortunately once the data is stored in the page
cache cache, ext4_get_blocks() doesn't need to be called, so trying to
replicate this problem to the point where we could identify its root
cause was *extremely* difficult. Many thanks to Kevin Shanahan for
working over several months to be able to reproduce this easily so we
could finally nail down the cause of the corruption.
Signed-off-by: "Theodore Ts'o" <tytso@mit.edu>
Reviewed-by: "Aneesh Kumar K.V" <aneesh.kumar@linux.vnet.ibm.com>
The BH_Unwritten flag indicates that the buffer is allocated on disk
but has not been written; that is, the disk was part of a persistent
preallocation area. That flag should only be set when a get_blocks()
function is looking up a inode's logical to physical block mapping.
When ext4_get_blocks_wrap() is called with create=1, the uninitialized
extent is converted into an initialized one, so the BH_Unwritten flag
is no longer appropriate. Hence, we need to make sure the
BH_Unwritten is not left set, since the combination of BH_Mapped and
BH_Unwritten is not allowed; among other things, it will result ext4's
get_block() to be called over and over again during the write_begin
phase of write(2).
Signed-off-by: Aneesh Kumar K.V <aneesh.kumar@linux.vnet.ibm.com>
Signed-off-by: "Theodore Ts'o" <tytso@mit.edu>
The ext4_get_blocks() function was depending on the value of
bh_result->b_state as an input parameter to decide whether or not
update the delalloc accounting statistics by calling
ext4_da_update_reserve_space(). We now use a separate flag,
EXT4_GET_BLOCKS_UPDATE_RESERVE_SPACE, to requests this update, so that
all callers of ext4_get_blocks() can clear map_bh.b_state before
calling ext4_get_blocks() without worrying about any consistency
issues.
Signed-off-by: "Theodore Ts'o" <tytso@mit.edu>
The static function ext4_da_get_block_write() was only used by
mpage_da_map_blocks(). So to simplify the code, merge that function
into mpage_da_map_blocks().
Signed-off-by: "Theodore Ts'o" <tytso@mit.edu>
Use a very large unsigned number (~0xffff) as as the fake block number
for the delayed new buffer. The VFS should never try to write out this
number, but if it does, this will make it obvious.
Signed-off-by: Aneesh Kumar K.V <aneesh.kumar@linux.vnet.ibm.com>
Signed-off-by: "Theodore Ts'o" <tytso@mit.edu>
We need to mark the buffer_head mapping preallocated space as new
during write_begin. Otherwise we don't zero out the page cache content
properly for a partial write. This will cause file corruption with
preallocation.
Now that we mark the buffer_head new we also need to have a valid
buffer_head blocknr so that unmap_underlying_metadata() unmaps the
correct block.
Signed-off-by: Aneesh Kumar K.V <aneesh.kumar@linux.vnet.ibm.com>
Signed-off-by: "Theodore Ts'o" <tytso@mit.edu>
Enforce that noalloc_get_block_write() is only called to map one block
at a time, and that it always is successful in finding a mapping for
given an inode's logical block block number if it is called with
create == 1.
Signed-off-by: "Theodore Ts'o" <tytso@mit.edu>
This adds more documentation to various internal functions in
fs/ext4/inode.c, most notably ext4_ind_get_blocks(),
ext4_da_get_block_write(), ext4_da_get_block_prep(),
ext4_normal_get_block_write().
In addition, the static function ext4_normal_get_block_write() has
been renamed noalloc_get_block_write(), since it is used in many
places far beyond ext4_normal_writepage().
Plenty of warnings have been added to the noalloc_get_block_write()
function, since the way it is used is amazingly fragile.
Signed-off-by: "Theodore Ts'o" <tytso@mit.edu>
The functions ext4_get_blocks(), ext4_ext_get_blocks(), and
ext4_ind_get_blocks() used an ad-hoc set of integer variables used as
boolean flags passed in as arguments. Use a single flags parameter
and a setandard set of bitfield flags instead. This saves space on
the call stack, and it also makes the code a bit more understandable.
Signed-off-by: "Theodore Ts'o" <tytso@mit.edu>
Another function rename for clarity's sake. The _wrap prefix simply
confuses people, and didn't add much people trying to follow the code
paths.
Signed-off-by: "Theodore Ts'o" <tytso@mit.edu>
The static function ext4_get_blocks_handle() is badly named. Of
*course* it takes a handle. Since its counterpart for extent-based
file is ext4_ext_get_blocks(), rename it to be ext4_ind_get_blocks().
Signed-off-by: "Theodore Ts'o" <tytso@mit.edu>
The function ext4_da_get_block_write() is called in exactly one write,
and the last argument, create, is always 1. Remove it to simplify the
code slightly.
Signed-off-by: "Theodore Ts'o" <tytso@mit.edu>
On UP systems without DEBUG_SPINLOCK, ext4_is_group_locked always fails
which triggers a BUG_ON() call.
This patch fixes it by using assert_spin_locked instead.
Signed-off-by: Vincent Minet <vincent@vincent-minet.net>
Signed-off-by: "Theodore Ts'o" <tytso@mit.edu>
We have sb_bgl_lock() and ext4_group_info.bb_state
bit spinlock to protech group information. The later is only
used within mballoc code. Consolidate them to use sb_bgl_lock().
This makes the mballoc.c code much simpler and also avoid
confusion with two locks protecting same info.
Signed-off-by: Aneesh Kumar K.V <aneesh.kumar@linux.vnet.ibm.com>
Signed-off-by: "Theodore Ts'o" <tytso@mit.edu>
If the file's blocks have not yet been allocated because of delayed
allocation, the length of the extent returned by fiemap is incorrect.
This commit fixes this bug.
Signed-off-by: "Theodore Ts'o" <tytso@mit.edu>
Carl Henrik Lunde reported and debugged this; the test for the
last allocated block was comparing bytes to blocks in this test:
if (logical + length - 1 == EXT_MAX_BLOCK ||
ext4_ext_next_allocated_block(path) == EXT_MAX_BLOCK)
flags |= FIEMAP_EXTENT_LAST;
so any extent which ended right at 4G was stopping the extent
walk. Just replacing these values with the extent block &
length should fix it.
Also give blksize_bits a saner type, and reverse the order
of the tests to make the more likely case tested first.
Signed-off-by: Eric Sandeen <sandeen@redhat.com>
Reported-by: Carl Henrik Lunde <chlunde@ping.uio.no>
Tested-by: Carl Henrik Lunde <chlunde@ping.uio.no>
Signed-off-by: "Theodore Ts'o" <tytso@mit.edu>
In memory-constrained systems with many partitions, the ~68K for each
partition for the mb_history buffer can be excessive.
This patch adds a new mount option, mb_history_length, as well as a
way of setting the default via a module parameter (or via a sysfs
parameter in /sys/module/ext4/parameter/default_mb_history_length).
If the mb_history_length is set to zero, the mb_history facility is
disabled entirely.
Signed-off-by: Curt Wohlgemuth <curtw@google.com>
Signed-off-by: "Theodore Ts'o" <tytso@mit.edu>
The fs/ext4/namei.h header file had only a single function
declaration, and should have never been a standalone file. Move it
into ext4.h, where should have been from the beginning.
Signed-off-by: "Theodore Ts'o" <tytso@mit.edu>
There is no longer a reason for a separate ext4_sb.h header file, so
move it into ext4.h just to make life easier for developers to find
the relevant data structures and typedefs. Should also speed up
compiles slightly, too.
Signed-off-by: "Theodore Ts'o" <tytso@mit.edu>
There is no longer a reason for a separate ext4_i.h header file, so
move it into ext4.h just to make life easier for developers to find
the relevant data structures and typedefs. Should also speed up
compiles slightly, too.
Signed-off-by: "Theodore Ts'o" <tytso@mit.edu>
By avoiding the use of not-yet-used block groups (i.e., block groups
with the BLOCK_UNINIT flag), mballoc had a tendency to create large
files with large non-contiguous gaps. In addition avoiding the use of
new block groups had a tendency to push regular file data into the
first block group in a flex_bg group, which slows down the speed of
e2fsck pass 2, since it has a tendency to seek much more. For
example:
Before Patch After Patch
Time in seconds Time in seconds
Real / User/ Sys MB/s Real / User/ Sys MB/s
Pass 1 8.52 / 2.21 / 0.46 20.43 8.84 / 4.97 / 1.11 19.68
Pass 2 21.16 / 1.02 / 1.86 11.30 6.54 / 1.77 / 1.78 36.39
Pass 3 0.01 / 0.00 / 0.00 139.00 0.01 / 0.01 / 0.00 128.90
Pass 4 0.16 / 0.15 / 0.00 0.00 0.17 / 0.17 / 0.00 0.00
Pass 5 2.52 / 1.99 / 0.09 0.79 2.31 / 1.78 / 0.06 0.86
Total 32.40 / 5.11 / 2.49 12.81 17.99 / 8.75 / 2.98 23.01
This was on a sample 80 gig root filesystem which was approximately
50% full. Note the improved e2fsck pass 2 performance, by over a
factor of 3, due to a decreased number of seeks. (The total amount of
I/O in pass 2 was unchanged; the layout of the directory blocks was
simply much better from e2fsck's's perspective.)
Other changes as a result of this patch on this sample filesystem:
Before Patch After Patch
# of non-contig files 762 779
# of non-contig directories 571 570
# of BLOCK_UNINIT bg's 307 293
# of INODE_UNINIT bg's 503 503
Out of 640 block groups, of which 333 were in use, this patch caused
an extra 14 block groups to be utilized. The number of non-contiguous
files did go up slightly, but when measured against the 99.9% of the
files (603,154) which were contiguously allocated, this is pretty
insignificant.
Signed-off-by: "Theodore Ts'o" <tytso@mit.edu>
Signed-off-by: Andreas Dilger <adilger@sun.com>
If a filesystem supports POSIX ACL's, the VFS layer expects the filesystem
to do POSIX ACL checks on any files not owned by the caller, and it does
this for every single pathname component that it looks up.
That obviously can be pretty expensive if the filesystem isn't careful
about it, especially with locking. That's doubly sad, since the common
case tends to be that there are no ACL's associated with the files in
question.
ext4 already caches the ACL data so that it doesn't have to look it up
over and over again, but it does so by taking the inode->i_lock spinlock
on every lookup. Which is a noticeable overhead even if it's a private
lock, especially on CPU's where the serialization is expensive (eg Intel
Netburst aka 'P4').
For the special case of not actually having any ACL's, all that locking is
unnecessary. Even if somebody else were to be changing the ACL's on
another CPU, we simply don't care - if we've seen a NULL ACL, we might as
well use it.
So just load the ACL speculatively without any locking, and if it was
NULL, just use it. If it's non-NULL (either because we had a cached
entry, or because the cache hasn't been filled in at all), it means that
we'll need to get the lock and re-load it properly.
(This commit was ported from a patch originally authored by Linus for
ext3.)
Signed-off-by: "Theodore Ts'o" <tytso@mit.edu>
Use a separate lock to protect s_groups_count and the other block
group descriptors which get changed via an on-line resize operation,
so we can stop overloading the use of lock_super().
Signed-off-by: "Theodore Ts'o" <tytso@mit.edu>
The function ext4_mark_recovery_complete() is called from two call
paths: either (a) while mounting the filesystem, in which case there's
no danger of any other CPU calling write_super() until the mount is
completed, and (b) while remounting the filesystem read-write, in
which case the fs core has already locked the superblock. This also
allows us to take out a very vile unlock_super()/lock_super() pair in
ext4_remount().
Signed-off-by: "Theodore Ts'o" <tytso@mit.edu>
ext4_fill_super() is no longer called by read_super(), and it is no
longer called with the superblock locked. The
unlock_super()/lock_super() is no longer present, so this comment is
entirely superfluous.
Signed-off-by: "Theodore Ts'o" <tytso@mit.edu>
Ext4's on-line resizing adds a new block group and then, only at the
last step adjusts s_groups_count. However, it's possible on SMP
systems that another CPU could see the updated the s_group_count and
not see the newly initialized data structures for the just-added block
group. For this reason, it's important to insert a SMP read barrier
after reading s_groups_count and before reading any (for example) the
new block group descriptors allowed by the increased value of
s_groups_count.
Unfortunately, we rather blatently violate this locking protocol
documented in fs/ext4/resize.c. Fortunately, (1) on-line resizes
happen relatively rarely, and (2) it seems rare that the filesystem
code will immediately try to use just-added block group before any
memory ordering issues resolve themselves. So apparently problems
here are relatively hard to hit, since ext3 has been vulnerable to the
same issue for years with no one apparently complaining.
Signed-off-by: "Theodore Ts'o" <tytso@mit.edu>
By using a separate super_operations structure for filesystems that
have and don't have journals, we can simply ext4_write_super() ---
which is only needed when no journal is present --- and ext4_freeze(),
ext4_unfreeze(), and ext4_sync_fs(), which are only needed when the
journal is present.
Signed-off-by: "Theodore Ts'o" <tytso@mit.edu>
The s_dirt flag wasn't completely handled correctly, but it didn't
really matter when journalling was enabled. It turns out that when
ext4 runs without a journal, we don't clear s_dirt in places where we
should have, with the result that the high-level write_super()
function was writing the superblock when it wasn't necessary.
So we fix this by making ext4_commit_super() clear the s_dirt flag,
and removing many of the other places where s_dirt is manipulated.
When journalling is enabled, the s_dirt flag might be left set more
often, but s_dirt really doesn't matter when journalling is enabled.
Signed-off-by: "Theodore Ts'o" <tytso@mit.edu>
The ext4_commit_super() function took both a struct super_block * and
a struct ext4_super_block *, but the struct ext4_super_block can be
derived from the struct super_block.
Signed-off-by: "Theodore Ts'o" <tytso@mit.edu>